
An Extension Mechanism

for the Java Language

By

Michiaki Tatsubori
mt@is.tsukuba.ac.jp

February 1999

A Dissertation Submitted to the
Graduate School of Engineering

University of Tsukuba

In Partial Fulfillment of the Requirements
For the Degree of Master of Engineering

Copyright c©1999 by Michiaki Tatsubori. All Rights Reserved.

Michiaki Tatsubori

An Extension Mechanism for the Java Language

Master of Engineering Dissertation, Graduate School of Engineering, University of Tsukuba

February 1999

Abstract

This thesis presents the design and implementation of an extensible dialect
of the Java language, named OpenJava. Although the Java language is well
polished and dedicated to cover applications of a wide range of computa-
tional domain, it still lacks some mechanisms necessary for typical kinds of
applications. Our OpenJava enables programmers to extend the Java lan-
guage and implement such mechanisms on demand. It is an advanced macro
processor based on the technique called compile-time reflection.

In this thesis, first, the problems of traditional compile-time reflection
systems are pointed out; with those systems, it is difficult to write meta-level
programs. Those reflective systems are not suitable for macro processing
which are non-local, scattered, and spreaded in source programs, although
such macro processing are typical in object-oriented languages. Also, those
reflective systems do not provide sufficient supports of using different exten-
sions together.

Then this thesis proposes a new compile-time reflection system for Open-
Java. With OpenJava, translation of source code is indirectly performed
through an abstract data structure called metaobjects. This data structure
gives meta programmers an intuitive view in object orientation. Meta pro-
grammers in OpenJava can describe extensions of the base Java language
more intuitively and safely than in traditional reflective systems. Finally,
several examples are presented to show the good usability of OpenJava.

i

Acknowledgments

I profoundly thank Kozo Itano, who is my superviser in HLLA (High-
Level Language and system software Architecrue) laboratory at University
of Tsukuba, and this thesis was supervised by him. And, I would like to
express my deep gratitude to Shigeru Chiba. He is the man who developped
OpenC++, which served as the great stimulus for my study, OpenJava, and
he gave me very useful advice around reflection and metaobject protocols. I
also thank Ikuo Nakata and Yoshiyuki Yamashita, who was superviser when
I belonged to Programming Language Laboratory. There, Teruo Koyanagi
helped me to implement the eariest version of OpenJava.

Finally, I thank my thesis committee, Hideki Sakamoto, Yasushi Shinjo
and other students in HLLA laboratory. Hidenori Miyamoto, who is also
in our laboratory, Chowdhury Takdir Hossain, Yasutaka Sakayori, Marc-
Olivier Killijian, Juan-Carlos Ruiz-Garcia and Yukie Itoh are the best frends
of mine and put life into me. James Gosling gave me a chance to talk with
him and it encourage me to contribute my work to the Java community.

This thesis project was conducted at University of Tsukuba, Ibaraki,
Japan.

ii

Contents

1 Introduction 2

2 Motivation 4
2.1 Extension of Languages . 5

2.1.1 Programming according to Design Patterns 5
2.1.2 Distributed Programming 7

2.2 Related Works . 8
2.2.1 Regular MOPs . 9
2.2.2 Compile-time MOPs 9
2.2.3 Reflection in Java . 10

3 Designing the OpenJava MOP 13
3.1 Use of Compile-time MOP 15
3.2 Scope of Translation . 15

3.2.1 Class-based Translation 16
3.2.2 Translation at Callee-side or Caller-side 17
3.2.3 Semantics-based Translation 20
3.2.4 Problem of Ordinal MOPs 22

3.3 The OpenJava MOP . 23
3.4 OpenJava API . 26

3.4.1 Class . 26
3.4.2 Accessibility of Class Information 31
3.4.3 Members . 32

4 Implementation 34
4.1 Class Diagram . 34
4.2 Parse Tree . 34

5 Application Examples 39
5.1 Design Patterns . 39

5.1.1 The Adapter Pattern 40
5.1.2 The Visitor pattern 42

5.2 Distributed Objects . 46

iii

CONTENTS iv

6 Conclusion 49

References 50

A OpenJava Command Reference 55

List of Figures

2.1 A structure of the Adapter pattern 6

3.1 OpenJava Compiler Overview 13
3.2 OpenJava Compiler Coarse Modules 14
3.3 OpenJava Translator . 14
3.4 Translation with the Naive MOP 21
3.5 Scattered and Spreaded Information 23
3.6 Class Metaobjects and Translation 24
3.7 Meta-level Infomation . 25

4.1 OJMember . 34
4.2 Implementation of OJClass 35
4.3 Implementation of OJField 35
4.4 Implementation of OJMethod 35
4.5 Implementation of OJConstructor 36

5.1 A metaclass as a design pattern 39
5.2 A structure of the Visitor pattern 42
5.3 Proxy and Server . 47

v

List of Tables

3.1 static methods in OJClass 27
3.2 Methods in OJClass for primitive introspection (1) 28
3.3 Methods in OJClass for primitive introspection (2) 28
3.4 Methods in OJClass for primitive introspection (3) 29
3.5 Methods in OJClass for primitive intercession 29
3.6 Overridable Methods in OJClass for Callee-side Translation . 29
3.7 Overridable Methods in OJClass for Caller-side Translation . 30
3.8 Accessibilities of Member by Modifier 31
3.9 Methods in OJClass for practical introspection 31
3.10 Methods in OJMethod for primitive introspection (1) 32
3.11 Methods in OJMethod for primitive introspection (2) 32
3.12 Methods in OJMethod for primitive intercession 33
3.13 Methods in OJMethod for low-level intercession 33

4.1 A List of Classes for statments 37
4.2 Expressions . 38

1

Chapter 1

Introduction

This thesis presents the design and implementation of an extensible dialect
of the Java language, named OpenJava. Our OpenJava enables program-
mers to extend the Java language and implement a number of language
mechanisms on demand. It is an advanced macro processor based on the
technique called compile-time reflection.

These days, the range of computer software is getting wider. The Java
language[Gosling et al. 97, Kramer 97] is one of the most successful object-
oriented languages adopted by a number of users. This language was born
in 1995 and thus it is designed to run anywhere (on any platform) and
to be dedicated to cover a wide range of applications. In fact, Java is a
well-designed object-orientated language; it is simple and highly abstracted
so that it is easy for programmers to learn. Also, its runtime environment,
such as the Java virtual machine and the class loader, gives flexibility to Java
programs and thereby application software written in Java is adaptable to
various environment.

However, the Java language still lacks some userful mechanisms needed
by some kinds of applications. The use of design patterns is a good motivat-
ing example to extend the Java language and make higher-level control/data
abstractions available in the language. If design patterns are used, some
programs are significantly complicated so that the overall structure of the
programs is not easy to understand. The programmers have to write an-
noying and error-prone codes because the concept of design patterns are not
directly supported by the Java language.

Furthermore, language supports of distributed computing is another ex-
ample. To cover a variety of requirements of distributed computing, a lot
of compilers including Sun’s rmic have been developped, which extend the
Java language and provide various language constructs for distributed com-
puting. The problem is that developers need to write their own compiler
providing language constructs that are the most suitable for their applica-

2

CHAPTER 1. INTRODUCTION 3

tions though writing a new compiler and customizing an existing compiler
is very difficult.

To address this problem, this thesis proposes an advanced macro proces-
sor based on the technique called compile-time reflection. However, tradi-
tional compile-time reflection systems has difficulties in writing meta-level
programs. Those reflective systems are not suitable for macro processing
which are non-local, scattered, and spread in source programs, although
such macro processing are typical in object-oriented programming. Since
the traditional systems only provide an abstract syntax tree of source pro-
grams, meta-level programs must reconstruct the concepts of object orien-
tation appearing in the source programs from a given abstract syntax tree,
which is irrelevant to object orientation. Also, they do not provide sufficient
supports for using different extensions together. This may cause serious
conflicts if multiple extensions are used togather.

To overcome these difficulties, we developed a new compile-time reflec-
tion system for OpenJava. With OpenJava, translation of source programs
is indirectly performed through an abstract data structure called metaob-
jects. This data structure gives meta programmers an intuitive view of the
source programs in object orientation. Meta programmers in OpenJava can
describe extensions of the Java language more intuitively and safely than in
traditional reflective systems.

This thesis also presents several examples of language extensions to show
the good usability of OpenJava. The first example is language extensions
for design patterns, which make it easy to write programs according to
design pattern. The second example is language extensions for distributed
programming.

From the next chapter, we present background, design, implementaion
and application of OpenJava. In chapter 2, what motivates this research
is described. chapter 3 discusses important issuses to design the OpenJava
MOP. chapter 4 shows how to implement the OpenJava MOP is breafly
shown. In chapter 5, we present examples how the OpenJava address to
extend the Java language. Finally, we conclude this thesis in chapter 6.

Chapter 2

Motivation

Recently, the Java language[Gosling et al. 97] is one of the most successful
object-oriented languages, which a number of users adopt. As can be seen
in its catch phrase; write once run anywhere, it is machine independent and
dedicated to applicability in wide area of computational domain. For the
purpose of applicability, the language design is desired to have simplicity
and flexibility. In fact, the language constructs are highly abstracted as an
object-oriented language and very plain relatively to other practical object-
orient languages like C++, and the mechanisms like class loading on Java
VM (Virtual Machine)[Lindholm & Yellin 97, Meyer & Downing 97] bring
its applications good flexibility. However, while the language has plainness,
it lacks flexibility as a language though its applications can have flexibility.
This forces programmers to write complex code in special domains.

To be applicable to wide area and to be easy to use, Java needs flex-
ibility as a language. As in the past, libraries are flexible mechanism and
good libraries can provide a programming environment easy to use such as
java.awt package, which is included in Java as standard library for graph-
ical user interface programming. But current library mechanism of Java
is not enough applicable to all the domain such as transparent distributed
programming. It is nearly impossible to write any good library for such
environment because of the limitation of the Java language. Good libraries
should provide useful and high-level control/data abstractions to improve
readability of programs, and intuitive to avoid leading the users to misuse
the libraries. In addition to easiness to use, efficiency is also criterion of
good libraries.

In this chapter, the motivation of this research is described. First, in
section 2.1, we show why extensible languages are needed, by presenting
some application examples. Secondly, in section 2.2, we discuss about related
researches to point the stage of this research out.

4

CHAPTER 2. MOTIVATION 5

2.1 Extension of Languages

In order to support programming in some kinds of specific application do-
mains such as distributed programming, extended languages are very use-
ful. But such languages do not have all-round power for all the applications
though they are very suitable for applications in each domain. Achieving
suitability for all the applications, a language is desired to have several
mechanisms supporting primitives in every application domain. However,
a multi-paradigm language, which supports many mechanisms of language
primitives from the begining, tends to have too complex specifications to
learn. Thus an extensible language, in which programmers can choose ap-
propriate language mechanisms on demand, meets. Moreover, programmers
may add a new extension for a new application domain.

The rest of this section shows example applications which need support
by extended language mechanisms and motivate us to provide an extensible
language.

2.1.1 Programming according to Design Patterns

Although design patterns[Gamma et al. 94] are useful guidelines for writing
good object-oriented programs, some of the programs written according to
design patterns are complex and errorprone and the overall structure of
the programs is not easy to understand. First, programmers using design
patterns have to write annoying code to implement the patterns because the
concept of a design pattern is orthogonal to programming languages such
as SmallTalk and C++. Moreover, since most of design patterns consist
of several classes, any single class does not represent the overall structure
of the programs, that is, any line explicitly represents neither which design
pattern is used in that program nor which role in that design pattern each
class plays. A number of researchers[Bosch 97, Ducasse 97, Gil & Lorenz 98]
have argued these problems and they have proposed that syntax extensions
and extended language constructs help design pattern users write programs
and improve the readability of programs written with design patterns.

Here we show an example. Suppose that a programmer has to adapt
a class Vector (Listing 2.1) to an interface Stack (Listing 2.2), which are
defined as follows:

Listing 2.1 Vector.java
public class Vector

{

boolean isEmpty();

Enumeration elements();

Object lastElement() { }

void addElement(Object o) { }

....

}

CHAPTER 2. MOTIVATION 6

Listing 2.2 Stack.java
public interface Stack

{

boolean isEmpty();

Enumeration elements();

Object peek();

void push(Object o);

Object pop();

}

The Adapter pattern found in a design patterns catalog[Gamma et al. 94]
should be used in this case, to

convert the interface of a class into another interface clients ex-
pect. Adapter lets classes work together that could not otherwise
because of incompatible interfaces[Gamma et al. 94].

Figure 2.1 shows a structure of the Adapter pattern.

Client Target

Adapter

Adaptee

adaptee

request()

request()

specificRequest()

adaptee.specificRequest()

Figure 2.1: A structure of the Adapter pattern

A class Vector and an interface Stack corresponds to the Adaptee and
the Target respectively in Figure 2.1. According to the Adapter pattern,
programmers must write a class VectorStack correspondent to the Adapter:

Listing 2.3 VectorStack.java
public class VectorStack implements Stack

{

private Vector v;

VectorStack(Vector v) { this.v = v; }

boolean isEmpty() { return v.isEmpty(); }

Enumeration elements() { return v.elements(); }

Object peek() { return v.lastElement(); }

void push(Object o) { return v.addElement(o); }

Object pop() { }

}

The class VectorStack extends the class Vector to have the interface Stack.
Here, the class VectorStack is not a subclass of the class Vector so that a
single Adapter may work with several Adaptees, that is, the Vector itself
and all of its subclasses.

CHAPTER 2. MOTIVATION 7

In the case above, programmers are faced with some problems when
writing the class VectorStack which plays the role of the Adapter. The
problems are:

1. Although the class VectorStack is written for the Adapter of the Adapter
pattern, it is difficult to find out this fact from the source code. Which
design pattern is used? What is the role of the class VectorStack?

2. The programmers must add a field which holds a reference to an Vec-

tor object and a constructor to accept it.1 Although isEmpty() and
elements() are shared between the class Vector and the class Vec-

torStack, programmers must repeatedly write code for both of them.

3. In the body of the method peek(), only the method lastElement() is
invoked on the Vector object and the value obtained by this invocation
is returned intactly. Such a trivial operation of object also appears in
the method push(). Describing those operations is a boring task and
errorprone.

The above problems are also found in most of other design patterns and
these problems have been reported by a number of researchers [Soukup 95,
Schappert et al. 95, Bosch 96, Meijler et al. 97, Ducasse 97]. Bosch called
the problem 1, 2 and 3, traceability loss, self problem, and implementation
overhead in [Bosch 97].

2.1.2 Distributed Programming

Language extension for distributed programming[Bal 89], as it can be seen
in RPC in ancient Unix operating system, are common technique helping
programmers to write program easily. As for Java, there are several systems
which support distributed object programming. Such a system provide a
compiler to translate a source program written in ordinal way but into the
one which works in distribute environment and run on the ordinal Java
VM (Virtual Machine). In fact, RMI[JavaSoft 97b] by Sun Microsystems
provides rmic compiler and HORB[Hirano 97] provides horbc compiler.

With such systems, programmers can describe a class representing an
object which are produced and works on remote systems as if that object
exists on the local system. They can write program handling remote objects
without considering how to communicate with these objects through the net-
work. To archieve that transparency of programming remote objects, these
compilers accepts a source program written as like local object in the ordinal

1If the class VectorStack as an innerclass[Kramer 97] of class Vector is defined, this
problem is resolved. But this solution is not applicable when the source code of the class
Vector is not modifiable.

CHAPTER 2. MOTIVATION 8

way and produce a proxy class representing that actual communication to
remote systems and a server skelton class working on remote systems.

The problem is that they must provide each new compiler for every
new system supporting distributed programming. In the resarch level, there
are many proposal of such distributed systems. The researchers have to
implement a new compiler to provide their proposing systems.

2.2 Related Works

In this section, works related to this research are descibed. The reflection is
often used as a model of language extension, and it was originally proposed
by Simth[Smith 84] as 3-Lisp. It can be generally parted into two kinds
of functions. One is introspection and another is intercession. The intro-
spection is the mechanism to obtain information of program and use it in
program. And the intercession is the one to change the behavior and imple-
mentation of program in program. The program which performs reflective
comutation, intercession or introspection, is called meta-level program while
the program which is performed reflective computation to is called base-
level program. Generally, it is difficult to archive fully available intercession
without execution overheads of meta-level computation.

If it were not for reflection mechanisms, programmers could not handle
the behaivior of program since it is not a first-class in the language, unlike
string, integer, boolean, and so on. In reflection of object-oriented program-
ming, it is usual to provide a class (metaclass) representing instance objects
(metaobjects) for these non-first level things[Cointe 87].

The point is how to define an interface to these metaobjects, and how
to realize these mechanisms, which is called MOP (Metaobject Protocol). If
MOPs are simply designed and implemented, it would provide interpreters
on the executional environment. The source program run on one of these
interpreter and it can modify the interpreter to change its behavior. Though
reflection mechanisms are fully provided by this method, such a design and
implementation causes too serious overhead of execution.

First, in section 2.2.1, we reviews fully reflective MOPs founded to the
model above but with enhanced execution though it still have some over-
heads of execution. Secondly, in section 2.2.2, we reviews the researches in
systems with compile-time MOPs, in which reflective computations are fully
performed at compile-time because our approach is based on this technique
to achieve intercession without any runtime overhead at the cost of limita-
tion in direct support of runtime alteration of program behavior. At last,
in section 2.2.3 the ordinal reflection in regular Java is reviewed to discuss
about its limitation because our extensible language, OpenJava, is based
on Java language and executable code generated by OpenJava is bytecode

CHAPTER 2. MOTIVATION 9

which can be run on regular Java virtual machines.

2.2.1 Regular MOPs

CLOS

The CLOS (Common Lisp Object System) MOP[Kiczales 94] is an exem-
plary model of how to provide fully-functional reflective support in a lan-
guage. It was an open and adaptable implementation which could be mod-
ified to provide features that were not part of standard CLOS behavior. It
employ class metaobjects instead of the metaobjects for objects.

Although the currying[Briot & Cointe] technique allows metaobjects in
the CLOS MOP to mostly run at compile time, some computation by the
metaobjects is still performed at runtime. At least, which metaobject is
selected for given source program is determined at runtime.

ABCL/R3

ABCL/R3[Masuhara et al. 95] is a compilation framework in object-oriented
reflective languages. In their framwork, the meta-level of the language is ex-
posed to the programmer as a pure meta-circular interpreter organized in an
object-oriented way, as is with traditional approaches. The interpretation
overhead is effectively eliminated by the compiler with the technique based
on partial evaluation[Futamura 82].

Programmers can write meta program more easily on this system since
they can consider how to execute other than how to compile. But imple-
menting an effective partial evaluator is very difficult. In fact, there seem
not to be any effective one for Java.

2.2.2 Compile-time MOPs

Usually, programmers define how to compile program as meta level program
through compile-time MOPs other than regular MOPs[Kiczales 94] such as
CLOS MOP, through which they define how to execute program. From this
point of view, macros like ANSI C preprocessor or macro system of lisp are
probably oldest example of compile-time reflection since they are used in
order to translate a source program at the meta level. But the problem is
that such systems works well only in the case that the basic constructs of
languages are simple like procedures and functions.

EPP

EPP[Ichisugi & Roudier 97] is an extensible preprocessor kit for Java and
may be regarded as a kind of compile-time MOP. It is an application frame-
work for preprocessor type language extension systems. The parser of EPP

CHAPTER 2. MOTIVATION 10

is written by recursive descent style and provides many hooks for exten-
sions. By using these hooks, the extension programmer can introduce new
features, possibly associated with new syntax. Because all grammar rules
are handled in a modular way, it is also possible to remove some original
grammar rules from standard Java.

EPP enables preprocessor programmers to write an extension as a sep-
arate module, called EPP plugins. If only plugins do not cause a collision,
the end-user can incorporate multiple plugins into EPP simultaneously. In
fact, it is powerful for locally limited translation though programmers must
write recursive descent parser.

OpenC++

OpenC++ version 2[Chiba 95, Chiba 96] is the immediate ancestor of the
OpenJava MOP. It provides an extensible C++ language, which is one of
the most practical languages. Its translation is performed according to each
type of objects, that is, classes. Since, in higher level languages, the basic
constructs are more complicated for compilers, namely, the basic constructs
of class-based object-oriented languages are objects, classes and methods,
this kind of translation controlling is very effective to extending the behavior
of objects, which needs local translation scattered in program.

However, it is not easy to write translation of class declaration. This
is because it gives programmer a part of AST (abstract syntax tree) to
translate. Though it also gives contextual information with parse tree, its
not suitable for handling object-oriented semantics.

2.2.3 Reflection in Java

The Java already provides reflection mechanisms. One is the Java Reflection
API which enables introspection. Another is the class loader API which
enables intercession. And, there is other researches on reflection in Java.

Java Reflection API

The Java Core Reflection API[JavaSoft 97a] provides a type-safe API that
supports introspection about the classes and objects in the current Java
VM(Virtual Machine) at runtime. This API can be used to:

• construct new class instances and new arrays

• access and modify fields of objects and classes

• invoke methods on objects and classes

• access and modify elements of arrays

CHAPTER 2. MOTIVATION 11

Programmers might want to easily handle classes unknown at program-
ming time in order to provide applications like debugger, JavaBeans or Java
Object Serialization. And these appliations have needs:

• getting information about classes and its members

• using classes and its members

But the kind of information above are often unavailable at compile-time and
it is impossible to write program using unknown classes in strongly typed
languages without this API.

Through the Java Reflection API, programmers can handle classes, fields,
methods and constructors as objects. For instance, with these metaobject,
they can get the name of a class, invoke a method on a object, and so on
like following code:

Object unknown = ...
Class clazz = unknown.getClass();
Field field = clazz.getField("name");
String name = (String) field.get(p);

This API is refined for introspection at runtime, especially for security
issues at runtime, but it does not have intercession mechanism.

Class Loader

The Java VM uses class loaders to load class files and create class ob-
jects. Since class loaders are instances of subclasses of the class Class-

Loader provided as Java API, programmers can define new subclasses of
it in Java program. In a subclass of ClassLoader, programmers might change
the behavior of program by modifying loaded bytecode. Though execution
overheads of loading and modifying bytecodes are not small, it is still use-
ful. Several applications are demonstrated by Liang[Liang & Gilad 98] and
Kierby[Kirby et al. 98].

Addtion to the execution overhead of loading and modifying, there is
difficulty of programming because it is not easy to manipulate bytecodes
directly.

MetaJava

MetaJava[Golm and Kleinőder 97] is an extended Java interpreter that al-
lows structural and behavioral reflection. The system consists of the OS, the
application program (the base system), and the meta system. The compu-
tation in the base system raises events and that events are delivered to the
meta system. The meta system evaluates the events and reacts in a specific

CHAPTER 2. MOTIVATION 12

manner. All events are handled synchronously. Base-level computation is
suspended while the meta object processes the event. This gives the meta
level complete control over the activity in the base system. What actually
happens depends entirely on the meta object used. A base object also can
invoke a method of the meta object directly. This is called explicit meta
interaction and is used to control the meta level from the base level.

By limiting the point of alteration only in behavioral reflection, it suc-
ceeded in achieving efficient execution of its applications comparatively as
runtime MOP. Also, it does not allow syntax extensions in language.

Chapter 3

Designing the OpenJava
MOP

We designed a language named OpenJava, which is a dialect of the Java
language and has an extensible mechanism, and implemented its proccessing
system. The point of this research is the design of extension mechanism
and inteface, which is called MOP (Metaobject Protocol). For the reason
of efficient execution of application, our MOP is based on compile-time
MOPs[Chiba 95, Ishikawa et al. 96], which has no overhead at runtime of
application software.

runtime supportmeta-level program

Class libraries
bytecode bytecode

IOIIOI
OIIOIO IOIIOI

OIIOIO
IOIIOI
OIIOIO

IOIIOI
OIIOIO

base-level program

source code

OpenJava
Compiler

executable code

consistency
checking etc.

bytecode

Java
VM

translation
control

IOIIOI
OIIOIO

IOIIOI
OIIOIO

Figure 3.1: OpenJava Compiler Overview

For the end programmers who benefit from language extensions provided
by meta programmers, the way of developping their application software is
not different from the ordinal way. Similarly to other systems with compile-
time MOPs, OpenJava compiler, ojc, accepts source programs written by
programmers and generates executable code. The difference from regular
Java compilers is that OpenJava compiler refers to metalevel libraries in ad-

13

CHAPTER 3. DESIGNING THE OPENJAVA MOP 14

dition to regular libraries. An overview of the OpenJava compiler processing
is drawn in Figure 3.1. Moreover, the compiler generates bytecode for the
Java VM.

Internally, our OpenJava compiler constructs two major modules, a
translator and a regular Java compiler. The translator generates programs
written in regular Java and then the compiler generates regular byte code
for the Java VM according to the source code generated by the translator
(Figure 3.2).

meta-level program

OpenJava
translator

Java
compiler

runtime support

Class libraries

UserData.oj UserData.java UserData.class

UserApp.class

Distributed.class Communication.class

UserData_Proxy.java UserData_Proxy.class

UserApp.oj UserApp.java

Figure 3.2: OpenJava Compiler Coarse Modules

As a research, the most important module of this system is the translator
part. First, the translator takes source program written in the OpenJava
language extended by the meta-level program specified in that source pro-
gram and generates an AST (Abstract Syntax Tree). Then it transforms the
AST according to the meta-level program. Finally, it generates source code
in the regular Java language from the transformed AST. Figure 3.3 shows
this flow.

base-level
program

meta-level program

UserData.oj

Distributed.class

UserData.java

UserData_Proxy.java

regular Java
program

Figure 3.3: OpenJava Translator

The point of this research is how and what to provide a good interface
for its meta-level programmers who write meta-level program in order to
implement a new extended language feature. In the rest of this chapter,
we discuss the important design issues of the OpenJava MOP. First, in
section 3.1, why we choose a compile-time MOP instead of the runtime
MOPs, is described. In section 3.2, how the system should control several

CHAPTER 3. DESIGNING THE OPENJAVA MOP 15

extensions is described. Then, in section 3.3, we propose our new MOP after
comparing with ordinal MOPs. In section 3.4, the API classes for our MOP
are presented.

3.1 Use of Compile-time MOP

We choosed a compile-time MOP approach for implementing OpenJava be-
cause efficient execution of application software is our primary requirement.
If we choose an approach of modifying the regular Java VM, the ability of
language customization might be easily implemented. However, this imple-
mentation might make it difficult to apply runtime optimization techniques
like just-in-time compiler, which are currently the mainstrem of optimization
in Java. This is because such optimization techniques assume that programs
should be statically given in general. But in runtime approach, methods and
fields are dynamically altered, removed, and added by metalevel programs.

The OpenJava MOP is based on a compile-time MOP. Unlike runtime
MOPs described in 2.2.1, the compile-time MOP lets meta programmers
define how to compile given source program. In a runtime MOP approach,
the execution performance is low if it is implemented simply. Thus, runtime
MOPs must be implemented with a powerful partial evaluation mechanism
like ABCL/R3[Masuhara et al. 95]. However, it’s not easy to design and
implement such an effective mechanism for languages like Java[Consel 93,
Meyer, U. 91]. In fact, there seem to be no pretty result in partial evaluation
techniques at compile-time for Java, for the present.

With our MOP, meta programmers handle how to translate source pro-
grams though there is still an alternative to lets programmers produce exe-
cutable binary code for a source program. In OpenJava, programmers can
handle only source code to source code translation. Even though MOPs
handling how to generate executable code is very powerful to implement
optimizer, especially in languages in which source code level optimization
is relatively restricted like C++, such MOPs would be more complicated
because of the interface to handle executable code. As for Java, the exe-
cutable code is bytecode as intermediate language[Gosling 95] in which most
of bytecodes simply correspond to source code; in fact, there’s many disas-
sembler for Java’s bytecode. Thus, source code level optimization can be
enough powerful in Java.

3.2 Scope of Translation

Controling the scope of translation is important. The system should provide
the ability to apply translation to pieces of programs only when they satisfy
given conditions and only in a restricted region of programs. To incorporate

CHAPTER 3. DESIGNING THE OPENJAVA MOP 16

several extensions in a language, the system should control the scope of its
translation by each extension otherwise collisions among extensions occurs.
Without any scope control, programmers must carefully define their meta
program for the compatibility against other extensions. At least, it must be
specified how the system behaves when any collision occurs.

3.2.1 Class-based Translation

OpenJava has a scope control mechanism with which translations are per-
formed according to types of each object, that is, classes. An extension is
defined as a metaclass and a class corresponds to an instance of a metaclass.
In OpenJava, the default metaclass is provided as the class OJClass and
OJClass is defined no to make any translation. Meta programmers define a
new subclass of the class OJClass to implement their desiring extensions and
specify the relation of this new metaclass and appropriate classes. Then, the
system applies that translation only to program pieces of the objects which
instantiates the class related to the metaclass.

The following is a very simple base level program in OpenJava.

Listing 3.1 Hello.oj
public class Hello instantiates Verbose

{

public String say() {

return "Hello World.";

}

}

The notation:

class C instantiates M

specifys the class C is related to the metaclass M, that is, the class object
representing the class C is an instance of the class M. As a result, the trans-
lation around objects of type C will be performed according to the definition
in the class M.

Here, the class Verbose is defined to change the behavior of method call
on its instance class object to the one which prints out the called method’s
name, for the purpose of debugging or something. Then, the notation in
Listing 3.1 makes Hello objects have an additional behavior of printing out
the method’s name when it is called.

From the point of view in extending Java, an object-oriented language,
it is natural to switch the extension by the type of objects. We believe this
method of scope control is one of the best ways, though there’s several alter-
natives for the choice of the translation scope controls, such as delegation in
MPC++[Ishikawa et al. 96], system mixins in EPP[Ichisugi & Roudier 97]
or pattern matching in A*[Ladd & Ramming 95]. Our scope controling

CHAPTER 3. DESIGNING THE OPENJAVA MOP 17

method is founded upon OpenC++’s and it has been demonstrated to be
very useful for many applications by Chiba[Chiba 95, Chiba 98].

3.2.2 Translation at Callee-side or Caller-side

Here, what region of source code is to be translated as the part related to
an object is discussed. The parts of source code are categorized into three
from this point of view. The categories of relation to an object are:

1. callee-side: the declaration of the class

2. caller-side: where accesses to the object performed occurs

3. non related parts

Parts of source code in the category 3 are to be protected from translation
around the object. The part of 1 is callee side, where the class is declared
with its field declarations, method declarations and constructor declarations
described. And the rest, 2 is caller side, where accesses to the object throuth
its fields, methods or constructors of the class are performed.

To implement the example of methods which print out their name for
each invocation, one candidate is to translate the method declaration in the
declaration of the class Hello into the program as follows:

Listing 3.2 Hello.java
public class Hello instantiates Verbose

{

public String say() {

System.out.println("say() is called.");

String result = original say();

System.out.println("done.");

return result;

}

private String original say() {

return "Hello World.";

}

}

In order to change the behavior of Hello objects, another candidate is
to translate the part of each program where methods of the class Hello are
called. It is also possible to achieve the purpose of the metaclass Verbose,
as same as callee-side translation, by translating the code below:

Hello a = new Hello();
String str = a.say();

into the code below:

Hello a = new Hello();
invoke_Hello_say(a);

CHAPTER 3. DESIGNING THE OPENJAVA MOP 18

using a function of Listing 3.3:

Listing 3.3 invoke Hello say()
String invoke Hello say(Hello obj) {

System.out.println("say() is called.");

String result = obj.say();

System.out.println("done."));

return result;

}

Consequently, in order to change an object behavior by translating source
program, there are two translation category of caller-side translation and
callee-side translation. Some consideration from the point of this view are
described below.

Advantages and Drawbacks

There are trade-offs between each translation thought the example above
seems to be handled by both the translation at callee-side and the translation
at caller-side. The difference in translating sides of source program makes

First, we present a limitation of callee-side translation. In order to use
large numbers of fine-grained objects efficiently, a programming technique
to give rather shared objects than objects to be generated each time if the
shared objects can be used interchangeably. And such a technique is well
known as the Flyweight design pattern[Gamma et al. 94]. Here, suppose a
simple program providing this feature as follows:

Listing 3.4 Flyweight
public class BitmapFont

{

Image bitmap;

private FontFace(Font f, int height) {

bitmap = generateImage(f, height)

}

static Font[] fontcache = null, null, .. ;

public static genBitmapFont(Font f, int height) {

if (height < 15) {

if (fontcache[height] == null)

fontcache[height] = new BitmapFont(f, height)

return fontcache[height]

}

return new FontFace(f, henght);

}

}

In this case, this program saves system memory and computation time by
providing a method genBitmapFont() which recycles generated objects and
by hidding the constructor of the class BitmapFont.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 19

In order to implement this optimization transparent against its users, a
caller-side translation can replace the constructor invocation by a method
call for genBitmapFont(). However, such implementation seems to be im-
possible with callee-side translations.

Then, we present the problem of caller-side translation. Suppose that a
class Hello is a subclass of a class Object. The class Object has an instance
method toString() which return a String object representing the identical
string of this Object object and the class Hello overrides that method to
return a String object "Hello". If we execute the program below, which is
compiled and run on the regular Java environment:

Object obj = new Hello();
System.out.println(obj.toString());

the Java VM prints out as follows:

"Hello"

This means the method toString() is choosed by the active type of the ob-
ject obj but not by the static type. This feature is a kind of method dispatch
mechanisms usualy incorporated in object-oriented languages. However, at
compile-time, the type of obj can only be detected to be the superclass Ob-

ject at least since the variable obj is binded to it in this example. Generally,
it is impossible to determine the active type of obj at compile-time. Thus
even if a caller-side translation defined for the class Hello, the system cannot
apply it to obj.

The consitency of changing behavior is lost in the translation of instance
member accesses at caller-side, though it is still useful for the purpose of
optimization and it can keep consitency for class (static) member accesses.

Consequently, to change behavior of object according to its type, callee-
side translation is useful to keep the consistency of translation. Thus the
system must provide powerful callee-side translation in addition to translat-
ing at caller-side.

Still Collision

The system with type-based scope controling works pretty better than the
one without it because the system without scope controling is often inappli-
cable to several language extensions.

However the type-based system still has a possibility to cause a collision
between two language extensions when it employ the two of translation
policy, caller and callee side. This is because caller-side of translation for
one type is always in callee-side of translation for another type.

The system with two side translation semantics must specify how that
collision is solved.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 20

3.2.3 Semantics-based Translation

With ordinal compile-time MOPs, it is not easy for meta programmers to
write operations delivered in source code. For example, it is not easy to
write a meta program to add a method of a certain name only in case that
there is no such methods of the name. It is because of the design of ordinal
MOPs; The order to invoke each method translate() on node objects of
parse tree is fixed in post-order or pre-order. Such design of a MOP makes
it difficult for meta programmers to translate a part of parse tree according
to the information of another part of parse tree.

Because the definition of fields or methods in a class is declarative in
most of object-oriented languages, the availability of information can not
be fixed neither in post-order nor in pre-order of parse tree. Furthermore,
inherited fields and methods are not described in the parse tree directly.

Ordinal Compile-time MOPs

With compile-time MOPs, programmers must define how to translate pro-
gram in order to implement their desiring behavior. In the case to change a
regular method invocation as an invocation of a method of object on another
remote computer, programmers define a meta-level proglam implementing
an algorithm of source code translation through which the program:

p.setName("Thomas");

are translated into the program which call the method invoke() of an object
remoteObject, which make a network connection and access to a remote
server :

remote.invoke(p, "setName", new Object[]{ "Thomas" });

With most of current compile-time MOP, programmers would represent
an algorithm of translation by transforming parse tree or AST while way of
defining how to translate varies for each compile-time MOPs. Here suppose
a language system with the simplest compile-time MOP. The MOP should
have a model as follows:

• Each node of parse tree would be a metaobject. And classes varies for
kinds of syntactic elements such as a variable declaration, expression,
or statement.

• Each metaobject has a method translate() which transforms the
corresponding part of parse tree and returns transformed one.

Before compiling it into an executable code, the system invokes the method
translate() of the metaobject at the root of the given parse tree and

CHAPTER 3. DESIGNING THE OPENJAVA MOP 21

each method translate() recursively from the root to its leaves. In order
to implement a language extension, programmers can redefine classes with
another method translate() which returns parse tree representing desired
behavior (Figure 3.4).

ExpressionStmt ExpressionStmt

MethodCall BinaryExpr

FieldAccess Number

.....

AST Node

method call

metaobject
translate()

translate()

translate()

translate()

translate()

translate()

AST

Figure 3.4: Translation with the Naive MOP

For instance, the above example can be implemented by defining a
class RemoteMethodCall(Listing 3.6) substituting the regular class Method-

Call(Listing 3.5).

Listing 3.5 A class for default method call metaobjects
class MethodCall implements ParseTree

{

Expression ref;

String name;

Expressions args;

MethodCall(Expression ref, String name, Expressions args) {

this.ref = ref; this.name = name; this.args = args;

}

Expression translate() {

this.arguments = arguments.translate();

return this;

}

}

Listing 3.6 A class for customized method call metaobjects
class RemoteMethodCall extends MethodCall

{

...

MethodCall translate() {

Expression expr = new ClassName("Remote");

CHAPTER 3. DESIGNING THE OPENJAVA MOP 22

ArrayAllocation aryalloc

= new ArrayAlloc("Object", this.args);

Expressions virtualargs

= new Expressions(this.ref, this.name, aryalloc);

MethodCall result

= new MethodCall(expr, "invoke", virtualargs);

return result.translate();

}

}

It is natural that end users should want to use both remote objects and
non remote, local, objects in the same source program. However, switching
several translations with the naive MOPs described above is very difficult
because they only distinguish syntactical difference but its semantical dif-
ference. For example, there are two method call expressions in the code
below:

String name = info.getName()
remote.setName(name)

With the naive MOPs, it is difficult to make the access to info be remote
method invocation and not to make the access to remote be regular one.

The OpenC++ MOP

As for the MOP in OpenC++ version 2, which has type-driven translation
mechanism as described in subsection 3.2.1, it can handle the case above
easily. Since the type of object remote differs from the type of the object
name, the translation to be applied are easily switched appropriately for
its type, that is, the translation for remote object can be only performed
on the access to the object remote. Though the parts to be translated is
scattered and spreads in the source program, class-based translation, which
is semantical rather than syntactical, can be successfully applied to such
applications.

However, this applicability is only about translation at caller-side de-
scribed in subsection 3.2.2. As we claimed in subsection 3.2.2, translating
the parts of source program at callee-side, which is class declaration part,
is also important. Unfortunately, it falls into the problem similar to the
problem of the naive MOPs above, in applying callee-side translation to the
source program. In declarative language like Java, information related an
object may not be available from the top to there, further more, in that file.

3.2.4 Problem of Ordinal MOPs

With the ordinal compile-time MOPs, it is not easy for meta programmers
to write operations spreading in source code according to the information

CHAPTER 3. DESIGNING THE OPENJAVA MOP 23

scattered in source code. For example, it is difficult to write a meta program
to add a method of a certain name to a class only in case that there is no
such methods of the name. This is because of the design of ordinal MOPs;
The order to invoke each method translate() on node objects of parse tree
is fixed in post-order or pre-order. As a result, it is difficult to translate a
part of parse tree according to the information of another part of parse tree.

For example, in translating a part of class Panel, it is not easy to test
whether the class Panel has a method validate() or not because the method
validate() may be defined after the part being translated or may be in-
herited from the superclass Container of the class Panel (Figure 3.5).

class Panel
 extends Container
{

 Graphic gc;

 void add()

}

validate()

class Container
 extends Container
{

 Graphic gc;

 void add()

 void remove()

 void validate()
}

class Panel
 extends Container
{

 Graphic gc;

 void add()

}

?

Does this class
have

Figure 3.5: Scattered and Spreaded Information

Consequently, ordinal compile-time MOPs cannot handle examples shown
above though they can handle application examples like what can be handled
by Lisp macro and its advanced system. This is a reason why compile-time
MOPs are not easy to use relatively to runtime MOPs.

3.3 The OpenJava MOP

The problem shown in subsection 3.2.4 points out that the model of parse
tree for compile-time MOPs is not always addaptable to applications. In
fact, the example in subsection 3.2.4, to add a method of a certain name
only in case of no such methods of the name in that class, cannot be repre-
sented well in ordinal compile-time MOPs. But this kind of changing is very
simple concept from the point of object-oriented systems and thus must be
represented easily by meta programmers.

In OpenJava, we propose a new kind of compile-time MOP to address

CHAPTER 3. DESIGNING THE OPENJAVA MOP 24

this problem. Its interface is very similar to that of runtime MOPs, with
which it is claimed that programmers can intuitively describe extension of
the language[Masuhara et al. 95]. In fact, except executional introspection
for the source code under construction, the introspection mechanism found
in Java Reflection API[JavaSoft 97a] is fully provided in OpenJava MOP,
and the MOP naturally incorporates an intercession mechanism for trans-
lating the parts of class declarations in source program.

A unique feature is that our OpenJava translator internally creates a
class metaobject for every base-level class in the processed source programs
and the all refered bytecode classes. For instance, suppose the compiler is
given two source programs which include class declarations of the classes
VRect and Graph, and the classes refered to the classes String and VPoint

anyway(Figure 3.6). The system creates each metaobject for them by each
appropriate metaclass. Since the class VRect specified to be instantiated as
Verbose metaobject, the metaobject for the class VRect is generated by the
class Verbose. Also, since the class VPoint was compiled as an instance of a
metaclass Verbose before, the metaobject for the class VPoint is generated
as an instance of the metaclass Verbose.

OpenJava Translator

VRect’’

Graph’’

VPointString

String.class

IOIIOI
OIIOIO

VPoint.class

IOIIOI
OIIOIO

OJClass Verbose

metaobject

metaobject

metaobject metaobject

VRect’

Graph’

metaobject

metaobject

VRect

Graph

metaobject

metaobject

Verbose.class

IOIIOI
OIIOIO

Verbose
metaclass

OJClass.class

IOIIOI
OIIOIO

OJClass
metaclass

affects to translation

Verbose

VRect.oj

Graph.oj

VRect.java

Graph.java

metalevel libraries libraries

OJClass

M instantiates by M

caller

callercallee

callee

callee

caller

callee-side translation

caller-side translation

Figure 3.6: Class Metaobjects and Translation

First, callee-side translation is performed. The metaobject for the class
VRect translates itself according to the definition in the metaclass Verbose,

CHAPTER 3. DESIGNING THE OPENJAVA MOP 25

and so does the class Graph though it doesn’t change because its metaclass is
the default metaclass OJClass. Secondly, caller-side translation is performed.
The regions where VPoint is used in the class VRect and the class Graph are
translated by the metaobject for the class VPoint, which is an instance of
the metaclass Verbose.

Finally, the translator generates regular Java codes from the translated
metaobjects for VRect and Graph. And the system invokes regular Java
compiler with the generated codes. Also the system generates the meta-
level information including which metaclass instantiates the metaobject for
the class VRect for the purpose of detecting the metaclass of the class in
the future (Figure 3.7). This mechanism makes it possible to use libraries
without their source programs.

VRect
metaobject

Verbose.class

IOIIOI
OIIOIO

Verbose
metaclass

VRect.java

metalevel libraries

VRectOJMI.java

Java Compiler

VRect.class

IOIIOI
OIIOIO

VRectOJMI.class

IOIIOI
OIIOIO

Meta-level information

Figure 3.7: Meta-level Infomation

Syntax Extension

Syntax extension of languages is often useful to provide an appropriate inter-
face to the newly extended language mechanisms. In OpenJava, the scope of
syntax extension is also controled and restricted to the region of translation.
The places are restricted where syntax extensions can be defined.

At callee-side, the allowed extensions for a class are as follows:

• Several modifiers consisting of a definitive word, for the member dec-
larations, field, method, constructor and inner-class, and variable dec-
larations in the class body

• Several suffixes consisting of a definitive word followed by context-free
syntax, for the class declaration and the member declarations in the
class body

For example, if a modifier verbose and a suffix which begins with says and
consists of a following word are defined in a metaclass NoisyClass, the source
program may be written as follows:

CHAPTER 3. DESIGNING THE OPENJAVA MOP 26

Listing 3.7 The class NoisyObject of the metaclass NoisyClass
class NoisyObject instantiates NoisyClass

{

...

verbose String toString() {

...;

}

void addNotify() says Hello {

...;

}

}

And at caller-side, the allowed extensions for a class are as follows:

• Suffixes consisting of a definitive token followed by context-free syntax,
after the class name.

For example, if a suffix < TYPENAME >, where TYPENAME is a syntax repre-
senting a qualified class name, defined in a metaclass TemplateClass, a source
program which use a class Vector whose metaclass is the TemplateClass may
be written as follows:

Listing 3.8 Using the class Vector of the metaclass Template-
Class
class A

{

Vector<String> strvec = null;

void add(Vector<java.awt.Component> compvec) {

strvec = new Vector<java.lang.String>();

...

}

}

Though they are still useful, syntax extensions are currently not so much
powerful in OpenJava in order to avoid conflicting between extensions. This
is future work.

3.4 OpenJava API

The most important part of OpenJava API is the default metaclass OJClass

for class object. It provides methods to access information about the class.
Additionally, the classes OJField, OJMethod, OJConstructor are important in
OpenJava API to represent field, method, or constructor metaobjects which
are available through the methods of OJClass.

3.4.1 Class

The class openjava.mop.OJClass represents a class object. Information
about class is available through its methods.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 27

First, programmers can use the static method forName() to get a class
metaobject for its name (Table 3.1).

Table 3.1: static methods in OJClass

public OJClass forName(String name)
Attepmpts to locate, load, and link a OJClass object representing the class of
the given fully-qualified name. If it succeeds, returns that OJClass object.

The rest of methods in the class OJClass can be categorized into three:

1. to get information about the class (introspection)

2. to change information about the class (intercession)

3. to be overriden to translate (intercession)

Methods for Introspection of Class Declaration

The methods presented in this subsection would be used to get informa-
tion about the class, that is, the name of class, its inheriting superclass,
its implementing interfaces, its members, and so on. These methods cor-
respond to the methods of the class java.lang.Class in Java Reflection
API[JavaSoft 97a].

The methods in Table 3.2, Table 3.3 and Table 3.4 are used for intro-
spection.

Methods for Modification of Class Declaration

The methods in Table 3.5 are used to modify the class only from the class
metaobject itself. They cannot be used from other class metaobjects. Thus
they are used in the overriden methods to translate the class declaration,
callee-side.

Methods to Override

By overrideing the method in Table 3.6, programmers can perform their
callee-side translation. And by overrideing the method in Table 3.7, pro-
grammers can perform their caller-side translation.

These methods are invoked by the OpenJava system at appropriate time
of translation process.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 28

Table 3.2: Methods in OJClass for primitive introspection (1)

public OJModifier getModifiers()
Returns a OJModifier object for the modifiers of this class object.

public String getName()
Returns the fully-qualified name of the class as a String.

public String getPackage()
Returns the package name of the class as a String.

public boolean isInterface()
Tests if this OJClass object represents an interface type.

public boolean isArray()
Tests if this OJClass object represents an array class.

public boolean isPrimitive()
Tests if this OJClass object represents a primitive type.

public boolean isAssignableFrom(OJClass clazz)
Determines if the class or interface can be represented by this class. Object is
either the same as, or is a superclass or superinterface of, the class or interface
represented by the given OJClass parameter.

Table 3.3: Methods in OJClass for primitive introspection (2)

public OJClass getSuperclass()
Returns the OJClass object which represents the superclass of the class.

public OJClass[] getInterfaces()
Returns an array of OJClass objects which represents the interfaces of the class.
If this OJClass object represents an interface, returns an array containing objects
representing the direct superinterfaces of the interface.

public OJClass getDeclaringClass()
Returns the OJClass object which represents the class declaring this class as an
innerclass.

public OJClass getComponentType()
Returns the OJClass object representing the component type of an array. If this
class does not represent an array class this method returns null.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 29

Table 3.4: Methods in OJClass for primitive introspection (3)

public OJClass[] getDeclaredClasses()
Returns an array of all declared classes in this class, excluding inherited ones.

public OJField[] getDeclaredFields()
Returns an array of all declared fields in this class, excluding inherited ones.

public OJMethod[] getDeclaredMethods()
Returns an array of all declared methods in this class, excluding inherited ones.

public OJConstructor[] getDeclaredConstructors()
Returns an array of all declared constructors in this class, excluding inherited
ones.

Table 3.5: Methods in OJClass for primitive intercession

protected OJMethod addMethod(OJMethod method)
Generates an OJMethod object with the same signature of the given OJMethod
object and add it as a declared method of this class. This returns the generated
OJMethod object.

protected OJMethod removeMethod(Signature signature)
Removes an method with the given signature from this class declaration. Returns
the OJClass object which was removed or null if there was no correspongin
method in this class declaration.

protected OJMethod replaceMethod(Signature signature, OJMethod
replacement)
Replace an method of the given signature in this class declaration, with the
given OJMethod object. Returns the OJClass object which was replaced or null
if there was no correspongin method in this class declaration.

Table 3.6: Overridable Methods in OJClass for Callee-side Translation

public void translateDeclaration(Environment env)
To be overrided for translation the class declaration. This translation is applied
before caller-side translation.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 30

Table 3.7: Overridable Methods in OJClass for Caller-side Translation

public Expression expandAllocation(AllocationExpression expr,
Environment env)
This returns the generated OJMethod object.

public Expression expandArrayAllocation(AllocationExpression
expr, Environment env)
This returns the generated OJMethod object.

public Expression expandVariableDeclaration(VariableDeclaration
stmt, Environment env)
This returns the generated OJMethod object.

public Expression expandFieldRead(FieldAccess expr, Environment
env)
This returns the generated OJMethod object.

public Expression expandFieldWrite(FieldAccess expr, Environment
env)
Generates an OJMethod object with the same signature of the given OJMethod
object and add it as a declared method of this class.

public Expression expandMethodCall(MethodCall expr, Environment
env)
Generates an OJMethod object with the same signature of the given OJMethod
object and add it as a declared method of this class.

public Expression expandExpression(Expression expr, Environment
env)
Generates an OJMethod object with the same signature of the given OJMethod
object and add it as a declared method of this class.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 31

3.4.2 Accessibility of Class Information

Like many other object-oriented languages, Java has a system for controling
accessibily to members in each class. This kind of accessibily control is an
important feature to maintain application software development. Program-
mers can define an accessibility of four levels for each member declaration
by omitting or adding one of modifier notations, private, protected or
public. Table 3.8 specifies each case of accessibility.

from which situation of class public protected default private
class itsself OK OK OK OK
class in same package OK OK OK NG
class in another package OK NG NG NG
subclass in same package OK OK OK NG
subclass in another package OK OK NG NG

Table 3.8: Accessibilities of Member by Modifier

Programmers can pick out only the methods which is available from the
specified class by using methods in Table 3.9.

Table 3.9: Methods in OJClass for practical introspection

public OJMethod[] getAllMethods()
Returns an array of the all methods of this class, including all the inherited
methods.

public OJMethod[] getNonPrivateMethods()
Returns public, protected or package methods, including the inherited
public, protected or package methods. These methods are possibility to be
accessed from other classes.

public OJMethod[] getMethods(OJClass situation)
Returns an array of the all methods of this class, including all the inherited
methods.

public OJMethod[] getInheritableMethods()
Returns public or protected methods, including the inherited public or
protected methods. Returned methods inheritable for any subclass.

public OJMethod[] getInheritableMethods(OJClass situation)
In addition to the methods inheritable for any subclass, this returns the methods
with default package accessibility if the methods are declared in the package of
the given situation of subclass.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 32

3.4.3 Members

The class OJClass may return metaobjects for fields, methods, construc-
tors, classes. They respectively corresponds to the class OJField, OJMethod,
OJConstructor and OJClass. The class OJClass is already presented in this
section. Since it is the class OJMethod which is the most complicated class
for class member metaobjects except the class OJClass, we present only the
class OJMethod here.

Table 3.10: Methods in OJMethod for primitive introspection (1)

public OJModifier getModifiers()
Returns a OJModifier object for the modifiers of this method object.

public Signature signature()
Returns a Signature object for the signature of this method object.

public String getName()
Returns the fully-qualified name of this method object as a String.

Table 3.11: Methods in OJMethod for primitive introspection (2)

public OJClass[] getDeclaringClass()
Returns the OJClass object which represents the class declaring this method
object as a member.

public String getReturnType()
Returns the OJClass object which represents the type returned by this method
object.

public String getParameterTypes()
Returns an array of OJClass objects which represents the parameter types which
this method object accepts.

public String getExceptionTypes()
Returns an array of OJClass objects which represents the exception types which
this method object throws.

CHAPTER 3. DESIGNING THE OPENJAVA MOP 33

Table 3.12: Methods in OJMethod for primitive intercession

public void setReturnType(OJClass returnType)
Sets the OJClass object which represents the type returned by this method ob-
ject.

public void setExceptionTypes(OJClass[] exceptionTypes)
Sets the array of OJClass objects which represents the exception types which
this method object throws.

Table 3.13: Methods in OJMethod for low-level intercession

public Variable[] getParameters()
Returns an array of the Variable objects which represent the parameter variables
of this method object.

public StatementList getBody()
Returns the reconstructable list of Statement objects which represents the
method body.

public StatementList setBody(StatementList stmts)
Sets the method body.

Chapter 4

Implementation

4.1 Class Diagram

Here construction of the major classes implementing the OpenJava MOP is
briefly shown.

First, the classes OJClass, OJField, OJMethod and OJConstructor imple-
ment the interface OJMember (Figure 4.1) since classes, fields, methods and
constructors may be members of a class.

OJMember

getDeclaringClass()
getName()
getModifiers()
signature()

OJConstructorOJMethodOJFieldOJClass

Figure 4.1: OJMember

While metaobject may represent a class defined in bytecode or a class
defined in source code, the system gives unified interface to the meta pro-
grammers. To achieve this, OJClass internally has one of two states, byte-
code or source code (Figure 4.2). And it is same for the classes OJField,
OJMethod and OJConstructor (Figure 4.3, 4.4, 4.5).

4.2 Parse Tree

The classes for AST (Abstract Syntax Trees) are not so much unique com-
paratively to other systems. In order to avoid programmers access or con-

34

CHAPTER 4. IMPLEMENTATION 35

Programmer

OJClass

getName()
getField()
getMethod()
...

OJClassImp
substance

OJClassSourceCodeOJClassByteCode OJClassArray

getName()
getField()
getMethod()
...

OJClassNull

Figure 4.2: Implementation of OJClass

Programmer

OJField

getName()
getType()
getInitializer()
...

OJFieldImp
substance

OJFieldSourceCodeOJFieldByteCode

getName()
getType()
getInitializer()
...

Figure 4.3: Implementation of OJField

Programmer

OJMethod

getName()
getReturnType()
getExceptionType()
...

OJMethodImp
substance

OJMethodSourceCodeOJMethodByteCode

getName()
getReturnType()
getExceptionType()
...

Figure 4.4: Implementation of OJMethod

CHAPTER 4. IMPLEMENTATION 36

Programmer

OJConstructor

getName()
getReturnType()
getExceptionType()
...

OJConstructorImp
substance

getName()
getReturnType()
getExceptionType()
...

OJConstructorSourceCodeOJConstructorByteCode

Figure 4.5: Implementation of OJConstructor

struct wrong trees, each node of AST is strongly typed in OpenJava.
Table 4.1 is a list of classes which represent statement part of AST. And

Table 4.2 shows classes which represent expression part of AST.

CHAPTER 4. IMPLEMENTATION 37

Table 4.1: A List of Classes for statments

public interface Statement
An interface as a statement for every class representing a statement.

public class VariableDeclaration
Represents a variable declaration.

public class Block
Represents a block with a pair of braces.

public class EmptyStatement
Represents an empty statement only with semi colon.

public class ExpressionStatement
Represents a statement with expression.

public class DoWhileStatement
Represents a do - while statement.

public class ForStatement
Represents a for statement.

public class WhileStatement
Represents a while statement.

public class IfStatement
Represents a if statement.

public class SwitchStatement
Represents a switch statement.

public class SynchronizedStatement
Represents a synchronized statement.

public class TryStatement
Represents a try statement.

public class LabeledStatement
Represents a labeled statement.

public class BreakStatement
Represents a break statement.

public class ContinueStatement
Represents a continue statement.

public class ThrowStatement
Represents a throw statement.

public class ReturnStatement
Represents a return statement.

CHAPTER 4. IMPLEMENTATION 38

Table 4.2: Expressions

public interface Expression
An interface as an expression for every class representing an expression.

public class AllocationExpression
Represents an allocation of an instance with new.

public class ArrayAllocationExpression
Represents an allocation of an array with new.

public class AssignmentExpression
Represents an assignment expression.

public class BinaryExpression
Represents a binary operational expression.

public class CastExpression
Represents a type casting expression.

public class ConditionalExpression
Represents a conditional expression like a ? b : c.

public class InstanceofExpression
Represents a type testing operation.

public class UnaryExpression
Represents an unary operational expression.

public class ArrayAccess
Represents an array access.

public class FieldAccess
Represents a field access.

public class MethodCall
Represents a mechod call.

public class SelfAccess
Represents an access for self object by this including super.

public class Variable
Represents a variable.

public class Literal
Represents a literal including null.

Chapter 5

Application Examples

Here we show actual practices with our OpenJava.

5.1 Design Patterns

We claims that compile-time MOPs (Meta-Object Protocols) provide a gen-
eral framework for implementing those syntax extensions and extended lan-
guage constructs. In our approach, programmers write a meta-level library
which implements syntax extensions and extended language constructs for
a design pattern. With these extensions, users of that library can explicitly
declare in their programs what design patterns are used and what is the
role of each class in that design pattern. Furthermore, they do not have to
describe trivial behavior of objects because it is automatically generated by
a MOP system according to that library. Thus their programs can be simple
and easy to understand. To examine our idea, we have written libraries for
design patterns in OpenJava.

As our basic concept, we apply a metaclass to a design pattern.

Target

Adapter

Adaptee

DerivedAdaptee

an implementation

AnotherTarget

AnotherAdapter

AnotherAdaptee

another implementation

AdapterPattern
class

(metaclass)

class

interface

class

class

interface

class

class

instantiation

a design pattern

reference

Figure 5.1: A metaclass as a design pattern

39

CHAPTER 5. APPLICATION EXAMPLES 40

5.1.1 The Adapter Pattern

From the view point of the Adapter pattern, programmers have only to
define which method of the class Vector corresponds to each methods of
the interface Stack. This is because the Adapter only maps methods of the
Target to methods of the Adaptee.

In an extended language supporting the Adapter pattern, programmer
should be able to directly handle such forwardings. An implementation in
that extended language should be as follows:

Listing 5.1 VectorStack.oj
public class VectorStack

instantiates AdapterPattern

adapts Vector in v to Stack

{

Object peek() forwards lastElement;

void push(Object o) forwards addElement;

Object pop() { }

}

To use the Adapter pattern, all that programmers have to do are:

1. to declare that the program uses the Adapter pattern

2. to declare an Adapter class

3. to specify an Adaptee class and a Target class

4. to specify mapping between methods of the Adapter class and methods
of the Adaptee class

These things are easily described with the following language constructs:

1. A declaration
instantiates P

specifies that a design pattern P is used.

2. A declaration
adapts A in F to T

specifies that this class is an Adapter adapting the object of class A
in the field F to the interface T.

3. A declaration at the end of a method signature
forwards M

specifies that the method forwards to the method M of the Adaptee.

4. An Adapter class have methods corresponding to all the methods of the
Adaptee class. Even if they are not explicitly defined, they are auto-
matically inserted in the Adapter class. They forward to the Adaptee’s
method with the same name and signature.

These lanugage constructs simplify programs written according to the Adapter
pattern.

CHAPTER 5. APPLICATION EXAMPLES 41

Implementation in OpenJava

In OpenJava, the language extension shown above is implemented by a meta-
class AdapterPattern. Once this metaclass is written, other programmers can
benefit from the metaclass and thereby write programs involving extended
language constructs. The definition of the metaclass is as follows:

Listing 5.2 AdapterPattern.oj
public class AdapterPattern extends OJClass

{

/* overrides for syntax extensions */

static void init() {

registerDeclarationSuffix("adapts", ..);

registerMethodSuffix("forwards", ..);

}

/* overrides for translation */

void translateDeclaration(Environment env)

throws MOPException

{

ParseTree sfx = this.getSuffix("adapts");

OJClass adaptee = OJClass.forName(..sfx..);

OJClass target = OJClass.forName(..sfx..);

/* implicit forwarding to same signature */

OJMethod[] adapteds

= adaptee.getDeclaringMethods();

for (int i = 0; i < adapteds.length; ++i) {

/* picks the method of same signature */

OJMethod same sign

= target.lookupMethod(adapteds[i]);

if (same sign != null) {

OJMethod imp forwarder = ..same sign..;

this.addMethod(imp forwarder);

}

}

/* explicit forwarding */

OJMethod[] forwarder

= this.getSuffixedMethods("forwards");

for (int i = 0; i < forwarder.length; ++i) {

/* make forwardings */;

forwarder[i].setBody(..);

}

/* adds a field to hold an Adaptee */

this.addField(.."adaptee"..);

/* adds a constructor to accept an Adaptee */

this.addConstructor(..);

/* adds an interface as a Target */

this.addInterface(target);

CHAPTER 5. APPLICATION EXAMPLES 42

}

}

According to this metaclass, the OpenJava system produces regular Java
source code equivalent to the code in listing 2.3 from the code in listing 5.1.

5.1.2 The Visitor pattern

In this section, we show another example using the Visitor pattern. The
Visitor pattern is used to represent an operation to be performed on the ele-
ments of an objet structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates [Gamma et al. 94].
Figure 5.2 shows a structure of the Visitor pattern.

Client

ConcreteElementB

visit(ConcreteElementA)

accept(Visitor v)

v.visit(this)

Visitor

visit(ConcreteElementB)

visit(ConcreteElementA)

ConcreteVisitor1

visit(ConcreteElementB)

visit(ConcreteElementA)

ConcreteVisitor2

visit(ConcreteElementB)

accept(Visitor)

Element

operationB()

ObjectStructure

ConcreteElementA

accept(Visitor v)

operationA()

v.visit(this)

Figure 5.2: A structure of the Visitor pattern

Ordinal Implementation

Suppose that a programmer should implement a GUI class library accord-
ing to the Visitor pattern. The Visitor and the Element in Figure 5.2 are
represented by an interface GUIVisitor and an interface GUIElement:

Listing 5.3 GUIElement.java
public interface GUIElement

{

void accept(GUIVisitor v);

}

Listing 5.4 GUIVisitor.java
public interface GUIVisitor

CHAPTER 5. APPLICATION EXAMPLES 43

{

void visit(Container e);

void visit(Panel e);

void visit(Label e);

}

Since all the elements must accept a visitor, a class for elements needs
to have a method accept() which invokes visit() on the given GUIVisitor

object. The following is the definition of an element class Panel:

Listing 5.5 Panel.java
public class Panel extends Container

implements GUIElement

{

void accept(GUIVisitor v) { v.visit(this); }

....

}

Even if this class inherits from another element class Container which has a
method accept(), it has to have their own version of accept(). Otherwise,
the method visit() for the superclass would be wrongly invoked.

Writing a class implementing the interface GUIVisitor is also tedious:

Listing 5.6 PartsCounter.java
public class PartsCounter implements GUIVisitor

{

void visit(Container e) { }

void visit(Panel e) { visit((Container) e); }

void visit(Label e) { }

}

It has to have distinct methods visit() for every class implementing GUIEle-

ment. In this example, the programmer has to write a method for Panel even
though this method simply calls visit() for its superclass Container.

Extensions

If the above extension for the visitor pattern is available, programmers can
make the classes Panel and PartsCounter simpler.

First, programmers can write interfaces GUIElement and GUIVisitor with
explicit declaration representing the use of the Visitor pattern:

Listing 5.7 GUIElement.oj
public interface GUIElement

instantiates VisitorPattern

accepts GUIVisitor

{

void accept(GUIVisitor v);

}

CHAPTER 5. APPLICATION EXAMPLES 44

Listing 5.8 GUIVisitor.oj
public interface GUIVisitor

instantiates VisitorPattern

visits GUIElement

{

void visit() on Container, Panel, Label;

}

Then, they do not have to write a method accept() anymore for every
class implementing the interface GUIElement. A class Panel, for example, is
now rewritten as follows:

Listing 5.9 Panel.oj
public class Panel instantiates VisitorPattern

extends Container

accepts as GUIElement

{

....

//accept() is implicitly defined.

}

Also, they can simplify the definition of the class PartsCounter. They do
not have to define a method visit() for the class Panel because visit()
for the superclass Container is reused for Panel. Thus the class PartsCounter

is written as the following:

Listing 5.10 PartsCounter.oj
public class PartsCounter

instantiates VisitorPattern

visits as GUIVisitor

{

void visit(Container e) { }

void visit(Label e) { }

}

Implementation in OpenJava

In OpenJava, the extension for the Visitor pattern is implemented by a
metaclass VisitorPattern:

Listing 5.11 VisitorPattern.oj
public class VisitorPattern extends OJClass

{

static void init() {

registerDeclarationSuffix("visits", ..);

registerDeclarationSuffix("accepts", ..);

registerMethodSuffix("on", ..);

}

void translate() throws MOPException {

if (this.isInterface()) {

/* translation as an interface */

CHAPTER 5. APPLICATION EXAMPLES 45

OJClass visitee

= .. this.getSuffix("visits") ..;

OJClass acceptee

= .. this.getSuffix("accepts") ..;

if (visitee != null)

translateVisitor(visitee);

if (acceptee != null)

translateElement(acceptee);

} else {

/* translation for a concrete class */

OJClass visitor

= .. this.getSuffix("visits") ..;

OJClass element

= .. this.getSuffix("accepts") ..;

if (visitor != null)

translateVisitorAs(visitor);

if (element != null)

translateElementAs(element);

}

}

void translateVisitor(OJClass visitee) { }

void translateElement(OJClass acceptee) { }

/* translation for a concrete Element */

void translateElementAs(OJClass element) {

OJSignature visit = element.getMethods()[0];

this.addMethod(..visit..);

this.addInterface(element);

}

/* translation for a concrete Visitor */

void translateVisitorAs(OJClass visitor) {

OJClass element

= ..visitor.getSuffix("visits")..;

OJMethod[] visit = visitor.getMethods();

for (int i = 0; i < visit.length; ++i) {

if (this.lookupMethod(visit[i]) == null) {

//implicit forwarding

OJMethod forwarder = ..visit[i]..;

this.addMethod(forwarder);

}

}

this.addInterface(visitor);

}

}

According to this metaclass, the OpenJava system produces regular Java
source code equivalent to the code in listing 5.3, 5.4, 5.5 and 5.6 from the
code in listing 5.7, 5.8, 5.9 and 5.10.

CHAPTER 5. APPLICATION EXAMPLES 46

5.2 Distributed Objects

In this section, we present a language extension providing a transparent
distributed object programming. We assume there are already a class Client

and a class Server which communicates each other through the network since
it is beyond this thesis to present how to communicate through networks.

Suppose that a source program defined by programmers as follows:

Listing 5.12 InfoCollector.java
public class InfoCollector

{

InfoCollector() {

super();

}

String[] gatherInfo(File path) {

//access to localhost and

//gather only the information available here

}

}

To use objects of the class InfoCollector as remote objects, they must
define a class like in listing 5.13. And it can be use as in listing 5.14.

Listing 5.13 InfoCollectorProxy.java
public class InfoCollectorProxy

{

Client client;

InfoCollectorProxy(URL url) {

client = new Client(url);

client.invokeConstructor("InfoCollector",

new Object[0]);

}

String[] gatherInfo(File path) {

Object result = client.invoke("gatherInfo",

new Object[] { path });

return (String[]) result;

}

}

Listing 5.14 Using InfoCollectorProxy
InfoCollector collector

= new InfoCollectorProxy("www.apple.com");

String[] urls = collector.gatherInfo("/index.html");

By the program in listing 5.14, the InfoCollector object collector gen-
erate a Client object, then the Client object communicate with the remote
Server object to generate a InfoCollector on the remote site. And each in-
vocation on the object collector is sended to that remote object. The
overview of such communication is shown in Figure 5.3.

CHAPTER 5. APPLICATION EXAMPLES 47

collector.gatherInfo()

local remote www.apple.com

InfoCollectorProxy

InfoCollector InfoCollectornetwork connection

remote object

local object

Server

Client

Figure 5.3: Proxy and Server

Extensions

In order to make remote invocations transparent and avoid annoying pro-
gramming of the class InfoCollectorProxy for end-programmers, the system
should automatically generate the class InfoCollectorProxy for the class Info-

Collector defined by programmers as follows:

Listing 5.15 InfoCollector.oj
public class InfoCollector instantiates Distribution

{

InfoCollector() {

super();

}

String[] gatherInfo(File path) {

//access to localhost and

//gather only the information available here

}

}

And the usage of it should be as follows:

Listing 5.16 Using Transparent InfoCollector
InfoCollector collector

= new InfoCollector() on "www.apple.com";

String[] urls = collector.gatherInfo("/index.html");

Implementation in OpenJava

In OpenJava, the extension for distributed object programming is imple-
mented by a metaclass Distribution:

Listing 5.17 Distribution.oj
public class AdapterPattern extends OJClass

{

/* overrides for syntax extensions */

static void init() {

registerTypeSuffix("on", ..);

}

CHAPTER 5. APPLICATION EXAMPLES 48

/* overrides for translation */

void translateDeclaration(Environment env)

throws MOPException

{

/* implicit forwarding to same signature */

OJClass proxy = generateProxy();

OJSystem.env.addClass(proxy); }

/* overrides for translation at caller-side */

void expandAllocation(AllocationExpression expr,

Environment env)

throws MOPException

{

Literal site = (Literal) expr.getSuffix("on");

if (site != null) {

expr.setArguments(new ExpressionList(site));

}

return expr

}

/* generates proxy */

OJClass generateProxy() {

...

}

}

According to this metaclass, the OpenJava system produces regular Java
source code equivalent to the code in listing 5.12 and 5.13 from the code in
listing 5.15. And The code fragments in listing 5.16 are translated into the
code fragments in listing 5.14.

Chapter 6

Conclusion

This thesis has discussed the OpenJava MOP, our new language mechanism
giving extensibility to the Java language. Through this MOP, programmers
can intuitively write language extension libraries, which help programming
in many kinds of application domains. This mechanism supplements a draw-
back of Java, which is flexibility that a good programming language should
have.

The Java language still lacks some userful mechanisms needed by some
kinds of applications though Java is a well-designed object-oriented lan-
guage; it is simple and highly abstracted so that it is easy for programmers
to learn and its runtime environment gives flexibility to Java programs and
thereby application software written in Java is adaptable to various envi-
ronment.

To address this problem, this thesis proposed an advanced macro pro-
cessor based on the technique called compile-time reflection. Though tradi-
tional compile-time reflection systems have difficulties in writing meta-level
programs for typical macro processing in object-oriented programming, we
developed a new compile-time reflection system for OpenJava. With Open-
Java, translation of source programs is indirectly performed through an
abstract data structure called metaobjects. This data structure gives meta
programmers an intuitive view of the source programs in object orienta-
tion. Meta programmers in OpenJava can describe extensions of the Java
language more intuitively and safely than in traditional reflective systems.

This thesis presented an example extending the Java language to have
higher-level control/data abstractions for design patterns. If design patterns
are used without this language supports, some programs are significantly
complicated so that the overall structure of the programs is not easy to
understand. Also, the programmers have to write annoying and error-prone
codes because the concept of design patterns are not directly supported
by the Java language. Furthermore, this thesis presented an example of

49

CHAPTER 6. CONCLUSION 50

extending the Java language for supporting distributed computing. Meta
programmers in OpenJava can describe extensions for distributed computing
easily so that they can use the most suitable language constructs for their
software.

Bibliography

[Bal 89] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum : Programming
Languages for Distributed Computing Systems, ACM Computing Surveys
Vol.2, No.3, pp.261-322, 1989.

[Bosch 96] Jan Bosch : Language Support for Design Patterns, In TOOLS
Europe ’96, 1996.

[Bosch 97] Jan Bosch : Design Patterns as Language Constructs, In Journal
of Object Oriented Programming, SIGS Publications, 1997.

[Bracha et al. 98] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler
: Making the future safe for the past: Adding Genericity to the Java
Programming Language, In Proceedings of OOPSLA ’98, ACM SIGPLAN
Notices Vol.33, No.10, pp.183-200, 1998.

[Briot & Cointe] J. P. Briot and P. Cointe : Programming with Explicit
Metaclasses in Smalltalk-80, In Proceedings of OOPSLA ’89, ACM SIG-
PLAN Notices Vol.24, No.10, pp.419-431, ACM, 1989.

[Cartwright & Steel 98] R. Cartwright and Guy L., Steele Jr. Compatible
Genericity with Run-time Types for the Java Programming Language,
In Proceedings of OOPSLA ’98, ACM SIGPLAN Notices Vol.33, No.10,
pp.201-215, 1998.

[Chiba 95] Shigeru Chiba : A Metaobject Protocol for C++, In Proceed-
ings of OOPSLA ’95, ACM SIGPLAN Notices Vol.30, No.10, pp.285-299,
1995.

[Chiba 96] Shigeru Chiba, Gregor Kiczales, and John Lamping : Avoiding
Confusion in Metacircularity: The Meta-Helix, in Proceedings of the 2nd
International Symposium on Object Technologies for Advanced Software
(ISOTAS), pp.157-172, Springer, 1996.

[Chiba 98] Shigeru Chiba : Macro Processing in Object-Oriented Lan-
guages, In Proceedings of TOOLS Pacific ’98 Technology of Object-
Oriented Languages and Systems, IEEE Press, 1998.

51

BIBLIOGRAPHY 52

[Chiba & Tatsubori 98] S. Chiba, and M. Tatsubori : Yet Another
java.lang.Class, ECOOP’98 Workshop on Reflective Object-Oriented
Programming Systems, 1998.

[Cointe 87] Pierre Cointe : Metaclasses are First Class : the ObjVlisp
Model, In Proceedings of OOPSLA’87, ACM SIGPLAN Notices Vol 22,
No.12, pp.156-162, 1987.

[Consel 93] C. Consel and O. Danvy : Tutorial Notes on Partial Evalua-
tion, In Proceedings of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp.1-9, 1993.

[Ducasse 97] Stéphane Ducasse : Message Passing Abstractions as Elemen-
tary Bricks for Design Pattern Implementation, In Object-Oriented Tech-
nology, ECOOP workshop Reader, LNCS 1357, 1997.

[Futamura 82] Yoshihiko Futamura : Partial Computation of Programs,
In Proceedings of RIMS Symposia on Software Science and Engineering,
pp.1-35, LNCS 247, 1982.

[Gamma et al. 94] E. Gamma, R. Helm, R. Johnson, and J.O. Vlissides
: Design Patterns - Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[Gil & Lorenz 98] J. Gil and D. H. Lorenz : Design Patterns and Language
Design, IEEE Computer Vol.31, No.3, pp.118-120, 1998.

[Golm and Kleinőder 97] M. Golm and J. Kleinőder : MetaJava - A Plat-
form for Adaptable Operating-System Mechanisms, In Proceedings of the
ECOOP ’97 Workshop on Object-Orientation and Operationg Systems,
1997

[Gosling 95] James Gosling : Oak Intermediate Bytecodes, In ACM SIG-
PLAN IR ’95 Workshop on Intermediate Representations, 1995.

[Gosling et al. 97] J. Gosling, B. Joy, and G. Steele : The Java Language
Specification, Addison-Wesley, 1997.

[Hirano 97] Satoshi Hirano : HORB : Distributed Execution of Java Pro-
grams, In Proceedings of WWCA ’97, 1997.

[Ishikawa et al. 96] Y. Ishikawa, A. Hori, M.Sato, M. Matsuda, J. Nolte,
H. Tezuka, H. Konaka, and K. Kubota : Design and Implementation of
Metalevel Architecture in C++ - MPC++ Approach -, In Proceedings of
Reflection 96, pp.153-166, 1996.

BIBLIOGRAPHY 53

[JavaSoft 97a] JavaSoft : Java(TM) Core Reflection API and Specification,
Sun Microsystems, 1997.

[JavaSoft 97b] JavaSoft : Java(TM) Remote Method Invocation Specifica-
tion, Sun Microsystems, Inc., 1997.

[Kiczales 94] G. Kiczales, J. des Rivières and D. G. Bobrow : The Art of
the Metaobject Protocol, The MIT Press, 1991.

[Kirby et al. 98] G. Kierby, R. Morrison and D. Stemple : Linguistic Reflec-
tion in Java, Software Practice and Experience Vol.28, No.10, pp.1045-
1077, John Wiley & Sons, 1998.

[Kramer 97] Doug Kramer : JDK 1.1 Documentation, Sun Microsystems,
1997.

[Ladd & Ramming 95] D. A. Ladd and J. C. Ramming : A* : A Language
for Implementing Language Processors, IEEE Trans. on Software Engi-
neering Vol.21, No.11, pp.894-901, 1995.

[Liang & Gilad 98] S. Liang and G. Bracha : Dynamic Class Loading in the
Java Virtual Machine, In Proceedings of OOPSLA’98, ACM SIGPLAN
Notices Vol.33, No.10, pp.36-47, 1998

[Lindholm & Yellin 97] T. Lindholm and F. Yellin : The Java Virtual Ma-
chine Specification, Addison Wesley, 1997.

[Maddox 89] William Maddox : Semantically-sensitive macroprocessing,
Master’s thesis (ucb/csd 89/545), University of California, 1989.

[Masuhara et al. 95] H. Masuhara, S. Matsuoka, K. Asai, and A. Yonezawa
: Compiling Away the Meta-Level in Object-Oriented Concurrent Reflec-
tive Language Using Partial Evaluation, In Proceedings of OOPSLA’95,
ACM SIGPLAN Notices Vol.30, No.10, pp.300-315, 1995.

[Meijler et al. 97] T.D. Meijler, S. Demeyer and R. Engel : Making Design
Patterns Explicit in FACE, a Framework Adaptive Composition Envi-
ronment, In Proceedings of ESEC/FSE ’97, Springer-Verlag, pp. 94-110,
1997.

[Meyer & Downing 97] J. Meyer and T. Downing : Java Virtual Machine,
O’Reilly, 1997.

[Meyer, U. 91] Uwe Meyer : Tecniques for partial evaluation of imperative
programs, In Proceedings of PEPM ’91 the Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, SIGPLAN Notices
Vol.26, No 9, pp.94-105, 1991.

BIBLIOGRAPHY 54

[Mulet et al. 95] P. Mulet, J. Malenfant, and P. Cointe : Towards a method-
ology for explicit composition of metaobjects, In Proceedings of OOP-
SLA’95, ACM SIGPLAN Notices Vol.30, No.10, pp.316-330, 1995.

[Schappert et al. 95] A. Schappert, P. Sommerlad and W. Pree : Automated
Support for Software Development with Frameworks, In Proceedings of
SSR ’95 ACM SIGSOFT Symposium on Software Reusability, pp.123-
127, 1995.

[Smith 84] Brian C. Smith : Reflection and semantics in lisp, In Proceedings
of POPL ’84 ACM Symposium on Principles of Programming Languages,
pp.23-35, 1984.

[Soukup 95] Jiri Soukup : Implementing patterns, In Patterns Languages of
Program Design, pp.395-412, Addison-Wesley, 1995.

[Tatsubori & Chiba 98] M. Tatsubori and S. Chiba : Programming Sup-
port of Design Patterns with Compile-time Reflection, In OOPSLA’98
Workshop on Reflective Programming in C++ and Java, 1998.

[Ichisugi & Roudier 97] Y. Ichisugi and Y. Roudier : Extensible Java Pre-
processor Kit and Tiny Data-Parallel Java, In ISCOPE’97, 1997.

Appendix A

OpenJava Command
Reference

NAME

ojc - the OpenJava compiler

SYNOPSIS

ojc [options] [sourcefiles]

Arguments maybe in any order.

options
Command-line options

sourcefiles
One or more source files to be compiled. (Such as Hello.oj)

DESCRIPTION

The ojc tool reads class and interface definitions, written in the Open-
Java programming language, and compiles them into bytecode class
files.

Source code file names must have .oj suffixes, class file names must
have .class suffixes, and both source and class files must have root
names that identify the class. For example, a class called MyClass
would be written in a source file called MyClass.oj and compiled into
a bytecode class file called MyClass.class.

OPTIONS

55

APPENDIX A. OPENJAVA COMMAND REFERENCE 56

-classpath classpath

Set the user class path, overriding the user class path in the
CLASSPATH environment variable. If neither CLASSPATH or -classpath
is specified, the user class path consists of the current directory.
If the -sourcepath option is not specified, the user class path is
searched for source files as well as class files.
User class path entries are separated by colons (:) and can be
directories, JAR archives, or ZIP archives.

-sourcepath sourcepath

Specify the source code path to search for class or interface def-
initions. If packages are used, the local path name within the
directory must reflect the package name.
Note that classes found through the classpath are subject to au-
tomatic recompilation if their sources are found.

-d directory

Set the destination directory for generated java files and class
files. If a class is part of a package, ojc puts the java file and
class file in a subdirectory reflecting the package name, creating
directories as needed.
If -d is not specified, ojc puts the class file in the same directory
as the source file.
Note that the directory specified by -d is not automatically added
to your user class path.

-nowarn
Disable warning messages.

-verbose
Verbose output. This includes information about each class loaded
and each source file compiled.

-Jjavaoption
Passes through the string javaoption as a single argument to the
Java interpreter which runs the compiler. The argument should
not contain spaces. Multiple argument words must all begin with
the prefix -J, which is stripped. This is useful for adjusting the
compiler’s execution environment or memory usage.

-Cjavacoption

Passes through the string javacoption as a single argument qto the
Java compiler which is employed by the compiler. The argument
should not contain spaces. Multiple argument words must all
begin with the prefix -C, which is stripped. This is useful for
adjusting the compiler’s execution environment or memory usage.

APPENDIX A. OPENJAVA COMMAND REFERENCE 57

ENVIRONMENT VARIABLES

CLASSPATH
Used to provide the system a path to user-defined classes. Direc-
tories are separated by colons, for example,

.:/home/avh/classes:/usr/local/java/classes

