
Programming Support of Design Patterns

with Compile-time Reflection ∗

Michiaki Tatsubori † and Shigeru Chiba
Institute of Information Sciences and Electronics,

University of Tsukuba, Japan
{mt,chiba}@is.tsukuba.ac.jp

Abstract

This paper presents that compile-time MOPs can pro-
vide a general framework resolving implementation
problems of design patterns. The problems come from
the fact that some programs written according to de-
sign patterns are too complicated and errorprone and
that their overall structure is not easy to understand.
This problem can be resolved by syntax extensions
and extended language constructs that simplify de-
scription of the patterns and improve the readability
of the programs. In our approach, programmers can
use a MOP to write a library which implements syn-
tax extensions and extended language constructs for
supporting each design pattern. We illustrate this ap-
proach with examples written in OpenJava, which is
our self extensible version of the Java language with
a compile-time MOP. The Adapter pattern and the
Visitor pattern are used as examples.

1 Introduction

Although design patterns[Gamma et al. 94] are use-
ful guidelines for writing good object-oriented pro-
grams, some of the programs written according to
design patterns are complex and errorprone and the
overall structure of the programs is not easy to under-
stand. First, programmers using design patterns have
to write annoying code to implement the patterns be-
cause the concept of a design pattern is orthogonal to
programming languages such as SmallTalk and C++.
Moreover, since most of design patterns consist of sev-
eral classes, any single class does not represent the
overall structure of the programs, that is, any line ex-
plicitly represents neither which design pattern is used
in that program nor which role in that design pattern
each class plays. A number of researchers have argued
these problems and they have proposed that syntax

∗Submitted for OOPSLA’98 Workshop Reflective Program-
ming in C++ and Java, Vancouver, Canada, Oct 18, 1998.

†Tennohdai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
Phone: +81-298-53-5349 Fax: +81-298-53-5206

extensions and extended language constructs help de-
sign pattern users write programs and improve the
readability of programs written with design patterns
[Bosch 97, Ducasse 97, Gil & Lorenz 98].
We claims that compile-time MOPs (Meta-Object
Protocols) provide a general framework for implement-
ing those syntax extensions and extended language
constructs. In our approach, programmers write a
meta-level library which implements syntax extensions
and extended language constructs for a design pattern.
With these extensions, users of that library can explic-
itly declare in their programs what design patterns are
used and what is the role of each class in that design
pattern. Furthermore, they do not have to describe
trivial behavior of objects because it is automatically
generated by a MOP system according to that library.
Thus their programs can be simple and easy to un-
derstand. To examine our idea, we have written li-
braries for design patterns in OpenJava[Tatsubori 97,
Chiba & Tatsubori 98], which is an self extensi-
ble version of the Java language[Gosling et al. 97,
Kramer 97] with a class based compile-time MOP suc-
ceeding to OpenC++[Chiba 95].
In the rest of this paper, how to resolve the problems
with a compile-time MOP is described in the section 2
with an example of the Adapter pattern. Then, in the
section 3, another example using the Visitor pattern
is shown.

2 Compile-time MOP for De-
sign Patterns

In this section, we show an example using the Adapter
pattern. The Adapter pattern is used to con-
vert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces
[Gamma et al. 94]. Figure 1 shows a structure of the
Adapter pattern.
Suppose that a programmer has to adapt a class

Vector to an interface Stack, which are defined as fol-

Client Target

Adapter

Adaptee

adaptee

request()

request()

specificRequest()

adaptee.specificRequest()

Figure 1: A structure of the Adapter pattern

lows:

Listing 2.1 Stack.java
public interface Stack

{

boolean isEmpty();

Enumeration elements();

Object peek();

void push(Object o);

Object pop();

}

Listing 2.2 Vector.java
public class Vector

{

boolean isEmpty();

Enumeration elements();

Object lastElement() { }

void addElement(Object o) { }

....

}

A class Vector and an interface Stack corresponds
to the Adaptee and the Target respectively in figure
1. According to the Adapter pattern, programmers
must write a class VectorStack correspondent to the
Adapter:

Listing 2.3 VectorStack.java
public class VectorStack implements Stack

{

private Vector v;

VectorStack(Vector v) { this.v = v; }

boolean isEmpty() { return v.isEmpty(); }

Enumeration elements() { return v.elements(); }

Object peek() { return v.lastElement(); }

void push(Object o) { return v.addElement(o); }

Object pop() { }

}

The class VectorStack extends the class Vector to have
the interface Stack. Here, the class VectorStack is not
a subclass of the class Vector so that a single Adapter
may work with several Adaptees, that is, the Vector
itself and all of its subclasses.

Implementation Problems

In the case above, programmers are faced with some
problems when writing the class VectorStack which
plays the role of the Adapter. The problems are:

1. Although the class VectorStack is written for the
Adapter of the Adapter pattern, it is difficult to

find out this fact from the source code. Which
design pattern is used? What is the role of the
class VectorStack?

2. The programmers must add a field which holds a
reference to an Vector object and a constructor to
accept it.1 Although isEmpty() and elements()
are shared between the class Vector and the class
VectorStack, programmers must repeatedly write
code for both of them.

3. In the body of the method peek(), only the
method lastElement() is invoked on the Vector
object and the value obtained by this invocation
is returned intactly. Such a trivial operation of
object also appears in the method push(). De-
scribing those operations is a boring task and er-
rorprone.

The above problems are also found in
most other design patterns and this fact has
been reported by a number of researchers
[Soukup 95, Schappert et al. 95, Bosch 96,
Meijler et al. 97, Ducasse 97]. Bosch called the
problem 1, 2 and 3, traceability loss, self problem, and
implementation overhead in [Bosch 97].

Solution by Special Annotations

From the view point of the Adapter pattern, program-
mers have only to define which method of the class
Vector corresponds to each methods of the interface
Stack. This is because the Adapter only maps meth-
ods of the Target to methods of the Adaptee.
In an extended language supporting the Adapter
pattern, programmer should be able to directly han-
dle such forwardings. An implementation in that ex-
tended language should be as follows:

Listing 2.4 VectorStack.oj
public class VectorStack

instantiates AdapterPattern

adapts Vector to Stack

{

Object peek() forwards lastElement;

void push(Object o) forwards addElement;

Object pop() { }

}

To use the Adapter pattern, all that programmers
have to do are:

1. to declare that the program uses the Adapter pat-
tern

2. to declare an Adapter class, a Target class, and
an Adaptee class

1If the class VectorStack as an innerclass[Kramer 97] of class
Vector is defined, this problem is resolved. But this solution is
not applicable when the source code of the class Vector is not
modifiable.

3. to specify mapping between methods of the
Adapter class and methods of the Adaptee class

These things are easily described with the following
language constructs :

1. A declaration
instantiates P

specifies that a design pattern P is used.

2. A declaration
adapts A to T

specifies that this class is an Adapter adapting
the class A to the interface T.

3. A declaration at the end of a method signature
forwards M

specifies that the method forwards to the method
M of the Adaptee.

4. An Adapter class have methods corresponding to
all the methods of the Adaptee class. Even if they
are not explicitly defined, they are automatically
inserted in the Adapter class. They forward to
the Adaptee’s method with the same name and
signature.

These lanugage constructs simplify programs written
according to the Adapter pattern.

Implementation with Compile-time
MOP

In OpenJava, the language extension shown above is
implemented by a metaclass AdapterPattern. Once
this metaclass is written, other programmers can ben-
efit from the metaclass and thereby write programs
involving extended language constructs. The defini-
tion of the metaclass is as follows:

Listing 2.5 AdapterPattern.oj
public class AdapterPattern extends OJClass

{

/* overrides for syntax extensions */

void init() {

registerDeclarationSuffix("adapts", ..);

registerMethodSuffix("forwards", ..);

}

/* overrides for translation */

void translate() throws MOPException {

ParseTree sfx = this.getSuffix("adapts");

OJClass adaptee = OJClass.forName(..sfx..);

OJClass target = OJClass.forName(..sfx..);

/* implicit forwarding to same signature */

OJMethod[] adapteds

= adaptee.getDeclaringMethods();

for (int i = 0; i < adapteds.length; ++i) {

/* picks the method of same signature */

OJMethod same sign

= target.lookupMethod(adapteds[i]);

if (same sign != null) {

OJMethod imp forwarder = ..same sign..;

this.addMethod(imp forwarder);

}

}

/* explicit forwarding */

OJMethod[] forwarder

= this.getSuffixedMethods("forwards");

for (int i = 0; i < forwarder.length; ++i) {

/* make forwardings */;

forwarder[i].setBody(..);

}

/* adds a field to hold an Adaptee */

this.addField(.."adaptee"..);

/* adds a constructor to accept an Adaptee */

this.addConstructor(..);

/* adds an interface as a Target */

this.addInterface(target);

}

}

According to this metaclass, the OpenJava system
produces regular Java source code equivalent to the
code in listing 2.3 from the code in listing 2.4.

3 Another Example

In this section, we show another example using the
Visitor pattern. The Visitor pattern is used to repre-
sent an operation to be performed on the elements of
an objet structure. Visitor lets you define a new oper-
ation without changing the classes of the elements on
which it operates [Gamma et al. 94]. Figure 2 shows
a structure of the Visitor pattern.

Client

ConcreteElementB

visit(ConcreteElementA)

accept(Visitor v)

v.visit(this)

Visitor

visit(ConcreteElementB)

visit(ConcreteElementA)

ConcreteVisitor1

visit(ConcreteElementB)

visit(ConcreteElementA)

ConcreteVisitor2

visit(ConcreteElementB)

accept(Visitor)

Element

operationB()

ObjectStructure

ConcreteElementA

accept(Visitor v)

operationA()

v.visit(this)

Figure 2: A structure of the Visitor pattern

Ordinal Implementation

Suppose that a programmer should implement a GUI
class library according to the Visitor pattern. The

Visitor and the Element in Figure 2 are represented by
an interface GUIVisitor and an interface GUIElement:

Listing 3.1 GUIElement.java
public interface GUIElement

{

void accept(GUIVisitor v);

}

Listing 3.2 GUIVisitor.java
public interface GUIVisitor

{

void visit(Container e);

void visit(Panel e);

void visit(Label e);

}

Since all the elements must accept a visitor, a class
for elements needs to have a method accept() which
invokes visit() on the given GUIVisitor object. The
following is the definition of an element class Panel:

Listing 3.3 Panel.java
public class Panel extends Container

implements GUIElement

{

void accept(GUIVisitor v) { v.visit(this); }

....

}

Even if this class inherits from another element class
Container which has a method accept(), it has to have
their own version of accept(). Otherwise, the method
visit() for the superclass would be wrongly invoked.
Writing a class implementing the interface GUIVisi-

tor is also tedious:

Listing 3.4 PartsCounter.java
public class PartsCounter implements GUIVisitor

{

void visit(Container e) { }

void visit(Panel e) { visit((Container) e); }

void visit(Label e) { }

}

It has to have distinct methods visit() for every class
implementing GUIElement. In this example, the pro-
grammer has to write a method for Panel even though
this method simply calls visit() for its superclass
Container.

Extensions

If the above extension for the visitor pattern is avail-
able, programmers can make the classes Panel and
PartsCounter simpler.
First, programmers can write interfaces GUIElement
and GUIVisitor with explicit declaration representing
the use of the Visitor pattern:

Listing 3.5 GUIElement.oj
public interface GUIElement

instantiates VisitorPattern

accepts GUIVisitor

{

void accept(GUIVisitor v);

}

Listing 3.6 GUIVisitor.oj
public interface GUIVisitor

instantiates VisitorPattern

visits GUIElement

{

void visit() on Container, Panel, Label;

}

Then, they do not have to write a method accept()
anymore for every class implementing the interface
GUIElement. A class Panel, for example, is now rewrit-
ten as follows:

Listing 3.7 Panel.oj
public class Panel instantiates VisitorPattern

extends Container

accepts as GUIElement

{

....

//accept() is implicitly defined.

}

Also, they can simplify the definition of the class
PartsCounter. They do not have to define a method
visit() for the class Panel because visit() for the
superclass Container is reused for Panel. Thus the class
PartsCounter is written as the following:

Listing 3.8 PartsCounter.oj
public class PartsCounter

instantiates VisitorPattern

visits as GUIVisitor

{

void visit(Container e) { }

void visit(Label e) { }

}

Metalevel program

In OpenJava, the extension for the Visitor pattern is
implemented by a metaclass VisitorPattern:

Listing 3.9 VisitorPattern.oj
public class VisitorPattern extends OJClass

{

void init() {

registerDeclarationSuffix("visits", ..);

registerDeclarationSuffix("accepts", ..);

registerMethodSuffix("on", ..);

}

void translate() throws MOPException {

if (this.isInterface()) {

/* translation as an interface */

OJClass visitee

= .. this.getSuffix("visits") ..;

OJClass acceptee

= .. this.getSuffix("accepts") ..;

if (visitee != null)

translateVisitor(visitee);

if (acceptee != null)

translateElement(acceptee);

} else {

/* translation for a concrete class */

OJClass visitor

= .. this.getSuffix("visits") ..;

OJClass element

= .. this.getSuffix("accepts") ..;

if (visitor != null)

translateVisitorAs(visitor);

if (element != null)

translateElementAs(element);

}

}

void translateVisitor(OJClass visitee) { }

void translateElement(OJClass acceptee) { }

/* translation for a concrete Element */

void translateElementAs(OJClass element) {

OJSignature visit = element.getMethods()[0];

this.addMethod(..visit..);

this.addInterface(element);

}

/* translation for a concrete Visitor */

void translateVisitorAs(OJClass visitor) {

OJClass element

= ..visitor.getSuffix("visits")..;

OJMethod[] visit = visitor.getMethods();

for (int i = 0; i < visit.length; ++i) {

if (this.lookupMethod(visit[i]) == null) {

//implicit forwarding

OJMethod forwarder = ..visit[i]..;

this.addMethod(forwarder);

}

}

this.addInterface(visitor);

}

}

According to this metaclass, the OpenJava system
produces regular Java source code equivalent to the
code in listing 3.1, 3.2, 3.3 and 3.4 from the code in
listing 3.5, 3.6, 3.7 and 3.8.

4 Conclusion

When implementing design patterns, programmers are
faced with problems because some programs written
according to design patterns tend to be too compli-
cated and errorprone and their overall structure is not
easy to understand.
We claims that compile-time MOPs provide a gen-
eral framework for implementing syntax extensions
and extended language constructs which help design
pattern users to write their programs and improve
the readability of programs written with design pat-
terns. Also, this paper has illustrated how program-
mers write a meta-level library for every design pat-
tern with compile-time MOPs.
Two examples of the Adapter pattern and the Visi-
tor pattern have been described using our OpenJava,
which is an self extensible version of the Java language
with a compile-time MOP.

References

[Bosch 96] Jan Bosch : Language Support for Design
Patterns, In TOOLS Europe ’96, 1996.

[Bosch 97] Jan Bosch : Design Patterns as Language
Constructs, In Journal of Object Oriented Program-
ming, SIGS Publications, 1997.

[Chiba 95] Shigeru Chiba : A Metaobject Protocol for
C++, In Proceedings of OOPSLA’95, ACM SIG-
PLAN Notices Vol.30, No.10, pp.285-299, 1995.

[Chiba & Tatsubori 98] S. Chiba, and M. Tatsubori :
Yet Another java.lang.Class, ECOOP’98 Work-
shop on Reflective Object-Oriented Programming
Systems, 1998.

[Ducasse 97] Stéphane Ducasse : Message Passing
Abstractions as Elementary Bricks for Design Pat-
tern Implementation, In Object-Oriented Technol-
ogy, ECOOP workshop Reader, LNCS 1357, 1997.

[Gamma et al. 94] E. Gamma, R. Helm, R. Johnson,
and J.O. Vlissides : Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-
Wesley, 1994.

[Gil & Lorenz 98] J. Gil and D. H. Lorenz : Design
Patterns and Language Design, IEEE Computer
Vol.31, No.3, pp.118-120, 1998.

[Gosling et al. 97] J. Gosling, B. Joy, and G. Steele :
The Java Language Specification, Addison-Wesley,
1997.

[Kramer 97] Doug Kramer : JDK 1.1 Documentation,
Sun Microsystems, 1997.

[Meijler et al. 97] T.D. Meijler, S. Demeyer and R.
Engel : Making Design Patterns Explicit in FACE,
a Framework Adaptive Composition Environment,
In Proceedings of ESEC/FSE ’97, Springer-Verlag,
pp. 94-110, 1997.

[Schappert et al. 95] A. Schappert, P. Sommerlad and
W. Pree : Automated Support for Software Devel-
opment with Frameworks, In Proceedings of SSR ’95
ACM SIGSOFT Symposium on Software Reusabil-
ity pp.123-127, 1995.

[Soukup 95] Jiri Soukup : Implementing patterns, In
Patterns Languages of Program Design, pp.395-412,
Addison-Wesley, 1995.

[Tatsubori 97] Michiaki Tatsubori : Open-
Java WWW page, http://www.softlab.is.
tsukuba.ac.jp/~mich/openjava/index.html ,
1997-1998.

