
Macro Processing in Object-Oriented Languages

Shigeru Chiba
Institute of Information Science and Electronics, University of Tsukuba

and PRESTO, Japan Science and Technology Corporation
E-mail: chiba@is.tsukuba.ac.jp

Abstract

There are a number of programmable macro systems such as Lisp’s. While they can handle
complex program transformation, they still have difficulty in handling some kinds of transforma-
tion typical in object-oriented programming. This paper examines this problem and, to address it,
presents an advanced macro system based on ideas borrowed from reflection. Unlike other macro
systems, our macro system provides metaobjects as the data structure used for the macro processing
instead of an abstract syntax tree. This feature makes it easy to implement a range of transforma-
tions of object-oriented programs.

1: Introduction

Macros are probably the oldest example of meta programming. They have been used for pro-
cessing a source program at the meta level, that is, from a point of view other than the computation
described in the program. Their meta view has been tokens or syntax trees; most macro systems,
including the ANSI C preprocessor [1], deal with a source program as a sequence of tokens. Other
systems, like Lisp’s macro system, deal with it as a parse tree or an abstract syntax tree. These
traditional macro systems have been satisfactory since the basic constructs of the target languages
are procedures and functions, which are relatively simple.
However, the basic constructs of object-oriented languages are not procedures but objects, classes,

and methods, which are semantically and syntactically rich concepts. This fact reveals the limita-
tions of the traditional macro systems. Some kinds of source-level translation that are useful in
object-oriented programming are extremely difficult with those macro systems. Such translation
requires the ability to deal with a source program at a higher level than the level of tokens and
syntax trees. For example, it may need the ability of adding a specific method to a given class if
that method is not defined in the given class.
This paper presents our macro system called OpenC++, which addresses the problem above

for the C++ language. This macro system was designed on the basis of some ideas borrowed
from reflection [21, 17] and hence it allows programmers to deal with a source program from a
logical viewpoint instead of a syntactic one. OpenC++ exposes the source program as a set of C++
objects representing the logical structure of the program. This logical representation makes it easy
to implement macro processing typical in object-oriented programming. This fact is somewhat
obvious but the contribution of this paper is that it reports that the logical representation that the
reflection community has been studying is also workable for macro processing in object-oriented
programming.



Some versions of OpenC++ have been available to the public since 1995 and they have been
evolved according to the feedback from dozens of world-wide users (Several papers about research
activities using OpenC++ are found in [7]). For example, one group is using OpenC++ to develop
a C++ compiler to produce CORBA-compliant fault tolerant objects [12]. OpenC++ has been also
used to implement a tool for analyzing a program and producing useful information such as an
inheritance graph. The problem discussed in this paper has been articulated during the interaction
with those users. This paper focuses on the recent improvement of OpenC++ for addressing that
problem and presents details of its new programming interface. This is a new argument not included
in the author’s previous paper [3], which proposed the conceptual design of OpenC++ in the context
of reflection.
This paper has six sections. In Section 2, we show an example of macro processing, which

is typical in object-oriented programming but that current macro systems cannot easily handle.
Section 3 presents details of OpenC++ and how it handles the example in Section 2. Section 4
shows other examples of the use of OpenC++. We discuss the comparison with related work in
Section 5. Section 6 is conclusion.

2: Motivating Example

Programmable macro systems, such as Lisp macros, are powerful tools for meta programming.
They enable programmers to implement various language facilities that the target language lacks,
such as control statements, data abstractions, and even a simple object system. Macro systems are
also useful for executing inline expansion of a simple function to improve runtime performance.
However, the current macro systems are not satisfactory for object-oriented programming. There

are several examples that are typical in object-oriented programming but cannot be easily imple-
mented by traditional macros. Since most of the macro systems can only transform function-call
expressions, they are not practical if programmers want to transform statements or expressions that
do not look like a function-call expression. This section shows one of those examples and mentions
that another kind of macro system is needed in object-oriented languages.
“Design patterns” [8] show us a number of programming techniques called patterns to solve

typical problems we frequently encounter in object-oriented programming. Although those patterns
are well designed and tested, strictly following the patterns sometime causes the programmers to
repeatedly write similar code. This tedious work should be automated by macros but traditional
macro systems cannot handle this. A special preprocessor is needed for the automation.
We illustrate this problem with the visitor pattern. This pattern is used for visiting the elements

of a given data structure such as a tree structure and performing different operations on every node.
Suppose that we implement an abstract syntax tree for a compiler. The nodes of this tree structure
are instances of different classes such as AssignExpr and PrintExpr. The visitor pattern
implements operations on this abstract syntax tree, such as a type-checking operation.
A fundamental idea of the visitor pattern is to implement the type-checking operation separately

from the implementation of the node classes. The program should include not only the node classes
but also an abstract class Visitor and its subclass TypeCheckVisitor. These classes define
the operations performed during the tree traversal. They have methods such as VisitAssign-
Expr() and VisitPrintExpr(), each of which represents the operation executed when a
node of the corresponding class is visited.
To execute the type checking, the method Accept() is called with an instance of Type-

CheckVisitor on the root node of an abstract syntax tree. The visitor pattern requires that



all the tree-node classes have this method. For example, Accept() of the class AssignExpr
should be:

bool AssignExpr::Accept(Visitor* v) {
return v->VisitAssignExpr(this);

}

This calls the method VisitAssignExpr() on a given Visitor object, which is an instance
of TypeCheckVisitor in this case. The called method depends on the class; Accept() of
the class PrintExpr calls VisitPrintExpr(). In either case, the invoked method recur-
sively calls Accept() on the children of that node so that the child nodes are visited and the type
checking is executed on this subtree.
A benefit of this design is that the programmer can define another subclass of Visitor and

easily implement a tree traverse for a different operation. For example, the compiler would also
need CodeGenerationVisitor. However, this benefit comes with a relatively complex class
structure; all the tree-node classes must have a method Accept() and an abstract class Visitor
needs to be defined. This extra work for taking advantage of the visitor pattern is not difficult, but
is tedious and error-prone, since it is boring repetition of simple work, which is to add a method
Accept() to all the tree-node classes and to define a class Visitor so that it has methods
corresponding to every tree-node class.
A natural and simple idea for avoiding this problem is to use macros for automating this extra

work for the visitor pattern. Ideally, only a simple annotation to the tree-node classes should invoke
macro expansions so that the method Accept() is added and the abstract class Visitor is
defined. Suppose that visitorPattern is an annotation. The following code:

visitorPattern class AssignExpr {
public:

Expr *left, *right;
:

};
visitorPattern class PrintExpr {
public:

Expr* printed_value;
:

};

should be processed by the macro system and translated into something like this:

class Visitor { // abstract class
public:

bool VisitAssignExpr(AssignExpr*) = 0;
bool VisitPrintExpr(PrintExpr*) = 0;

};
class AssignExpr {
public:

bool Accept(Visitor* v) { return v->VisitAssignExpr(this); }
Expr *left, *right;

:
};
class PrintExpr {
public:

bool Accept(Visitor* v) { return v->VisitPrintExpr(this); }
Expr* printed_value;

:
};



The macro expansion shown above is, unfortunately, difficult to handle with traditional macro
systems. Obviously, the standard C++ macro system cannot handle it since its macros are applied
only to a symbol or a function-call expression. Even if the whole class declaration is given to a
macro as an argument, the C++ macro system cannot expand the declaration to include the method
Accept(). This is because the macro arguments are not divided into smaller pieces for performing
complex substitution. For example, a macro m cannot expand m(ABC) into ABxC (the macro
argument ABC cannot be divided into AB and C).
If a system like Lisp macros is used, macro arguments can be flexibly divided, transformed, and

inspected. Lisp’s macro system deals with macro arguments as a tree of symbols, which can be
manipulated as other regular data structures. Such macro systems have been also developed for
languages like C, which has a more complex grammar than Lisp [24, 13, 25, 16]. These macro
systems are called programmable syntax macros since their macro arguments are not parse trees
but abstract syntax trees (ASTs) so that it is easy to handle the complex grammar. Significant
design issues for syntax macros are (1) how to specify places where a macro is expanded in a given
AST, and (2) how to divide macro arguments into desirable subtrees. As for (1), A* [13] invokes
a macro if a given AST matches a pattern written in BNF. This feature enables macro expansion
without a macro name; for example, A* can transform all the if statements appearing in a program.
As for (2), MS2 [25] uses a special pattern-match language for parsing macro arguments. In this
language, patterns are specified with tokens and the types of ASTs (that is, non-terminal symbols
in the grammar).
These syntax macro systems are powerful and general-purpose systems, but they still require

their programmers to write complicated patterns for describing a macro for the visitor pattern.
Although adding a new method should be a simple operation in object-oriented languages, the
syntax macro systems require writing a complex pattern or program to compute where an AST
representing the added method is attached to the AST representing a class declaration. Writing a
macro for defining an abstract class Visitor is also difficult. Although the macro needs to collect
the names of all the tree-node classes, no direct supports are provided by the syntax macro systems.
Again, the programmer has to write a complex pattern to retrieve the class names. XL [16] provides
semantic information obtained by static program analysis in macro functions, but it is a functional
language without object orientation. The semantic information provided by XL is limited to the
static type of expressions and so on.

3: OpenC++

The first version of our C++ macro system called OpenC++ version 2.0 [3] had the same problem
mentioned above. Since we noticed this in response to user requests on OpenC++, we have been
examining a solution so that OpenC++ version 2.5 has a complete new interface meeting the users’
demands. This section presents the new interface and how it addresses the problem.

3.1: Syntactic Structure vs. Logical Structure

Our observation is that a drawback of the current macro systems is that an abstract syntax tree
(AST) is used for macro processing. This is good for languages such as Lisp and C, in which
function calls are primary language constructs, but not for object-oriented languages such as C++.
Because C++ has a complex grammar, the logical structure of programs is less aligned with the
syntactic structure represented by ASTs than it is in procedural programs. C++ macros thus tend



to be difficult to write. For example, it is not straightforward to remove a given method from the
AST representing a class declaration in C++. To do this, the macro programmer is required to have
detailed knowledge about the structure of that AST.
OpenC++ borrows ideas from reflection [21, 17] and thus, instead of ASTs, it provides metaob-

jects for macro processing. The metaobjects are regular C++ objects representing the meta view
of the processed program in object orientation. As in other reflective systems like the CLOS MOP
[11] and ObjVlisp [5], classes and methods (or members in the C++ terminology) appearing in
a program are chosen as metaobjects. OpenC++ represents a program by a collection of those
metaobjects, which corresponds to a logical structure of that program. Through these metaobjects,
macro programs can access the semantic information of the program and even transform the pro-
gram. For example, the class metaobjects provide methods to get a super class of the class, to get
the list of methods of the class, and to add a new method to the class.
While ASTs represent the syntactic structure of a program, metaobjects represent its logical

structure. In this logical representation, all the occurrences of language constructs related to each
other but spread over a program are collected to form a single aggregate. For example, a class
metaobject includes links to all the occurrences of language constructs involved with the class
represented by that metaobject. Those language constructs are base classes (i.e. super classes),
member functions, data members, expressions for calling a member function on an instance of
that class, and so on. Macros can easily access and manipulate those constructs through the links
of the metaobject. On the other hand, in the syntactic representation, the occurrences of those
language constructs belong to different ASTs if they appear at different locations in the program.
For example, an expression for calling a member function on an instance of a class does not belong
to the AST representing the declaration of that class. It instead belongs to the AST representing a
function body in which that expression appears. Therefore, it is significantly difficult to obtain an
aggregate of language constructs involved with each other unless they are adjacently located in a
program.
To provide the representation of a logical structure, the OpenC++ compiler first parses a source

program into a parse tree and converts it to a collection of metaobjects. Then macros written by
programmers, which are called meta-level programs in OpenC++, access and modify these metaob-
jects. The modifications applied to the metaobjects are finally reflected in the source program. The
OpenC++ compiler re-converts the metaobjects to a source program according to the modifications
and transfers the obtained source program to a regular C++ compiler such as GNU C++. This
re-conversion is performed to enable the use of an off-the-shelf compiler for the back end.

3.2: Programming interface of OpenC++

OpenC++ provides two kinds of metaobjects: class metaobjects and member metaobjects (a
member means a method or a field). The OpenC++ compiler reads a source program and makes
a class metaobject for every class in the source program. The class metaobject contains mem-
ber metaobjects, each of which represents a member of that class. We below illustrate how these
metaobjects are used for macro processing.

3.2.1: Metaobjects

The class metaobjects provide an interface to access the definition of a class from the viewpoint
of the logical structure. We below show some of the member functions defined on class metaobjects:

• Ptree* Name()
This returns the name of the class. Ptree is the type representing parse trees or symbols.



• Class* NthBaseClass(int n)
This returns the n-th base class of the class.

• bool NthMember(int n, Member& m)
This returns true if the class has the n-th member. The member metaobject for the n-th
member is returned in m.

• void RemoveBaseClasses()
This removes all the base classes from the class.

• void AppendBaseClass(Class* c, int spec = Public,
bool is virtual = false)

This appends a class c to the list of the base classes. The arguments spec and is virtual
specify attributes of the appended base class.

• void ChangeMember(Member& m)
This changes the definition of the member m.

• void RemoveMember(Member& m)
This removes the member m from the class.

• void AppendMember(Member& m, int spec = Public)
This appends a new member m to the class.

The member metaobject returned by NthMember() provides an interface to access the definition
of a member. The following are some of member functions defined on the member metaobject:

• Ptree* Name()
This returns the name of the member.

• Ptree* FunctionBody()
This returns the function body of the member.

• void Signature(TypeInfo& t)
This returns the signature of the member in t. If the member is a data member, the type of
that data member is returned.

• IsPublic()
This returns true if the member is a public member.

• void SetName(Ptree* new name)
This changes the name of the member to new name.

• void SetFunctionBody(Ptree* new body)
This changes the function body of the member to new body. The new function body is
given in the form of parse tree.

3.2.2: Macro definition

The class metaobjects are not only passive data structures processed by macros. OpenC++
macros are defined as member functions on class metaobjects. The OpenC++ compiler calls one
of these member functions for translating every code fragment, such as a class declaration and an
expression for reading a data member. The member function is invoked on a class metaobject rep-
resenting a class involved with that code fragment. Recall that a class metaobject includes links to
related code fragments. Programmers who want macro processing define a new metaclass, that is,
a new class for class metaobjects, and override some of these functions.
This framework was originally proposed in OpenC++ version 2.0 [3] and inherited by the new



version. However, the class metaobjects in version 2.0 deal with an AST for macro expansion
and hence it causes the same problem as other AST-based macro systems. This problem has been
addressed in the new version shown here so that the class metaobjects deal with metaobjects.
We below show the member functions for macro processing. All of them are defined on class

metaobjects.

Initialization:

The OpenC++ compiler first calls a staticmember function Initialize() on every meta-
class. It does not translate any code fragment but is used to register a new keyword to the parser so
that the compiler accepts extended syntax.

Class declaration:

To expand a macro for a class declaration, TranslateClass() is called on every class
metaobject. It is responsible for transforming the declaration of the class represented by the class
metaobject called on.

Member function:

To expand a macro for the implementation of a member function, TranslateMemberFunc-
tion() is called on the class metaobject that the member function belongs to. Translate-
MemberFunction() receives a member metaobject representing the implementation of a mem-
ber function. It can transform a program through that metaobject.

Expression:

The OpenC++ compiler calls TranslateMemberCall() on a class metaobject if it encoun-
ters an expression calling a member function on an instance of that class. If the expression is
p->Move(3, 4) and p is an instance of a Point class, then the compiler calls Translate-
MemberCall() on the Point class metaobject. The result of this member function is substituted
for the original expression p->Move(3, 4). The compiler also calls different member functions
if it encounters other kinds of expressions.
The member functions for translating expressions receive an AST and return another AST. This

is the same protocol as AST-based macro systems; We chose this since the logical structures of
expressions are well aligned with their syntactic structures. However, those member functions are
called on a class metaobject and translate only expressions involved with a specific class. Other
macro systems do not directly support this class-based macro expansion.

Finalization:

After all the expressions are processed, the OpenC++ compiler calls FinalizeInstance()
on every class metaobject and FinalizeClass() on every metaclass. These member functions
are used to append a code fragment at the end of a source program. Since the whole source pro-
gram has been already processed, these member functions can access all the occurrences of related
language constructs and append code fragments depending on them. A user-defined metaclass can
override these member functions and append, for example, the declaration of a class inheriting from
all the classes included in a source program. This kind of class declaration is extremely difficult to
produce by traditional macro systems since only adjacent language constructs are accessible from
macros.



3.3: The Macro for the Visitor Pattern

In the rest of this section, we illustrate how the macro for the visitor pattern is written in
OpenC++. If using a macro written in OpenC++, programmers can write a program following
the visitor pattern as below:

metaclass VpClass;

visitorPattern class AssignExpr { ... };
visitorPattern class PrintExpr { ... };

The metaclass declaration in the first lines informs the OpenC++ compiler that a macro set
VpClass (visitor pattern class) is used. A keyword visitorPattern associates the following
class with the metaclass VpClass and invokes the macro on that class.
The metaclass VpClass overrides three member functions inherited from the default metaclass

Class:

class VpClass : public Class {
public:

static bool Initialize();
void TranslateClass(Environment*);
static Ptree* FinalizeClass();

};

The first member function Initialize() is called by the OpenC++ compiler during initializa-
tion. It registers the keyword visitorPattern:

static bool VpClass::Initialize() {
RegisterMetaclass("visitorPattern", "VpClass");
return true;

}

The second member function TranslateClass() is a macro function for translating the decla-
ration of a class associated with this metaclass. It adds Accept() to the associated class.

void VpClass::TranslateClass(Environment* e){
Ptree* mf = Ptree::Make(

"public: "
"bool Accept(Visitor* v){"
" return v->Visit%p(this); }", Name());

AppendMember(mf);
}

This member function first constructs a parse tree representing the member function Accept()
and then appends it to the class. Ptree::Make() is a function to construct a parse tree from a
character string. The occurrence of %p is replaced with the resulting value of Name(), which is
the name of the class. AppendMember() appends to the class a member represented by either a
member metaobject or a parse tree.
The last member function FinalizeClass() is called at the end of compilation. It produces

the definition of an abstract class Visitor:

Ptree* VpClass::FinalizeClass(){
ClassArray classes;
int n = InstancesOf("VpClass", classes);
// mems is the list of members
Ptree* mems = nil;



for(int i = 0; i < n; ++i){
Ptree* name = classes[i]->Name();
Ptree* m = Ptree::Make("bool Visit%p(%p*) = 0;",

name, name);
// concatenate the constructed member to the rest
mems = Ptree::Cons(m, mems);

}
ofstream* file = new ofstream("visitor.h");
file << Ptree::Make("class Visitor {"

"public: %p };", mems);
return nil;

}

This member function first calls InstancesOf() and collects all the classes associated with this
metaclass. Then, it constructs a parse tree representing an abstract class Visitor and writes the
constructed parse tree to a file visitor.h. Note that the implementation of VpClass assumes
that all the tree-node classes are included in a single source file. This means that separate compila-
tion is not possible if VpClass is used. To avoid this problem, the implementation of VpClass
can be improved to record processed tree-node classes in a file and produce Visitor by refer-
ring to that file at the end of separate compilation. OpenC++ provides mechanisms supporting this
improved implementation, but details of that are beyond the scope of this paper.
To perform the macro expansion by VpClass, the OpenC++ compiler first compiles the meta-

level program describing the metaclass VpClass and then a source program including Assign-
Expr and PrintExpr. If it encounters the metaclass declaration in the source program, it
dynamically loads the compiled VpClass and performs the macro expansion according to the def-
inition of VpClass. As we showed in Section 2, this macro processing produces the definition of
an abstract class Visitor and appends a member function Accept() to all the tree-node classes.

4: Other examples

The power of OpenC++ for macro processing enables a number of useful class libraries and
rapid implementation of extended C++ languages for distribution, transactions, persistence, and
others. However, those realistic examples are complex and long. In this section, we instead present
examples that are simple but useful to illustrate the functionality of OpenC++.

4.1: Wrapper

Making wrappers is a programming technique frequently used for adding extended functionality
such as distribution and persistence to objects. It is also similar to the decorator pattern [8]. We
below show how OpenC++ helps programmers make wrappers.
Although there are several variations of this technique, the basic idea is illustrated by the follow-

ing source-code translation. Suppose that we have a class Rectangle:
class Rectangle {
public:

void Stretch(int, int);
private:

int ulx, uly, lrx, lry;
};
void Rectangle::Stretch(int dx, int dy){

lrx += dx; lry += dy;
}



Making a wrapper means to rename Stretch() to _Stretch() and add another version of
Stretch() to the class Rectangle:

class Rectangle {
public:

void Stretch(int dx, int dy) { ++counter; _Stretch(dx, dy); }
void _Stretch(int, int);

private:
int ulx, uly, lrx, lry;

};
void Rectangle::_Stretch(int dx, int dy){

lrx += dx; lry += dy;
}

The added member function Stretch() is a wrapper. It performs computation necessary for
extended functionality (in the case above, to increment counter for counting the number of
invocations of this function) and then calls the original function, which has been renamed to
_Stretch().
This translation, while conceptually simple, is complicated in an AST-based (abstract syntax tree

based) macro system. The difficulties are due to the complexity of the grammar of C++. The first
difficulty is to retrieve the name of a member function. Since the type system of C++ allows a
member function to have a complex signature such as:

int (*Stretch(int, int))()

(This means that Stretch() returns a pointer to a function), it is not straightforward to write
a general pattern that can retrieve the function name in all cases. Another difficulty is to retrieve
the argument names, dx and dy. Since an argument name is optional in a declaration, it must be
implicitly filled if it is not specified by the programmer. In the example above, since the original
declaration of Stretch() does not include argument names, appropriate names must be chosen
for constructing the declaration of new Stretch().
The metaobjects of OpenC++ simplify these tedious tasks. The metaclass WrapperClass for

performing the translation shown above is written as follows:

class WrapperClass : public Class {
public:

void TranslateClass(Environment*);
void TranslateMemberFunction(Environment*, Member&);

private:
Ptree* Rename(Ptree* name);
void MakeWrapper(Member& member, Ptree* org_name);

};

First, TranslateClass() performs renaming of member functions and adding wrapper func-
tions:

void WrapperClass::TranslateClass(Environment* env)
{

Member member;
int i = 0;
while(NthMember(i++, member))

if(member.IsPublic() && member.IsFunction()){
// execute the following code for every member function
Member wrapper = member;
// rename the original member
Ptree* new_name = Rename(member.Name());



member.SetName(new_name);
ChangeMember(member);
// add a wrapper function
MakeWrapper(wrapper, new_name);
AppendMember(wrapper, Class::Public);

}
}

The function Rename() in the above code is also defined in WrapperClass. It returns a parse
tree representing a new name such as _Stretch(). Note that the original member name is
obtained by simply calling member.Name().
The function MakeWrapper() makes a member metaobject for the wrapper from the metaob-

ject for the original member function:

void WrapperClass::MakeWrapper(Member& member, Ptree* org_name)
Ptree* body = Ptree::Make("{ ++counter; %p(%p); }",

org_name, member.Arguments());
member.SetFunctionBody(body);

}

Note that the actual arguments for calling the original function is computed by member.Argu-
ments(). This function inspects a member declaration and fills missing argument names if they
are not specified. The programmer does not need to be concerned that formal argument names are
optional in C++.
Finally, WrapperClass overrides the member function TranslateMemberFunction()

to rename a member name appearing in the implementation of a member function:

void WrapperClass::TranslateMemberFunction(Environment* e,
Member& mf)

{
if(mf.IsPublic())

mf.SetName(Rename(member.Name()));
}

This is called on the implementation of every member function. mf is a member metaobject repre-
senting that implementation. SetName() gives a new name to the member function specified by
mf and the new name is reflected in the source program.

4.2: Simple Protocol Checker

OpenC++ can be used to produce a warning message specialized in a class library. Although
class libraries often have a protocol that the programs using the class library must follow, regular
C++ does not provide the ability to produce warning messages if the programs are not following
the protocol. OpenC++ enables such warning messages. In fact, OpenC++ itself uses this ability
for examining whether a meta-level program is correctly written.
Suppose that a class library includes a class DialogBox and its subclasses must not override

a virtual function move() defined in DialogBox. To examine whether this protocol is fol-
lowed by user’s subclasses, the class library can include a metaclass ProtocolCheckClass
associated with DialogBox. The metaclass ProtocolCheckClass overrides a member func-
tion TranslateClass() to include the following code:

Member m;
if(!Name()->Eq("DialogBox") && LookupMember("move", m)

&& m.IsVirtual())



WarningMessage("move() is not overridable.");

This code produces an warning message if a class except DialogBox defines a virtual function
move(). Since subclasses of DialogBox inherit the metaclass, the code above is executed on all
the subclasses and it examines whether they follow the protocol.
Also, suppose that the class DialogBox has provided a virtual function quit() but this

member function is obsolete in a new version of the library. The metaclass ProtocolCheck-
Class can be extended to produce a warning message if a subclass of DialogBox falsely over-
rides quit() of DialogBox, which does not exist any more. Regular C++ compilers cannot
produce such a warning message because they recognize that quit() is not overridden but newly
defined in the subclass.

5: Related Work

Although OpenC++ is a reflective system, its reflectiveness is for meta programming at compile
time. Most of other reflective systems are for meta programming at runtime [23, 20, 19, 18, 22,
15, 6], and thus OpenC++ should be called a system based on compile-time reflection or, in other
words, a macro system the programming interface of which is borrowed from reflection. As for
runtime reflection, the usefulness of metaclasses for customizing a class structure has been studied
by Classtalk [2, 14]. Although Classtalk is a variant of Smalltalk with runtime reflection but not a
macro system, they also claimed that metaclasses were a good framework for implementing cus-
tomization of a class, for example, adding a method, changing a super class, and so on. They also
mentioned that the ability of such customization improved the design of class libraries.
OpenC++ version 1.0 and 2.0 were presented in different articles [4, 3]. Version 1.0 provided

the ability of not compile-time reflection but runtime reflection. The difference between version 2.0
and version 2.5 presented in this paper is that the data structure used for macro processing in 2.0 is
not a metaobject but an AST. Version 2.0 hence involves the same problem as other macro systems.
This problem is also found in other systems based on compile-time reflection [10, 9]. For exam-

ple, MPC++ [10] executes macro processing with ASTs. Although MPC++ uses metaobjects, their
metaobjects are the nodes of an AST but they do not enable logical accesses to a program. Hence
MPC++ still involves a problem due to using ASTs although it provides programming supports for
dealing with a complex AST.

6: Conclusion

This paper presented OpenC++, which is a C++ macro system based on a meta-level architecture
borrowed from reflection. Unlike traditional macro systems, OpenC++ provides metaobjects as the
data structure processed by macros. The OpenC++ macros, which are called meta-level programs,
deal with those metaobjects to translate a source program. Since the metaobjects enable accesses to
the logical structure of the program, they make it easier to implement typical macro processing in
C++ than with other AST-based (abstract syntax tree based) macro systems. This is significant in
object-oriented programming, in which the logical structure of programs are not directly reflected
in the syntactic structure.
OpenC++ does not provide a general-purpose solution for complex macro processing. In some

cases, other macro systems such as A* [13] and MS2 [25] would be more appropriate. However,
we believe that OpenC++ is effective for macro processing typical in object-oriented programming



because the metaobjects enable logical accesses to a source program. As we showed in examples,
this ability is what typical macro processing requires in object-oriented programming but A* or
MS2 do not provide since they use ASTs and a pattern-match language.
OpenC++ presented in this paper is freely available from the web site:

http://www.softlab.is.tsukuba.ac.jp/˜chiba/openc++.html

The distribution package includes source files, documentation, and sample programs.

Acknowledgment

OpenC++ was initially developed when the author was staying at Xerox Palo Alto Research
Center. I would like to thank Gregor Kiczales and John Lamping for their helpful comments. I
would also thank all the OpenC++ users, who gave me code, bug reports, and valuable feedback.

References

[1] American National Standards Institute, Inc. ANSI Standard on C, 1990. ANSI X3.159-1989.
[2] Jean-Pierre Briot and Pierre Cointe. Programming with explicit metaclasses in smalltalk-80. In Proc. of ACMConf.

on Object-Oriented Programming Systems, Languages, and Applications, pages 419–431. ACM, October 1989.
[3] S. Chiba. A metaobject protocol for c++. In Proc. of ACM Conf. on Object-Oriented Programming Systems,

Languages, and Applications, number 10 in SIGPLAN Notices vol. 30, pages 285–299. ACM, 1995.
[4] S. Chiba and T. Masuda. Designing an extensible distributed language with a meta-level architecture. In Proc.

of the 7th European Conference on Object-Oriented Programming, LNCS 707, pages 482–501. Springer-Verlag,
1993.

[5] Pierre Cointe. Metaclasses are first class: The ObjVlisp model. In Proc. of ACM Conf. on Object-Oriented
Programming Systems, Languages, and Applications, pages 156–167, 1987.

[6] J. C. Fabre and T. Pérennou. A metaobject architecture for fault tolerant distributed systems: The friends approach.
IEEE Transactions on Computers, 47(1):78–95, 1998.

[7] Jean-Charles Fabre and Shigeru Chiba, editors. Proc. of Workshop on Reflective Programming in C++ and Java,
UTCCP Report 98-4. Center for Computational Physics, University of Tsukuba, Japan, 1998. (held at ACM
OOPSLA’98).

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1994.
[9] Yuuji Ichisugi and Yves Roudier. Extensible java preprocessor kit and tiny data-parallel java. In Proc. of ISCOPE

’97, number 1343 in LNCS, 1997.
[10] Y. Ishikawa, A. Hori, M. Sato, M. Matsuda, J. Nolte, H. Tezuka, H. Konaka, M. Maeda, and K. Kubota. Design

and implementation of metalevel architecture in c++ — MPC++ approach —. In Proc. of Reflection 96, pages
153–166, Apr. 1996.

[11] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol. The MIT Press, 1991.
[12] M. O. Killijian, J. C. Fabre, J. C. Ruiz-Garcia, and S. Chiba. A metaobject protocol for fault-tolerant corba

applications. In Proc. of the 17th IEEE Symp. on Reliable Distributed Systems (SRDS ’98), pages 127–134, 1998.
(Also available as Research Report 98139, LAAS, France).

[13] D. A. Ladd and J. C. Ramming. A*: A language for implementing language processors. IEEE Trans. on Software
Engineering, 21(11):894–901, 1995.

[14] Thomas Ledoux and Pierre Cointe. Explicit metaclass as a tool for improving the design of class libraries. In
Proc. of the 2nd Int’l Symp. on Object Technologies for Advanced Software (ISOTAS), LNCS 1049, pages 38–55.
Springer, Mar. 1996.

[15] C. P. Lunau. A reflective architecture for process control applications. In ECOOP’97 — Object-Oriented Program-
ming, volume 1241, pages 170–189. Spriner, 1997.

[16] William Maddox. Semantically-sensitive macroprocessing. Master’s thesis (ucb/csd 89/545), University of Cali-
fornia, Berkeley, 1989.



[17] P. Maes. Concepts and experiments in computational reflection. In Proc. of ACM Conf. on Object-Oriented
Programming Systems, Languages, and Applications, pages 147–155, 1987.

[18] H. Masuhara, S. Matsuoka, T. Watanabe, and A. Yonezawa. Object-oriented concurrent reflective languages can
be implemented efficiently. In Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages, and
Applications, pages 127–144, 1992.

[19] S. Matsuoka, T. Watanabe, and A. Yonezawa. Hybrid group reflective architecture for object-oriented concurrent
reflective programming. In Proc. of European Conf. on Object-Oriented Programming ’91, number 512 in LNCS,
pages 231–250. Springer-Verlag, 1991.

[20] A. Paepcke. PCLOS: Stress testing CLOS Experiencing the metaobject protocol. In Proc. of ACM Conf. on
Object-Oriented Programming Systems, Languages, and Applications, pages 194–211, 1990.

[21] B. C. Smith. Reflection and semantics in lisp. In Proc. of ACM Symp. on Principles of Programming Languages,
pages 23–35, 1984.

[22] R. J. Stroud and Z. Wu. Using metaobject protocols to implement atomic data types. In Proc. of the 9th European
Conference on Object-Oriented Programming, LNCS 952, pages 168–189. Springer-Verlag, 1995.

[23] T. Watanabe and A. Yonezawa. Reflection in an object-oriented concurrent language. In Proc. of ACM Conf. on
Object-Oriented Programming Systems, Languages, and Applications, pages 306–315, 1988.

[24] B. Wegbreit. Studies in Extensible Programming Languages. Outstanding dissertations in the computer sciences.
Garland Publishing, Inc., 1980. (based on the author’s thesis, Harvard, 1970).

[25] Daniel Weise and Roger Crew. Programmable syntax macros. In Proc. of Conf. on Programming Language Design
and Implementation, volume 28, no. 6, pages 156–165. ACM SIGPLAN Notices, 1993.


