
A Study of Compile-time
Metaobject Protocol

By

Shigeru Chiba
chiba@is.s.u-tokyo.ac.jp

November 1996

A Dissertation Submitted to
Department of Information Science

Graduate School of Science
The University of Tokyo

In Partial Fulfillment of the Requirements
For the Degree of Doctor of Science.

Copyright c©1996 by Shigeru Chiba. All Rights Reserved.



Shigeru Chiba
A Study of Compile-time Metaobject Protocol
Ph.D. Dissertation, Graduate School of Science, The University of Tokyo.
November 1996



A Metaobject Protocol
for Enabling Better C++ Libraries

Shigeru Chiba

Department of Information Science
The University of Tokyo
chiba@is.s.u-tokyo.ac.jp



Copyright c©1996 by Shigeru Chiba. All Rights Reserved.



i

Abstract

C++ cannot be used to implement control/data abstractions as a library
if their implementations require specialized code for each user code. This
problem limits programmers to write libraries in two ways: it makes some
kinds of useful abstractions that inherently require such facilities impossi-
ble to implement, and it makes other abstractions difficult to implement
efficiently.

The OpenC++ MOP addresses this problem by providing libraries the
ability to pre-process a program in a context-sensitive and non-local way.
That is, libraries can instantiate specialized code depending on how the
library is used and, if needed, substitute it for the original user code. The
basic protocol structure of the OpenC++ MOP is based on that of the CLOS
MOP, but the OpenC++ MOP runs metaobjects only at compile time. This
means that the OpenC++ MOP does not imply runtime penalties caused
by dispatching to metaobjects.
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Chapter 1

Introduction

In computing science, elegance is not a luxury
but a matter of life and death.

— E. W. Dijkstra

Execution speed is the only metric in computer science.
— Kei Hiraki

One of today’s significant concerns in software industry would be to
decrease time and costs of software development. Anybody would agree
that good libraries promote code reuse and thereby contribute to rapid and
low-cost software development. This thesis deals with a language mechanism
for programmers to write good libraries.

What are good libraries? Good libraries provide useful control/data ab-
stractions, which are commonly used for a number of applications, high-level
to improve readability of programs, and simple and intuitive to avoid lead-
ing the library users to misuse the libraries and cause serious errors. Also,
efficiency is another criterion of good libraries. Since writing a good library
is a very difficult task, the programmer is required to have not only good
programming skill but also deep knowledge about the application domain in
that the library helps programmers. For example, library developers need
to know typical functions and data structures used in that domain.

Development of good libraries also needs assistance of language design-
ers, who should provide language mechanisms for writing good libraries.
This is a more realistic option for the designers than including all desirable
control/data abstractions in the language specifications, since the designers
cannot expect every desirable abstraction in advance and because the lan-
guage would be too complex if built-in language mechanisms cover all the
desirable abstractions, such as I/O, persistency, distribution, concurrency,

1



CHAPTER 1. INTRODUCTION 2

and so on. Programming languages should have a minimum set of built-in
mechanisms and most of abstractions should be supplied by libraries.

Motivating problem

Language mechanisms that have been developed so far for writing libraries
are not powerful enough to support every desirable control/data abstrac-
tions. For example, the C++ language [58] is one of languages that have
a richest set of language mechanisms, but a number of useful abstractions
cannot be included in a C++ library with satisfying ease-of-use and effi-
ciency. As shown in Chapter 2, C++ programmers cannot write a library
class that gives distribution extension to its subclasses.

Our observation on this problem is that such abstractions as distribu-
tion support are used to give extended features to another abstraction, and
thus their implementations are tightly tangled with the implementation of
the other abstraction. Those abstractions need a different implementation
if they are used with a different abstraction. This means that those abstrac-
tions are difficult to include in a library, which is an independent software
component and can provide only a single general-purpose implementation.

There are other kinds of abstractions the implementations of which are
tightly tangled with other parts of the program. Abstractions such as a
vector data type can be provided by a library but the implementation that
the library can supply is not efficient. An implementation specialized for
a particular user program can improve the execution performance although
that implementation is effective only for the particular program and thus it
cannot be included in the library.

This problem can be avoided if programming languages provide a mech-
anism for library developers to supply specialized code through a library to
a particular user program. Current language mechanisms, however, allow
only limited kinds of specialization of library code. For example, C++’s
template mechanism allows only type parameterization; library developers
can specialize only type names appearing in library code for a particular
user program.

Solution by this thesis

To solve the problem mentioned above, this thesis proposes a new language
mechanism for enabling libraries to supply specialized code and include more
useful control/data abstractions. With the proposed mechanism, program-
mers can build a library consisting of two parts: commonly-used code and
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common part

specialized part

user code 1 user code 2

Library

Figure 1.1: The common part and the specialized part of a library

specialized code for every user program (Figure 1.1). The commonly-used
code is supplied as is to the user program, but the specialized code is auto-
matically generated on demand for a particular user program. The special-
ized code fills a gap between the common part and the user program.

The generation of the specialized code is programmed by the library
developer. The proposed mechanism allows to preprocess a program with
interacting with a collection of code such as class definitions and member
function calls. For example, it provides the ability to insert specialized code,
to rewrite class definitions, to substitute different code for member function
calls, and so on.

The language mechanism proposed by this thesis is the OpenC++ MOP
[11], which is a metaobject protocol for C++. OpenC++ is the name of a
version of C++ language with that metaobject protocol. This mechanism
provides class metaobjects, which are regular objects representing a class, so
that library developers can program the generation of specialized code. Al-
though the class metaobjects might seem similar to Smalltalk’s class objects
[26], the class metaobjects receive source code at compile time and prepro-
cess it if needed. The programmers can define a new metaclass (i.e., a class
for class metaobjects) and thereby they can program desired preprocessing
of code involved with the class. The reason that the proposed mechanism is
called a metaobject protocol is that it is essentially a protocol for defining
and accessing metaobjects. Protocol is the Smalltalk terminology and it
means object interface.

The OpenC++ MOP is a more powerful mechanism than other similar
mechanisms like Lisp macros. Unlike Lisp macros, the OpenC++ MOP
provides contextual information of the processed code other than a abstract
syntax tree. The contextual information includes the type of a variable, class
members, a base class, and so forth. This feature makes it possible to per-
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form context-sensitive preprocessing. Furthermore, implementing non-local
processing is easy with the OpenC++ MOP. Preprocessing for implementing
abstractions often spreads out over the whole source code, but the descrip-
tion of the preprocessing involved with a single class is centralized into the
class metaobject. Since all code fragments are automatically dispatched ac-
cording to the static types to an appropriate class metaobject, programmers
can easily specify preprocessing that is effective only for a particular class.

Preceding techniques known as reflection has a notable influence on the
OpenC++ MOP. Especially, we took the basic structure of the metaobject
protocol from the CLOS MOP [36], while we took the basic architecture
from Lisp macros. Thus the OpenC++ MOP is also metacircular as the
CLOS MOP is, and it is easy to learn and to write an efficient meta-level
program. The difference from the CLOS MOP is that the OpenC++ MOP
employs static typing and executes class metaobjects only at compile time;
this means that it does not involve runtime penalties due to class metaob-
jects. Since CLOS is a dynamically-typed languge and thus the CLOS MOP
executes metaobjects at runtime, avoiding runtime penalties in the CLOS
MOP requires complex implementation techniques.

The structure of this thesis

From the next chapter, we present background, design details, and applica-
tions of the OpenC++ MOP. The structure of the rest of this thesis is as
follows:

Chapter 2: Limitations of C++

We first discuss limitations of current language mechanisms provided by
C++ for library developers. We illustrate that the inheritance mechanism
and the template mechanism do not work for including some kinds of de-
sirable abstractions in a library. And we claim that this problem is caused
by the lack of the capability of C++ to preprocess a program in a context-
sensitive and non-local way and instantiate specialized code for a particular
program.

Chapter 3: Techniques for Processing a Program

Next, we overview existing mechanisms that other programming languages
provide for processing a program. As the representatives, we show Lisp
macros, 3-Lisp, and the CLOS MOP. The feature shared by the three sys-
tems is that they provide meta representation of programs for the program-
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mers. We overview detailed architectures of the systems and discuss their
pros and cons. The bottom line of the discussion is that metacircularity of
the CLOS MOP and compile-time executability of Lisp macros are prefer-
able properties.

Chapter 4: The OpenC++ MOP

On the basis of the discussion in the previous chapter, we proposes a new
C++ mechanism for processing a program. This mechanism is the OpenC++
MOP and it has the two preferable properties discussed in the previous chap-
ter: metacircularity and compile-time executability. The OpenC++ MOP
allows programmers to process a program in a context-sensitive and non-
local way in order to include useful abstractions in a library that regular
C++ cannot handle. We also mention comparison between the OpenC++
MOP and other early compile-time MOPs.

Chapter 5: Meta Helix

Although metacircularity is a good property, pure metacircular systems can
lead to a problem we called implementation level conflation. This problem,
found in the CLOS MOP, confuses programmers and often causes program-
ming errors such as circular definition. To avoid this problem, we – a MOP
designer – has adopted an improved version of metacircular architecture for
the OpenC++ MOP. We present that this improved architecture, named
the meta helix, preserves advantages of metacircularity and also addresses
implementation level conflation.

Chapter 6: Libraries in OpenC++

The OpenC++ MOP makes it possible to include a number of control/data
abstractions in a library. We show examples of these abstractions in this
chapter. The abstractions shown here include abstractions that regular C++
cannot handle, a metaclass library for helping write a new metaclass, ab-
stractions implemented by meta-metaclass for facilitating meta-level pro-
gramming, and abstractions that the OpenC++ MOP makes more efficient
than in regular C++.

Chapter 7: Conclusion

Finally, we conclude this thesis in Chapter 7. We present contributions of
this thesis and future directions.



Chapter 2

Limitations of C++

C++ cannot pre-process a program in a context-sensitive and non-local way.
The lack of this capability makes it impossible to include some useful con-
trol/data abstractions in a library, or makes it difficult to implement some
abstractions efficiently as a library. This problem is solved if C++ has a
mechanism to process a user program and allow the library to supply special-
ized code for a particular user program. Single general-purpose codes cannot
implement those abstractions or have difficulty in making the abstractions
efficient.

Existing C++ mechanisms for building a library — inheritance or tem-
plates — do not provide this capability sufficiently. This means that some
practically important abstractions have not been included in a library with
an ideal interface and efficiency. In fact, some abstractions have been even
provided by a specialized C++ language in which the abstractions are em-
bedded in, or implemented with a dedicated code generator. For example,
in the academic world, a number of distributed C++ languages have been
developed for making distributed objects available [48, 28]. In industry, pro-
grammers who want to use distributed objects have needed to write an extra
program in an IDL (interface description language) and combine the code
generated from the extra program with their C++ programs.

This chapter presents that C++’s inheritance mechanism or the tem-
plates mechanism do not work for including some kinds of abstractions in
a library. Then it mentions that, to do this, C++ needs a mechanism for
processing a user program in a context-sensitive and non-local way. This
mechanism makes it possible to develop a library including the abstractions
that regular C++ cannot handle.

6
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2.1 Inheritance

The most basic mechanism C++ provides for library developers is instanti-
ation. The idea is that the library writer writes a reusable class, which the
library user can instantiate. This mechanism is limited in that it enables
only abstract data types (ADTs); the library user have to use a library class
as is. Even if the library class does not exactly fit her requirements, she
cannot change the definition of the class at all, and thus she might need to
write a new class even though a library provide a similar class. This means
that the reusability of the library is significantly limited.

Inheritance is a more powerful mechanism for developing a good library.
It allows the library user to incrementally define a new class extending a class
provided by the library. However, the ability of the inheritance mechanism
to reuse part of a library class is significantly limited. The inherited code
must be always the same; the library cannot supply different code to different
subclasses.

This limitation makes it impossible to develop a library that provides
certain kinds of important abstractions such as distributed objects. These
abstractions require that the inherited code be adapted to the user program.
This section discusses this limitation of the inheritance mechanism and be-
gins to outline what kind of support for adaptation of reused code needs to
be provided.

Distributed objects

Distributed objects are extended objects, which are accessible over the net-
work without concern for their location. An ideal library for distributed
objects might allow the user to write something like this:

class Point : public Distribution {
public:

int x, y;
void Move(int nx, int ny) { x = nx; y = ny; }

};

This program defines a class of distributed objects called Point. The class
Point inherits from the Distribution library class, and this is what gives
makes it be a distributed class. The user can deal with Point objects as
regular objects even if they are on a remote machine:

Point* p = ...;
p->Move(3, 11);
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In this ideal library, no special syntax is required to call a member function
for a Point object p that might be on a remote machine.

Unfortunately, this ideal class Distribution is not feasible in regular
C++ because it cannot supply all the member functions that the subclass
Point needs to inherit. For example, to make the member function Move()
callable from a remote machine, the class Point needs to inherit a member
function for marshaling arguments to Move(). This marshaling function con-
verts the arguments into a byte stream, which lower-level network routines
can directly handle.

Within the confines of the inheritance mechanism, however, the class
Distribution cannot supply the marshaling function to the subclass Point.
Since the marshaling function for Move() performs a kind of type conversion,
its implementation strongly depends on the signature of Move(), such as
the number of arguments and their types. But the inheritance mechanism
does not allow the class Distribution to alter the implementation of the
marshaling function to adapt to the signature of Move().

Named objects

Since the example of the distributed objects is too complex to show the de-
tails here, we instead use a much simpler example and articulate limitations
of the inheritance mechanism and what C++ needs to handle some kinds
of abstractions that it cannot currently handle. The problem we showed in
the example of the distributed objects is that a super class cannot supply
some kinds of member functions to a subclass even though supplying them
seems desirable from the library users’ viewpoint.

To discuss this problem, let’s implement a simple library with only the
inheritance mechanism. This simple library allows the users to get the class
name of an object at runtime. This function is one of requirements of build-
ing the distributed object library. The users may write something like the
following program:

class Complex : public NamedObject {
public:

double r, i;
};

void f(Complex* x)
{

cout << "x is " << x->ClassName();
}
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If invoked, f() displays “x is Complex”. The class NamedObject is a li-
brary class, which supplies a member function ClassName() to Complex.

Although this particular function is already provided in regular C++
by the typeid operator of RTTI [59], we assume that there is no RTTI
(Run-Time Type Information) in C++ and try to implement this function
with the inheritance mechanism. Unfortunately, this is impossible because
of limitations of the inheritance mechanism. For example, the following
definition of NamedObject works for the class Complex but not others:

class NamedObject {
public:

virtual char* ClassName() { return "Complex"; }
};

This version of the class NamedObject supplies a member function Class-
Name(), which returns a character string "Complex", but this implementa-
tion of ClassName() is obviously wrong. If another class Real inherits from
NamedObject and the member function ClassName() is called for a Real ob-
ject, ClassName() returns an inappropriate character string "Complex". To
make ClassName() work for the class Real, the implementation of ClassName()
should be:

virtual char* ClassName() { return "Real"; }

However, the class NamedObject cannot switch the implementations of Class-
Name() to make it work for different subclasses. It has to select either of the
implementations and supply the selected one to all the subclasses.

We cannot implement the ideal version of the class NamedObject in reg-
ular C++. To make it feasible, we have to change the specifications of the
library, but this change also makes the library less easy to use. For the new
version of the library, the definition of the class NamedObject is as follows:

class NamedObject {
public:

virtual char* ClassName() = 0; // not implemented
};

The class NamedObject does not supply a concrete implementation of Class-
Name() any more. ClassName() is implemented by a subclass of NamedObject.
This means that the library users have to implement ClassName() by hand
for their classes:
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class Complex : public NamedObject {
public:

double r, i;
virtual char* ClassName() { return "Complex"; }

};

class Real : public NamedObject {
public:

double value;
virtual char* ClassName() { return "Real"; }

};

These specifications of the library are quite unsatisfying in terms of ease of
use. Note that the definitions of the user classes Complex and Real now
include the implementation of the member function ClassName(). In the
ideal specifications, this should be supplied by the library class NamedObject.

What does C++ need?

The example of NamedObject shows us that C++ lacks the ability to al-
low libraries to supply code customized for the user programs. With the
inheritance mechanism, the class NamedObject cannot provide an ideal in-
terface because it cannot supply a differently implemented member function
ClassName() to a subclass such as Complex and Real.

This problem is solved if C++ provides a mechanism for programmers to
program source-code processing and include “the program” in a library. For
example, the developer of the named object library would write a program
to process the user program at source-code level and automatically insert the
implementation of ClassName() customized for a subclass such as Complex
and Real. Then the library user could avoid implementing ClassName() by
hand for her class. She could write something like this:

class Complex : public NamedObject {
public:

double r, i;
};

Note that the member function ClassName() is not included by the defini-
tion of the class Complex since it is automatically supplied by the library.
The named class library reads this program before compilation and trans-
lates it into this program:

class Complex : public NamedObject {
public:
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double r, i;
virtual char* ClassName() { return "Complex"; }

};

The implementation of ClassName() is inserted by the library. Note that
the inserted implementation is specialized for the class Complex. It is not ef-
fective for other sibling subclasses like Real. The library class NamedObject
declares the member function ClassName() but it does not implement it:

class NamedObject {
public:

virtual char* ClassName() = 0; // not implemented
};

This is the same definition that we presented for the feasible but unsatisfying
version of the named object library.

The macro mechanism might seem an alternative to the mechanism pro-
posed above, but the macro mechanism allows very limited kinds of source-
code processing, such as simple word-by-word replacement and concatena-
tion of words. To implement the named object library with ideal interface,
C++ is required to have a more powerful and sophisticated mechanism,
which should satisfy the following two criteria:

• Context-sensitive

How a program is processed should be determined with referring various
contextual information of the processed program. The contextual informa-
tion includes what RTTI (Run-Time Type Information) already provides
but not limited. It is a class definition, type information, program text, and
so on. Providing contextual information means that the information can
be used even if it is defined at other locations than where the source-code
processing happens. For example, if an assignment expression to a variable
is processed, the type of the variable may be declared at a different location.

Context-sensitivity is a crucial property of the proposed mechanism since
the processing by the macro mechanism is independent of the contextual in-
formation of the processed program. Context-sensitivity gives an advantage
against the macro mechanism to the proposed mechanism.

In the example of the named object library, the library has to examine
the name of the subclass that inherits from the library class NamedObject.
This name is directly embedded in the implementation of the member func-
tion ClassName(), which are inserted in the definition of the subclass. The
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use of contextual information is more significant in the example of the dis-
tributed objects. For example, to supply a marshaling function, the library
has to examine the signature of a member function and specialize the imple-
mentation of the marshaling function for the particular member function.

• Non-local

The proposed mechanism should make it easy to program not only local
processing but also non-local one, which needs to deal with many code frag-
ments spread out in various locations of the processed program. For ease of
programming, locations where the processing must happen should be spec-
ified in a declarative way. If the programmer has to explicitly specify every
location, the programming would be extremely difficult and unrealistic.

For the example of the named object library, the library has to read
the whole program and insert the member function ClassName() in the
definitions of all the subclasses of NamedObject. The mechanism should
help the programmer easily specify locations to insert ClassName(). For
example, it should allow the programmer to direct something like “insert
ClassName() in a class declaration if the class is a subclass of NamedObject.”

C++’s macro functions are rather a mechanism for local processing. It
processes only places where a macro name appears, and so programmers
have to place the macro name by hand wherever the processing is needed.
For example, if the named object library is developed with a macro function,
the library users would need to write an awkward program like the following:

class Complex : public NamedObject {
public:

double r, i;
EXPAND_CLASSNAME_HERE(Complex)

};

The macro function is EXPAND CLASSNAME HERE, which is expanded into an
appropriate implementation of ClassName(). The library users have to ex-
plicitly insert the macro in the definition of all the subclasses of NamedObject,
but inserting it in all the places by hand is quite error-prone.

2.2 Template

In the previous section, we presented that a library including some kinds of
abstractions need to supply customized code for a particular user program.
The template mechanism of C++ achieves this ability to a certain degree,
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but it cannot be a general solution of our problem. In this section, we
mention the ability that the template mechanism provides and then we
present why the mechanism is not a general solution.

Vector

With the template mechanism, programmers can write a library that supply
customized code for a user program although the range of customization is
limited. For example, the template mechanism enables a library for a vector
abstraction. With this library, the users can write a program like this:

Vector<int> v1, v2, v3, v4;
...

v1 = v2 + v3 + v4;

The variables v1, v2, v3, and v4 are vectors of integers. Using vectors for
other types is also easy. If the users want to deal with vectors of characters,
they should say Vector<char> instead of Vector<int>.

The inheritance mechanism does not enable such a useful vector library.
If the vector library is implemented with the inheritance mechanism, the
library users need to define a new subclass for every vector for a different
type. This results from the same reason why the named object library is
not feasible; to make vectors for various types available without subclassing,
the vector library has to alter the implementation, depending on whether
the vector is for integers or characters.

The template mechanism can absorb the difference of implementations if
the difference is type names. It directs the C++ compiler to automatically
produce the implementation adapted for a particular user program. The
following program is the definition of the vector abstraction, which should
be included in the vector library:

template <class T> class Vector {
T elements[SIZE];

public:
Vector operator + (Vector& a, Vector& b) {

Vector c;
for(i = 0; i < SIZE; ++i)

c.elements[i] = a.elements[i] + b.elements[i];

return c;
}

...
};
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For simplicity, this example assumes that the length of a vector is always
SIZE. In the Vector template above, T is a type parameter. All occurrences
of T in the template are replaced with an actual type given by a user pro-
gram when the compiler produces the actual implementation of the vector
abstraction. For example, the implementation that the compiler produces
for Vector<int> is equivalent to this (pseudo) class definition:

class Vector<int> {
int elements[SIZE];

public:
Vector<int> operator + (Vector<int>& a, Vector<int>& b) {

Vector<int> c;
for(i = 0; i < SIZE; ++i)

c.elements[i] = a.elements[i] + b.elements[i];

return c;
}

...
};

Limitations of templates

The vector abstraction can be included by a library with ideal interface if
the template mechanism is used, but this implementation of the vector ab-
straction is not satisfying with respect to execution performance. Consider
how this expression is executed if the vector abstraction is implemented as
we showed above:

v1 = v2 + v3 + v4;

Since the + operator is overridden for Vector<int>, the execution of this
expression is divided into two function calls, each of which executes a for
loop to compute an addition of two vectors. The called function receives
two vectors, executes the for loop to compute the addition of each vector
element, and returns the result.

To compute v2 + v3 + v4, this implementation eventually needs two
for loops from the first through the last element of the vector, but executing
this loop twice is redundant. The whole expression should be computed by
the following more efficient implementation:

for(i = 0; i < SIZE; ++i)
v1.elements[i] = v2.elements[i] + v3.elements[i]

+ v4.element[i];
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This implementation executes the loop only once, and it directly sets the
summation of the three elements to v1.

This inefficiency is not due to the mechanism of operator overloading.
Rather, it should be thought that is caused by limitations of the template
mechanism. Operator overloading is a mechanism for syntax sugar, and
the problem is not solved even though various kinds of operators can be
overloaded. For example, suppose that the programmer can overload the
three-operands + operator. Then the developer of the vector library would
include the following code in the library:

template<class T>
Vector<T> operator + (Vector<T>& a, Vector<T>& b, Vector<T>& c)
{

Vector<T> v;
for(int i = 0; i < SIZE; ++i)

v.element[i] = a.element[i] + b.element[i]
+ c.element[i];

return v;
}

This operator function executes such an expression as v2 + v3 + v4 more
efficiently, but the library is still inefficient to deal with other kinds of expres-
sions such as v2 + v3 - v4 and v2 + v3 + v4 + v5. The library developer
cannot overload all combinations of operators in advance.

C++ needs a mechanism for processing a program

The template mechanism cannot enable the efficient implementation, which
executes a for loop only once. This is because of the limitations of the ability
of the template mechanism to supply code adapted for a user program. The
only adaptation that the template mechanism can perform is to simply fill
out parameterized fields in the template with given type names.1 This is
not sufficient to implement the vector abstraction efficiently.

In general, the template mechanism is not suitable for this kind of inter-
procedure optimization, which needs to process several operations at a time
and substitutes specialized code for all the operations. To do this, C++
needs to be able to handle context of the processed operations: what the
group of operations are computing. If C++ has a mechanism to process a
program with that context sensitivity, then the user program:

1A template parameter may be not only type names but also any constant value.



CHAPTER 2. LIMITATIONS OF C++ 16

Vector<int> v1, v2, v3, v4;
...

v1 = v2 + v3 + v4;

can be translated by the vector library before compilation into:

Vector<int> v1, v2, v3, v4;
...

for(i = 0; i < SIZE; ++i)
v1.elements[i] = v2.elements[i] + v3.elements[i]

+ v4.element[i];

After the translation, the efficient loop is substituted for the vector expres-
sion. The overloaded + operator function is not called any more, but the
additions are computed by the inlined loop.

Context-sensitivity and non-locality are also significant for this process-
ing as in the example of the named object library. First, context-sensitivity
is needed to determine which expressions should be translated. Since the
translation is applied only to vector expressions, the library needs to look up
the type of a variable in an expression and determine whether the translation
is applied or not. Second, this processing is non local; All vector expressions
in the whole program needs to be found and translated into efficient code.
Without appropriate supports for programmers to specify places at which
the translation should be done, programing the translation for the vector
library would be difficult and awkward.

Can optimizing compilers do the same thing?

In the example above, we merged two distinct function calls and inlined
the resulting optimized loop. This way of performance improvement is re-
garded as optimization that regular C++ compilers can perform. As we
show in Chapter 6, however, the inter-procedure optimization seems difficult
for practical compilers to perform within reasonable time and space. Since
inter-procedure optimization requires deep flow-analysis and very clever code
generation, we should not expect that compilers perform all possible inter-
procedure optimization in general. What we can expect is that compilers
may perform the optimization for some typical patterns of program.

Although inter-procedure optimization is difficult for C++ compilers,
it is often obvious and straightforward to perform from the programmer’s
viewpoint. Since the programmers know semantic information of the pro-
gram, they can easily find possible inter-procedure optimization without
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complex flow-analysis. An advantage of our proposed mechanism is that it
allows library developers to implement ad-hoc optimization which is obvi-
ous to the developers but difficult for compilers to automatically perform.
The library developers can include the program for source-code processing
in a library so that a user program using the library is pre-processed and
efficiently compiled by a back-end compiler.

2.3 Summary

This chapter mentioned that some useful abstractions cannot be included in
a library, and others are difficult to efficiently implement within the confines
of C++. Such abstractions require different implementations for different
library user programs, but existing C++ mechanisms do not provide the
ability to do that enough to implement those abstractions.

In this chapter, first, we showed that the inheritance mechanism does not
enable developers to implement the distributed object library or the named
object library. As for the distributed object library, the developer cannot
define a library class Distribution so that it supplies subclasses with a
marshaling function, which needs to be differently implemented for different
subclasses. This is because the inheritance mechanism forces a library class
to supply member functions to subclasses as is without any adaptation.

Then, we presented that the template mechanism provides the limited
ability to supply different implementations for different user programs, but
this ability is not powerful enough to implement some abstractions such as
the vector abstraction. Because of the ability to supply different implemen-
tations, the vector library implemented with the template mechanism allows
the users to easily deal with vectors for various types. However, this vector
library is not efficient because of the limitations of the ability of the template
mechanism. If the library can supply cleverer implementations customized
for a particular user program, the provided vector abstractions would be
more efficient.

To solve the problem above, this chapter claimed that C++ needs a
more powerful mechanism for processing a program at source-code level. If
this mechanism is available, programmers can develop a library that pre-
processes a user program and inserts code needed for implementing an ab-
straction in an adapted way to the user program. Through the discussion
with the concrete examples, we presented that the proposed mechanism
should have two important properties: context-sensitivity and non-locality.
First, a user program should be processed in a context-sensitive way. For
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example, to produce a marshaling function, the distributed object library
needs contextual information of a user program such as signatures of member
functions and type information of variables. Second, the proposed mecha-
nism should make it easy for developers to program non-local processing,
which deals with code fragments spread out over the user program. For ex-
ample, the efficient vector library has to find all vector expressions included
in a user program and translate them into efficient loops. Without appro-
priate supports, programming such non-local processing would be difficult
and error-prone.



Chapter 3

Techniques for Processing a
Program

The previous chapter presented that C++ needs a more sophisticated mech-
anism for processing a program. The existing mechanisms, the inheritance
mechanism or the template mechanism, do not enable context-sensitive or
non-local processing. This chapter overviews currently known mechanisms
for program processing and mentions their pros and cons. The basic idea
shared by these mechanisms is to provide the meta representation of the
programs. The meta representation gives programmers the capability for
context-sensitive and non-local processing, which we need for C++.

As the representatives of these mechanisms, this chapter shows Lisp
macros, 3-Lisp, and the CLOS MOP. We compare the meta representation
they provide, and discuss pros and cons. The focus of this chapter is on
illustrating essential ideas behind the mechanisms rather than showing the
exact specifications. Hence the description in this chapter is not exactly
faithful to the original syntax or specifications. We carefully alter the syn-
tax and the specifications so as to help clarify the differences among the
mechanisms but not to lose the essence of their ideas.

3.1 Lisp Macros

Unlike C++ macros, which perform simple word-based replacement ignoring
the syntax, Lisp macros allow the programmers to manipulate program text
as data; A program is manipulated through an ordinary data structure.
We call this data structure a meta representation of the program. In Lisp
macros, the meta representation of a program is an abstract syntax tree.

19
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The program text is represented in the form of the tree whose leaf nodes are
the lexical tokens of the program text.

Lisp macros enable programmers to implement some kinds of abstrac-
tions that Lisp functions cannot implement. Those abstractions are called
special forms in the Lisp terminology. For example, the following macro
implements a special form rbegin that sequentially evaluates expressions
from right to left (in the reverse order of begin) and returns the resulting
value of the leftmost expression:

(define rbegin
(macro exprs

‘(begin ,@(reverse exprs))))

A backquote (‘) and ,@ are convenient notation for constructing a tree
structure. If the readers are not familiar to this notation, see Appendix A).

This macro is used as follows:

(rbegin (+ 3 4) (list 1 2) (* 5 8))

This program is processed by the macro function rbegin before being ex-
ecuted. The macro function is an ordinary Lisp function except that it
receives and returns program text. The macro argument exprs is bound to
a list ((+ 3 4) (list 1 2) (* 5 8)). Then the macro function returns
this program:

(begin (* 5 8) (list 1 2) (+ 3 4))

This is substituted for the original program (rbegin (+ ...) before the
execution. The resulting value of the program is that of this substituted
program, that is, 7.

Note that a Lisp function reverse is called during the macro expansion.
It reverses the order of the list that exprs is bound to. Since the processed
program text is the first-class data represented in the tree structure,1 this
Lisp function can process it as it processes ordinary Lisp data. This capabil-
ity makes Lisp macros different from other simple macros like C++ macros.
Indeed, C++ macros cannot implement the special form rbegin since the
given program text is not the first-class data. They can only perform the
limited operations on the program text. Only word-by-word replacement
and concatenation are allowed.

1The first-class data are the data that the program can handle as the object of the
computation. For example, numbers, symbols, lists, and vectors, are the first-class data
in Lisp.
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Applicability to our problem

Lisp macros give a partial solution of the problem we discussed in the pre-
vious chapter. They allow programmers to process a piece of code following
a macro name. An advantage of Lisp macros is that programmers can pro-
gram how the piece of code is expanded. This provides the ability to generate
more specialized code than what the template mechanism can do by simple
replacement of type names. On the other hand, Lisp macros cannot han-
dle context-sensitivity or non-locality and thus just porting the Lisp macro
system to C++ does not solve our problem.

3.2 3-Lisp

Lisp macros provide the meta representation of programs so that they can
implement some kinds of abstractions that Lisp functions cannot implement.
Although the meta representation in Lisp macros is only program text, 3-
Lisp [54, 53] provides not only program text but also other information
as the meta representation. This feature of 3-Lisp enhances the variety of
abstractions that programmers can implement.

Meta representation

The meta representation of programs in 3-Lisp consists of program text,
the current environment, and the current continuation. Adding the latter
two makes it possible to implement abstractions that Lisp macros cannot
handle. Suppose that we implement a special form defined?, which returns
true if the given variable is defined in the current environment:

> (define x 1)
x
> (defined? x)
#t
> (defined? y)
#f

The special form defined? returns #t (true) for the variable x, but #f (false)
for the variable y.

Because Lisp macros cannot examine the current environment, they can-
not deal with this special form. However, 3-Lisp can do. See the following
program written in 3-Lisp:2

2To make it easy to read, we modify the syntax of 3-Lisp. We believe that this modi-
fication does not affect the essential idea of 3-Lisp but rather helps articulate it.
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(define defined?
(meta (expr env cont)

(if (is-bound? env (car expr))
(cont #t)
(cont #f))))

The special form defined? is implemented by a meta function (originally
called lambda reflect in 3-Lisp). Unlike macro functions, which receive only
program text, the meta function receives the current environment env and
the current continuatin cont as well as the program text expr. The cur-
rent environment represents the bindings between symbol names and values,
while the current continuation represents the control flow after this special
form finishes. Note that the meta function may access and change the en-
vironment and the continuation since they are the first-class data within
the meta function. In fact, to implement defined?, the meta function calls
a built-in function is-bound? and looks up a symbol name obtained by
(car expr) in the received environment env. Then it calls the received
continuation cont with #t or #f, which is the resulting value of the special
form.3

Base level and meta level

Meta functions are not extended macro functions that receive more argu-
ments. There are significant difference between macro functions and meta
functions. Meta functions run at runtime because they manipulate the cur-
rent environment and the current continuation, which are only available at
runtime. Hence a meta function directly interpret the received program text.
The value returned by the meta function is the result of the interpretation.
The meta function also may cause side effects on the environment as the
result of the interpretation. On the other hand, macro functions may run
at either runtime or compile time since they deal with only static informa-
tion of the program, that is, program text. They are functions that receive
program text and transform it, but they do not directly interpret it. The
value returned by a macro function is the transformed text.

In 3-Lisp, both ordinary functions and meta functions run together at
runtime. To distinguish the two kinds of functions, 3-Lisp has two execution
levels, which are the base level and the meta level. The two execution levels

3In reality, the base-level value has different representation at the meta level. For
example, #t (a boolean) becomes ’#t (a symbol) at the meta level. Therefore, the meta
function must convert #t into the meta representation before passing it to the continuation
cont.
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are identical except that the objects of the computation at the meta level is
the interpretation of the base-level program. The result of the computation
at the meta level reflects on the computation at the base level. This relation
between the meta level and the base level is called causal connectivity. For
example, meta functions may change the environment at the base level in
order to define a new symbol name, or to change the value that a symbol
name is bound to.

Meta functions can use a built-in meta function if they interpret the
received program text in the default way. For example, the program below
is another implementation of the special form rbegin with a meta function:

(define rbegin
(meta (expr env cont)

(let loop ((rest expr)
(c cont))

(if (null? rest)
(c ’???)
(loop (cdr rest)

(lambda (r)
(eval-expr env ; environment

(car rest) ; sub-expression
c))) ; continuation

Note that a built-in meta function eval-expr (normalize in the 3-Lisp ter-
minology) is called to interpret each sub-expression of rbegin. According to
the given sub-expression, eval-expr causes side effects on the environment
and calls the continuation with the resulting value of the sub-expression.

Self modification

In the examples shown so far, we have introduced new keywords such as
rbegin and defined?, and defined their meanings to implement new ab-
stractions. Some kinds of abstractions, however, require altering the mean-
ings of the existing keywords or syntax. In other words, they need to modify
the default behavior of the language rather than to extend it. A feature of
this self modification is that the effects of the modification are applied to pro-
grams even though the programs are not edited. Editing them or inserting
new keywords are not necessary.

Some followers of 3-Lisp, such as Black [2], enables the self modification.
They provide many built-in meta functions, which carrry out a primitive
base-level operation, and allow programmers to redefine them to change the
default behavior of the operations. For example, they may alter the behavior
of the language when reading a variable. By default, reading an undefined
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variable causes an error. We alter this behavior so that ’undef is returned
if the variable is undefined:

(define change-eval-read
(meta (expr env cont)

(set! eval-read
(lambda (expr env cont)
(let ((var (car expr)))

(if (is-bound? env var)
(cont (lookup env var))
(cont ’undef)))))

(cont #t)))

If the meta function change-eval-read is executed, it calls set! to
substitute a new meta function for the built-in meta function eval-read.
Note that set! has to be invoked at the meta level. Otherwise, set! would
replace a base-level function eval-read, if any, with the new one. The
substituted meta function first checks whether the given variable is defined
or not in the current environment. If not, it uses ’undef for the value of
the variable:

> x
ERROR: undefined symbol
> (change-eval-read)
#t
> x
UNDEF

This sort of self modification is difficult for Lisp macros. Some imple-
mentations of the Lisp macro system allow a macro function to override an
existing keyword. For example, programmers may define a macro function
named if to alter the behavior of the if special form. However, Lisp macros
cannot handle such modification that we showed in the change-eval-read
example because the expression for reading a variable is not preceded by
any keyword. To process an expression by a Lisp macro, programmers have
to explicitly place the macro name in front of the processed expression.

To use a Lisp macro and get the same result that change-eval-read
provides, programmers have to use a programming convention when read-
ing a variable. For example, they may have to write (read-variable x)
instead of just writing x, whenever reading a variable x. This program-
ming convention makes it possible for a macro read-variable to process
the expression x. Another approach is to surround the whole program by a
macro call. This technique is called the code walker. The macro function
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receives the whole program as the argument, looks up expressions for read-
ing variables, and translates the expressions to alter the behavior. Writing
the code walker is not difficult in Lisp because the grammar is simple, but
it is difficult in other languages such as C++.

Reflective languages

3-Lisp is one of the earliest languages that can handle richer meta represen-
tation of the programs than Lisp macros.4 3-Lisp has been followed by many
languages, and this family of languages are often called reflective languages
or languages with a meta architecture. For example, Brown [60], Blond
[18], and Black [2] are Lisp-based successors of 3-Lisp. These successors
has been developed to study the semantics and the implementation of the
infinite tower of the execution levels, that is, the base level, the meta level,
the meta-meta level, and so on. This was also one of the main issues of the
study of 3-Lisp.

The meta architecture developed by 3-Lisp has been also applied to
object-oriented languages. Early representatives of such languages are CLOS
[56, 36] and 3-KRS [38]. The two languages have been developed under
different design strategies. Since we discuss CLOS in the next section, we
introduce only 3-KRS here.

3-KRS is designed mainly for customizing the default behavior of the
language on demands, rather than implementing new abstractions on top of
the language. In 3-KRS, each base-level entity such as objects and messages
is associated with a special object called metaobject. The metaobject is
the meta representation of the base-level entity. Calling a method for the
metaobject, programmers can obtain the meta information of the entity.
For example, they can inspect what methods an object has through the
metaobject for the object. Also, the metaobject provide similar capability
of a built-in meta function in 3-Lisp. For example, the metaobject for an
object has a method for invoking a method on the object.

As in 3-Lisp, programmers can alter the default behavior of 3-KRS.
Instead of redefining built-in meta functions, the programmers define a new
metaobject to implement the new behavior. Suppose that they alter the
default behavior of the object creation so that the history of object creation
is recorded. With this language customization, programmers may write
something like this:

> *history*

4In Artificial Intelligence, a similar idea was proposed earlier than 3-Lisp.[3, 25, 62]
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()
> (defclass point ()

(variable x y) :meta recorded-object)
POINT
> (defclass rect ()

(variable top bottom left right) :meta recorded-object)
RECT
> (define p (make-instance point))
P
> (define q (make-instance rect :meta recorded-object))
Q
> *history*
(RECT POINT)

If a class annotated with “:meta recorded-object” is instantiated, the
class name of the instance is added to the list indicated by *history*. For
the example above, since a point object and a rect object are created, the
class point and the class rect are added to the list.

To implement this language customization, the programmer first defines
a new class recorded-object for metaobjects:5

(defclass recorded-object (metaobject-for-object)
(defmethod create-object (expr env)

(let ((class-name (car expr))
(h (env-ref env ’*history*)))

(env-set! env ’*history* (cons class-name h))
(<- super create-object expr env))))

The class recorded-object inherits from the default class metaobject-
for-object and overrides a method create-object to maintain *history*.
The method create-object is invoked when an object is created. The new
create-object first adds the class name to the list indicated by the base-
level variable *history*. Then it calls the overridden method of the super
class metaobject-for-object, which creates a new object in the default
way. Note that create-object has to call built-in meta functions env-ref
and env-set! to access the base-level variable *history*. It cannot di-
rectly access this variable since create-object is at the meta level. Any
base-level entity must be dealt with through built-in meta functions.

Other object-oriented reflective languages include ABCL/R [61, 41, 40],
Ferber’s language [21], RbCl [32], The MIP for C++ [9], OpenC++ ver-
sion 1 [13], AL-1/D [46, 45], CodA [42], a reflective version of BETA [6],
and Iguana [29, 30]. They have explored various applications of the meta

5Again, we use an altered version of 3-KRS for clarifying our argument.
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architecture. ABCL/R is a parallel language, and it allows programmers
to customize the default scheduling policy. OpenC++ version 1 enables
programmers to implement language extensions such as distribution, per-
sistence [57], and fault-tolerance [20], within the confines of the language.
AL-1/D’s application is similar to ABCL/R. It allows programmers to cus-
tomize the policy of object migration. Coda employs the meta architecture
to run the same Smalltalk program on different platforms. For example, if
the programmer ports a program written for a single processor machine to
run on a multi-processor machine, she has only to define new metaobjects.
Since the platform-dependent code is separated into the metaobjects, the
programmer does not need to edit the base-level program.

Applicability to our problem

Reflective languages represented by 3-Lisp show us how meta representation
of a program should be exposed to the programmer. Especially, object-
oriented reflective languages such as 3-KRS shows that metaobjects can be
good abstraction to deal with complexity of the meta representation.

However, reflection cannot be a solution of our problem since program-
mers describe interpretation of a base-level program to define a new mecha-
nism or change an existing mechanism. Although programmers can describe
interpretation that causes the same effects that we want, describing source-
code processing is more intuitive and straightforward as for our motivating
applications. Also, runtime penalties implied by the interpretation is an-
other problem of reflection.

3.3 The CLOS MOP

We claim that the reflective languages introduced in the previous section,
such as 3-Lisp and 3-KRS, should be called non-metacircular, or weakly-
metacircular, languages. They are metacircular in a certain sense because
base-level and meta-level programs are written in the same syntax, but the
two “languages” for the base-level and meta-level programs are not identical.

This section discusses (truly) metacircular reflective languages repre-
sented by the CLOS MOP. Unlike 3-Lisp or 3-KRS, its base level and meta
level programs are written in an identical language. This means that the
customization by the meta-level program affects not only the base-level lan-
guage but also the meta-level language in which the meta-level program is
written. This feature gives some benefits to reflective languages.
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Metacircularity

Metaobject protocols (MOPs) are another name to indicate a meta architec-
ture such as 3-Lisp’s one. Particularly, MOPs mean programming interfaces
for customizing the language. The word “metaobject protocol” has been
first used in CLOS (Common Lisp Object System) [56]. The CLOS MOP
[36] enables programmers to incrementally customize CLOS in CLOS itself
with a meta architecture.

A unique feature of the CLOS MOP is that the system is metacircular
(Figure 3.1). In 3-Lisp, meta functions and base-level functions are written
in the same language, but the two “languages” for the meta and base-level
functions may not be identical; they may be two distinct instances of the
same language. At beginning, the two languages are identical and are thus
meta-circular in some sense. But once the base language is customized,
the meta language is left unchanged and the two languages are therefore
different.

This fact would be clear if we reason about the object of language cus-
tomization; the language customized by a meta-level program is just the
language for a base-level program. For example, a new special form defined
by a meta function is only available for base-level functions but not available
for other meta functions. The customization by meta functions reflects only
on the language for base-level functions, but it does not circularly reflect on
the language for the meta functions.

The reason for this non-metacircularity would be to avoid apparent in-
finite regression caused by a circular definition. If 3-Lisp is naively made
metacircular, programmers would easily define a meta function with using
the special form defined by the meta function itself and the special form
would cause infinite regression. But this problem can be avoided with keep-
ing metacircularity if another scope control mechanism is introduced.

To keep metacircularity while letting programmers avoid a circular def-
inition, the CLOS MOP uses a class system for controlling the scope of
language customization. Hence both base-level programs and meta-level
programs are written in the same instance of the language, and language
customization by a meta-level program is also applied to the language in
that the meta-level program is written. The relation is circular between the
semantics of the customized language and the meta-level program customiz-
ing the language.

Despite of the metacircularity, CLOS programmers can avoid a wrong
circular definition.6 In the CLOS MOP, customization is specified on a class

6The solution by the CLOS MOP is not a complete solution. We revisit this issue in



CHAPTER 3. TECHNIQUES FOR PROCESSING A PROGRAM 29

Base level

Meta level

The CLOS MOP

Meta−meta level

Meta level

Base level

:

3−Lisp

Figure 3.1: The CLOS MOP is metacircular

basis; it is applied only to particular classes and their instances. Thus, if
programmers carefully distinguish classes, they can avoid a circular defi-
nition. Suppose that a meta-level program alters the behavior of a class
Point. Since the CLOS MOP is metacircular, the programmer may use the
customized class Point in the meta-level program, but she can still avoid a
circular definition unless she explicitly implements the customization with
Point to be a circular definition.

The origin of the metacircular architecture would be found in Smalltalk-
80 [26]. In fact, Foote reported the use of the metacircularity in Smalltalk-
80 in his paper [22]. Also, CommonLoops [4] should be noted as an early
metacircular language. Furthermore, the metacircular architecture is found
in ObjVlisp [17], Classtalk [8], EuLisp [7] and STklos [24].

Direct access to the base level

The CLOS MOP provides the capability for customizing the behavior and
implementation of the object system of Common Lisp (i.e., CLOS). For
example, programmers may define a new metaobject for classes to alter the
rule of multiple inheritance. This customization makes it easy that CLOS
runs programs written in other Lisp-based languages such as Loops [5] and
Flavors [10].

Despite the metacircularity, the way of customization with the CLOS
MOP is quite similar to the way of customization in non-metacircular lan-
guages such as 3-KRS. In the previous section, we showed the 3-KRS imple-
mentation of the language customization for recording object creation. In
the CLOS MOP, this customization is implemented by this program:7

Chapter 5.
7Again, we use an altered syntax for emphasizing difference from the 3-KRS imple-
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(defclass recorded-class (metaobject-for-class)
(defmethod create-object (init-args)

(let ((class-name (<- self name)))
(set! *history* (cons class-name *history*))
(<- super create-object init-args))))

Since the CLOS MOP does not provide the metaobject for an object, the pro-
gram defines a new metaclass, which means a new class for class metaobjects.
It inherits from the default class metaobject-for-class and overrides a
method create-object. When an object is created, the new create-object
first calls a method name for the metaobject (self) to obtain the class
name. Then it updates the history of object creation and calls the over-
ridden method for the super class, which creates an object in the default
means.

Because of metacircularity, there is no explicit (syntactical) distinction
between base-level programs and meta-level programs in the CLOS MOP.
The two kinds of programs are written in the same language and run under
the same runtime environment. They may even coexist in a single function
or method. Therefore, metaobjects in the CLOS MOP can directly access
the base-level data. The metaobjects can use the base-level primitives to
access the base-level data as the objects can do. There is no difference in
primitives that the metaobjects and the objects can use. For example, the
method create-object directly reads and writes the variable *history*
with base-level primitives like set!. Recall that create-object in 3-KRS
has to access through built-in meta functions env-ref and env-set! since
the base-level objects and the metaobjects are run at distinct execution
levels.

Ease of learning

Base and meta levels in non-metacircular systems are written in different
languages. This separation makes access across levels be complex and tend
to be inefficient. On the other hand, the metacircularity of the CLOS MOP
avoids gratuitous differences between levels, while still being effective, and
gives a few advantages.

First, the meta architecture employing metacircularity is easy to learn.
Since programmers can use base-level primitives to access base-level data
from the meta level, they do not have to learn built-in meta functions unless
they need to access meta-level data, which there is no base-level primitive
to access.

mentation.
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Figure 3.2: An improved implementation of 3-Lisp

For example, a metaobject in the CLOS MOP can call a method for
an object in the same syntax that an object calls it at the base level. The
metaobject uses a built-in meta function only when it needs to access a meta
representation of the program, for example, the class name of an object.
Recall that create-object of recorded-class executes (<- self name)
to obtain the class name. On the other hand, a metaobject in 3-KRS has to
call a built-in meta function even when it calls a method for an object. In
3-KRS, any object must be indirectly manipulated through the metaobject
associated with that object. To call a method for the object, an appropriate
built-in meta function for the metaobject has to be called.

Ease of implementing efficiently

Another advantage of metacircularity is execution performance. Metacir-
cular systems make it intuitive and straightforward for implementors to
develop an efficient interpreter and compiler. To do the same thing in non-
metacircular systems like 3-Lisp, they need sophisticated implementation
techniques or they need to force programmers to use advanced program-
ming techniques.

If naively implemented, 3-Lisp is extremely slow. The typical imple-
mentation of 3-Lisp uses two interpreters for keeping two distinct execution
levels. The first interpreter executes the second interpreter, while the second
interpreter executes base-level functions. In this implementation, meta func-
tions are regarded as part of the program of the second interpreter. They
are executed by the first interpreter and execute base-level functions. This
double interpretation maintains the causal connectivity between the base
level and the meta level, but it significantly decreases the execution speed
of the base-level program even though no meta functions are used.
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Improving the execution performance is relatively easy if the base-level
program does not use meta functions. We can prepare the third interpreter,
named the default interpreter, and switch to it while the base-level program
runs without meta functions (Figure 3.2). Note that the first interpreter and
the default interpreter are not identical; at least, they are distinct instances
of an interpreter and they maintain different runtime environments. Because
the default interpreter does not handle meta functions, it can achieve as good
efficiency as an optimized interpreter for ordinary Lisp. Or, we may use a
compiler for better efficiency instead of an interpreter.

To use the default interpreter from a meta function, programmers need
to call a built-in meta function like eval-expr and explicitly switch to it.
Recall the implementation of create-object in 3-KRS. It can be rewritten
to explicitly switch to the default interpreter:

(defmethod create-object (expr env)
(let* ((class-name (car expr))

(expr2 ‘(set! *history*
(cons ,class-name *history*))))

(eval-expr env expr2)
(<- super create-object expr env)))

The built-in meta function eval-expr executes the expression expr2 with
the environment env by the default interpreter, so that the expression is
executed faster. For example, since the expression accesses the base-level
variable *history* twice, the default interpreter may memoize the memory
location of the variable and reuse it for the second access. However, the
optimization that the default interpreter can do for eval-expr is limited to
runtime optimization since eval-expr receives an expression and an envi-
ronment at runtime. Even if an compiler is used instead of the interpreter,
no static optimization is applicable.

On the other hand, metacircular systems naturally give more freedom
to the default interpreter or compiler. For example, in the CLOS MOP,
there is no explicit distinction between the base level and the meta level, so
the default interpreter can execute both base-level and meta-level programs
(Figure 3.3). This means that programs implicitly switch direct interpreta-
tion by the default interpreter and double interpretation via metaobjects.
Recall the implementation of create-object in the CLOS MOP:

(defmethod create-object (init-args)
(let ((class-name (<- self name)))

(set! *history* (cons class-name *history*))
(<- super create-object init-args)))
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Figure 3.3: An metacircular implementation

This method directly accesses a base-level variable *history* with the base-
level primitive set!. Since the expression (set! ...) is written in the
syntax for the base-level program, it can be directly executed by the default
interpreter, and hence the system implicitly switches to direct execution by
the default interpreter.

This implicit switching gives a lot of room for optimization especially
to a compiler. Unlike the way by using eval-expr, an executed expression
is statically given to the default interpreter and hence various optimization
techniques using static information are naturally applicable.

To get equivalent effects in non-metacircular systems, a sophisticated
optimizing compiler or complex programming techniques are needed. For
example, an optimizing compiler using a technique called partial evaluation
[19, 23] or inlining will compile the following program in 3-KRS:

(defmethod create-object (expr env)
(let* ((class-name (car expr))

(expr2 ‘(set! *history*
(cons ,class-name *history*))))

(eval-expr env expr2)
(<- super create-object expr env)))

into as efficient code as the equivalent program in the CLOS MOP. The
compiler will statically determine the values of env and expr2 as much as
possible, and specialize eval-expr to be more efficient. This approach has
been studied by a few researchers including the author [52, 14, 39], but
implementing this technique is very difficult in practical languages such as
C++; for example, no compiler using partial evaluation has been developed
for C++ yet.
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Another approach is to provide more built-in meta functions for pro-
grammers to be able to optimize a meta function by hand:

(defmethod create-object (expr env)
(let ((compiled-code (lookup-hash expr)))
(if (null? compiled-code)

(let* ((class-name (car expr))
(expr2 ‘(begin

(set! *history*
(cons ,class-name *history*))

,expr)))
(set! compiled-code (compile-expr expr2)))
(record-hash expr compiled-code)))

(execute env compiled-code)))

The underlined functions are built-in meta functions. The above imple-
mentation explicitly compiles an expression and memoizes it when it is first
executed, and reuses the compiled code from the second time. Although this
implementation will run a bit faster, the built-in meta functions for opti-
mization make the language complicated and difficult to use. Programmers
have to learn how the built-in meta functions help for optimization.

When metaobjects run

Normally, metaobjects in metacircular systems run at runtime as in non-
metacircular systems. Metacircularity has nothing to do with when metaob-
jects run at runtime or compile time. However, because running metaobject
at runtime impairs execution performance, the actual CLOS MOP employs
a technique called currying8 so that the metaobjects less frequently run at
runtime. This technique is based on the observation that some of compu-
tation by metaobjects can be statically performed, or, once it is done, the
result can be memoized and it does not need to be performed again. So
the currying technique explicitly splits the protocol into one for computa-
tion that has to be done at runtime and the rest, and let the underlying
interpreter improve performance by avoiding redundant execution of that
computation.

For example, if the currying technique is not adopted, a method call-method
for class metaobjects is implemented as something like this (Note: this is
pseudo code):

8This technique should not be called the memoization technique. It is a technique
for protocol designers, who perform currying on documented functions so that protocol
implementors can perform memoization.
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(defmethod call-method (object method-name args)
(let ((method (<- self lookup method-name)))

(apply method (cons object args))))

(defmethod lookup (method-name)
(let ((entry (assq method-name

(<- self direct-methods)))
(if entry

(cdr entry)
(let loop ((supers (<- self super-classes)))

(if (null? supers)
(error "invalid method name")
(or (<- (car supers) lookup method-name)

(loop (cdr supers))))))))

The method call-method is a built-in meta function for calling the method
specified by method-name for the object. The implementation is divided
into two parts. It first calls a helper method lookup, which finds the function
body of the targeted method. Then call-method actually invokes the found
method. lookup first checks methods directly supplied by the class, and, if
not found, it searches super classes.

This implementation is not efficient because the targeted method is
looked up in the class hierarchy for every call. It should be looked up only
once when it is first called, and the found method should be memoized and
reused for all subsequent calls to the method.

To avoid this inefficiency, the actual protocol has been designed with the
currying technique. In the actual design, the computation by call-method
shown above is split into two parts. The redesigned call-method receives
only method-name, looks up the targeted method, and returns a function:

(defmethod call-method (method-name)
(let ((method (<- self lookup method-name)))

(lambda (object args)
(apply method (cons object args)))))

If called, the function returned by call-method receives object and args
and invokes the targeted method with them. The targeted method is not
invoked until the returned function is called. Note that the targeted method
is looked up only once when call-method runs. It is never looked up when
the returned function runs.

The CLOS interpreter and compiler can employ this curried protocol to
improve execution performance. It should call call-method in advance at
load time or at compile time, and memoize the returned function with the
method name. Then, if the method is actually called at runtime, it can
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directly call the memoized function for invoking the method. No look up
is needed at runtime. The targeted method is looked up only once at load
time or at compile time.

Applicability to our problem

The CLOS MOP shows that there is another design of the meta system of
a reflective language. Because of its metacircularity, a meta-level program
is not an interpreter of the base-level program but can be regarded as a
collection of base-level code substituted for parts of the original base-level
program. Recall that a meta-level program describes base-level behavior
with the base-level primitives instead of built-in meta functions.

This fact means that metacircular reflection can be the basis of a solution
of our problem. In the previous chapter, we presented that C++ needs
a mechanism for processing source code with context sensitivity and non
locality. Metacircular reflection allows programmers to specify source-code
substitution with context sensitivity and non locality.

However, we cannot use metacircular reflection represented by the CLOS
MOP as is to solve our problem. It is in principle a runtime system, which
may involve overheads, and is difficult to handle optimization such as the
example of the vector library in the previous chapter. It is not suitable for
dealing with adjacent but independent operations at a time.

3.4 Summary

This chapter illustrated currently known mechanisms for processing a pro-
gram. We showed the tree representative mechanisms, Lisp macros, 3-Lisp,
and the CLOS MOP. As an object-oriented version of 3-Lisp, we also showed
3-KRS.

Table 3.1 summarizes the features of the three mechanisms. All of them
provide meta representations of the base-level programs for the program-
mers. The meta representations enable the programmers to process the
programs as computable data. As the meta representations, Lisp macros
provide program text in the form of the abstract syntax tree. 3-Lisp pro-
vides not only program text but also the current environment and the current
continuation. The CLOS MOP provides classes, generic functions, methods,
and so on.

Although providing meta representations allows to implement a new kind
of abstraction that are not available within the confines of the original lan-
guage, some kinds of abstractions also need to alter the default behavior
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Table 3.1: Lisp Macros, 3-Lisp, and the CLOS MOP

Lisp Macros 3-Lisp CLOS MOP

Meta representation 4 © ©

Self modification × © ©

Metacircular © × ©

When running CT or RT RT (CT and) RT

RT: runtime, CT: compile time

of the language. This self modification of the language is allowed only by
3-Lisp and the CLOS MOP. Lisp macros cannot change the behavior of the
language when reading a variable, for example. 3-Lisp and the CLOS MOP,
therefore, enable a larger number of kinds of abstractions than Lisp macros.

Metacircularity is a good property because metacircular systems are easy
to learn and easy to implement efficiently. Only Lisp macros and the CLOS
MOP have this property. 3-Lisp is not metacircular; although the base level
and the meta level uses the same language, the customization by meta func-
tions is not applied to the language for the meta level. The customization
is applied only to the language for the base level.

Furthermore, macro functions may run at either runtime or compile time,
whereas meta functions in 3-Lisp and metaobjects in the CLOS MOP run
at runtime. This means that Lisp macros have an advantage in terms of
execution performance since macro functions run at compile time. 3-Lisp
has to process a program at runtime even though the processing can be
done at compile time. To avoid the performance problem of 3-Lisp, the
CLOS MOP employs the currying technique and performs most of meta
computation at the load time or at compile time.

Through this chapter, we have discussed that a meta architecture with
metacircularity, such as the CLOS MOP, has great benefits for processing
a program. But this architecture has a drawback with respect to execution
performance because metaobjects normally run at runtime unless an elabo-
rate technique like currying is used. Lisp macros have an advantage for the
performance issue; macro functions can run at compile time and they can
involve no performance penalties at runtime. This feature of Lisp macros is
significant to develop a mechanism for processing a program in C++ since
C++ programmers are particular about execution performance.
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In the next chapter, we propose a new C++ mechanism with both advan-
tages of the CLOS MOP and Lisp macros. It enables source-code processing
in a context-sensitive and non-local way so that programmers can develop
better libraries in C++.



Chapter 4

The OpenC++ MOP

This chapter presents a new C++ mechanism for processing a program.
The proposed mechanism enables context-sensitive and non-local processing,
which is not supported by existing C++ mechanisms, such as the inheritance
mechanism and the template mechanism. Because of those two features, this
mechanism makes it possible to include some kinds of useful abstractions in a
library and implement other abstractions efficiently. In regular C++, those
abstractions are impossible to include in a library or, otherwise, they are
difficult to implement efficiently.

The proposed mechanism is called the OpenC++ MOP (Metaobject
Protocol). OpenC++ is an enhanced version of the C++ language for this
mechanism.1 The OpenC++ MOP has been developed by a synthesis of
ideas of the techniques illustrated in the previous chapter. Especially, we
took the basic protocol structure from the CLOS MOP [36], and we took the
basic architecture from Lisp macros. The OpenC++ MOP is also influenced
by Intrigue [37], Anibus [50, 51], and MPC++ [33, 34].

4.1 Overview

The OpenC++ compiler is fed with two kinds of code. One is ordinary
source code and the other is meta code that specifies how the source code is
processed. Both of them are written in OpenC++. The compiler first runs
the C++ preprocessor, and then performs source-to-source translation from
OpenC++ to regular C++. This translation is specified by the meta code.
The translated code is passed to the back-end C++ compiler and processed
into executable code.

1To distinguish OpenC++ version 1, this language is called OpenC++ version 2.

39
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Introductory Example

The OpenC++ MOP is a protocol that the meta code uses for specifying
source-code processing. The protocol structure of the OpenC++ MOP is
based on that of the CLOS MOP. Programmers define a new class metaob-
ject to specify a new kind of source-code processing. For example, we show
the implementation of the language extension that records object creation.
This is the example that we repeatedly used in the previous chapter:

class RecordedClass : public Class {
public:
Ptree* TranslateNew(Environment* env, Ptree* header,

Ptree* new_op, Ptree* placement,
Ptree* type_name, Ptree* arglist)

{
return Ptree::Make("(history[n++]=\"%p\",%p)",

type_name,
Class::TranslateNew(env, header, new_op,

placement, type_name,
arglist));

}
};

We define a new metaclass, which is a class for class metaobjects. The new
metaclass RecordedClass corresponds to recorded-class that the previous
chapter showed while mentioning the CLOS MOP. It inherits from the de-
fault metaclass Class and overrides a member function2 TranslateNew() as
the class recorded-class inherits from metaobject-for-class and over-
rides create-object.

Although create-object in the CLOS MOP directly interprets the pro-
gram and executes the object creation, TranslateNew() in the OpenC++
MOP just translates the program at the source-code level as Lisp macros do.
It receives program text and returns the resulting text of the translation.

To use this language extension, programmers write something like this:

metaclass Point : RecordedClass;
class Point {
public:

int x, y;
};

void f(){
. . .

2A member function means a method in the C++ terminology. Similarly, in C++, an
instance variable is called a data member, and a super class is called a base class.
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Point* p = new Point;
. . .

}

The first line beginning with metaclass is a metaclass declaration. It de-
clares that the class metaobject for Point is an instance of RecordedClass.
Thereby, the program above is translated by the class metaobject into this
program:

class Point {
public:

int x, y;
};

void f(){
. . .
Point* p = (history[n++]="Point",new Point);
. . .

}

Note that the metaclass declaration is eliminated and the new expression
“new Point” is replaced with “(history[n++]=...)”. If the function f()
is executed, a character string "Point" is stored in an array history. The
variable n specifies the number of the recorded class names.

What Class Metaobjects do

The translation shown above is performed by TranslateNew(). It receives
the program text for the new expression and the environment, and returns
the translated new expression. The environment represents the bindings
between names and their static types. Unlike the environment in 3-Lisp, it
does not represent the dynamic bindings between names and their runtime
values. The received program text is represented in the form of the parse
tree as in Lisp macros and 3-Lisp. Ptree is the type for the parse tree.
For convenience, TranslateNew() does not receive the new expression as
a single tree. The tree is divided into several subtrees before passed to
TranslateNew(). For example, the fifth argument type name is bound to
the type-name field of the new expression, that is, Point.

TranslateNew() constructs a new parse tree that is substituted for the
original new expression. To do this, TranslateNew() calls a built-in function
Ptree::Make(). Here we show the function body of TranslateNew() again:

return Ptree::Make("(history[n++]=\"%p\",%p)",
type_name,
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Class::TranslateNew(env, header, new_op,
placement, type_name,
arglist));

The expression Class::TranslateNew(env, ...) calls the overridden mem-
ber function of the base class Class. Since Class is the default metaclass,
this member function call returns the new expression without any change.
The function Ptree::Make() constructs a parse tree according to the format
given as the first argument. It substitutes given subtrees for the occurrences
of %p in the format. For example, the first occurrence of %p surrounded by
double quotes is replaced with the subtree indicated by type name.

A class metaobjects handles all kinds of expressions involved with the
class. They can handle class declaration, the new expression, member func-
tion calls, and even data member accesses. The default metaclass Class has
member functions for translating each kind of expression. Although these
member functions of Class do not transform the received program text,
programmers can define a new metaclass to override them and customize
the translation. Note that a class metaobject handles only the expressions
involved with the class. Hence programmers can restrict the customized
translation to only some classes. Even though a new metaclass is defined,
expressions are not translated unless the metaclass is specified for the class
that the expressions are involved with.

4.2 Context-sensitive and Non-local

The OpenC++ MOP enables context-sensitive and non-local processing of
programs, which the inheritance mechanism or the template mechanism can-
not do. This feature of the OpenC++ MOP makes it possible for program-
mers to write libraries that they cannot do in regular C++.

Context Sensitive

The OpenC++ MOP provides rich meta representation of programs so that
programmers can refer to various contextual information of the programs
during the processing. For example, the programmers can refer to the pro-
gram text represented in a parse tree, the static type environment, and
class definitions. The OpenC++ MOP provides different metaobjects for
each kind of information. The programmers use these metaobjects and de-
termine how to process the programs.

We below present brief overviews of all the kinds of metaobjects: Ptree,
Environment, TypeInfo, and Class. The detailed specifications are shown
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in Appendix B. These metaobjects represent program text, static types,
type definitions, class definitions, respectively. They cover information needed
to determine the semantics of a given code fragment.

• Ptree metaobject

The Ptree metaobjects represent the parse tree of a program. The parse
tree is implemented by a linked list of lexical tokens. For example, this
program:

int a = b + c * 2;

is represented by a Ptree metaobject:

((int) (a = (b + (c * 2))) ;)

Here, () denotes a linked list. We denote a parse tree with the notation that
Lisp uses for the S expression. Note that operators such as = and + make
sublists.

The OpenC++ provides many functions for manipulating a parse tree.
Most of them were taken from Lisp. For example, to obtain the second
sublist of the list that a variable expr is bound to, the programmer writes:

Ptree::Second(expr)

The function Second() is a static member function3 of the class Ptree. It
returns the Ptree metaobject that represents the second sublist.

Moreover, since the grammar of C++ is relatively complex, the Ptree
metaobjects provide a member function WhatIs() for examining the kind
of the syntax represented by the parse tree. WhatIs() returns a unique
constant according to the kind of the syntax. If the parse tree represents a
declaration, WhatIs() returns PtreeDeclarationId; if the tree represents
a class name, WhatIs() returns LeafClassNameId.

As we already saw, Ptree metaobjects can be constructed by calling
Ptree::Make(). This static member function constructs a Ptree metaob-
ject according to the given format. All occurrences of %c (character), %d (in-
teger), %s (character string), and %p (Ptree) in the format are replaced with
the arguments following the format. For example, suppose that array name
is "xpos" and offset is 3. This function call:

Ptree::Make("%s[%d]", array_name, offset)

3A static member function is a sort of class method in C++.
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constructs a Ptree metaobject that represents:

xpos[3]

Unfortunately, the current implementation of Ptree::Make() does not con-
struct a fully-capable Ptree metaobject. Since the C++ grammar is context
sensitive, Ptree::Make() cannot correctly parse the constructed metaobject
without syntactic context and hence WhatIs() does not work for it. Except
this limitation, however, programmers can use the Ptree metaobject re-
turned by Ptree::Make() at any place in a meta-level program.

The function Ptree::Make() makes it significantly easy to write a meta-
level program. It is a conversion function from standard C++ syntax given
as a C++ string to a Ptree metaobject. Thus programmers can construct a
Ptree metaobject with standard C++ syntax, which is more intuitive and
easy to handle than bare new operators.

The OpenC++ MOP also provides a function for pattern matching. The
static member function Ptree::Match() compares the given pattern and
the given Ptree object. If they match, it returns TRUE and binds the given
variables to the appropriate sublists. See the following sample program:

if(Ptree::Match(expr, "[%? + %?]", &lexpr, &rexpr))
cout << "this is addition.\n";

else if(Ptree::Match(expr, "[%? - %?]", &lexpr, &rexpr))
cout << "this is subtraction.\n";

else
cout << "unknown\n";

The pattern [%? + %?] matches a Ptree metaobject if the length of the
linked list is three and the second element is +. If expr matches the pattern,
lexpr gets bound to the first element of expr, and rexpr gets bound to the
third element. Note that the type of lexpr and rexpr is Ptree.

• Environment metaobject

The Environment metaobjects represent bindings between names and their
static types. Programmers can call Lookup() for the metaobjects to deter-
mine the type of a variable name. The returned type is represented by a
TypeInfo metaobject.

• TypeInfo metaobject

The TypeInfo metaobjects represent types. The types are not limited to
class types. They also include other kinds of types, such as built-in types
like int, pointer types, function types, template types, and so on.



CHAPTER 4. THE OPENC++ MOP 45

The most important member function of TypeInfo is WhatIs(). It re-
turns a unique constant according to the kind of the type. For example, if
the type is a class type, WhatIs() returns ClassType.

The TypeInfo metaobjects also supply member functions for obtaining
detailed information of each kind of type:

- uint IsBuiltInType()
This works for built-in types. It returns what the built-in type is,
char, int, double, or others.

- Class* ClassMetaobject()
This works for class types. It returns the Class metaobject for the
class.

- void Dereference(TypeInfo& t)
This works for derived types, such as pointer types, reference types,
and function types. It returns the dereferenced type of the type. For
example, if the type is int*, Dereference() returns the TypeInfo
metaobject for int. If the type is a function type, Dereference()
returns the return type of the function.

- BOOL NthArgument(int nth, TypeInfo& t)
This works for function types. It returns the type of the nth argument
to the function. If there is not the nth argument, NthArgument()
returns FALSE.

• Class metaobject

The Class metaobjects supply member functions for introspection. Pro-
grammers can call these functions to inspect the class; for example, they
can obtain the class metaobject for the base class. The followings are part
of these member functions:

- Ptree* Name()
This returns the name of the class.

- char* MetaclassName()
This returns the name of the metaclass.

- Class* NthBaseClass(Environment* env, int nth)
This returns the nth base class of the class. Recall that C++ allows
multiple inheritance. The leftmost base class is the first, and the
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rightmost is the last. Note that this member function returns only
immediate base classes. It does not return a base class of a base class.

- Ptree* NthMemberName(int nth)
This returns the name of the nth member, which is either a member
function or a data member.

- BOOL LookupMemberType(Environment* env, Ptree* name,
TypeInfo& t)

This returns the type of the member specified by name.

Non Local

The OpenC++ MOP also enables non-local processing. Because a single
class metaobject processes all the code fragments relevant to the class, pro-
grammers usually define only one new metaclass for implementing one ab-
straction. Even if the processed fragaments spread out over the whole pro-
gram, they are automatically dispatched to the class metaobject. Although
programmers have to define more than one metaclasses if the processing
involves multiple classes, we believe that a class is good granularity for
source-code processing in C++. This is because most of abstractions are
usually implemented by a single class in C++.

For non-local processing, the Class metaobjects supply a different mem-
ber function for each kind of program text. One of these functions is
TranslateNew() presented in Section 4.1. These functions receive program
text and translate it. The translated text is substituted for the original
text in the program. Although the member functions supplied by Class do
not change the received text at all, a subclass of Class can override them
and implement new source-code translation. The followings are some of the
member functions that the subclass can override (For the complete list, see
Appendix B):

- Ptree* TranslateClassName(Environment* env,
Ptree* keyword, Ptree* name)

This translates the class name appearing in the program.

- Ptree* TranslateSelf(Environment* env)
This translates the class declaration.

- Ptree* TranslateMemberFunctionBody(Environment* env,
Ptree* name, BOOL inlined,
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Ptree* body)
This translates the body of a member function supplied by the class.

- Ptree* TranslateUnary(Environment* env, Ptree* op,
Ptree* object)

This translates an expression including a unary operator op. It is
called if the object that the operator is applied to is an instance of
the class.

- Ptree* TranslateNew(Environment* env, Ptree* ...)
This translates the new expression.

- Ptree* TranslateMemberRead(Environment* env, Ptree* member)
This translates an expression for reading a data member of an object
of the class.

- Ptree* TranslateMemberCall(Environment* env, Ptree* member,
Ptree* arglist)

This translates a member function call on an object of the class.

4.3 Syntax Extension

The OpenC++ MOP allows limited syntax extension. Because the C++
grammar is heavily context dependent, the full extensibility for syntax is
difficult to provide in C++. However, programmers can define new keywords
and implement the following kinds of new syntax:

• Type Modifier
Programmers can define a new type modifier. It may appear in front
of type names, the new operator, or class declarations. For example,
programmers may define new keywords, distributed and remote,
and then they can write:

distributed class Dictionary { ... };
remote Point* p = remote(athos) new Point;

Here, distributed, remote, and remote(athos) are new type modi-
fiers.

• Access Specifier
Programmers can define a new member-access specifier, which appears



CHAPTER 4. THE OPENC++ MOP 48

within class declarations. public, protected, and private are the
built-in access specifiers. For example, if after is a keyword for a new
access specifier, then programmers may write:

class Window {
public:

void Move();
after:

void Move() { ... } // after method
};

• Statement
Programmers can define a new kind of statement that is similar to ei-
ther the if statement or the while statement. The following examples
are valid syntax extensions:

Matrix m1;
m1.forall(e){ e = 0.0; } // extended syntax

ButtonWidget b;
b.press(int x, int y){ // extended syntax

cout << "pressed at" << x << "," << y;
};

In these examples, forall and press are new keywords. Like the
while statement, they are followed by a () expression and a block
statement.

To make these syntax extensions available, the programmers first register
the keywords to the parser. The Class metaobjects supply the following
registration functions. Each one registers a keyword for a specific syntax
extension (the followings are not all the functions. See Appendix B for
more details):

- void RegisterNewModifier(char* keyword)
This registers a keyword for a new type modifier.

- void RegisterNewAccessSpecifier(char* keyword)
This registers a keyword for a new access specifier.
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- void RegisterNewWhileStatement(char* keyword)
This registers a keyword for a new kind of statement that is similar to
the while statement.

The semantics of a new syntax extension is defined by the class metaob-
ject that is involved with the extension. For example, the forall statement
in this program:

Matrix m1;
m1.forall(e){ e = 0.0; }

Should be translated into regular C++ code by the class metaobject for
Matrix. The programmer, therefore, has to define a new class metaobject to
handle the translation. The new class metaobject will override this member
function:

- Ptree* TranslateUserStatement(Environment* env,
Ptree* object, Ptree* op,
Ptree* keyword, Ptree* rest)

This translates a new kind of statement. The default implementation
by Class causes a syntax error.

If the forall statement is translated, the arguments object, op, and keyword
are bound to m1, . (dot), and forall, respectively. The last argument rest
is bound to the rest of the statement, that is, (e){ e = 0.0; }. The over-
ridden TranslateUserStatement() should use these arguments and con-
struct the parse tree for the translated statement.

4.4 What is New?

The OpenC++ MOP has been developed by a synthesis and re-engineering
of ideas of other known techniques. Especially Lisp macros and the CLOS
MOP influence the design of the OpenC++ MOP. This section discusses
comparison between the OpenC++ MOP and other techniques.

Comparison with Lisp Macros

In the OpenC++ MOP, class metaobjects process a program as Lisp macros
do. Their member functions receive program text and return the translated
text, which is substituted for the original text.
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However, the OpenC++ provides more contextual information than Lisp
macros when translating a program. The member functions for the trans-
lation receive the environment as well as program text. They can use it to
examine the static types of variables. Lisp macros do not provide the envi-
ronment; macro functions have to translate a program only with syntactical
information but without contextual information.

The OpenC++ MOP also enables self modification whereas Lisp macros
do not. With only a simple annotation, it can alter the behavior of the
objects of only a specific class. Error-prone programming conventions are
not needed. Lisp macros require programmers to explicitly call them to
translate programs. The expressions that a Lisp macro should process have
to be explicitly preceded by the macro name. Hence, if programmers want
to change the behavior of the language when reading a variable, they have
to write something like (read-variable x) instead of just writing x. Here
read-variable is a macro name. Otherwise, programmers have to write the
code walker. On the other hand, the OpenC++ MOP does not need such a
programming convention. Once a metaclass is declared, all the expressions
involved with the class are automatically processed by the class metaobject.
Programmers can alter the behavior of the objects without editing the origi-
nal program to insert something like macro names. Moreover, programmers
can restrict the range of the self modification within a specific class. The
behavior for the other classes are kept as is.

Comparison with the CLOS MOP

The CLOS MOP is the immediate ancestor of the OpenC++ MOP. Both
the CLOS MOP and the OpenC++ MOP are metacircular, and they employ
class metaobjects instead of the metaobjects for objects. The difference is
that the OpenC++ MOP is specially designed to run at compile time.

Although the currying technique allows metaobjects in the CLOS MOP
to mostly run at compile time, some computation by the metaobjects is still
performed at runtime. At least, which metaobject is selected for given base-
level code is determined at runtime. See Figure 3.3 in page 33 again. The
default interpreter (or compiler) has to determine whether it executes each
expression through a metaobject or not, and which metaobject it selects if
so. In the CLOS MOP, this is done at runtime.

The OpenC++ performs all meta computation at compile time. It also
determines which metaobject is selected at compile time. Because of this
feature and the metacircularity, the OpenC++ MOP does not imply any
performance penalty at runtime. The OpenC++ MOP uses static typing to
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select a metaobject at compile time. It statically types all variables and ex-
pressions in the program and determines which metaobject is responsible for
the translation. Then it calls the metaobject for translating the expression
and directly substitutes the result for the original expression. This means
that even the code for selecting a metaobject and dispatching to it does not
run at runtime.

The OpenC++ MOP is regarded as a good synthesis of the CLOS MOP
and Lisp macros. We below present the definition of RecordedClass written
in pseudo Lisp. Comparing this definition with the equivalent definition in
the CLOS MOP, the readers will intuitively understand the synthesis. First,
we show the definition in the OpenC++ MOP:

(defclass recorded-class (metaobject-for-class)
(defmethod create-object (env expr)

(let ((class-name (<- self name)))
‘(begin (set! *history* (cons ,class-name *history*))

,(<- super create-object env expr)))))

The next is the definition in the CLOS MOP:

(defclass recorded-class (metaobject-for-class)
(defmethod create-object (init-args)

(let ((class-name (<- self name)))
(set! *history* (cons class-name *history*))
(<- super create-object init-args))))

The readers can see that the two definitions are significantly close to each
other. The primary difference is that the definition in the OpenC++ MOP
returns an expression instead of directly executing the expression. This
feature is the influence by Lisp macros.

Comparison with Early Compile-time MOPs

Several MOPs running at compile time, called compile-time MOPs, have
been developed earlier than the OpenC++ MOP. The earliest compile-time
MOPs are Intrigue [37] and Anibus [50, 51]. They are designed for Scheme
[16] and parallel Scheme although they are written in CLOS. However, their
design is quite different from the OpenC++ MOP. They provide meta inter-
face mainly for customizing the behavior of the compiler rather than source-
code translation. In fact, metaobjects of Intrigue are internal components of
the compiler, such as a parser and an optimizer. Metaobjects of Anibus are
nodes of a parse tree and controls translation from parallel Scheme to reg-
ular Scheme including low-level primitives for parallel computing. Anibus’s
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MOP might look similar to the OpenC++ MOP since both MOPs control
program translation, but it does not provide non-locality based on the class
system (or the type system because Scheme does not include a class system).
Moreover, Anibus’s program translation is to transform a parse tree. The
metaobjects perform the transformation instead of generating substituted
source code.

CRML [31] has a compile-time MOP for ML [43]. Its MOP provides the
capability similar to Lisp macros and makes it possible to use new syntax
in ML. However, it also involves the same limitations as Lisp macros. For
example, it does not enable self modification.

The MPC++ MOP [33, 34] is another compile-time MOP for C++.
As in OpenC++, it allows programmers to control source-code translation.
The most significant difference between MPC++ and OpenC++ is that the
MPC++ MOP does not provide non-locality based on the class system.
Instead, each piece of program is dispatched to a metaobject for transla-
tion according to the kind of the parse tree, such as a declaration, an if
statement, a + operator, and so forth. Metaobjects of MPC++ are nodes
of the parse tree of the processed program. If a piece of program is dec-
laration of a variable, for example, then it is dispatched to the declaration
metaobject (corresponding to the Ptree metaobject in OpenC++) for the
translation, rather than the class metaobject involved with the type of the
declared variable.

Because of this feature, the MPC++ MOP is not suitable for customiza-
tion that is specific to a particular class and involves several statements and
expressions. If the customization needs to translate declaration statements
and -> expressions on a specific class, then the programmer needs to de-
fine two new metaclasses for declaration and the -> operator. Then the
new metaclasses must explicitly determine the class of the processed code
and translate the code only if it is the specific class. This computation is
implicitly performed in OpenC++ because it provides non locality.

Moreover, the MPC++ MOP does not provide the meta-meta level.
Thus programmers cannot write a meta-meta level program to make it easier
to write a meta-level program. Since the OpenC++ MOP provides the meta-
meta level, for example, programmers can enjoy special syntax when writing
a meta-level program.
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4.5 Summary

This chapter proposed the OpenC++ MOP, which is a mechanism for pro-
cessing a program. This mechanism provides rich meta representation of
the processed program and enables context-sensitive and non-local pro-
cessing. For context-sensitive processing, the OpenC++ MOP provides
Ptree metaobjects (for program text), Environment metaobjects, TypeInfo
metaobjects, and Class metaobjects. These metaobjects are the meta rep-
resentation of various aspects of the program. The Class metaobjects also
work for non-local processing. They control the translation of all the ex-
pressions that are spread out over the whole program but involved with the
class.

Like Lisp macros, the OpenC++ MOP also enables syntax extensions.
Programmers can register a new keyword and define a new type modifier, an
member-access specifier, or a new kind of statement. They are appropriately
translated into regular C++ code by Class metaobjects as other code is
translated.

These features are advantages of the OpenC++ MOP against other ex-
isting C++ mechanisms such as inheritance and templates, and they enable
C++ libraries that have been impossible or difficult to make them efficient.
To enable those libraries, an extended C++ compiler specially prepared for
the libraries has been necessary so far. The OpenC++ MOP allows pro-
grammers to write a meta-level program to implement such an extension to
C++ on top of the compiler.

The OpenC++ MOP has been developed by a synthesis of ideas from
Lisp macros and the CLOS MOP shown in the previous chapter. However,
it is not just a C++ version of Lisp macros or the CLOS MOP. It is some-
thing considerably different from Lisp-style macros or traditional reflective
languages.

The basic architecture of the OpenC++ MOP was taken from Lisp
macros. In both of them, the meta-level program receives program text
and returns the translated one. Moreover, the meta-level program can run
at compile time to improve execution performance of the base-level program.
On the other hand, the OpenC++ MOP provides richer meta representation
than Lisp macros. It provides not only program text but also an environ-
ment and type information. Also, it provides non-locality based on the class
system of C++. Furthermore, self modification is possible in the OpenC++
MOP. Programmers can alter the behavior of the language without pro-
gramming conventions or the code walker.

The protocol structure of the OpenC++ MOP is based on that of the
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CLOS MOP. The OpenC++ MOP is metacircular, and class metaobjects
are the subjects of processing a program. However, the OpenC++ MOP
is designed so that metaobjects run at compile time. All the meta compu-
tation, that is, source-code processing, is performed at compile time. Even
which metaobject should be selected for processing is determined at com-
pile time. The CLOS MOP performs this selection at runtime although
other meta computation can be moved to compile time with the currying
technique.



Chapter 5

Meta Helix

Like the CLOS MOP, the OpenC++ MOP is metacircular since metacir-
cular systems are easy to learn and make it easier to write efficient meta
programs. Unfortunately, pure metacircularity can lead to a problem we
call implementation level conflation. This problem confuses programmers
and causes errors, hence we could not adopt pure metacircularity as is for
the OpenC++ MOP.

Instead, to avoid the problem, we have developed an improved version of
metacircular architecture, named the meta helix [15]. This chapter presents
a problem of the pure metacircular architecture, and proposes the meta helix
as a solution. The meta helix preserves advantages of metacircularity but
also addresses the problem we present.

5.1 Implementation Level Conflation

In a metacircular system like the CLOS MOP, the language can be cus-
tomized in the customized language itself. This means not only that the
base-level program and the meta-level program are written in the same lan-
guage, but also that the customization by the meta-level program reflects on
the language in which the meta-level program itself is written. This feature
gives advantages that we presented in Chapter 3, but it can also lead to a
problem which we call implementation level conflation.

Lisp macros

First of all, we show an example of implementation level conflation in Lisp
macros, which is also metacircular. Since Lisp macros are relatively simpler

55
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than the CLOS MOP, this example might look trivial. However, we be-
lieve that showing this example help the readers understand a more serious
example we show later.

Suppose that we modify the behavior of a special form define so that
more than one variables can be defined at the same time. With this exten-
sion, for example, we can define variables x and y with the initial value 7 by
this single expression:

(define x y 7)

This expression should be expanded by a macro function named define into
this:1

(begin (define x 7) (define y 7))

Therefore, the definition of the macro should be this:

(define-macro (define . args)
(let ((vars (list-head args (- (length args) 1)))

(init (car (last args))))
‘(begin ,@(map vars

(lambda (v) ‘(define ,v ,init))))))

Unfortunately, this macro does not work; it will fall down into an infinite
loop. Because the symbol define is now a macro name, occurrences of
define in the expanded expression are repeatedly processed by the macro
function. For example, the expanded expression:

(begin (define x 7) (define y 7))

Will be expanded again into:

(begin (begin (define x 7)) (begin (define y 7)))

And this expression also invokes macro expansion, and so on.
This problem can be fixed although the way of fixing is quite imple-

mentation dependent. To fix this problem, we have to define the macro as
follows:

1For simplicity, we assume that the sub-expression for the initial value does not cause
side-effects.
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(define define* define) // alias
(define-macro (define . args)
(let ((vars (list-head args (- (length args) 1)))

(init (car (last args))))
‘(begin ,@(map vars

(lambda (v)
‘(define* ,v ,init)))))) // use define*

This program first binds a symbol define* to the original define special
form. Now define* is an alias of define. Then, the program defines a
macro define and uses define* for the expanded expression. Using the
alias makes the macro function avoid the infinite loop since the expanded
expression does not include the macro name define any more.

A More Serious Example

The problem of the example shown above is that two distinct concepts,
which are the define special form and the define macro, are conflated into
a single name. We call this problem implementation level conflation because
the implemented level (define macro) and the implementing level (define
special form) are conflated into a single structure.

This conflation becomes more serious in metacircular systems like the
CLOS MOP. The power of the CLOS MOP is that programmers can enjoy
metacircularity and use the existing facilities of CLOS as much as possible
when they write meta-level programs. But this is a double-edged blade.
It can also easily lead to conflation of a new abstraction and the facilities
implementing that abstraction.

To illustrate more serious implementation level conflation, we show an
example of an extension written with the CLOS MOP. This extension records
all accesses to slots (i.e. data members) of objects. The following program
is an example of a program that uses this extension:2

> (defclass point ()
(variable x y) :meta history-class)

POINT
> (define p1 (make-instance point))
P1
> (<- p1 x 3) ; set x to 3
3
> (<- p1 y 2) ; set y to 2
2
> (<- p1 x) ; read x

2Again, we use the same altered syntax that we used in Chapter 3.
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3
> (slot-history p1) ; show the access log
((GET X) (SET Y) (SET X))

Since the metaclass for point is history-class, all the accesses to the slots
of point objects are recorded, and the access log is available through the
function slot-history.

Slots with access history can be implemented using the existing slot
mechanism. The way this works is simply for instances of point to actually
have three slots, the two visible slots x and y as well as a third, “hidden”
slot history for storing the access log. The definition of history-class
implemented in this way is as follows:

(defclass history-class (metaobject-for-class)
; what slots do the instances have?
(defmethod compute-slots ()

(cons ’history (<- super compute-slots)))

; read a slot of an instance
(defmethod read-slot (object slot-name)

(<- object history
‘((get ,slot-name) ,@(<- object history)))

(<- super read-slot object slot-name))

(defmethod set-slot ...))

This metaclass overrides three methods. First, it overrides compute-slot
so that every history class has an extra slot to store the access log. Also
it overrides read-slot and set-slot, which reads and writes a slot of the
instance of history classes. They updates the access log before actually
reading or writing. Since the access log is stored in the hidden slot history,
they read and write the slot to update the access log.

Unfortunately, this example includes implementation level conflation.
There are two distinct but conflated concepts in this implementation. One
is a point object that has extended slots. The accesses to the slots are
recorded in the access log. The other concept is a point object that has
three non-extended slots, x, y, and hidden history. This object is used to
implement the former object. Since the CLOS MOP is metacircular, the two
point objects are identical — the same object. Again we are dealing with
the implemented level (extended slots) and the implementing level (non-
extended slots) but the two levels are conflated into a single structure (point
object).
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Problems for Users of the Extension

Implementation level conflation results in confusion for users of the exten-
sion. For example, consider that a programmer uses one of the MOP’s
introspective facilities to ask what slots a class has:

> (class-slots (find-class ’point))
(HISTORY X Y)

According to the specifications of the CLOS MOP, class-slots returns the
list of the slot names that the given class has. The result, however, includes
the history slot. Is this right? What does “the given class” mean in the
specifications? Is it the implementing class or the implemented class? It
should be the implemented class and hence, since the history slot exists
only for the implementation, including the slot is entirely inappropriate.

This problem particularly shows up when using browsers and debuggers
that rely on the introspective part of the CLOS MOP to work. Exposing
this detail of how slots with history is implemented can leave programmers
confused, or worse yet, can tempt them to rely on this implementation details
in ways that they should not.

Problems for the Implementor of the Extension

Implementation level conflation also can cause problems for the implementor
of the extension. A careful reading of the method read-slot supplied by
history-class provides an example of this.

The implementation of read-slot has a bug which manifests itself as
infinite recursion although it is better understood as resulting from the im-
plementation level conflation. Operationally, the bug is that the body of
the method, as part of updating the access log, must read the history slot,
which runs this method recursively, which starts to update the access log,
which reads the history slot, and so on ad infinitum. This bug happens
because read-slot is implemented with a non-extended slot history but
read-slot alters the language to record all the accesses to the slots, includ-
ing history.

The standard solution to this problem is to introduce a special purpose
test that prevents the infinite recursion. So the revised code ends up looking
something like this:

(defmethod read-slot (object slot-name)
(unless (eq slot-name ’history)

(<- object history
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‘((get ,slot-name) ,@(<- object history))))
(<- super read-slot object slot-name))

This solution, while effective, seems ad hoc, can be difficult to reason about,
and is not effective in general.

The Importance of an N-to-N Correspondence

The problems shown above can be better described as having to do with
implementation level conflation. As mentioned at the beginning, there are
two concepts of slots in play: extended slots x and y, the accesses to which
are recorded, and non-extended slots x, y, and history, which are used to
implement the extended slots. But, because of the conflation, there is only
one structure, or a handle to refer to the two concepts. The bug happens
since the handle always refers to the extended slots. If, somehow, the slots
within the body of read-slot could refer to non-extended slots, then the
ad-hoc solution to the infinite recursion could be avoided.

Fundamentally, if there are n distinct important views of an object — or
any other structure — there needs to be n distinct handles to it. For exam-
ple, we need some way for instances of the class point to be viewed in terms
of either the implemented functionality or the implementing functionality,
not a conflation of both. The users of the extension want a view in terms of
the implemented functionality, but the implementor of the extension wants
to be able to take one view or the other at different times.

5.2 Inadequate Solutions

Implementation level conflation is a flaw of the metacircular architecture.
Despite the advantages, this architecture makes metaobject protocols lose
elegance; the metaobject protocols become inconsistent and difficult to use.
Because of this fact, we could not adopt the pure metacircular architecture
for the OpenC++ MOP. Instead, we have developed a improved metacir-
cular architecture since the OpenC++ MOP should be elegant, simple, and
easy to use, as much as possible.

Before presenting our solution to the problem of implementation level
conflation, we first present two earlier solutions that, in different ways, fail
to our needs. These solutions serve to further flesh out the criteria which
the more general solution should meet.
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Change the Implementation

One possible solution to this problem involves implementing the extension
in a different way, specifically by storing the access log in the class metaob-
ject rather than directly in the objects themselves. The following program
implements history classes in this way:

(defclass history-class (metaobject-for-class)
(variable history) ; place to store the access log

(defmethod read-slot (object slot-name)
(let ((log (assq object (<- self history))))

(set-cdr! log ‘(get ,slot-name) ,@(cdr log))
(<- super read-slot object slot-name)))

(defmethod set-slot ...))

All the access logs for the instances are stored in the slot history of the
class metaobjects (that is, a class variable in the Smalltalk terminology). So
the value of history is a list of pairs of an object and its access log. This
association list can be searched by assq with using object as a search key.

This solution solves the specific problems mentioned in the previous sec-
tion, but it loses advantages of metacircularity, which we would like to keep.
This solution must manually implement the mapping from individual objects
to their access logs, even though that basic functionality is already present
in CLOS. Implementing that mapping is not needed if each access log is di-
rectly stored in a slot of the object. This solution is not only redundant, but
also difficult to achieve sufficient execution performance. The implementor
of history-class has to implement as efficient a mapping mechanism as
the default one, which is a slot of an object. At least, the implementation
shown above does not satisfy this performance criterion; the association list
is significantly inefficient.

Tiny CLOS MOP

If we give up metacircularity, we can avoid implementation level confla-
tion. Non-metacircular systems such as 3-Lisp and 3-KRS do not involve
this problem because they have two distinct handles for implemented func-
tionality and implementing functionality. In 3-KRS, if programmers want
a view in terms of the implemented functionality, they should refer to the
base-level objects, but if they want a view in terms of the implementing
functionality, they should refer to the associated metaobjects. Since there
is no metacircularity, the base-level objects and the metaobjects are never
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conflated. The behavior of the metaobjects does not change depending on
the metaobjects themselves.

The Tiny CLOS MOP developed by Gregor Kiczales et al avoids imple-
mentation level conflation by partially giving up metacircularity. The Tiny
CLOS MOP provides two different abstractions for per instance storage:
slots and fields. Fields are a lower-level abstraction used to implement slots;
they represent memory image allocated for implementing each object. The
base-level Tiny CLOS programs never know the fields exist.

In the specific example of the history class, the extension works by al-
locating an extra field for each object. So, for example, point objects have
two slots x and y; but they have three fields, for holding the x and y slots and
the slot access log. The implementation of history-class in Tiny CLOS
looks like:

(defclass history-class (metaobject-for-class)
(variable history-index) ; the index of the field that will

; store the access log for instances
; of the class

; allocate an extra field and remember its index
(defmethod compute-fields ()

(<- self history-index (<- self allocate-field))
(<- super compute-fields))

(defmethod read-slot (object slot-name)
(let* ((index (<- self history-index)))
(<- self set-field object index

‘((get ,slot-name)
,@(<- self get-field object index))))

(<- super read-slot object slot-name))

(defmethod set-slot ...))

Fields are accessed through the methods get-field and set-field, and
each field is specified by its index instead of its name. Fields have a more
primitive naming mechanism in terms of indices.

Again, this solution solves the specific problems mentioned in the pre-
vious section. Implementation level conflation is avoided because (1) no
“hidden”slot for the accesses log is added, and (2) the access log stored
in an object is retrieved through the lower-level methods get-field and
set-field, which do not invoke read-slot recursively. Since the Tiny
CLOS MOP provides two distinct handles, slots and fields, for implemented
functionality and implementing functionality, programmers can select an
appropriate view by switching the handles.



CHAPTER 5. META HELIX 63

Unfortunately, this solution has significant problems of its own which
make it unsuitable as a general solution. First, this solution loses advan-
tages of metacircularity. Because the Tiny CLOS MOP is not metacircular
in terms of slots, programmers have to learn lower-level abstractions and
writing efficient meta-level programs is difficult. Second, this solution is
only effective in the presence of a single extension to slot functionality. If,
for example, someone wanted an additional extension (i.e. to store the ob-
jects in a persistent database [47]) there would still be conflation. This is
because in such a situation there needs to be (at least) three views. The
view of persistent objects with a slot access history, built on top of the
view of persistent objects, built on top of ordinary objects. But the Tiny
CLOS MOP provides only two levels, so there will still be some conflation.
To avoid implementation level conflation in n levels of implementation, the
MOP must provide support for n different views.

5.3 The Meta Helix Architecture

The common idea underlying the two unsatisfactory solutions is to distin-
guish the implemented and implementing functionality by using a different
“handle” for each. In the first proposed solution, the objects are the handle
to the implemented functionality, and the class metaobject is the handle to
the implementing functionality. In the second proposed solution, slots are
the handle to the implemented functionality, while fields are the handle to
the implementing functionality.

But the problem with both of these solutions is that the benefits of
metacircularity is destroyed by the fact that the two handles are distinct
abstractions. The idea of our proposed solution is to address its problem by
providing two handles, but to retain the benefits of metacircularity by the
use of the same abstraction for the two handles. For example, in the case of

p1* point*

p1 point instance−of

implemented−by(x y)

(x y history)

Figure 5.1: Two handles with the same abstraction
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the history-class extension, our solution has two class metaobjects, point
and point*, to represent different implementation levels (Figure 5.1). The
class point corresponds to the class in the extended language, which keeps
slot access histories, while the class point* corresponds to the class in the
non-extended language, which is used to implement the extended one.

Note that the two handles indicate the same entity. For example, the
class point and the class point* corresponds to the same class. They
are just handles to distinct views of the same entity as slots and fields are
handles to distinct views of per-instance storage in the Tiny CLOS MOP.
point is the handle to the implemented view and point* is the handle to
the implementing view.

Although the two handles, such as point and point*, are often very sim-
ilar, the relationship between the handles does not fit the usual subclass-of
relationship. It cannot be either the instance-of or base-meta relation-
ships. To capture the relationship between the two handles, we introduce an
implemented-by relationship. In Figure 5.1, the class point is implemented-
by the class point*, and the object p1 is implemented-by the object p1*.
The objects p1 and p1* are instances-of point and point*, respectively.

If the implemented-by relationship is used, the problems by implementa-
tion level conflation can be easily solved. First, the programmer who want
to ask what slots a class has can obtain an appropriate result:

> (class-slots (find-class ’point))
(X Y)
> (class-slots (implemented-by (find-class ’point)))
(HISTORY X Y)

Second, the method read-slot becomes more simple and easy to read. No
ad-hoc techniques for avoiding infinite recursion are needed any more:

(defmethod read-slot (object slot-name)
(let ((object* (implemented-by object)))

(<- object* history
‘((get ,slot-name) ,@(<- object* history)))

(<- super read-slot object slot-name)))

Note that read-slot is the method for not the class metaobject for point*
but the class metaobject for point. The behavior of the object p1, which
has slots with history, is controlled by the class metaobject for point.

Our choice of the name meta-helix for this architecture is best seen when
thinking in terms of the relation between handles that the different solu-
tions use. As shown in Figure 5.2, in the pure metacircular approach, the
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slots
fields

slots history slots

plain slots

Tiny CLOS Meta HelixMetacircular

Figure 5.2: The implementation relation between interfaces

implementation loops directly back onto itself—leading to conflation. In
the Tiny CLOS approach, the implementation maps between two distinct
functionalities—leading to added complexity. In the meta-helical approach,
the implementation spirals between two distinct handles of (nearly) identi-
cal functionality—preserving what is good about the metacircular approach,
while still reifying the distinction that prevents conflation of implementation
levels.

Similarly, the meta helix works when there are more than two imple-
mentation levels. So, for example, in the case of the persistent history class
mentioned in the previous section, we can create the three levels that are
needed to maintain separate views, and relate them using implemented-by
relationships. This is shown in Figure 5.3, which illustrates the helical na-
ture of this architecture.

While distinguishing implementation levels, the meta helix architecture
preserves the benefits of metacircularity because the meta helix architecture
is a super set of the metacircular architecture. Except the implemented-by
relationship, the meta helix architecture is quite identical to the metacircular
architecture. So, for example, unlike the Tiny CLOS MOP, programmers do
not need to learn new abstractions such as fields to implement an extended
concept of slots. Also, writing an efficient meta-level program is still easy.

5.4 Implementing the Meta Helix

The OpenC++ MOP is based on the meta helix architecture. This sec-
tion first shows this fact, especially focusing on how the OpenC++ reifies
the implemented-by relationship. The way of realizing the implemented-by
relationship is a main issue for implementing the meta helix architecture.
Then this section shows how the implemented-by relationship should be rei-
fied for the CLOS MOP. Through this example, we present that the meta
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history slots

plain slots

persistent
history slots

A Three level Meta Helix

Figure 5.3: The Meta Helix supports n implementation levels.

helix architecture is applicable to not only the OpenC++ MOP but also
other kinds of MOPs.

The OpenC++ MOP is Meta-Helical

In the OpenC++ MOP, the implemented and implementing levels are natu-
rally separated; the implemented level is the original program before trans-
lation and the implementing level is the resulting program of the translation.
To implement the meta helix architecture, therefore, we should be just able
to distinguish classes in the original program from the classes in the result-
ing program, and relate the corresponding classes by the implemented-by
relationship.

The implemented-by relationship in the OpenC++ MOP is reified with
an aliasing technique, which we used to avoid implementation level conflation
caused by the macro define in Section 5.1. To do this, the OpenC++ MOP
includes the following rule to be meta-helical:

• Any class appearing in the original program must be renamed in the
resulting program of the translation.

This rule refies the implemented-by relationship. For example, in the exam-
ple of history classes, the class point should be renamed point*. This alias-
ing gives programmers two handles to the implemented and implementing
functionality. One handle is the class point for the implemented function-
ality, and the other is the class point* for the implementing functionality.
By switching the two class names, programmers can avoid implementation
level conflation. First, they are not confused by the introspective part of the
MOP any more:3

3For making the argument clearer, we use Lisp-style syntax to show an OpenC++
program.
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> (class-of ’point)
(X Y)
> (class-of ’point*)
(X Y HISTORY)

Also, the method read-slot is implemented without confusion in an intu-
itive way (This implementation uses nested backquotes for emphasizing the
similarity to other versions of implementations. Although nested backquotes
might make the program look complex, the complexity does not result from
the meta helix.):

(defmethod read-slot (env object slot-name)
‘(begin (<- ,object history

‘((get ,’,slot-name) ,@(<- ,object history)))
,(<- super read-slot env object slot-name)))

For example, this method translates an expression:

(<- p1 x)

into this expression:

(begin (<- p1 history
‘((get x) ,@(<- p1 history)))

(<- p1 x))

Note that the type of p1 is not the class point but the class point* after the
translation. During the translation, all occurrences of the class name point
are replaced with point*. Therefore, after the translation, the expression
(<- p1 history) is not recursively processed by the class metaobject for
point. Rather, it is processed by the class metaobject for point*, which is
a distinct metaobject and would be the default one. If programmers want
to recursively process, they can declare that the type of p1 is still the class
point.

The OpenC++ MOP also supports multiple implementation levels. The
persistent history slots shown in Figure 5.3 can be implemented by just
specifying a non-default metaclass persistent-class for point*. If the
metaclass is not the default one, all the expressions involved with the class
point* are recursively translated by the class metaobject for point*. This
process is repeated until the metaclass becomes the default one.



CHAPTER 5. META HELIX 68

A Meta-Helical Version of the CLOS MOP

The meta helix is applicable to other kinds MOPs such as the CLOS MOP. In
the OpenC++ MOP, the implemented and implementing functionality are
naturally separated into the original program and the translated program. In
the CLOS MOP, however, the implemented and implementing functionality
coexist in the same runtime environment. So we need a different technique
to reify the implemented-by relationship.

We present that delegation works for reifying the implemented-by rela-
tionship for the CLOS MOP. In a meta-helical version of the CLOS MOP,
a class metaobject is responsible for defining the class that will implement
it. The class metaobject for point will produce a class point* equivalent
to the definition:

(defclass point* ()
(variable x y history))

As in the OpenC++ MOP, the class point* is the handle to the imple-
menting functionality. The class metaobject for point delegates most of its
work to the class metaobject for point*. For example, when an instance of
point is created, the class point asks the class point* to create a point*
object. The primitive function implemented-by on a point object returns
the point* object. The slot access primitive read-slot is then specialized
by the class metaobject for point. Its implementation is:

(defmethod read-slot (object slot-name)
(let ((object* (implemented-by object)))

(<- object* history
‘((get ,slot-name) ,@(<- object* history)))

(<- super read-slot object slot-name)))

The method read-slot first gets the implementing object object* for that
object and then updates its history slot. The method finally invokes
read-slot supplied by the super class, which delegates the actual work
of implementation to the class metaobject for point*.

5.5 Summary

This chapter presented a new analysis of a problem that arises in existing
metacircular systems. This analysis shows how pure metacircularity causes
confusion when there are not clearly distinguished views of the implemented
and implementing functionality. We call this problem implementation level
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conflation. This chapter first shows an example of the confusion in Lisp
macros, which is a simple metacircular system. Then it shows a more serious
example with the CLOS MOP. The confusion makes troubles for both the
users of the language extension and the implementor of the extension.

Because of implementation level conflation, we did not adopt the pure
metacircular architecture for the OpenC++ MOP. Although implementa-
tion level conflation does not reduce the capability of the MOP for process-
ing programs, it severely impacts the elegance of the design of the MOP. The
elegance is a significant matter because making it really easy for progarm-
mers to prodcess programs is one of the design goals of metaobject protocols
in general.

To avoid implementation level conflation while keeping benefits of metacir-
cularity, we have developed a improved metacircular architecture, named the
meta helix, for the OpenC++ MOP. It addresses the problem by providing
two distinct handles to the implemented and implementing functionality
while keeping benefits of metacircularity by using the same abstraction for
the two handles. Programmers can enjoy metacircularity and, if needed,
switch the handles to distinguish the implementing level from the imple-
mented level. The meta helix is not only for the OpenC++ MOP but also
other kinds of MOPs. To show this, this chapter also presented a meta-
helical version of the CLOS MOP.



Chapter 6

Libraries in OpenC++

Because of the ability for context-sensitive and non-local processing, the
OpenC++ MOP makes it possible to include useful control/data abstrac-
tions in a library and, if it is already possible in regular C++, to implement
the abstractions more efficiently. This chapter illustrates examples of li-
braries that the OpenC++ MOP enables but regular C++ does not.

The first two examples show abstractions that the OpenC++ MOP en-
ables, and the next example presents that we can write a class library for
metaclasses and make it easier to write similar metaclasses. Then, we men-
tion that the OpenC++ MOP is also effective for meta-level programming.
A few abstractions provided by the OpenC++ MOP for meta-level pro-
grammers are implemented by the MOP itself. Finally, we show examples
of abstractions that the OpenC++ MOP can make efficient.

6.1 Named Object Library

The OpenC++ MOP makes it possible to implement the named object
library that we presented in Chapter 2. With this library, the users can get
the class name of an object at runtime. For example, the users may write
something like this:

class Complex : public NamedObject {
public:

double r, i;
};

void f(Complex* x)
{

cout << "x is " << x->ClassName();

70
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}

If invoked, a function f() displays “x is Complex”.
To implement this library, the developer needs to write two kinds of

programs: a base-level program and a meta-level program. The base-level
program defines a library class NamedObject and it is linked with the user
program. The meta-level program defines a metaclass for processing the
user program. We first show the base-level program:

metaclass NamedObject : NamedObjectClass;
class NamedObject {};

The base-level program defines a library class NamedObject. Also, the pro-
gram declares that the metaclass of NamedObject is NamedObjectClass.
Note that the class NamedObject does not include the member function
ClassName(). It is automatically inserted to NamedObject and its subclasses
by the meta-level program. For example, the subclass Complex defined by
the library user is translated by the meta-level program into:

class Complex : public NamedObject {
public:

double r, i;
virtual char* ClassName() { return "Complex"; }

};

The meta-level program defines the metaclass NamedObjectClass, which
performs the translation mentioned above. Since a subclass of NamedObject
inherits the metaclass from NamedObject, the metaclass NamedObjectClass
controls the translation on the class Complex as well although there is no
explicit metaclass declaration. The definition of NamedObjectClass is as
follows:

class NamedObjectClass : public Class {
public:

NamedObjectClass(Ptree* d, Ptree* m) : Class(d, m) {}
Ptree* TranslateBody(Environment* env, Ptree* body){

Ptree* mf = Ptree::qMake(
"public:"
"virtual char* ClassName() {"
" return \"‘Name()‘\";"
"}\n");

return Ptree::Append(body, mf);
}

};



CHAPTER 6. LIBRARIES IN OPENC++ 72

This metaclass overrides the member function TranslateBody(), which is
invoked to translate members included in a class declaration. The overrid-
den member function just constructs a Ptree metaobject that represents
the member function ClassName(), and appends it to the other members.
Ptree::qMake() is a member function provided by the OpenC++ MOP.
It constructs a Ptree metaobject according to the given format. Unlike
a similar function Ptree::Make(), it computes an expression appearing in
the format if the expression is surrounded by back-quotes (‘). In the exam-
ple above, Name() is computed at compile time and the resulting value is
embedded in the constructed Ptree metaobject. Name() returns the name
of the class metaobject. The difference between qMake() and Make() is
analogous to the difference between the back-quote notation and the quote
notation in Lisp (As for the back-quote notation, see Appendix A). We show
the implementation of qMake() later in this chapter since its implementa-
tion needs the OpenC++ MOP; The member function qMake() cannot be
implemented in regular C++.

To use this library, programmers first need to compile the meta-level
program by the OpenC++ compiler, and then they have to link the compiled
code with the original OpenC++ compiler. Suppose that the file name of
the meta-level program is nameclass.cc:

% occ -- -o myocc opencxx.a nameclass.cc

The resulting executable module myocc is an extended OpenC++ compiler
with which programmers can use the metaclass NamedObjectClass. The
linked archive opencxx.a is an archive including the original OpenC++
compiler occ.

The library users compile their program by myocc. For example, to
compile a source file complex.cc, the users may say something like this:

% myocc complex.cc

This command compiles complex.cc by the extended OpenC++ compiler
and produces an executable module.

6.2 Distributed Object Library

Distributed objects are another example of data abstractions that regular
C++ cannot include in a library. This section illustrates how the OpenC++
MOP works for including this abstraction in a library. This example needs
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more member functions to be inserted in library users’ classes by a metaclass.
Hence, through this example, we illustrate how to use various metaobjects
like a TypeInfo metaobject for meta-level programming.

Developing a library with the OpenC++ MOP follows three steps: (1)
determine what a user program should look like, (2) figure out what the user
program should be translated into and what runtime library is needed to
run the translated program, and (3) write a meta-level program to perform
the translation and also write the necessary runtime library. We present the
implementation of the distributed object library in the order of the three
steps.

What the user program should look like

The distributed object library helps the users write a program with dis-
tributed objects. The users should be able to define a distributed object as
easy as they define a non-distributed object.

For example, the users write something like this code:

metaclass Rectangle : DistributionClass;
class Rectangle {
public:

Rectangle(int l, int h) { length = l; height = h; }
int Stretch(int l, int h) {

length += l; height += h; return length * height;
}

...
int length, height;

};

Note that a class Rectangle turns to a class for distributed objects by just
putting a metaclass declaration.

Once putting the declaration, the user can create a Rectangle object on
a server machine and access it from a client machine without concern of the
location of the object:

// server side
main()
{

Rectangle* r = new Rectangle(3, 4);
Export(r, "rect", Rectangle);
ServerLoop();

}
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This program first creates a Rectangle object and then exports the object
for clients. The (macro) function Export() is a library function for exporting
a distributed object with a global name. The first argument is the exported
object, the second argument is the global name, and the third argument is
the type name of the exported object. In the example above, a Rectangle
object r is exported with a global name "rect". The function ServerLoop()
is another library function, which starts waiting for requests from a client.
The server program has to call this library function after all distributed
objects are ready.

After ServerLoop() is called, the client program can freely access the
distributed object on the server machine:

// client side
main()
{

StartupClient("calvin");
Rectangle* obj = Import("rect", Rectangle);
cout << "new size: " << obj->Stretch(1, 3);

}

The client program first calls a library function StartupClient(), which
connects the client to the server machine specified by the argument. In the
example above, the client connects to the server machine named “calvin”.
Then the client program imports a distributed object from the server by a
library (macro) function Import(). Once the distributed object is imported,
the client program can deal with the object in the same way that it deals
with ordinary objects.

What the user program should be translated into

To run the user program shown above, the meta-level program of the li-
brary needs to translate the user program and inserts marshalling and un-
marshalling code. The marshalling code converts function arguments into
a byte stream so that lower-level functions can handle and send them to a
remote machine. The unmarshalling code performs the reverse conversion.

First, the member function call appearing in the client program should
be translated so that marshalling code is inserted. The underlined code in
the original client program:

// client side
main()
{

StartupClient("calvin");
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Rectangle* obj = Import("rect", Rectangle);
cout << "new size: " << obj->Stretch(1, 3);

}

should be translated into this:

// client side
main()
{

int i;
StartupClient("calvin");
Rectangle* obj = Import("rect", Rectangle);
cout << "new size: "

<< (i = 0,*(int*)&mBuf[i]=1,i+=sizeof(int),
*(int*)&mBuf[i]=3,i+=sizeof(int),
CallRemote(i,obj,2));

}

The substituted code shown by the underline copies two integer arguments
1 and 3 into an array of characters mBuf. This copying involves type conver-
sion.1 The variable i means that the size of the copied arguments. Then,
a library function CallRemote() is called for sending the arguments stored
in mBuf to the server machine. CallRemote() deals with the arguments in
mBuf just as a simple byte stream. Since the implementation of the mar-
shalling code depends on the signature of Stretch(), it should be inserted
by the meta-level program.

At the server side, unmarshalling code needs to be inserted. The user
program should be translated into the following program:

class Rectangle {
public:

Rectangle(int l, int h) { length = l; height = h; }
int Stretch(int l, int h) {

length += l; height += h; return length * height;
}

...
int length, height;
void Dispatch(int*, void*, int);

};

void Rectangle::Dispatch(int* buf, void* obj, int member)

1The type conversion shown above assumes that all machines are based on the same
architecture. For real systems, it should absorb difference between architectures, such as
little endian and big endian.
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{
switch(member){

...
case 2 : // if Stretch() is called
{

int s = 0;
int p1 = *(int*)&buf[s];
s += sizeof(int);
int p2 = *(int*)&buf[s];
s += sizeof(int);
*(int*)buffer = ((Rectangle*)obj)->Stretch(p1, p2);

}
break;

...
};

}

After the translation, a member function Dispatch() is appended to the
class Rectangle. Dispatch() is used to invoke a member function for a
distributed object when a client program calls the member function. It
receives a byte stream (buf), a pointer to the object (obj), and an integer
indicating the called member function (member). It unmarshals the byte
stream to function arguments according to the value of member, and invokes
the called member function with the unmarshalled arguments. Note that
the unmarshalling code also depends on the signature of the called function
and hence it needs to be produced by the meta-level program.

Write a runtime library

After determining what a user program should be translated into, the library
developer writes a runtime library that the translated user program uses to
run. It is an ordinary library written in regular C++ and includes such
functions as Export(), Import(), ServerLoop(), CallRemote(), and so
on. We show the implementation of the runtime library in Appendix C.1.
The readers who are interested in details may see it.

Write a meta-level program

The rest of the work that the developer has to do is to write a meta-level
program for the translation mentioned above. The meta-level program de-
fines the metaclass DistributionClass, which overrides member functions
TranslateSelf() and TranslateMemberCall() inherited from the default
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metaclass Class. TranslateSelf() controls the translation of a class def-
inition and TranslateMemberCall() controls the translation of a member
function call expression. Since the whole meta-level program is about a hun-
dred lines, we show it in Appendix C.1 and here present just highlights of
the program.

The role of the overridden TranslateSelf() is to produce a member
function Dispatch() and inserts it into the user program. This is the im-
plementation of TranslateSelf():

Ptree* DistributionClass::TranslateSelf(Environment* env)
{

Ptree* name;
TypeInfo t;
int i;
Ptree* code = nil;
for(i = 0; (name = NthMemberName(i)) != nil; ++i){

PtreeId whatis = name->WhatIs();
if(whatis != LeafClassNameId

&& whatis != PtreeDestructorId
&& LookupMemberType(env, name, t)
&& t.WhatIs() == FunctionType)

{
code = AppendDecoder(code, name, i, t);

}
}

AppendAfterToplevel(Ptree::qMake(
"void ‘Name()‘::Dispatch(int* buf, void* object,"

"int member){\n"
"switch(member){\n ‘code‘ }}"));

return Class::TranslateSelf(env);
}

This member function calls AppendDecoder() for every member function
that the translated class has. In the while loop, each member is retrieved
by NthMemberName() and the type of the member is examined to determine
whether the member is a member function or a data member. The member
type is represented by a TypeInfo metaobject t returned by LookupMember-
Type(). If the member is neither a data member, a constructor, or a destruc-
tor, then the member function AppendDecoder() is called for the member.
AppendDecoder() produces a case block and appends it to code. For ex-
ample, AppendDecoder() produces the following code for the Stretch()
member function:

case 2 :
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{
int s = 0;
int p1 = *(int*)&buf[s];
s += sizeof(int);
int p2 = *(int*)&buf[s];
s += sizeof(int);
*(int*)buf = ((Rectangle*)obj)->Stretch(p1, p2);

}
break;

The code produced by AppendDecoder() is included by the implementation
of Dispatch(), which is eventually inserted by AppendAfterToplevel()
just after the translated class definition.

TypeInfo metaobjects are also used in AppendDecoder(). For example,
the following for loop is part of AppendDecoder():

TypeInfo atype;
for(i = 0; t.NthArgument(i, atype); ++i){

Ptree* argtype = atype.MakePtree();
code = Ptree::Snoc(code, Ptree::qMake(

"‘argtype‘ p‘i‘ = *(‘argtype‘*)&buf[s];\n"
"s += sizeof(‘argtype‘);\n"));

}

This for loop uses TypeInfo metaobjects to produce the code for retrieving
arguments from a network message stored in buf. The variable t is the
TypeInfo metaobject for the type of the processed member function. Note
that the type of each argument is obtained by calling NthArgument() for
this metaobject. MakePtree() is another important member function of
TypeInfo. It converts the TypeInfo metaobject to a Ptree metaobject
that represents the type name. In the code shown above, MakePtree() is
used to obtain the type name of each argument.

The metaclass DistributionClass also overrides TranslateMemberCall(),
which translates a member function call expression. For example, it trans-
lates an expression in the user program:

obj->Stretch(1, 3)

into something like this expression:

int i;
...

(i = 0,*(int*)&mBuf[i]=1,i+=sizeof(int),
*(int*)&mBuf[i]=3,i+=sizeof(int), CallRemote(i,obj,2))
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The implementation of TranslateMemberCall() is similar to the implemen-
tation of AppendDecoder(). It uses TypeInfo metaobjects and produces an
expression that converts function arguments to a network message stored in
mBuf:

Ptree* DistributionClass::TranslateMemberCall(
Environment* env, Ptree* object,
Ptree* op, Ptree* member, Ptree* arglist)

{
TypeInfo ftype, atype;
int id = IsMember(member);

PtreeIter next(Ptree::Second(arglist));
Ptree* code = nil;
Ptree* tmp = Ptree::GenSym();

env->InsertDeclaration(Ptree::qMake("int ‘tmp‘;"));
LookupMemberType(env, member, ftype);
for(int i = 0; ftype.NthArgument(i, atype); ++i){

Ptree* p = next();
Ptree* tname = atype.MakePtree();
code = Ptree::Snoc(code, Ptree::qMake(

"*(‘tname‘*)&mBuf[‘tmp‘]"
"= ‘TranslateExpression(env, p)‘,"
"‘tmp‘ += sizeof(‘tname‘),"));

next(); // skip ,
}

return Ptree::qMake("(‘tmp‘=0,‘code‘"
"CallRemote(‘tmp‘, ‘object‘, ‘id‘))");

}

This member function first inserts a variable declaration in the processed
program by calling InsertDeclaration() for env. This declares a tempo-
rary variable used in the translated expression. The name of the temporary
variable is given by calling Ptree::GenSym(). Then TranslateMemberCall()
looks up the type of the called member function and produces the code for
converting function arguments to a network message. The produced code is
finally connected with other code and returned as the result of the transla-
tion.

6.3 Wrapper Library

Since a similar kind of abstraction often requires similar code translation,
programmers may write a library to help meta-level programming for the
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similar code translation. Such a library should be called a metaclass library.
In this section, we present an example of metaclass libraries.

A wrapper function is a useful technique for implementing abstractions
such as concurrent objects. It is a function that wraps another function in
itself and, if invoked, simply calls the wrapped function. But it may also
performs some computation before or after calling it. For example:

int f(int i) { return i + 1; }

int wrap_f(int i) {
cout << "f() is called.\n"
return f(i);

}

Here, wrap f() is a wrapper function for f(). It prints a message and then
calls the wrapped function f().

A number of abstractions can be implemented by metaclasses that pro-
duce wrappers for all member functions of a class. Suppose that a metaclass
MyWrapperClass does such a thing. This metaclass translates the user pro-
gram shown below:

metaclass Point : MyWrapperClass;
class Point {
public:

void Move(int, int);
void rMove(int, int);
int x, y;

};

void Point::Move(int new_x, int new_y) {
x = new_x; y = new_y;

}

void Point::Move(int diff_x, int diff_y) {
x += diff_x; y += diff_y;

}

void f(Point& p)
{

p.Move(3, 5); // call Move()
p.rMove(-1, 2); // call rMove()

}

into the following program including wrapper functions for Move() and
rMove():
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class Point {
public:

void Move(int, int);
void rMove(int, int);
int x, y;

public:
void wrapper_Move(int, int);
void wrapper_rMove(int, int);

};

void Point::Move(int new_x, int new_y) { ... }

// inserted wrapper function for Move()
void Point::wrapper_Move(int p1, int p2)
{

cout << "Move() is called.\n";
Move(p1, p2);

}

void Point::rMove(int diff_x, int diff_y) { ... }

// inserted wrapper function for rMove()
void Point::wrapper_rMove(int p1, int p2)
{

cout << "rMove() is called.\n";
rMove(p1, p2);

}

void f(Point& p)
{

p.wrapper_Move(3, 5); // call the wrapper
p.wrapper_rMove(-1, 2); // call the wrapper

}

Note that all occurrences of member calls for Point objects are substituted
by the call of the wrapper function. For example, the call of Move() in f()
is substituted by the call of the wrapper function.

This kind of wrapper metaclass is found in implementations of many
abstractions. The translation by those wrapper metaclasses are quite simi-
lar and the only difference is what the produced wrapper functions perform
before or after calling the wrapped functions. For example, the wrappers
shown above just print a message, but, if they instead perform synchro-
nization before calling the wrapped function, then Point objects will be
concurrent objects.
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A meta-level program using a metaclass library

Since wrapper metaclasses like MyWrapperClass are quite similar to each
other, we should write a base class of these metaclasses and provide it as a
metaclass library. Library developers can make their wrapper classes inherit
from the base class and focus on what the wrapper functions perform before
or after calling the wrapped function.

Let the name of the base class be WrapperClass. With the metaclass
library, MyWrapperClass should be defined by the following simple code:

class MyWrapperClass : public WrapperClass {
public:

MyWrapperClass(Ptree* d, Ptree* m) : WrapperClass(d, m){}
Ptree* WrapperBody(Environment*, Ptree*, Ptree*, int,

TypeInfo&);
};

Ptree* WrapperBody(Environment* e, Ptree* name, Ptree* wrapper,
int nargs, TypeInfo& ftype)

{
Ptree* body = Class::WrapperBody(e, name, wrapper, nargs,

ftype);
return Ptree::qMake(

"cout << \"‘name‘() is called.\n\";‘body‘");
}

Note that the metaclass MyWrapperClass inherits from WrapperClass and
overrides only a member function WrapperBody(), which produces the body
of a wrapper function. The base class performs the rest of the translation,
which is to insert the declarations of wrapper functions, to replace all oc-
currences of member calls with calls of the wrapper functions, and so forth.

A metaclass library

The metaclass WrapperClass provided by the metaclass library needs to
execute three things: (1) to insert wrapper functions in the user program, (2)
to substitute calls of wrapper functions for calls of the wrapped functions,
and (3) to provide a member function that a subclass of WrapperClass
can override for specifying the behavior of wrapper functions. We below
present overviews of how the three things are implemented. The complete
implementation of WrapperClass is found in Appendix C.2.

For (1), WrapperClass overrides two member functions. One is Trans-
lateBody(), which controls the translation of a class definition. It is over-
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ridden to insert the declarations of wrapper functions in the class definition.
For example, the definition of the class Point is translated into this code:

class Point {
public:

void Move(int, int);
int x, y;

public:
void wrapper_Move(int, int);

};

The underlined code is the inserted declaration. To do this translation,
TranslateBody() examines each member of the class and, if the member
is a function, it inserts the declaration of the wrapper function for that
member:

Ptree* WrapperClass::TranslateBody(Environment* env, Ptree* body)
{

Ptree* decl = Ptree::qMake("public:\n");
Ptree* name;
TypeInfo t;
int i = 0;
while((name = NthMemberName(i++)) != nil){

PtreeId whatis = name->WhatIs();
if(whatis != LeafClassNameId

&& whatis != PtreeDestructorId
&& LookupMemberType(env, name, t)
&& t.WhatIs() == FunctionType){

Ptree* m = t.MakePtree(WrapperName(name));
decl = Ptree::qMake("‘decl‘ ‘m‘;\n");

}
}

return Ptree::Append(body, decl);
}

Here, the member function WrapperName() a member function of the class
WrapperClass. It returns the name of the wrapper function for the given
member function.

The other member function overridden by WrapperClass is Translate-
MemberFunctionBody(), which translates the body of a member function.
It is overridden to produce the definitions of wrapper functions. For exam-
ple, TranslateMemberFunctionBody() processes the definition of a mem-
ber function Move() and inserts the definition of the wrapper function
wrapper Move() right after Move():
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void Point::Move(int new_x, int new_y)
{

x = new_x; y = new_y;
}

void Point::wrapper_Move(int p1, int p2)
{

cout << "Move() is called.\n";
Move(p1, p2);

}

TranslateMemberFunctionBody() constructs the definition of wrapper-
Move() from the TypeInfo metaobject for the type of Move(). First, it
derives argument types and the return type from that TypeInfo metaob-
ject and converts those types to Ptree metaobjects by calling MakePtree().
Then it assembles the converted Ptree metaobjects with the wrapper name
and the body of the wrapper function, and constructs the complete definition
of wrapper Move(). The overall structure of TranslateMemberFunctionBody()
is as follows:

Ptree* WrapperClass::TranslateMemberFunctionBody(...)
{

...
Ptree* arglist = argument list of the wrapper function

...
Ptree* body = WrapperBody(env, name, wrapper_name, i - 1, t);
Ptree* head = Ptree::qMake(

"‘Name()‘::‘wrapper_name‘(‘arglist‘");
...

AppendAfterToplevel(Ptree::Make("‘head‘{‘body‘}\n"));
return Class::TranslateMemberFunctionBody(...);

}

The produced definition of wrapper Move() is inserted by calling Append-
AfterToplevel(). Note that TranslateMemberFunctionBody() calls Wrap-
perBody() to make a function body so that (3) a subclass of WrapperClass
can override it and specify the behavior of wrapper functions. The default
WrapperBody() supplied by WrapperClass returns an expression that just
calls the wrapped function.

Finally, we show TranslateMemberCall(), which WrapperClass over-
rides for (2). It substitutes calls of wrapper functions for calls of the wrapped
functions. To do this substitution, it just calls TranslateMemberCall()
supplied by Class with the name of a wrapper function:
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Ptree* WrapperClass::TranslateMemberCall(Environment* env,
Ptree* member, Ptree* arglist)

{
return Class::TranslateMemberCall(env, WrapperName(member),

arglist);
}

Note that the second argument to TranslateMemberCall() supplied by
Class is not the name of the wrapped function, that is, member, but the
name of the wrapper function. Thus a member function call for a wrapper-
class object:

p.Move(3, 5)

is translated into this expression:

p.wrapper_Move(3, 5)

6.4 Implementation of qMake()

The OpenC++ MOP provides a member function Ptree::qMake() (quoted
make), which constructs a Ptree metaobject according to the given format.
Although this member function is more convenient than a similar mem-
ber function Make(), it cannot be implemented within regular C++, but
requires meta-level programming to be implemented. Without meta-level
programming, only Make() is available.

The implementation of qMake() is an example of meta-meta level pro-
gramming in OpenC++. The OpenC++ MOP uses itself to implement
metaobjects and their member functions such as qMake(), so that the OpenC++
MOP provides better abstractions and programming interface for program-
mers to write metaclasses. Through this example, we present that OpenC++
can naturally deal with meta-meta level programming and it actually uses
meta-meta level programming for implementing abstractions that make it
easier to write metaclasses.

What the user program should look like

Recall the usage of qMake(). If a variables tmp is a pointer to a Ptree
metaobject representing a variable name xyz, and a variable i is an integer
3, then programmers may write something like this:

Ptree* exp = Ptree::qMake("int ‘tmp‘ = ‘i‘;");
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This program constructs a Ptree metaobject “int xyz = 3”. The expres-
sions surrounded by back-quotes are expanded when qMake() is invoked.

The program shown above can be rewritten into a program using Make():

Ptree* exp = Ptree::Make("int %p = %d", tmp, i);

Unlike qMake(), Make() takes a format and some parameters, which are
substituted for the occurrences of %p and %d in the format. This kind of
programming interface is popular in C and C++, but it becomes error-
prone as the number of parameters increases. Typical errors caused by this
interface are to give a wrong number of parameters and to place parameters
in a wrong order.

What the user program should be translated into

Function calls of qMake() are translated into a combination of several func-
tion calls. For example, this program:

Ptree* exp = Ptree::qMake("int ‘tmp‘ = ‘i‘;");

is translated into:

Ptree* exp = (Ptree*)(PtreeHead()+"int "+tmp+" = "+i+";");

Note that the program after the translation is in regular C++. For ex-
ample, the character string "tmp" becomes a variable name tmp after the
translation. Since regular C++ cannot convert a character string to a vari-
able name at runtime, the conversion should be done by the translation at
compile time.

PtreeHead() returns a PtreeHead object, which is a stream object pro-
ducing a Ptree metaobject. The + operator is used to input a character
string, a Ptree metaobject, and so on, to the stream object. The inputted
data are concatenated into a Ptree metaobject, and the concatenated Ptree
metaobject is obtained by explicitly casting the PtreeHead object into the
type Ptree*. The cast operator is overloaded to return the concatenated
Ptree metaobject.

Write a meta-level program

Writing a metaclass for performing the translation mentioned above is quite
straightforward. To do this translation, the metaclass QuoteClass just over-
rides a member function TranslateMemberCall():
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Ptree* QuoteClass::TranslateMemberCall(Environment* env,
Ptree* member, Ptree* args)

{
Ptree* name = SimpleName(member);
char* str;

if(Ptree::Eq(name, "qMake")){
Ptree* arg1 = Ptree::First(Ptree::Second(args));
if(arg1->Reify(str) && str != nil)

return ProcessBackQuote(FALSE, str);
else

ErrorMessage("bad argument for qMake()", arg1);
}
else

return Class::TranslateMemberCall(env, member, args);
}

This member function translates a given function-call expression if the called
function is qMake(), otherwise it delegates the translation to the member
function supplied by the base class Class.

Since the argument member may be not a simple member name but a
qualified name such as Ptree::qMake(), TranslateMemberCall() first calls
SimpleName() to strip the class name and double colons off:

Ptree* QuoteClass::SimpleName(Ptree* qualified_name)
{

if(qualified_name->IsLeaf())
return qualified_name;

else
return Ptree::First(Ptree::Last(qualified_name));

}

After that, TranslateMemberCall() determines whether the member name
is qMake, and if so, it converts the first argument from a Ptree metaobject
to a character string. This conversion is done by calling Reify() for arg1.
Then TranslateMemberCall() calls ProcessBackQuote() with the con-
verted character string to translate the member-call expression. Process-
BackQuote() is a member function of QuoteClass.

6.5 Metaclass

Only the implementation of qMake() is not an example of use of meta-meta
level programming. The default metaclass Class and its subclasses are also
implemented with using meta-meta level programming, so that programmers
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can easily define a new metaclass. For this reason, the metaclass Class
and its subclasses are also class metaobjects, and they are instances of the
metaclass Metaclass. Figure 6.1 shows this instance-of relationship.

ClassMetaclass Point p0

subclass−of

instance−
of

Figure 6.1: The instance-of relationship among metaclasses

Protocol without meta-meta level programming

The definitions of metaclasses seen so far have not explicitly showed all the
protocol that the metaclasses must obey. They need to be translated by the
metaclass Metaclass so that they satisfy all the protocol.

To obey all the protocol, (i) a new metaclass has to have a member
function MetaclassName(), and (ii) a function that instantiates the meta-
class must be registered. For example, a new metaclass MyClass should be
translated into something more complex than what we have seen:

class MyClass : public Class {
public:

MyClass(Ptree* d, Ptree* m) : Class(d, m) {}
...

char* MetaclassName() { return "MyClass"; }
};

static Class* CreateMyClass(Ptree* d, Ptree* m)
{

return new MyClass(d, m);
}

static ListOfMetaclass myClassObject("MyClass", CreateMyClass,
MyClass::Initialize());

After the translation, a member function MetaclassName(), a function
CreateMyClass(), and an object myClassObject are inserted. CreateMy-
Class() is a function that instantiates the metaclass, and the object my-
ClassObject is created at the beginning of runtime and registers CreateMy-
Class(). The registered function is used to implement a function that
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receives a class name in the form of character string and instantiates the
specified class. This function is internally used by the OpenC++ compiler
when instantiating a metaclass, because the new operator does not take a
character string to specify the instantiated class:

class Point { ... };
Point* p0 = new Point; // valid
char* c = "Point";
Point* p1 = new c; // invalid

Note that new Point is a valid expression but new c is not since c is not a
class name but a variable.

The behavior implemented by the inserted functions and variable can-
not be inherited from the base class; it must be explicitly implemented by
every new metaclass. This is because implementing the behavior needs the
definition of the new metaclass as the example of named object that we have
shown in Chapter 2.

Protocol with meta-meta level programming

Since the definition obeying all the protocol is complex and error prone,
the actual OpenC++ MOP has meta-level programmers write a simpler
definition of a metaclass, and automatically translates it into the regular
definition that obeys all the protocol. To do this, the OpenC++ MOP
provides a metaclass Metaclass, which is the metaclass of all metaclasses.

Like other metaclasses, the metaclass Metaclass is a subclass of Class.
It overrides TranslateSelf() and TranslateBody():

Ptree* Metaclass::TranslateSelf(Environment* env)
{

Ptree* name = Name();
Ptree* tmpname = Ptree::GenSym();

AppendAfterToplevel(Ptree::Make(
"static Class* %p(Ptree* def, Ptree* marg){\n"
" return new %p(def, marg); }\n"
"static ListOfMetaclass %p(\"%p\", %p,\n"
" %p::Initialize());\n",
tmpname, name,
Ptree::GenSym(), name, tmpname, name));

return Class::TranslateSelf(env);
}

Ptree* Metaclass::TranslateBody(Environment* env, Ptree* body)
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{
Ptree* mem = Ptree::Make("public: char* MetaclassName() {\n"

" return \"%p\"; }",
Name());

return Class::TranslateBody(env, Ptree::Append(body, mem));
}

The member function TranslateSelf() inserts a function and a variable for
instantiating the metaclass, and TranslateBody() inserts a member func-
tion MetaclassName() in the declaration of the metaclass. For the reason of
bootstrapping, Metaclass uses not Ptree::qMake() but Ptree::Make().

Since a subclass inherits the metaclass from the base class, programmers
do not need to explicitly write a metaclass declaration for new metaclasses.
The OpenC++ compiler automatically selects Metaclass for the new meta-
classes since they are subclasses of Class. No ad-hoc implementation is re-
quired; the OpenC++ MOP can naturally deal with this and programmers
can enjoy a simpler protocol by this mechanism.

6.6 Vector Library

All the examples shown above are of abstractions that regular C++ cannot
handle but the OpenC++ MOP can do. The OpenC++ MOP also makes
some kinds of abstractions more efficient than in regular C++. From this
section, we show a few examples of such abstractions.

The first example is the vector library. In Chapter 2, we showed that
the template mechanism of C++ enables a vector abstraction for any type,
but the implementation with the template mechanism was not as efficient
as an ideal implementation. If the OpenC++ MOP is used, however, the
vector abstraction is implemented more efficiently.

Vector library in regular C++

As we showed in Chapter 2, a vector abstraction is implemented in regular
C++ by the following template:

template <class T> class Vector {
T elements[SIZE];

public:
Vector operator + (Vector& a, Vector& b) {

Vector c;
for(i = 0; i < SIZE; ++i)

c.elements[i] = a.elements[i] + b.elements[i];
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return c;
}

...
};

This implementation is not efficient because it deals with successive op-
erators like v2 + v3 + v4 as separate function calls. For each operator, the
operator function for Vector is called and the for loop is executed from 0
to SIZE, although successive for loops can be fused into a single efficient
loop.

This problem is due to the limited ability of the template mechanism to
supply code adapted for the library user code. The only adaptation that
the template mechanism can do is type parameterization, and therefore, the
vector abstraction needs to be implemented with very generic description —
overloading primitive operators like +. No implementation techniques for a
particular case can be included in the description.

Vector library in OpenC++

If the OpenC++ MOP is used, the vector abstraction can be implemented
more efficiently. The library developer can define a special metaclass for
the template class Vector, which translates successive operators into an
efficient single loop instead of separate function calls. Doing this translation
is straightforward; only one member function TranslateAssign() needs to
be overridden:

#include "template.h"

class VectorClass : public TemplateClass {
public:

VectorClass(Ptree* d, Ptree* m) : TemplateClass(d, m) {}
Ptree* TranslateAssign(Environment*, Ptree*, Ptree*,

Ptree*);
Ptree* Inline(Environment*, Ptree*, Ptree*);

};

Ptree* VectorClass::TranslateAssign(Environment* env,
Ptree* object,
Ptree* op, Ptree* expr)

{
if(!object->IsLeaf() || !op->Eq(’=’)

|| expr->IsLeaf()) // e.g. a = b;
return TemplateClass::TranslateAssign(env, object,

op, expr);
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Ptree* index = Ptree::GenSym();
return Ptree::qMakeStatement(

"for(int ‘index‘ = 0;‘index‘ < SIZE; ++‘index‘)\n"
" ‘object‘.element[‘index‘]"
" =‘Inline(env, expr, index)‘;\n");

}

The member function TranslateAssign() translates an assignment ex-
pression such as = and +=. It translates an assignment expression into an
efficient for loop if the operator is =. The right-side expression is passed to
a member function Inline() and translated into an appropriate expression:

Ptree* VectorClass::Inline(Environment* env, Ptree* expr,
Ptree* index)

{
Ptree* lexpr;
Ptree* rexpr;

if(expr->IsLeaf())
return Ptree::qMake("‘expr‘.element[‘index‘]");

else if(Ptree::Match(expr, "[%? + %?]", &lexpr, &rexpr))
return Ptree::qMake("‘Inline(env, lexpr, index)‘"

"+ ‘Inline(env, rexpr, index)‘");
else if(Ptree::Match(expr, "[%? - %?]", &lexpr, &rexpr))

return Ptree::qMake("‘Inline(env, lexpr, index)‘"
"- ‘Inline(env, rexpr, index)‘");

else if(Ptree::Match(expr, "[( %? )]", &lexpr))
return Ptree::qMake("(‘Inline(env, lexpr, index)‘)");

else if(Ptree::Match(expr, "[- %?]", &lexpr))
return Ptree::qMake("-‘Inline(env, lexpr, index)‘");

else if(Ptree::Match(expr, "[%? * %?]", &lexpr, &rexpr))
return Ptree::qMake(

"‘lexpr‘ * ‘Inline(env, rexpr, index)‘");
else{

ErrorMessage("invalid vector expression", expr);
return nil;

}
}

The member function Inline() tests whether the given expression matches
a pattern and, if it matches, calls Inline() recursively to process the sub-
expressions. Inline() can deal with not only the + operator but also the -
and * operators and parentheses ().

Experiments

The metaclass VectorClass translates an assignment expression on a vector
into an efficient for loop. For example, this program:
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Vector<double> v1, v2, v3, v4;
...

v1 = v2 + v3 + v4;

is translated into this:

Vector<double> v1, v2, v3, v4;
...

for(i = 0; i < SIZE; ++i)
v1.elements[i] = v2.elements[i] + v3.elements[i]

+ v4.element[i];

This translation drastically improves execution performance. To show
the improvement, we ran a micro benchmark program and measured execu-
tion time of Vector expressions. The micro benchmark program computes
the sum of various numbers of vectors of double. First, we ran the program
with the vector library written in regular C++, then ran the same program
with the vector library written in OpenC++. Since different compilers per-
form different optimization techniques, we used GNU C++ 2.7.2.1 (with
option -O3) and Sun C++ 3.0.1 (with option -fast) for regular C++. The
OpenC++ compiler uses GNU C++ for the backend compiler. Moreover,
we ran a program that is equivalent to the micro benchmark but optimized
by hand without the vector library. This hand-coded program uses arrays
of double instead of objects and was compiled by GNU C++. When mea-
suring the execution time, we changed the length of each vector between 8
and 64, and also the number of the vectors in the assigned expression from
1 to 4. When the number of the vectors is 1, the expression is v0 = v1; No
addition is executed. All the benchmark programs used in this experiment
are in Appendix C.3.

The results of the experiment are listed in Table 6.1. The vector library
implemented with the OpenC++ MOP achieved as good performance as the
hand-coded program. Although the OpenC++ program is slightly slower
than the hand-coded program when the number of vectors is 1 and the
vector length is 64, this fact is caused by the implementation difference in
copying a vector. The hand-coded program copies a vector by explicitly
copying each element, but the OpenC++ program copies it by using the
default object copy mechanism, which is compiled into a call of memcpy().
The implementation strategy of copying a vector is also the reason that Sun
C++ achieved the best performance when the number of vectors is 1 and
the length of each vector is 64. The Sun C++ compiler inlines memcpy()
when an object is copied.
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Table 6.1: Execution performance of the vector library (µsec.)

length 8 length 64
# of vectors 1 2 3 4 1 2 3 4

Sun C++ 0.5 1.5 3.0 4.4 3.3 10.1 20.0 30.1

GNU C++ 0.3 1.7 3.1 4.5 6.9 21.7 36.2 51.1

OpenC++ 0.3 0.9 1.3 1.7 6.9 6.5 9.8 13.1

Hand-coded 0.9 0.9 1.3 1.7 6.5 6.5 9.8 13.0

Average of 1,000,000 (size 8) or 300,000 (size 64) iterations.

SPARC Station 20/61, SunOS 4.1.3

This experiment also shows that real C++ compilers do not perform the
optimization that the metaclass VectorClass performs. Although an ideal
compiler should automatically perform the optimization, it seems difficult
for real compilers to do that within reasonable space and time. Our claim
is that such an optimization should be done by a metaclass rather than a
compiler’s optimizer. Such an optimization is difficult for a general-purpose
optimizer as our experiment showed, but on the other hand, it is not difficult
for a metaclass because the metaclass is written by the library developer,
who knows semantic information about the library code. We believe that a
compiler’s optimizer should focus on general optimizations and metaclasses
should perform a special optimization that is effective only for a particu-
lar class. Although forcing end-programmers to write a metaclass is not
realistic, we believe that it is acceptable that library programmers write
metaclasses since they are usually experienced programmers and their code
is reused by many end programmers.

6.7 The Standard Template Library

The Standard Template Library (STL) [44] is another example of abstrac-
tions that The OpenC++ MOP can implement more efficiently. STL is a
C++ library included by the ANSI standard of C++. Despite of the high-
level abstractions that STL provides, a program using STL is often slower
than an equivalent program written without STL. The OpenC++ MOP
contributes to avoid performance drawbacks caused by STL with keeping
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its high-level abstractions.

Brief Overview of STL

A unique feature of STL is that the library consists of independent com-
ponents and the users can flexibly combine the components to obtain the
functionality they need. The main components of STL are containers and
generic algorithms. The containers are objects that store a collection of
other objects, and the generic algorithms are functions that process con-
tainers. Since type names are parameterized with using the template mech-
anism, STL users may use a generic algorithm with any kind of containers.
They do not have to use a different version of the generic algorithm for a
different kind of containers.

For example, STL users may write something like this:

list<double> a1 = ... ;
set<double> a2 = ... ;
n1 = count(a1.begin(), a1.end(), 3.14);
n2 = count(a2.begin(), a2.end(), 3.14);

This program computes the number of 3.14 stored in containers a1 and a2,
respectively. a1 is a list container and a2 is a set container. count is a
generic algorithm to determine the number of elements in a container that
are equal to a given value. It takes pointers to the first and the last element
in the container and the value that it counts the number of. Note that the
same generic algorithm count is used for two different kinds of containers
list and set. The single generic algorithm serves all kinds of containers.

The connectivity between containers and generic algorithms is enabled
by another kind of STL component called iterators. In the program above,
iterators are the values returned by a1.begin() and a1.end(). They are
pointer-like components that all kinds of containers provide as common
interface to access the elements. Generic algorithms use the iterators to
traverse elements stored in a container. For example, iterators for list
containers are defined as follows:

class iterator {
public:

iterator(list<T>* p) { ptr = p; }
list<T>* ptr;
int eof() { return ptr == 0; }
int operator != (iterator& a) { return ptr != a.ptr; }
T operator * () { return ptr->value; }
iterator& operator ++ (){ptr = ptr->next; return *this;}
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iterator operator ++ (int) {
iterator prev = *this;
ptr = ptr->next;
return prev;

}
};

Iterators are objects for which pointer operators such as * and ++ are over-
loaded. Generic algorithms use the iterators as if they are C++ pointers to
arrays; for example, the next template function is an implementation of the
generic count algorithm:

template <class I, class T>
int count(I first, I last, T value)
{

int n = 0;
while(first != last)

if(*first++ == value)
++n;

return n;
}

The template argument I is the type of iterators and T is the type of con-
tainer elements. Note that the variables first and last are used as if they
are pointers to an array of the type T.

Performance improvement by the OpenC++ MOP

Although iterators give great flexibility to STL, they also involve perfor-
mance drawbacks if compared with an equivalent program written without
iterators. Since a generic algorithm must indirectly accesses elements in a
container through an iterator, its execution performance tends to be slower.
If programmers give up generality of the generic algorithm and specialize
the algorithm to work only for a particular kind of container, then the spe-
cialized algorithm will be more efficient because iterators are not needed any
more. For example, the following function is a specialized count algorithm
for counting elements only in a list<int> container:

int count(List<int>* first, List<int>* last, int value)
{

int n = 0;
while(first != last){

if(first->value == value)
++n;
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first = first->next;
}

return n;
}

Note that now the variables first and last are not iterators but actual
pointers to list<int> objects. Hence reading an element is done by the ->
operator instead of the * operator. Also, the ++ operator is replaced with
the expression first = first->next.

The OpenC++ MOP reduces the overheads by iterators. In OpenC++,
the STL implementor can write a metaclass that specializes a generic al-
gorithm for a particular kind of container and translates a program to use
that specialized algorithm. Suppose that a program uses the generic count
algorithm with a list<int> container. The metaclass converts iterators
for list<int> into actual pointers to list<int> and it replaces calls of
the generic count algorithm with calls of a count algorithm specialized for
list<int>. First, the definition of iterators for list containers:

class iterator { ... };

is translated from a class type into this pointer type:

typedef list<T>* iterator;

Then the template function shown below is derived as a specialized algorithm
from the generic count algorithm. It is substituted for the generic count
algorithm called with list containers:

template <class I, class T>
int count_for_list_int(I first, I last, T value)
{

list<int>* tmp;
int n = 0;
while(first != last)

if((tmp=first,first=first->next,tmp)->value == value)
++n;

return n;
}

This template function supposes that I is bound to list<int>*.
The translation mentioned above is easily implemented with about 40

lines of meta-level program. The metaclass for this translation is effective
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not only for the generic count algorithm. It deals with combinations of
list containers and any generic algorithm. For the complete definition of
the metaclass, see in Appendix C.4. We also show a metaclass for set
containers in the same place.

Experiment

To illustrate the performance improvement by the metaclasses, we measured
the execution time of the generic count algorithm with/without the meta-
classes. As for the containers, we used list<int> and set<int>. When the
metaclasses were not used, the measured program was compiled by GNU
C++ 2.7.2 with option -O3 and Sun C++ 4.1 with option -fast. When the
metaclasses are used, the program was compiled by the OpenC++ com-
piler, which uses GNU C++ for the backend compiler. Also, we measured
the execution time of hand-optimized count algorithms for list<int> and
set<int>. These algorithms were compiled by GNU C++. All the programs
used in this experiment are shown in Appendix C.4.

The results of this experiment is listed in Table 6.2. As for list con-
tainers, the generic count algorithm involves 73% (Sun C++) or 36% (GNU
C++) overheads against the hand-optimized version, but with the OpenC++
MOP, the overheads are reduced to only 9%. As for set containers, the
generic count algorithm involves 39% (Sun C++) or 21% (GNU C++) over-
heads. But the OpenC++ MOP reduces the overheads to 10%. These re-
sults show that generic algorithms of STL work for any kind of containers but
this adaptability causes serious performance degradation. The OpenC++
MOP recovers this performance degradation from one half to one fourth
while keeping the adaptability of STL.

6.8 The OOPACK Benchmark Test

The last example is the OOPACK benchmark test [49]. This benchmark
test is a program for testing the ability of a C++ compiler for compiling a
program written in object-oriented programming (OOP) as efficiently as a
program in non-OOP. The program contains a suite of tests, each of which
consists of two equivalent routines written in OOP and non-OOP. The OOP
routines are written with higher-level abstractions, whereas the non-OOP
routines are written in C style for efficiency. In other words, the non-OOP
routines are hand-optimized versions of the corresponding OOP routines.

If the OOP routines are slower than the non-OOP routines, that perfor-
mance degradation means costs to use higher-level abstractions implemented
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Table 6.2: Execution performance of STL (msec.)

list (ratio) set (ratio)

Sun C++ 57 (1.73) 860 (1.39)

GNU C++ 45 (1.36) 750 (1.21)

OpenC++ 36 (1.09) 680 (1.10)

Hand-coded 33 (1.00) 620 (1.00)

Average of 100 (list) or 10 (set) iterations.

SPARC Station 20/514, Solaris 5.3

with objects under the compiler. A C++ compiler should be able to com-
pile the OOP routines as efficient as the non-OOP routines since it can in
principle transform the OOP routines into the non-OOP routines by inlin-
ing member functions and performing constant propagation and strength
reduction.

Improvement with the OpenC++ MOP

Real C++ compilers have difficulty in compiling the OOP routines efficiently
as we show later, but this inefficiency is fairly recovered by the OpenC++
MOP. Although the OpenC++ MOP cannot improve the execution speed
without changing the benchmark program, it can extend the language syntax
to allow the programmer to write more efficient OOP code than the OOP
routines in the original benchmark program. The extended syntax is used for
annotating compilation hints without directly describing lower-level details
of the implementation. It does not affect the level of abstraction of the OOP
routines.

For example, the following code is the Matrix test in the benchmark. It
computes multiplication of two matrices in OOP style:

void MatrixBenchmark::oop_style() const
{

Matrix c(L, L, C);
Matrix d(L, L, D);
Matrix e(L, L, E);
for(int i = 0; i < e.rows; i++)

for(int j = 0; j < e.cols; j++){
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double sum = 0;
for(int k=0; k<e.cols; k++)

sum += c(i,k) * d(k,j);

e(i,j) = sum;
}

}

The OpenC++ MOP extends the syntax to make a foreach statement
available for this test and improve the execution performance with the new
statement. The next is the code rewritten using the foreach statement:

void MatrixBenchmark::oop_style() const
{

Matrix c(L, L, C);
Matrix d(L, L, D);
Matrix e(L, L, E);

c.foreach(i){
for(int j = 0; j < e.cols; ++j){

double sum = 0;
d.foreach(k){

sum += c(k) * d(j);
};

e(i,j) = sum;
}

};
}

Here, c.foreach(i) means iterating the following block statement for each
row of the matrix c. i is bound to the index of the row currently processed.
In the block statement, c(k) indicates the k-th column in the row. Unlike
the for statement, the foreach statement explicitly indicates that the loop
is executed for traversing the rows of a matrix, so that the statement can
be translated into optimized code for the traversing. In fact, the metaclass
for Matrix translates the program above into this efficient one:

void MatrixBenchmark::oop_style() const
{

Matrix c(L, L, C);
Matrix d(L, L, D);
Matrix e(L, L, E);

for(int i=c.rows, t1=c.cols, t2=(c.rows-1)*c.cols;
--i >= 0;
t2 -= t1)
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{
double const* t3 = &(c.Data())[t2];
for(int j = 0; j < e.cols; ++j){

double sum = 0;
for(int k=d.rows, t4=d.cols, t5=(d.rows-1)*d.cols;

--k >= 0;
t5 -= t4)

{
double const* t6 = &(d.Data())[t5];
sum += t3[k] * t6[j];

};

e(i,j) = sum;
}

};
}

Note that the foreach statements are translated into for statements.
The second test in the benchmark program is Iterator. It computes

dot-product of two vectors implemented by arrays of double. The Iterator
objects in this test is similar to STL’s iterator, but they also contain the
length of a vector and provide a member function done() to check whether
there are no more elements:

void IteratorBenchmark::oop_style() const
{

double sum = 0;
for(Iterator ai(A,N), bi(B,N);

!ai.done();
ai.next(), bi.next())

{
sum += ai.look() * bi.look();

}

IteratorResult = sum;
}

Here, A and B are arrays of double, and N is the length of the arrays.
The OpenC++ MOP provides a statement foreach for the class Iterator.

With the foreach statement, the program above is rewritten into this:

void IteratorBenchmark::oop_style() const
{

double sum = 0;
Iterator ai(A,N), bi(B,N);
ai.foreach(v){

sum += v * bi.look();
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bi.next();
};

IteratorResult = sum;
}

The foreach statement for Iterator provides a control abstraction similar
to foreach for Matrix. It iterates the following block statement for each
element of the vector. In the block statement, a specified variable (v in the
program above) indicates the element currently processed. However, the
foreach statement for Iterator is translated differently way from Matrix.
This is oop style() after the translation:

void IteratorBenchmark::oop_style() const
{

double sum = 0;
Iterator ai(A,N), bi(B,N);
for(int t7 = 0, t8 = ai.Limit(); t7 < t8; ++t7){

const double& v = ai.Array(t7);
sum += v * bi.look();
bi.next();

};

IteratorResult = sum;
}

The length of the vector that ai points to is stored in a local variable before
starting iteration. This eliminates accesses to ai when the loop-termination
condition is checked.

The last test in the benchmark is Complex. This test computes a complex-
valued “SAXPY” operation, and measures how efficiently a C++ compiler
compiles a Complex object, which represents a complex number and is very
popular in scientific computing:

void ComplexBenchmark::oop_style() const
{

Complex factor(0.5, 0.86602540378443864676);
for(int k = 0; k < N; k++)

Y[k] = Y[k] + factor * X[k];
}

Here, X and Y are arrays of Complex objects.
The execution performance of this test can be improved by a similar

technique that we showed for the vector library in Section 6.6. No extended
syntax is needed. The program shown above is translated by a metaclass
into this:
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void ComplexBenchmark::oop_style() const
{

double factor_re = 0.5;
double factor_im = 0.86602540378443864676;
for(int k = 0; k < N; k++){

Y[k].re = Y[k].re+factor_re*X[k].re-factor_im*X[k].im;
Y[k].im = Y[k].im+factor_re*X[k].im+factor_im*X[k].re;

}
}

Note that a Complex object factor is broken down into two double vari-
ables, factor re and factor im. This leads a C++ compiler to allocate
factor on registers rather than a stack frame, and eventually contributes to
performance improvement. Without this translation, C++ compilers such
as GNU C++ and Sun C++ do not allocate objects on registers even though
allocating them is possible in principle.

Experiments

We measured execution time of the OOPACK benchmark test under differ-
ent settings. We first ran the benchmark program compiled by Sun C++
4.1 with -fast option, and then the program compiled by GNU C++ 2.7.2
with -O3 option. We also compiled the program by the OpenC++ compiler
with metaclasses for the translation shown above, and measured the exe-
cution time of the compiled code. When compiling with those metaclasses,
the benchmark program was rewritten to utilize the extended syntax. The
OpenC++ compiler used GNU C++ 2.7.2 with option -O3 for the back-
end compiler. All the programs used for the experiment are presented in
Appendix C.5.

The results of the experiment are listed in Table 6.3. The OOPACK
benchmark consists of four tests: Max, Matrix, Complex, and Iterator. We
did not develop a metaclass for the Max test, which is for measuring how
well a C++ compiler inlines a function. But for the remaining three tests,
OpenC++ showed better performance than Sun C++ and GNU C++. If
OpenC++ is used, the OOP routines involves only 10% to 20% overheads
against the non-OOP routines written in C style. On the other hand, the
OOP routines compiled by Sun C++ is twice or three times slower than the
non-OOP routines. The OOP routines compiled by GNU C++ also involves
60% or 20% overheads for Complex and Iterator, but the Matrix test is
more than 8 times slower.
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Table 6.3: Execution time of the OOPACK benchmark (sec.)

Sun C++ GNU C++ OpenC++

Max (C-style) 8.1 9.0 9.0
(OOP) 8.5 12.0 12.0
Ratio 1.1 1.3 1.3

Matrix (C-style) 10.9 9.8 9.8
(OOP) 31.3 80.7 11.2
Ratio 2.9 8.2 1.1

Complex (C-style) 13.2 11.2 11.2
(OOP) 23.3 18.2 13.1
Ratio 1.8 1.6 1.2

Iterator (C-style) 7.1 7.1 7.1
(OOP) 15.2 8.2 8.1
Ratio 2.1 1.2 1.1

50000 (Max), 500 (Matrix), 20000 (Complex), 50000 (Iterator) iterations.

SPARC Station 20/514, Solaris 5.3

6.9 Summary

This chapter presented eight examples of libraries that the OpenC++ MOP
enables. The first two examples, named objects and distributed objects, pre-
sented useful data abstractions that regular C++ cannot handle. Through
the examples, we also illustrated how various metaobjects like TypeInfo are
used in meta-level programming.

The next example, wrapper library, is an example of metaclass libraries.
Implementing abstractions like named objects and distributed objects is
facilitated if there is a metaclass library which provides typical meta code
for metaclass writers. This example showed a metaclass WrapperClass,
which helps programmers write a metaclass handling wrapper functions.

qMake() and Metaclass are examples of meta-meta level programming.
The OpenC++ MOP naturally allows meta-meta level programming in or-
der to make useful abstractions available at meta level as well as base level.
qMake() is a meta-level function providing convenient interface for meta-
class writers. Its interface cannot be implemented without the OpenC++



CHAPTER 6. LIBRARIES IN OPENC++ 105

MOP. Metaclass is a meta-metaclass for all metaclasses. It simplifies the
protocol for writing a new metaclass.

The remaining three examples showed that the OpenC++ MOP can be
used to improve execution performance of some kinds of abstractions. The
OpenC++ MOP makes it possible to specialize library code for user code
and improve execution performance. This specialization includes elimination
of unnecessary indirection and encapsulation and it helps C++ compilers
to generate more efficient object code. Furthermore, the OpenC++ MOP
allows syntax extension, which is used for putting annotations for efficient
compilation. In the example of the OOPACK benchmark, we showed that
such syntax extensions actually improve execution performance while keep-
ing the level of abstraction.
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Conclusion

This thesis has discussed the OpenC++ MOP, our new language mechanism
for writing better libraries. This mechanism enables better C++ libraries
and will contribute to rapid and low-cost software development, which is
one of major issues in today’s software industry.

Contributions

Direct contributions by this thesis are summarized as follows:

• This thesis proposed a new language mechanism for pre-processing a
program in a context-sensitive and non-local way. This mechanism
allows a library to instantiate specialized code depending on how the
library is used and substitute it for the original user code.

• Then this thesis presented that the proposed mechanism makes it pos-
sible to write better C++ libraries than in regular C++. For being
high level and easy to use, the implementation of some kinds of useful
control/data abstractions requires the ability to instantiate specialized
code for the user code. The proposed mechanism provides that ability
for libraries to include such abstractions.

• Also, this thesis showed that the proposed mechanism improves effi-
ciency of C++ libraries. Some kinds of control/data abstractions are
difficult to implement efficiently because the ability of C++ compilers
to optimize the library code is limited due to time and space. The pro-
posed mechanism allows library developers to specify specialization of
the library code so that the implemented abstractions run efficiently.

106
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The library developers can specify the specialization assuming opti-
mization performed by a backend C++ compiler. This is an approach
integrating general optimization by a compiler and ad-hoc optimiza-
tion that is apparent to programmers.

• Compared with other reflective languages, a unique feature of the pro-
posed mechanism is that it is a compile-time MOP. It exploits static
types to run metaobjects only at compile time. This means that the
proposed mechanism does not imply any runtime penalties due to dis-
patching to metaobjects.

• Furthermore, this thesis proposed the meta helix architecture, which
is an improved version of the metacircular architecture of the CLOS
MOP. It fixes a problem we call implementation level conflation, which
is involved by the CLOS MOP, while keeping benefits of metacircular-
ity — ease of learning and ease of writing an efficient meta program.

These contributions suggest a new design approach for programming
languages. The proposed mechanism makes it feasible for language designers
to keep a language simple and consistent and to implement most of desirable
control/data abstractions as a “language extension” library. Keeping a core
language simple and consistent has a number of advantages; especially, a
simple and consistent language is easy for programmers to learn and for
compiler implementers to develop an optimizing compiler.

Designing a simple and consistent language has been had a few disad-
vantages. First, a number of language extensions have been impossible to
implement as a library and, second, language extensions provided by a libary
have been less efficient than ones implemented as built-in features. The lat-
ter disadvantage can be solved if compilers support a special optimization
technique for the library, but this solution takes long time since compilers do
not support it until the extensions are accepted and deployed. The proposed
mechanism solves these disadvantages and motivates language desingers to
avoid a rich and fat language and design a simple and consistent language.

Future directions

Possible future directions of this study are followings.
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Apply to other languages

The idea of the OpenC++ MOP will be applicable to other static-typed lan-
guages such as Java [27]. Although Java is still a simple and small language,
it will be getting complicated and difficult to understand as it is widely used
for developing real applications, because real programmers tend to desire
richer language mechanisms. This is also the same path that other major
languages such as Fortran [1], C [35], and Lisp [56], have followed. But if
Java has a mechanism like the OpenC++ MOP, it will be able to avoid fol-
lowing the undesirable path. Although reflective mechanisms for Java have
been already proposed, their capability is limited since, like RTTI of C++,
they support only introspection about the classes and the objects [55].

Make meta representation richer

Unfortunately, the OpenC++ MOP does not enable all kinds of desirable
control/data abstractions because the meta representation provided by the
MOP is limited. For example, the OpenC++ MOP does not include metaob-
jects representing control and data flow of the processed program. The lack
of this information makes it difficult to efficiently implement some kinds of
abstractions. The OpenC++ MOP should be enhanced to support such
metaobjects.

Real programmers program in C++ or C,
Real programmers demand efficiency,

Real programmers are never happy with existing languages.

— Anon, A Metaobject Protocol for Real Programmers
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Appendix A

Backquote

“backquote” is a convenient mechanism for constructing a list structure in
Lisp. This appendix briefly introduces this mechanism for the readers who
are not familiar to Lisp.

A.1 Quote

We should start from the “quote” mechanism. It is used to include literal
constants in programs. The quotes suppress evaluation; the quoted symbols
or expressions are not evaluated:

a => (the value that the symbol a is bound to)
’a => a (symbol a)
(+ 1 2) => 3 (function application)
’(+ 1 2) => (+ 1 2) (equivalent to (list ’+ 1 2))

Numerical constants and so on need not be quoted. They evaluate to them-
selves:

735 => 735 (number)
’735 => 735 (number)

A.2 Backquote

The backquote (‘) mechanism is similar to the quote mechanism but it
allows some sub-expressions to be evaluated in a (back)quoted expression.
It evaluates a sub-expression if it follows a comma:

115



APPENDIX A. BACKQUOTE 116

‘(a (+ 1 3) 9) => (a (+ 1 3) 9)
‘(a ,(+ 1 3) 9) => (a 4 9)
(let ((f ’a)) ‘(f ,f ’,f ,’f)) => (f a ’a f)

If a sub-expression follows a comma and an at-sigh (,@), the result of evalu-
ating the sub-expression must be a list. The opening and closing parentheses
of the list are stripped away:

‘(a ,(list 1 2)) => (a (1 2))
‘(a ,@(list 1 2)) => (a 1 2)

The backquote notations can be nested:

‘(a ‘(b ,(+ 1 2) ,,(+ 3 4)))
=> (a ‘(b ,(+ 1 2) ,7))

(let ((f ’x)) ‘(let ((x 3)) ‘(list ,,f ,’,f)))
=> (let ((x 3)) ‘(list ,x ,’x))



Appendix B

Reference Manual

This document is a programming guide for OpenC++ version 2. It was orig-
inally published as a technical report from Xerox PARC [12]. The copyright
of this document and the original one belongs to the author of this thesis.

B.1 Introduction

The goal of the OpenC++ project is to make the C++ language extensible.
The project started in 1992 at the University of Tokyo in Japan. The first
version was released in 1993 as one of the early C++ MOPs (metaobject
protocols) and has been used as a research platform at many sites, includ-
ing University of Newcastle upon Tyne in UK, LAAS in Toulouse, France,
Universidade Federal do RGS in Brazil, and so on. After that, the project
moved to Xerox Palo Alto Research Center (PARC) in US and joined the
Open Implementation Group in 1994. OpenC++ met compile-time MOPs
there and OpenC++ Version 2 was developed as the result.

The OpenC++ language enables programmers to extend C++ so that
they can use language features that are not available in regular C++. These
language features include distribution, persistence, and fault-tolerance. Al-
though they are available in regular C++ with less integrated syntax, for
example, OpenC++ enables programmers to use the member function call
syntax when accessing a remote object.

Moreover, OpenC++ makes it possible to customize an optimization
scheme for a particular class. The OpenC++ compiler manipulates a pro-
gram at the source code level for optimizing the execution performance. Pro-
grammers can customize that program manipulation on a particular class.
This benefit got feasible in the version 2 because its MOP is a compile-time
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MOP.
This document shows detailed specifications of OpenC++ Version 2. It

consists of three parts. First, we give a brief tutorial of programming in
OpenC++. It will help the readers get overview of the language. Then,
we mention the base-level specifications of OpenC++. The difference from
regular C++ is shown here. Last, we present the meta-level specifications,
that is, the OpenC++ MOP. It is an interface to deal with the base-level
program and customize the language.

B.2 Tutorial

OpenC++ is an extensible language based on C++. The extended features
of OpenC++ are specified by a meta-level program given at compile time.
For distinction, programs written in OpenC++ are called base-level pro-
grams. If no meta-level program is given, OpenC++ is identical to regular
C++.

The meta-level program extends OpenC++ through the interface called
the OpenC++ MOP. The OpenC++ compiler consists of three stages: pre-
processor, source-to-source translator from OpenC++ to C++, and the
back-end C++ compiler. The OpenC++ MOP is an interface to control
the translator at the second stage. It allows to specify how an extended
feature of OpenC++ is translated into regular C++ code.

An extended feature of OpenC++ is supplied as an add-on software
for the compiler. The add-on software consists of not only the meta-level
program but also runtime support code. The runtime support code provides
classes and functions used by the base-level program translated into C++.
The base-level program in OpenC++ is first translated into C++ according
to the meta-level program. Then it is linked with the runtime support code
to be executable code. This flow is illustrated by Figure B.1.

The meta-level program is written in C++, accurately in OpenC++
because OpenC++ is a self-reflective language. It defines new metaobjects
to control source-to-source translation. The metaobjects are the meta-level
representation of the base-level program and they perform the translation.
Details of the metaobjects are specified by the OpenC++ MOP. In the
followings, we go through a few examples so that we illustrate how the
OpenC++ MOP is used to implement language extensions.
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runtime support

OpenC++
compiler

executable
codeLinker

base−level
 program

meta−level program

Figure B.1: The OpenC++ Compiler

B.2.1 Verbose Objects

A MOP version of “hello world” is verbose objects, which print a message
for every member function call. We choose them as our first example.

The MOP programming in OpenC++ is done through three steps: (1)
decide what the base-level program should look like, (2) figure out what it
should be translated into and what runtime support code is needed, and
(3) write a meta-level program to perform the translation and also write
the runtime support code. We implement the verbose objects through these
steps.

What the base-level program should look like

In the verbose objects example, we want to keep the base-level program
looking the same as much as possible. The only change should be to put
an annotation that specifies which class of objects print a message for every
member function call. Suppose that we want to make a class Person verbose.
The base-level program should be something like:

// person.cc
#include <stdio.h>

metaclass Person : VerboseClass; // metaclass declaration
class Person {
public:

Person(int age);
int Age() { return age; }
int BirthdayComes() { return ++age; }

private:
int age;

};
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main()
{

Person billy(24);
printf("age %d\n", billy.Age());
printf("age %d\n", billy.BirthdayComes());

}

Note that the metaclass declaration in the first line is the only difference
from regular C++ code. It specifies that Person objects print a message for
every member function call.

What the base-level program should be translated

In order to make the program above work as we expect, member function
calls on Person objects must be appropriately translated to print a message.
For example, the two expressions:

billy.Age()
billy.BirthdayComes()

must be translated respectively into:

(puts("Age()"), billy.Age())
(puts("BirthdayComes()"), billy.BirthdayComes())

Note that the value of the comma expression (x , y) is y. So the resulting
values of the substituted expressions are the same as those of the original
ones.

Write a meta-level program

Now, we write a meta-level program. What we should do is to translate
only member function calls on Person objects in the way shown above. We
can easily do that if we use the MOP.

In OpenC++, classes are objects as in Smalltalk. We call them class
metaobjects when we refer to their meta-level representation. A unique
feature of OpenC++ is that a class metaobject translates expressions in-
volving the class at compile time. For example, the class metaobject for
Person translates a member function call billy.Age() since billy is a
Person object.

By default, class metaobjects are identity functions; they do not change
the program. So, to implement our translation, we define a new metaclass —
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a new class for class metaobjects — and use it to make the class metaobject
for Person.

The metaclass for a class is specified by the metaclass declaration at
the base level. For example, recall that the base-level program person.cc
contains this:

metaclass Person : VerboseClass; // metaclass declaration

This declaration specifies that the class metaobject for Person is an instance
of VerboseClass.

A new metaclass must be a subclass of the default metaclass Class. Here
is the definition of our new metaclass VerboseClass:

// verbose.cc
#include "mop.h"

class VerboseClass : public Class {
public:

VerboseClass(Ptree* d, Ptree* m) : Class(d, m) {}
Ptree* TranslateMemberCall(Environment*, Ptree*, Ptree*,

Ptree*, Ptree*);
};

Ptree* VerboseClass::TranslateMemberCall(Environment* env,
Ptree* object, Ptree* op, Ptree* member, Ptree* arglist)

{
return Ptree::Make("(puts(\"%p()\"), %p)",

member,
Class::TranslateMemberCall(env, object, op,

member, arglist));
}

The metaclass VerboseClass is just a regular C++ class. It inherits
from Class and overrides one member function. TranslateMemberCall()
takes an expression such as billy.Age() and returns the translated one.
Both the given expression and the translated one are represented in the
form of parse tree. Ptree is the data type for that representation.

Since the class metaobject for Person is responsible only for the transla-
tion involving the class Person, TranslateMemberCall() does not have to
care about other classes. It just constructs a comma expression:

(puts(" member-name"), member-call)

from the original expression. Ptree::Make() is a convenience function to
construct a new parse tree. %p is replaced with the following argument.
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We do not need many concepts to write a meta-level program. As we
saw above, the key concepts are only three. Here, we summarize these key
concepts:

class metaobject: The representation of a class at the meta level.

metaclass: A class whose instances are class metaobjects.

metaclass Class: The default metaclass. It is named because its in-
stances are class metaobjects.

Compile, debug, and run

We first compile the meta-level program and extend the OpenC++ compiler,
which is used to compile the base-level program. Because OpenC++ is a
reflective language, the meta-level program is compiled by the OpenC++
compiler itself. Then, the compiled code is linked with the original compiler
(opencxx.a)1 and a new extended compiler is produced. Let’s name the
extended compiler myocc:

% occ -- -g -o myocc opencxx.a verbose.cc

The options following --, such as -g, are passed to the back-end C++
compiler. verbose.cc is compiled with the -g option and linked with
opencxx.a. The produced file is myocc specified by the -o option. Un-
less the -c option is given, the OpenC++ compiler produces an executable
file.

Next, we compile the base-level program person.cc with the extended
compiler myocc:

% myocc -- -g -o person person.cc

Now, we got an executable file person. It prints member function names
if they are executed:

% person
Age()
age 24
BirthdayComes()
age 25
%

1In the current version, the OpenC++ compiler cannot dynamically load meta-level
programs.
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The OpenC++ MOP provides a few functions for debugging. First,
programmers may use Display() on Ptree objects to debug a compiler.
This function prints the parse tree represented by the Ptree object. For
example, if the debugger is gdb, programmers may print the parse tree
pointed to by a variable object in this way:

% gdb myocc
:

(gdb) print object->Display()
billy
$1 = void
(gdb)

Similarly, the OpenC++ compiler accepts the -s option to print the whole
parse tree of the given program. The parse tree is printed in the form of
nested list:

% myocc -s person.cc
[typedef [char] [* __gnuc_va_list] ;]

:
[metaclass Person : VerboseClass [] ;]
[[[class Person [] [{ [

[public :]
[[] [Person ( [[[int] [i]]] )] [{ [

[[age = i] ;]
] }]]
[[int] [Age ( [] )] [{ [

[return age ;]
] }]]
[[int] [BirthdayComes ( [] )] [{ [

[return [++ age] ;]
] }]]
[private :]
[[int] [age] ;]

] }]]] ;]
[[] [main ( [] )] [{ [

[[Person] [billy ( [24] )] ;]
[[printf [( ["age %d\n" , [billy . Age [( [] )]]] )]] ;]
[[printf [( ["age %d\n" , [billy . BirthdayComes ...

] }]]
%

This option makes the compiler just invoke the preprocessor and prints the
parse tree of the preprocessed program. [ ] denotes a nested list. The
compiler does not perform translation or compilation.



APPENDIX B. REFERENCE MANUAL 124

B.2.2 Syntax Extension for Verbose Objects

In the verbose object extension above, the base-level programmers have to
write the metaclass declaration. The extension will be much easier to use
if it provides easy syntax to declare verbose objects. Suppose that the base-
level programmers may write something like this:

// person.cc
verbose class Person {
public:

Person(int age);
int Age() { return age; }
int BirthdayComes() { return ++age; }

private:
int age;

};

Note that the class declaration begins with a new keyword verbose but
there is no metaclass declaration in the code above.

This sort of syntax extension is easy to implement with the OpenC++
MOP. To make the new keyword verbose available, the meta-level program
must call Class::RegisterMetaclass() during the initialization phase of
the compiler. So we add a static member function Initialize() to the
class VerboseClass. It is automatically invoked at beginning by the MOP.

// verbose.cc
class VerboseClass : public Class {
public:

VerboseClass(Ptree* d, Ptree* m) : Class(d, m) {}
Ptree* TranslateMemberCall(Environment*, Ptree*, Ptree*,

Ptree*, Ptree*);
static BOOL Initialize();

};

BOOL VerboseClass::Initialize()
{

RegisterMetaclass("verbose", "VerboseClass");
return Class::Initialize();

}

RegisterMetaclass() defines a new keyword verbose. If a class declara-
tion begins with that keyword, then the compiler recognizes that the meta-
class is VerboseClass. This is all that we need for the syntax extension.
Now the new compiler accepts the verbose keyword.
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B.2.3 Matrix Library

The next example is a matrix library. It shows how the OpenC++ MOP
works to specialize an optimization scheme for a particular class. The
Matrix class is a popular example in C++ to show the usage of operator
overloading. On the other hand, it is also famous that the typical imple-
mentation of the Matrix class is not efficient in practice. Let’s think about
how this statement is executed:

a = b + c - d;

The variables a, b, c, and d are Matrix objects. The statement is executed
by invoking the operator functions +, -, and =. But the best execution is to
inline the operator functions in advance to replace the statement:

for(int i = 0; i < N; ++i)
a.element[i] = b.element[i] + c.element[i] - d.element[i];

C++’s inline specifier does not do this kind of smart inlining. It simply
extracts a function definition but it does not fuse multiple extracted func-
tions into efficient code as shown above. Expecting that the C++ compiler
automatically performs the fusion is not realistic.

We use the OpenC++ MOP to implement this smart inlining specialized
for the Matrix class. Again, we follow the three steps of the OpenC++
programming.

What the base-level program should look like

The objective of the matrix library is to provide the matrix data type as it
is a built-in type. So the base-level programmers should be able to write:

Matrix a, b, c;
double k;

:
a = a * a + b - k * c;

Note that the last line includes both a vector product a * a and a scalar
product k * c.

What the base-level program should be translated

We’ve already discussed this step. The expressions involving Matrix objects
are inlined as we showed above. We do not inline the expressions if they
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include more than one vector products. The gain by the inlining is relatively
zero against two vector products.

Unlike the verbose objects example, we need runtime support code in
this example. It is the class definition of Matrix. Note that the base-level
programmers do not define Matrix by themselves. Matrix must be supplied
as part of the compiler add-on for matrix arithmetics.

Write a meta-level program

To implement the inlining, we define a new metaclass MatrixClass. It is
a metaclass only for Matrix. MatrixClass overrides a member function
TranslateAssign():

// matrixclass.cc

Ptree* MatrixClass::TranslateAssign(Environment* env,
Ptree* object, Ptree* op, Ptree* expr)

{
if(we can inline on the expression)

return generate optimized code
else

return Class::TranslateAssign(env, object, op, expr);
}

This member function translates an assignment expression. object specifies
the L-value expression, op specifies the assignment operator such as = and +=,
and expr specifies the assigned expression. If the inlining is not applicable,
this function invokes TranslateAssign() of the base class. Otherwise, it
parses the given expr and generate optimized code.

Since expr is already a parse tree, what this function has to do is to
traverse the tree and sort terms in the expression. It is defined as a recursive
function that performs pattern matching for each sub-expression. Note that
each operator makes a sub-expression. So an expression such as a + b - c
is represented by a parser tree:

[[a + b] - c]

The OpenC++ MOP provides a convenience function Ptree::Match() for
pattern matching. So the tree traverse is described as follows:

static BOOL ParseTerms(Environment* env, Ptree* expr, int k)
{

Ptree* lexpr;
Ptree* rexpr;



APPENDIX B. REFERENCE MANUAL 127

if(expr->IsLeaf()){ // if expr is a variable
termTable[numOfTerms].expr = expr;
termTable[numOfTerms].k = k;
++numOfTerms;
return TRUE;

}
else if(Ptree::Match(expr, "[%? + %?]", &lexpr, &rexpr))

return ParseTerms(env, lexpr, k)
&& ParseTerms(env, rexpr, k);

else if(Ptree::Match(expr, "[%? - %?]", &lexpr, &rexpr))
return ParseTerms(env, lexpr, k)

&& ParseTerms(env, rexpr, -k);
else if(Ptree::Match(expr, "[( %? )]", &lexpr))

return ParseTerms(env, lexpr, k);
else if(Ptree::Match(expr, "[- %?]", &rexpr))

return ParseTerms(env, rexpr, -k);
else

return FALSE;
}

This function recursively traverses the given parse tree expr and stores the
variables in expr into an array termTable. It also stores the flag (+ or -)
of the variable into the array. The returned value is TRUE if the sorting is
successfully done.

After ParseTerms() is successfully executed, each term in the expression
is stored in the array termTable. The rest of the work is to construct an
inlined code from that array:

static Ptree* DoOptimize0(Ptree* object)
{

Ptree* index = Ptree::GenSym();
return Ptree::MakeStatement(

"for(int %p = 0; %p < %s * %s; ++%p)\"
" %p.element[%p] = %p;",
index, index, SIZE, SIZE, index,
object, index, MakeInlineExpr(index));

}

Ptree::GenSym() returns a symbol name that has not been used. It is
used as a loop variable. Ptree::MakeStatement() is a similar function to
Ptree::Make(). It constructs a parse tree representing a statement instead
of an expression. MakeInlineExpr() looks at the array and produces an
inlined expression:

static Ptree* MakeInlineExpr(Ptree* index_var)
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{
int i;
Ptree* expr;
Ptree* inline_expr = nil;

for(i = numOfTerms - 1; i >= 0; --i){
char op;
if(termTable[i].k > 0)

op = ’+’;
else

op = ’-’;

expr = Ptree::Make("%c %p.element[%p]",
op, termTable[i].expr, index_var);

inline_expr = Ptree::Cons(expr, inline_expr);
}

return inline_expr;
}

The complete program of this example is matrixclass.cc, which is
distributed together with the OpenC++ compiler. See that program for
more details. It deals with the scalar and vector products as well as simple
+ and - operators.

Write runtime support code

Writing the runtime support code is straightforward. The class Matrix is
defined in regular C++ except the metaclass declaration:

// matrix.h
const N = 3;

metaclass Matrix : MatrixClass;
class Matrix {
public:

Matrix(double);
Matrix& operator = (Matrix&);

:
double element[N * N];

};

Matrix& operator + (Matrix&, Matrix&);
Matrix& operator - (Matrix&, Matrix&);
Matrix& operator * (Matrix&, Matrix&);
Matrix& operator * (double, Matrix&);
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Note that the class Matrix is a complete C++ class. It still works if the
metaclass declaration is erased. For more details, see the sample program
matrix.cc. They must be compiled by the OpenC++ compiler.

B.2.4 Syntax Extension for the Matrix Library

Initializer

We can also implement syntax sugar for the matrix library. First of all, we
enable the following style of initialization:

Matrix r = { 0.5, -0.86, 0, 0.86, 0.5, 0, 0, 0, 1 };

This notation is analogous to initialization of arrays. In regular C++, how-
ever, an object cannot take an aggregate as its initial value. So we translate
the statement shown above by MatrixClass into this correct C++ code:

double tmp[] = { 0.5, -0.86, 0, 0.86, 0.5, 0, 0, 0, 1 };
Matrix r = tmp;

To do this translation, MatrixClass must override a member function
TranslateInitializer():

// matrixclass.cc

Ptree* MatrixClass::TranslateInitializer(Environment* env,
Ptree* init, PtreeArray& before, PtreeArray& after)

{
Ptree* sep = Ptree::First(init);
Ptree* expr = Ptree::Second(init);
if(sep->Eq(’=’) && expr->WhatIs() == PtreeBraceId){

Ptree* tmp = Ptree::GenSym();
before.Append(Ptree::Make("double %p[] = %p;\n",

tmp, expr));
return Ptree::Make("= %p", tmp);

}
else

return Class::TranslateInitializer(env, init, before,
after);

}

This member function translates the initializer of a Matrix object. For
example, it receives, as the argument init, the initializer = { 0.5, ... }
following tmp[]. If the initializer is an aggregate, this member function
translates it as we mentioned above. The temporary array is stored in
before. The Ptree objects stored in before are inserted before the variable
declaration after the translation.



APPENDIX B. REFERENCE MANUAL 130

The forall statement

The second syntax sugar we show is a new kind of loop statement. For
example, the programmer may write:

Matrix m;
:

m.forall(e){ e = 0.0; }; // ; is always necessary

e is bound to each element during the loop. The programmer may write any
statements between { and }. The loop statement above assigns 0.0 to all
the elements of the matrix m. This new loop statement should be translated
into this:

for(int i = 0; i < N; ++i){
double& e = m.element[i];
e = 0.0;

}

The OpenC++ MOP allows programmers to implement a new kind of
statement such as forall. Because the new kind of statement is regarded
as an expression in grammar, programmers can write it at any place an
expression appears. However, they have to put a semicolon (;) at the end
of the statement.

To implement this statement, first we have to register a new keyword
forall:

// matrixclass.cc

BOOL MatrixClass::Initialize()
{

RegisterNewWhileStatement("forall");
return Class::Initialize();

}

Initialize() is a member function automatically invoked at the beginning
of compilation.

We also have to define what the forall statement is translated into.
MatrixClass overrides a member function TranslateUserStatement():

Ptree* MatrixClass::TranslateUserStatement(Environment* env,
Ptree* object, Ptree* op, Ptree* keyword, Ptree* rest)

{
Ptree *tmp, *body, *index;
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Ptree::Match(rest, "[([%?]) %?]", &tmp, &body);
index = Ptree::GenSym();
return Ptree::MakeStatement(

"for(int %p = 0; %p < %s * %s; ++%p){\n"
" double& %p = %p%p element[%p];\n"
" %p }\n",
index, index, SIZE, SIZE, index,
tmp, object, op, index, TranslateStatement(env, body));

}

The forall statement is parsed so that object, op, and keyword are
bound to m . forall, respectively. rest is bound to the rest of code
(e){ e = 0.0; }. TranslateUserStatement() uses those arguments to
construct the substituted code. Note that it calls MakeStatement() instead
of Make(). This is because the constructed code is not an expression but
a statement. TranslateStatement() is called to recursively translate the
body part of the forall statement.

B.2.5 Before-Method

CLOS provides a useful mechanism called before- and after- methods. They
are special methods that are automatically executed before or after the
primary method is executed.

What the base-level program should look like

We implement before-methods in OpenC++. For simplicity, if the name
of a member function is before f(), then our implementation regards this
member function as the before-method for the member function f(). We
don’t introduce any syntax extension. For example,

metaclass Queue : BeforeClass;
class Queue {
public:

Queue(){ i = 0; }
void Put(int);
void before_Put();
int Peek();

private:
int buffer[SIZE];
int i;

};

Put() has a before-method before Put() whereas Peek() does not since
before Peek() is not defined in the class Queue.
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The before-method is automatically executed when the primary method
is called. If the programmer say:

Queue q;
:

q.Put(3);
int k = q.Peek();

The execution of q.Put(3) is preceded by that of the before-method q.before-
Put(). Since Peek() does not have a before-method, the execution of
q.Peek() is not preceded by any other function.

What the base-level program should be translated

In this extension, the class declaration does not require any change. Only
member function calls need to be translated. For example,

q.Put(3)

should be translated into:

((tmp = &q)->before_Put(), tmp->Put(3))

This expression first stores the address of q in a temporary variable tmp
and then calls before Put() and Put(). The address of q should be stored
in the temporary variable to avoid evaluating q more than once. Also, the
temporary variable must be declared in advance.

Write a meta-level program

The metaclass BeforeClass overrides TranslateMemberCall() to imple-
ment the translation mentioned above. The complete program of BeforeClass
is before.cc in the distribution package. Here, we explain some key topics
in the program.

First of all, we have to decide whether there is a before-method for a
given member function. BeforeFunction() does this work:

Ptree* BeforeClass::BeforeFunction(Ptree* name)
{

Ptree* before = Ptree::Make("before_%p", name);
if(IsMember(before) != 0)

return before;
else

return nil;
}
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In the first line, this produces the name of the before-method by Ptree::Make().
Then it calls IsMember() supplied by Class. IsMember() returns non-zero
if the class has a member that matches the given name.

The next issue is a temporary variable. We have to appropriately insert a
variable declaration to use a temporary variable. The name of the temporary
variable is obtained by calling Ptree::GenSym(). The difficulty is how to
share the temporary variable among member function calls. To do this, we
record the temporary variable in the environment. We can define a subclass
of Environment::ClientData and record the object in an environment.
Let’s define the subclass:

class TempVarName : public Environment::ClientData {
public:

TempVarName(Ptree* p) { varname = p; }
Ptree* varname;

};

A TempVarName object includes a single member varname, which is the name
of a temporary variable. We record this object in the environment when
we first declare the temporary variable. Then we use this object to check
whether a temporary variable has been already declared.

Ptree* class_name = Name();
TempVarName* tmpvar

= (TempVarName*)env->LookupClientData(this, class_name);
if(tmpvar != nil)

varname = tmpvar->varname;
else{

varname = Ptree::GenSym();
tmpvar = new TempVarName(varname);
Ptree* decl = Ptree::MakeStatement("%p* %p;",

class_name, varname);
env->InsertDeclaration(decl, this, class_name, tmpvar);

}

return Ptree::Make("((%p=%c%p)->%p(), %p->%p%p)",
varname, (op->Eq(’.’) ? ’&’ : ’ ’), object,
before_func, varname, member, arglist);

This is the core part of TranslateMemberCall() supplied by BeforeClass.
It first looks for a TempVarName object by calling LookupClientData() with
two search keys. If it is not found, a variable declaration decl is produced by
Make() and it is inserted into the translated program by InsertDeclaration().
InsertDeclaration() also records a TempVarName object for future refer-
ence.
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B.2.6 Wrapper Function

A wrapper function is useful to implement language extensions such as con-
currency. A wrapper function is generated by the compiler and it intercepts
the call of the original “wrapped” function. For example, the wrapper func-
tion may perform synchronization before executing the original function.
The original function is not invoked unless the wrapper function explicitly
calls it.

What the base-level program should be translated

We show a metaclass WrapperClass that generates wrapper functions. If
WrapperClass is specified, it generates wrapper functions for the member
functions of the class. And it translates the program so that the wrap-
per functions are invoked instead of the wrapped member functions. For
example, suppose that the program is something like this:

metaclass Point : WrapperClass;
class Point {
public:

void Move(int, int);
int x, y;

};

void Point::Move(int new_x, int new_y)
{

x = new_x; y = new_y;
}

void f()
{

Point p;
p.Move(3, 5); // call Move()

}

The compiler generates a wrapper function wrapper Move() for Move().
The call of Move() in f() is substituted by the call of the wrapper function.
For simplicity, we make the wrapper function just invoke the wrapped func-
tion Move() without doing anything else. The translated program should
be this:

class Point {
public:

void Move(int, int);
int x, y;
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public:
void wrapper_Move(int, int);

};

void Point::Move(int new_x, int new_y)
{

x = new_x; y = new_y;
}

void Point::wrapper_Move(int p1, int p2) // generated wrapper
{

// should do something here in a real example
Move(p1, p2);

}

void f()
{

Point p;
p.wrapper_Move(3, 5); // call the wrapper

}

Write a meta-level program

WrapperClass has to do three things: (1) to insert member declarations for
wrapper functions, (2) to generate the definitions of the wrapper functions,
and (3) to replace a call of a member function with a call of the wrapper func-
tion. WrapperClass overrides TranslateBody() for (1), TranslateMember-
FunctionBody() for (2), and TranslateMemberCall() for (3).

First, we show TranslateBody(). Its work is to translate the body of
a class declaration. It examines a member of the class and, if the member
is a function, it inserts the declaration of the wrapper function. To get a
member name, we use NthMemberName():

Ptree* WrapperClass::TranslateBody(Environment* env, Ptree* body)
{

Ptree* decl = Ptree::Make("public:\n");
Ptree* name;
TypeInfo t;
int i = 1;
while((name = NthMemberName(i++)) != nil){

PtreeId whatis = name->WhatIs();
if(whatis != LeafClassNameId

&& whatis != PtreeDestructorId)
if(LookupMemberType(env, name, t))

if(t.WhatIs() == FunctionType){
Ptree* mem = t.MakePtree(WrapperName(name));
decl = Ptree::Make("%p %p;\n",
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decl, mem);
}

}

return Ptree::Append(body, decl);
}

Ptree* WrapperClass::WrapperName(Ptree* name)
{

return Ptree::Make("wrapper_%p", name);
}

In the while loop, we first check that the member is not a constructor or a
destructor. If it is a constructor or a destructor, the parse tree indicated by
name is LeafClassNameId or PtreeDestructorId. Then we get the type of
the member by calling LookupMemberType(). If the member is a function,
the type is FunctionType.

After we make sure that the member is a function, we generates the
declaration of the wrapper function. We use MakePtree() to generate it.
This member function of TypeInfo makes a parse tree that represents the
type name. Suppose that a TypeInfo t is the pointer type to integer. Then
t.MakePtree() returns:

int*

We can also give a variable name to MakePtree(). For example:

t.MakePtree(Ptree::Make("i"))

returns:

int* i

Similarly, if t is a function type, we can give a function name and get a
parse tree that represents the function declaration. For example:

t.MakePtree(Ptree::Make("foo"))

returns if t is the function type that takes two integer arguments and returns
a pointer to a character:

char* foo(int, int)

If t is the pointer type to that function, the returned parse tree is:
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char* (*foo)(int, int)

Next, we mention TranslateMemberFunctionBody(). It generates the
definition of the wrapper function if the member function is not a constructor
or a destructor. The actual generation is done by MakeWrapper():

void WrapperClass::MakeWrapper(Environment* env, Ptree* name,
Ptree* wrapper_name, TypeInfo& t,
BOOL inlined)

{
TypeInfo atype;
TypeInfo rtype;
int i;
Ptree* wrapper;
Ptree* arglist = nil;

for(i = 1; t.NthArgument(i, atype); ++i){
Ptree* arg = atype.MakePtree(Ptree::Make("p%d", i));
if(i == 1)

arglist = arg;
else

arglist = Ptree::Make("%p,%p", arglist, arg);
}

t.Dereference(rtype);
Ptree* body = WrapperBody(env, name, wrapper_name, i-1, t);
Ptree* head = Ptree::Make("%p::%p(%p)",

Name(), wrapper_name, arglist);
if(rtype.WhatIs() != UndefType)

head = rtype.MakePtree(head);

if(inlined)
wrapper = Ptree::Make("inline %p{%p}\n",

head, body));
else

wrapper = Ptree::Make("%p{%p}\n", head, body));

AppendAfterToplevel(wrapper);
}

By the first for loop, this member function constructs the argument list
arglist. The name of the arguments are p1, p2, p3, and so on. To obtain
the argument type, we call NthArgument() of TypeInfo. Then we call
MakePtree() to construct each argument declaration.

The return type of the function is attached by calling MakePtree() on
the return type rtype, which is obtained by calling Dereference() on the



APPENDIX B. REFERENCE MANUAL 138

function type t. The argument passed to MakePtree() is the rest of the
function header such as X::f(int p1, char p2).

The constructed definition of the wrapper function is finally inserted
into the translated program by AppendAfterToplevel(). It inserts the
constructed parse tree just after the (translated) definition of the original
member function. This avoids unnecessary duplicated copies of the wrapper
functions. If we generate the wrapper functions when TranslateBody()
processes the class declaration, the wrapper functions would be duplicated
every time the class declaration is included by a different source file.

Finally, we show TranslateMemberCall(), which substitutes the wrap-
per function for the member function originally called. Its definition is sim-
ple. It calls the member function of the base class Class with the wrapper
function’s name instead of the original member’s name:

Ptree* WrapperClass::TranslateMemberCall(Environment* env,
Ptree* member,
Ptree* arglist)

{
return Class::TranslateMemberCall(env, WrapperName(member),

arglist);
}

Subclass of WrapperClass

The complete program of WrapperClass is found in wrapper.cc, which is
distributed together with the OpenC++ compiler. Although the wrapper
functions generated by WrapperClass do not perform anything except call-
ing the original member function, we can define a subclass of WrapperClass
to generate the wrapper functions that we need. (Note that, to make the
subclass effective, we also have to edit the metaclass declaration so that the
compiler uses the subclass.)

For example, suppose that we need a wrapper function that perform
synchronization before calling the original member function. This sort of
wrapper function is typical in concurrent programming. To implement this,
we just define a subclass SyncClass and override WrapperBody():

#include "wrapper.h"
class SyncClass : public WrapperClass {
public:

SyncClass(Ptree* d, Ptree* m) : WrapperClass(d, m) {}
Ptree* WrapperBody(Environment*, Ptree*, Ptree*, int,

TypeInfo&);
};
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WrapperBody() is a virtual function and it is called by MakeWrapper()
to construct the function body of the wrapper function. WrapperBody()
supplied by WrapperClass returns a return statement such as:

return original-function(p1, p2, ...);

So we define WrapperBody() supplied by SyncClass as shown below:

Ptree* SyncClass::WrapperBody(Environment* env, Ptree* name,
Ptree* wrapper_name, int num_of_args,
TypeInfo& ftype)

{
Ptree* ret = WrapperClass::WrapperBody(env, name, wrapper_name,

num_of_args, ftype);
return Ptree::Make("synchronize(); %p", ret);

}

This inserts synchronize(); before the return statement.
As we see above, carefully designed metaclasses can be reused as the

base class of another metaclass. Such metaclasses, that is, metaclass li-
braries, make it easier to write other metaclasses. Indeed, MatrixClass
in the matrix example should be re-implemented so that other metaclasses
such as ComplexClass can share the code for inlining with MatrixClass.
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B.3 Base-Level Language (OpenC++)

This section addresses the language specification of OpenC++. OpenC++
is identical to C++ except two extensions. To connect a base-level program
and a meta-level program, OpenC++ introduces a new kind of declaration
into C++. Also, new extended syntax is available in OpenC++ if the syntax
is defined by the meta-level program.

B.3.1 Base-level Connection to the MOP

OpenC++ provides a new syntax for metaclass declaration. This declara-
tion form is the only connection between the base level and the meta level.
Although the default metaclass is Class, programmers can change it by
using this declaration form:

• metaclass class-name : metaclass-name [ ( meta-arguments ) ];2

This declares the metaclass for a class. It must appear before the class
is defined. meta-arguments is a sequence of identifiers, type names,
literals, and C++ expressions surrounded by (). The elements must
be separated by commas. The identifiers appearing in meta-arguments
do not have to be declared in advance. What should be placed at meta-
arguments is specified by the metaclass.

The code shown below is an example of metaclass declaration:

metaclass Point : PersistentClass;
class Point {
public:

int x, y;
};

The metaclass for Point is PersistentClass.

B.3.2 Syntax Extensions

The extended syntax described here is effective if programmers define it
by the MOP. By default, it causes a syntax error. To make it available,
programmers must register a new keyword, which is used in one of the
following forms:

2[ ] means an optional field.
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• Type Modifier keyword [ ( function-arguments ) ]

The keyword registered to lead a type modifier may appear in front
of type names, the new operator, or class declarations. For example,
these statements are valid:

distribute class Dictionary { ... };

remote Point* p = remote(athos) new Point;

Here, distribute and remote are registered keywords.

• Access Specifier keyword [ ( function-arguments ) ] :

Programmers may define a keyword as a member-access specifier. It
appears at the same place that the built-in access specifier such as
public can appears. For example, if after is a registered keyword,
then programmers may write:

class Window {
public:

void Move();
after:

void Move() { ... } // after method
};

• While-style Statement
pointer -> keyword ( expression ){ statements }
object . keyword ( expression ){ statements }
class-name::keyword ( expression ){ statements }

A registered keyword may lead something like the while statement. In
the grammar, that is not a statement but an expression. It can appear
at any place where C++ expressions appear. expression is any C++
expression. It may be empty or separated by commas like function-call
arguments. Here is an example of the while-style statement:

Matrix m2;
m2.forall(e){

e = 0;
};

Note the last semicolon “;”. It is needed because the forall statement
is an “expressions” in the grammar.

A registered keyword can also lead other styles of statements.
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• For-style Statement
pointer -> keyword ( expr ; expr ; expr ){ statements }
object . keyword ( expr ; expr ; expr ){ statements }
class-name::keyword ( expr ; expr ; expr ){ statements }

The for-style statement takes three expressions like the for statement.
Except that, it is the same as the while-style statement.

• Closure Statement
pointer -> keyword ( arg-declaration-list ){ statements }
object . keyword ( arg-declaration-list ){ statements }
class-name::keyword ( arg-declaration-list ){ statements }

The closure statement takes an argument declaration list instead of an
expression. That is the only difference from the while-style statement.
For example, programmers may write something like this:

ButtonWidget b;
b.press(int x, int y){

printf("pressed at (%d, %d)\n", x, y);
};

B.3.3 Loosened Grammar

Besides extended syntax, OpenC++’s grammar is somewhat loosened as
compared with C++’s grammar. For example, the next code is semantically
wrong in C++:

Point p = { 1, 3, 5 };

The C++ compiler will report that p cannot be initialized by “{ 1, 3, 5 }”.
Such an aggregate can be used only to initialize an array. The OpenC++
compiler simply accepts such a semantically-wrong code. It ignores seman-
tical correctness expecting that the code will be translated into valid C++
code.
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B.4 Metaobject Protocol (MOP)

At the meta level, the (base-level) programs are represented by objects of
a few predefined classes (and their subclasses that programmers define).
These objects are called metaobjects because they are meta representation
of the programs. Source-to-source translation from OpenC++ to C++ is
implemented by manipulating those metaobjects.

This section shows details of such metaobjects. They reflect various
aspects of programs that are not accessible in C++. Although most of
metaobjects provide means of introspection, some metaobjects represent a
behavioral aspect of the program and enables to control source-to-source
translation of the program. Here is the list of metaobjects:

• Ptree metaobjects:
They represent a parse tree of the program. The parse tree is imple-
mented as a nested-linked list.

• TypeInfo metaobjects:
They represent types that appear in the program. The types include
derived types such as pointer types and reference types as well as
built-in types and class types.

• Environment metaobjects:
They represent bindings between names and types. Since this MOP
is a compile-time MOP, the runtime values bound to names are not
available at the meta level.

• Class metaobjects:
As well as they represent class definitions, they control source-to-
source translation of the program. Programmers may define subclasses
of Class in order to tailor the translation.

Distinguishing TypeInfo metaobjects and Class metaobjects might look
like wrong design. But this distinction is needed to handle derived types.
TypeInfo metaobjects were introduced to deal with derived types and fun-
damental types by using the same kind of metaobjects.

B.4.1 Representation of Program Text

Program text is accessible at the meta level in the form of parse tree. The
parse tree is represented by a Ptree metaobject. It is implemented as a
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Table B.1: static member functions on Ptree

- Ptree* First(Ptree* lst) returns the first element of lst.

- Ptree* Rest(Ptree* lst) returns the rest of lst except the first element,
that is, the cdr field of lst.

- Ptree* Second(Ptree* lst) returns the second element of lst.

- Ptree* Third(Ptree* lst) returns the third element of lst.

- Ptree* Nth(Ptree* lst, int n) returns the n-th element of lst.
Nth(lst, 0) is equivalent to First(lst).

- Ptree* Last(Ptree* lst) returns the last cons cell, which is a list con-
taining only the last element of lst.

- Ptree* ListTail(Ptree* lst, int k) returns a sublist of lst obtained
by omitting the first k elements. ListTail(lst, 1) is equivalent to
Rest(lst).

- int Length(Ptree* lst) returns the number of the elements of lst.

- Ptree* Cons(Ptree* a, Ptree* b) returns a cons cell whose car field is
a and whose cdr is b.

- Ptree* List(Ptree* e1, Ptree* e2, ...) returns a list whose ele-
ments are e1, e2, ... List() returns a null list [[ ]], which is denoted by
nil or NIL.

- Ptree* Append(Ptree* lst1, Ptree* lst2) concatenates lst1 and
lst2. It returns the resulting list.

- Ptree* CopyList(Ptree* lst) returns a new list whose elements are the
same as lst’s.

- BOOL Eq(Ptree* lst, char x)
- BOOL Eq(Ptree* lst, char* x)
- BOOL Eq(Ptree* lst, Ptree* x) returns TRUE if lst and x are equal.



APPENDIX B. REFERENCE MANUAL 145

nested linked-list of lexical tokens — the S expressions in the Lisp terminol-
ogy. For example, this piece of code:

int a = b + c * 2;

is parsed into:

[[[[int]] [[a = [[b + [[c * 2]]]]]] ;]]

Here, [[ ]] denotes a linked list. Note that operators such as = and + make
sublists. The sublists and their elements (that is, lexical tokens such as a
and =) are also represented by Ptree metaobjects.

Basic Operations

To manipulate linked lists, the MOP provides some static member func-
tions on Ptree, which are familiar to Lisp programmers. Table B.1 shows
those static member functions. In addition, the following member func-
tions are available on Ptree metaobjects:

• BOOL IsLeaf()
This returns TRUE if the metaobject indicates a lexical token.

• void Display()
This prints the metaobject on the console for debugging. Sublists are sur-
rounded by [ and ].

• int Write(ostream& out)
This writes the metaobject to the file specified by out. Unlike Display(),
sublists are not surrounded by [ and ]. This member function returns the
number of written lines.

• ostream& operator << (ostream& s, Ptree* p)
The operator << can be used to write a Ptree object to an output stream.
It is equivalent to Write() in terms of the result.

• PtreeId WhatIs()
This returns an enum constant that corresponds to the syntactical meaning
of the code that the metaobject represents. For example, the metaobject
represents a class name, this member function returns LeafClassNameId.
If it represents a if statement, PtreeIfStatementId is returned. The re-
turned constants are listed in Table B.2.
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Table B.2: enum constants returned by Ptree::WhatIs()

• Toplevel declarations
PtreeDeclarationId, PtreeFunctionId, PtreeTemplateDeclId,
PtreeMetaclassId, PtreeTypedefId, PtreeLinkageId

• Statements
PtreeExprStatementId, PtreeLabelId, PtreeCaseLabelId,
PtreeIfStatementId, PtreeSwitchStatementId,
PtreeWhileStatementId, PtreeDoStatementId,
PtreeForStatementId, PtreeBreakStatementId,
PtreeContinueStatementId, PtreeReturnStatementId,
PtreeGotoStatementId

• Expressions
PtreeInfixExprId, PtreeCondExprId (conditional),
PtreeCastId, PtreeUnaryExprId, PtreePostfixExprId,
PtreeMemberAccessExprId, PtreeSizeofExprId,
PtreeAssignExprId, PtreeSizeofTypeId, PtreePtrToMemExprId
(pointer to member, ->* or .*), PtreeNewId, PtreeDeleteId,
PtreeFstyleCastId (function-style cast), PtreeUserStatementId,
PtreeStaticUserStatementId, PtreeActualArgsId

• Class Declarations
PtreeEnumId, PtreeClassId

• Groups
PtreeParenId (parenthesis), PtreeBracketId, PtreeBraceId,
PtreeAngleId,

• Leaf Nodes
LeafTypeNameId, LeafClassNameId, LeafPointerId,
LeafReferenceId, LeafConstValueId, LeafNameId,
LeafReservedId, LeafThisId, LeafReservedModifierId,

• Others
PtreeTemplateNameId, PtreeQClassNameId (qualified class name),
PtreeQnameId (qualified name), PtreePtrToMemberId (pointer to
member, ::*), PtreeCvQualifierId (const or volatile),
PtreeDestructorId, PtreeOperatorFuncId, PtreeAccessCtrlId,
PtreeUserKeywordId
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The parse tree is basically a long list of the lexical tokens that appear in
the program although some of them are grouped into sublists. The order of
the elements of that list is the same as the order in which the lexical tokens
appear. But if some fields such as the type field are omitted in the program,
then nil lists [[]] are inserted at that place. For example, if the return type
of a function declaration is omitted as follows:

main(int argc, char** argv){ }

then a nil list is inserted at the head of the list:

[[[[]] main [[( [[[[int]] [[argc]]]] , [[[[char]] [[* * argv]]]]]] )]] [[{ [[]] }]]]]

Since the function body is also omitted, a nil list is inserted between { and
}.

Construction

Programmers can make Ptree metaobjects. Because the MOP provides a
conservative garbage collector, they don’t need to care about deallocation
of the metaobjects. The next static member functions on Ptree are used
to make a Ptree metaobjects.

• Ptree* Make(char* format, [Ptree* sublist, ...])
This makes a Ptree metaobject according to the format. The format is
a null-terminated string. All occurrences of %c (character), %d (integer),
%s (character string), and %p (Ptree) in the format are replaced with the
values following the format. %% in the format is replaced with %.

• Ptree* MakeStatement(char* format, [Ptree* sublist, ...])
This is identical to Make() except the generated Ptree metaobject represents
not an expression but a statement.

• Ptree* GenSym()
This generates a unique symbol name (aka identifier) and returns it. The
returned symbol name is used as the name of a temporary variable, for
example.

The Ptree metaobject returned by Make() and MakeStatement() is not
a real parse tree.3 It is just a unparsed chunk of characters. Although

3At least, for the time being.
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programmers can use Ptree metaobjects generated by Make() as they use
other Ptree metaobjects, the structure of those metaobjects does not reflect
the code they represent.

Using Make(), programmers can easily generate any piece of code to sub-
stitute for part of the original source code. For example, suppose array name
is [[xpos]] and offset is 3. The following function call:

Ptree::Make("%p[%d]", array_name, offset)

makes a Ptree metaobject that represents:

xpos[3]

%p simply expand a given Ptree metaobject as a character string. Thus
programmers may write something like:

Ptree::Make("char* GetName(){ return \"%p\"; }",
array_name);

Note that a double quote " must be escaped by a backslash \ in a C++
string. \"%p\" makes a string literal. The function call above generates the
code below:

char* GetName(){ return "xpos"; }

Although Make() and MakeStatement() follow the old printf() style,
programmers can also use a more convenient style similar to Lisp’s backquote
notation. For example,

Ptree::Make("%p[%d]", array_name, offset)

The expression above can be rewritten using qMake() as follows:

Ptree::qMake("‘array_name‘[‘offset‘]")

Note that the “backqouted” C++ expressions array name and offset are
directly embedded in the C++ string. Their occurrence are replaced with
the value of the expression. This replacement cannot be implemented in
regular C++. It is implemented by the metaclass for Ptree.

• Ptree* qMake(char* text)
This makes a Ptree metaobject that represents the text. Any C++ expres-
sion surrouned by backquotes ‘ can appear in text. Its occurence is replaced
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with the value denoted by the expression. The type of the expression must
be Ptree*, int, or char*.

• Ptree* qMakeStatement(char* text)
This is identical to qMake() except the generated Ptree metaobject repre-
sents not an expression but a statement.

Pattern Matching

The MOP provides a static member function on Ptree metaobjects for
pattern matching.

• BOOL Match(Ptree* list, char* pattern, [Ptree** sublist, ...])
This compares the pattern and list. If they match, this function returns
TRUE and binds the sublists to appropriate sublists of the list, as specified
by the pattern. Note that the type of sublist is pointer to Ptree*.

For example, the function Match() is used as follows:

if(Ptree::Match(expr, "[%? + %?]", &lexpr, &rexpr))
puts("this is addition.");

else if(Ptree::Match(expr, "[%? - %?]", &lexpr, &rexpr))
puts("this is subtraction.");

else
puts("unknown");

The pattern [%? + %?] matches a linked list that consists of three elements
if the second one is +. If an expression expr matches the pattern, lexpr
gets bound to the first element of expr and rexpr gets bound to the third
element.

The pattern is a null-terminated string. Since Match() does not un-
derstand the C++ grammar, lexical tokens appearing in the pattern must
be separated by a white space. For example, a pattern a+b is regarded as a
single token. The pattern is constructed by these rules:

1. A word (characters terminated by a white space) is a pattern that
matches a lexical token.

2. %[, %], and %% are patterns that match [, ], and %.

3. [] is a pattern that matches a null list (nil).

4. [pat1 pat2 ... ] is a pattern that matches a list of pat1, pat2, ...
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5. %* is a pattern that matches any token or list.

6. %? is a pattern that matches any token or list. The matched token or
list is bound to sublist.

7. % is a pattern that matches the rest of the list (the cdr part).

8. %r is a pattern that matches the rest of the list. The matched list is
bound to sublist.

Reifying Program Text

If a Ptree metaobject represents a literal such as an integer constant and a
string literal, we can obtain the value denoted by the literal.

• BOOL Reify(unsigned int& value)
This returns TRUE if the metaobject represents an integer constant. The
denoted value is stored in value. Note that the denoted value is always a
positive number because a negative number such as -4 generates two destinct
tokens such as - and 4.

• BOOL Reify(char*& string)
This returns TRUE if the metaobject represents a string literal. A string
literal is a sequence of character surrounded by double quotes ". The denoted
null-terminated string is stored in string. The denoted string does not
include the double quotes at the both ends. Also, the escape sequences are
not expanded.

Convenience Classes PtreeIter and PtreeArray

The MOP provides a few convenience classes to help programmers to deal
with Ptree objects. One of them is the class PtreeIter. It is useful to
perform iteration on a list of Ptree objects. Suppose that expr is a list:

PtreeIter next(expr);
Ptree* p;
while((p = next()) != nil)

compute on p ;

Each element of expr is bound to p one at a time. The operator () on
PtreeIter objects returns the next element. This is the same as calling a
member function Pop(). If the reader likes the for-loop style, she can also
say:
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for(PtreeIter i = expr; !i.Empty(); i++)
compute on *i ;

Although this interface is slightly slow, it distinguishes the end of the list
and a nil element.

Another class PtreeArray is for an unbounded array of Ptree objects.
It is used as follows (suppose that expr is a Ptree object):

PtreeArray a; // allocate an array
a.Append(expr); // append expr to the end of the array
Ptree* p = a[0]; // get the first element
Ptree* p2 = a.Ref(0); // same as a[0]
int n = a.Number(); // get the number of elements
Ptree* lst = a.All(); // get a list of all the elements

B.4.2 Representation of Types

TypeInfo metaobjects represent types. Because C++ deals with derived
types such as pointer types and array types, Class metaobjects are not
used for primary representation of types. TypeInfo metaobjects do not treat
typedefed types as independent types. They are treated just as aliases of
the original types.

The followings are member functions on TypeInfo metaobjects:

• TypeInfoId WhatIs()
This returns an enum constant that corresponds to the kind of the type:
BuiltInType, ClassType (including class, struct, and union), EnumType,
TemplateType, PointerType, ReferenceType, PointerToMemberType, ArrayType,
FunctionType, TemplateFunctionType, or UndefType (the type is unknown).

• Ptree* FullTypeName()
This returns the full name of the type if the type is a built-in type, a class
type, an enum type, or a template class type. Otherwise, this returns nil.
For example, if the type is a nested class Y defined within a class X, this
returns X::Y.

• uint IsBuiltInType()
This returns a bit field that represents what the built-in type is. If the
type is not a built-in type, it simply returns 0 (FALSE). To test the bit
field, these masks are available: CharType, IntType, ShortType, LongType,
SignedType, UnsignedType, FloatType, DoubleType, and VoidType. For



APPENDIX B. REFERENCE MANUAL 152

example, bit field & LongType is TRUE if the type is long, unsigned long,
or signed long.

• Class* ClassMetaobject()
This returns a Class metaobject that represent the type. If the type is not
a class type, it simply returns nil.

• void Dereference(TypeInfo& t)
This returns the dereferenced type in t. For example, if the type is int**,
then Dereference() on the type returns a TypeInfo metaobject for int*.
If a function type is dereferenced, t becomes its return type. If dereferencing
is not possible, the Undef type is returned in t.

• void Dereference()
This is identical to Dereference(TypeInfo&) except that the TypeInfo
metaobject itself is changed to represent the dereferenced type.

• BOOL NthArgument(int nth, TypeInfo& t)
If the type is FunctionType, this returns the type of the nth (≥ 0) argument
at t. If the type is not FunctionType or the nth argument does not exist,
this function returns FALSE. If the nth argument is ... (ellipses), then the
returned type is UndefType.

• Ptree* MakePtree(Ptree* var name = nil)
This makes a Ptree metaobject that represents the type name. For example,
if the type is pointer to integer, this returns [[int* var name]]. var name
may be nil.

B.4.3 Representation of Environment

Environment metaobjects represent bindings between names and types. If
the name denotes a variable, it is bound to the type of that variable. Other-
wise, if the name denotes a type, it is bound to the type itself. Programmers
can look up names by these member functions on Environment metaobjects:

• BOOL Lookup(Ptree* name, BOOL& is type name, TypeInfo& t)
This looks up the given name into the environment and returns TRUE if found.
The type of name is returned at t. If the name is a type name, is type name
is changed to TRUE. If it is a variable name, is type name is FALSE.
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• BOOL Lookup(Ptree* name, TypeInfo& t)
This is an alias of Lookup(Ptree*, BOOL&, TypeInfo&) shown above.

• Class* LookupClassMetaobject(Ptree* name)
This looks up the given name and returns a Class metaobject of the type.
The name may be a variable name or a type name. If the name is not found,
this function returns nil.

Environment metaobjects are also useful to store client data. Program-
mers can record client data in any Environment metaobject and look it up
later. The client data must be a subclass of Environment::ClientData.
The following member functions are for manipulating the client data:

• BOOL AddClientData(Class* metaobject, Ptree* key,
Environment::ClientData* data)

This records data in the environment. metaobject and key are used to
retrieve data later. If another data is recorded with the same pair of
metaobject and key, this returns FALSE.

• Environment::ClientData* LookupClientData(Class* metaobject,
Ptree* key)

This returns the client data recorded with metaobject and key. If the data
is not found, this returns nil.

• BOOL DeleteClientData(Environment::ClientData* data)
This deallocates data recorded in the environment. If data is not found,
this returns FALSE. (Note that data is automatically deallocated when the
environment is deallocated.)

Environment metaobjects are also used to insert declarations in the
translated program. These are member functions for that purpose:

• void InsertDeclaration(Ptree* decl)
This inserts the given code decl at the beginning of the function body that
is currently processed.

• BOOL InsertDeclaration(Ptree* decl, Class* metaobject,
Ptree* key, Environment::ClientData* data)

This inserts the given code decl at the beginning of the function body. The
difference from the function above is that it also records the client data in the
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outermost environment of the function body. It guarantees that the recorded
data last while the function body is translated. Note that AddClientData()
records the client data in the immediate environment (aka the innermost
block). The client data is not visible out of that environment.

To insert code in the translated program, also see InsertBeforeToplevel()
and AppendAfterToplevel() in Section B.4.4.

B.4.4 Class Metaobjects

Class metaobjects play the key role of the MOP. They represent class defi-
nitions and also control source-to-source translation of the program. Their
default class is Class, but programmers may define a subclass of Class to
control the source-code translation.

The class of a metaobject is selected by the metaclass declaration at the
base level. If the metaclass for Point is PersistentClass at the base level,
then the class metaobject for Point is an instance of PersistentClass.
This semantics is natural because a metaclass means the class of a class.

Selecting a Metaclass

Base-level programmers may specify a metaclass in a way other than the
metaclass declaration. The exact algorithm to select a metaclass (that is,
the class of a class metaobject) is as shown below:

1. The metaclass specified by the metaclass declaration.

2. The metaclass specified by the keyword attached to the class decla-
ration if exists (See RegisterMetaclass() in Section B.4.4 for more
details).

3. Or else, the metaclass for the base classes. If the metaclass of each
base class is different, an error is caused.

4. Otherwise, the default Class is selected.

If both the metaclass declaration and the keyword exist and they specify
different metaclasses, then an error is caused.
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Constructor

Class metaobjects may receive meta arguments from the base level when
they are initialized. The constructor is responsible to deal with the meta
arguments. By default, the meta arguments are simply ignored. Here is the
prototype of the constructor:

• Class(Ptree* definition, Ptree* meta args)
This constructor initializes the data members. definition is the whole
piece of code of the class declaration. If meta arguments are not given,
meta args is nil.

Protocol for Introspection

Since a class metaobject is the meta representation of a class, programmers
can access details of the class definition through the class metaobject. The
followings are member functions on class metaobjects. The subclasses of
Class cannot override them.

• Ptree* Name()
This returns the name field of the class declaration.

• Ptree* BaseClasses()
This returns the base-classes field of the class declaration. For example, if
the class declaration is:

class C : public A, private B { ... };

Then, BaseClasses() returns:

[[: [[public A]] , [[private B]]]]

• Ptree* Members()
This returns the body of the class declaration. It is a list of member decla-
rations. It does not include { and }.

• Ptree* Definition()
This returns the whole of the class declaration. It is the Ptree metaobject
passed to the constructor as definition.

• char* MetaclassName()
This returns the name of the metaclass.
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• Class* NthBaseClass(Environment* env, int n)
This returns the n-th base class. n must be greater or equal to zero.

• Ptree* NthMemberName(int n)
This returns the name of the n-th member (including data members and
member functions). It returns nil if n-th member does not exist. n must
be greater or equal to zero.

• int IsMember(Ptree* name)
This returns -1 if name is not a member of the class. Otherwise, it returns
where the member is. IsMember(NthMemberName(n)) is equal to n.

• BOOL LookupMemberType(Environment* env, Ptree* name,
TypeInfo& t)

This looks up the type of the member specified by name. The found type is
stored in t. The function returns FALSE if the member is not found.

Protocol for Translation

Class metaobjects controls source-to-source translation of the program. Ex-
pressions involving a class are translated from OpenC++ to C++ by a
member function on the class metaobject.4 Programmers may define a sub-
class of Class to override such a member function to tailor the translation.

The effective class metaobject that is actually responsible for the transla-
tion is the static type of the object involved by the expression. For example,
suppose:

class Point { public: int x, y; };
class ColoredPoint : public Point { public: int color; };

:
Point* p = new ColoredPoint;

Then, an expression for data member read, p->x, is translated by the class
metaobject for Point because the variable p is a pointer to not ColoredPoint
but Point. Although this might seem wrong design, it is a right way since
only static type analysis is available for compile-time MOPs.

4In the current version, the translated code is not recursively translated again. So the
metaobjects have to translate code from OpenC++ to C++ rather than from OpenC++
to (less-extended) OpenC++. This limitation will be fixed in future.
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The virtual member functions on Class shown below control source-
to-source translation on each kind of expression. They take an environment
and an expression, then returns a translated expression. All of them are
overridable.

• Ptree* TranslateClassName(Environment* env, Ptree* keyword,
Ptree* name)

This translates the name of the class. All occurences of the class name
in the program are replaced with the returned name. keyword specifies a
user-defined keyword (type modifier) attached to the class name. If none,
keyword is nil.

— Default implementation by Class
This does not change the name but it just returns name. If keyword is not
nil, it causes an error.

• Ptree* TranslateSelf(Environment* env)
This translates the declaration of the class. The declaration is not passed
as an argument because it is available by Definition().

— Default implementation by Class
This follows a layered subprotocol. It calls TranslateClassName(),
TranslateBaseClasses(), and TranslateBody() so that class names in
the declaration are correctly renamed.

• Ptree* TranslateBaseClasses(Environment* env, Ptree* bases)
This translates the base-classes field of class declaration.

— Default implementation by Class
This calls TranslateClassName() on each base class. A subclass of Class
can call this with a modified bases. For example, it may append another
base class to bases.

• Ptree* TranslateBody(Environment* env, Ptree* body)
This translates the body of class declaration. body has been already trans-
lated except user-defined access specifiers so that all the class names are
renamed. This function can only append member functions written in C++
to body. The class names appearing in the appended member functions must
be already renamed. This function also has to properly process user-defined
access specifiers.

— Default implementation by Class
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This returns body.

• Ptree* TranslateMemberFunctionBody(Environment* env,
Ptree* name, BOOL inlined, Ptree* body)

This translates the body of a member function. name is the name of the
member function. inlined is TRUE if the member function is inlined. body
is statements surrounded by {}. The braces are not included by body. env
contains the member name and the argument names.

— Default implementation by Class
This translates body by calling TranslateStatement() on each statement.

• Ptree* TranslateInitializer(Environment* env, Ptree* expr,
PtreeArray& before, PtreeArray& after)

This translates a variable initializer expr, which would be “[[= expression]]”
or “[[( [[expression]] )]]”. The two forms correspond to C++’s two different
notations for initialization. For example:

complex z(2.3, 4.0);
complex z = 0.0;

The Ptree objects stored in before and after are inserted before and after
the declaration including the variable initializer. This is useful to implement,
for example, a translation from

complex z = {2.3, 4.0};

into:

static double tmp[] = {2.3, 4.0};
complex z(tmp);

To store a Ptree object in an PtreeArray object, Append(Ptree* list)
on PtreeArray is available.

— Default implementation by Class
This translates expr by calling TranslateExpression() on the initializing
parameter (the second element of expr) and returns the result.

• Ptree* TranslateAssign(Environment* env, Ptree* object,
Ptree* assign op, Ptree* expr)

This translates an assignment expression such as = and +=. object is an
instance of the class, which expr is assigned to. assign op is an assignment
operator. object and expr have not been translated yet.
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— Default implementation by Class
This calls TranslateExpression() on object and expr and returns the
translated expression.

• Ptree* TranslateSubscript(Environment* env, Ptree* object,
Ptree* index)

This translates a subscript expression (array access). object is an instance
of the class, which the operator [] denoted by index is applied to. index is
a list “[[[ expression ]]]”. object and expr have not been translated yet.

— Default implementation by Class
This calls TranslateExpression() on object and index and returns the
translated expression.

• Ptree* TranslateFunctionCall(Environment* env,
Ptree* object, Ptree* args)

This translates a function call expression on object. Note that it is not for
translating a member function call. It is invoked to translate an application
of the the () operator. object is an instance of the class. object and args
have not been translated yet.

— Default implementation by Class
This calls TranslateExpression() on object and args and returns the
translated expression.

• Ptree* TranslatePostfix(Environment* env, Ptree* object,
Ptree* post op)

This translates a postfix increment or decrement expression (++ or --).
object is an instance of the class, which the operator post op is applied to.
object has not been translated yet.

— Default implementation by Class
This calls TranslateExpression() on object and returns the translated
expression.

• Ptree* TranslateUnary(Environment* env, Ptree* unary op,
Ptree* object)

This translates a unary expression. unary op is the operator, which are
either *, &, +, -, !, ~, ++, or --. sizeof is not included. object is an
instance of the class, which the operator is applied to. object has not been
translated yet.
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— Default implementation by Class
This calls TranslateExpression() on object and returns the translated
expression.

• Ptree* TranslateBinary(Environment* env, Ptree* lexpr,
Ptree* binary op, Ptree* rexpr)

This translates a binary expression. binary op is the operator such as *, +,
<<, ==, |, &&, and , (comma). lexpr and rexpr are the left-side expression
and the right-side expression. They have not been translated yet. The type
of rexpr is the class.

— Default implementation by Class
This calls TranslateExpression() on lexpr and rexpr and returns the
translated expression.

• Ptree* TranslateNew(Environment* env, Ptree* header,
Ptree* new op, Ptree* placement,
Ptree* type name, Ptree* arglist)

This translates a new expression. header is a user-defined keyword (type
modifier), :: (if the expression is ::new), or nil. new op denotes the lexical
token new. type name may include an array size surrounded by [ ]. arglist
is arguments to the constructor. It includes parentheses (). placement,
tname, and arglist have not been translated yet.

— Default implementation by Class
This calls TranslateExpression() on placement and arglist, and
TranslateNewType() on type name. Then it returns the translated expres-
sion.

• Ptree* TranslateMemberRead(Environment* env, Ptree* object,
Ptree* op, Ptree* member)

This translates a member read expression on the object. The operator op
is . (dot) or ->. member specifies the member name. object has not been
translated yet.

— Default implementation by Class
This calls TranslateExpression() on the object and returns the trans-
lated expression.

• Ptree* TranslateMemberRead(Environment* env, Ptree* member)
This translates a member read expression on the this object.
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— Default implementation by Class
This returns member.

• Ptree* TranslateMemberWrite(Environment* env, Ptree* object,
Ptree* op, Ptree* member, Ptree* assign op, Ptree* expr)

This translates a member write expression on the object. The operator op
is . (dot) or ->. member specifies the member name. assign op is an assign
operator such as = and +=. expr specifies the right-hand expression of the
assign operator. object and expr have not been translated yet.

— Default implementation by Class
This calls TranslateExpression() on object and expr and returns the
translated expression.

• Ptree* TranslateMemberWrite(Environment* env, Ptree* member,
Ptree* assign op, Ptree* expr)

This translates a member write expression on the this object. member
specifies the member name. assign op is an assign operator such as = and
+=. expr specifies the right-hand expression of the assign operator. expr
has not been translated yet.

— Default implementation by Class
This calls TranslateExpression() on expr and returns the translated ex-
pression.

• Ptree* TranslateMemberCall(Environment* env, Ptree* object,
Ptree* op, Ptree* member, Ptree* arglist)

This translates a member function call on the object. The operator op is
. (dot) or ->. member specifies the member name. arglist is arguments
to the function. It includes parentheses (). object and arglist have not
been translated yet.

— Default implementation by Class
This calls TranslateExpression() on object, and TranslateArgumentList()
on arglist. Then it returns the translated expression.

• Ptree* TranslateMemberCall(Environment* env, Ptree* member,
Ptree* arglist)

This translates a member function call on the this object. member speci-
fies the member name. arglist is arguments to the function. It includes
parentheses (). arglist has not been translated yet.
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— Default implementation by Class
This calls TranslateArgumentList() on arglist and returns the trans-
lated expression.

• Ptree* TranslateUserStatement(Environment* env, Ptree* object,
Ptree* op, Ptree* keyword, Ptree* rest)

This translates a user-defined statement, which is a while-style, for-style, or
closure statement. The first three elements of the statement are specified by
object, op, and keyword. The rest of the statement, the () part and the
[ ] part, is specified by rest.

— Default implementation by Class
This causes an error and returns nil.

• Ptree* TranslateStaticUserStatement(Environment* env,
Ptree* keyword, Ptree* rest)

This translates a user-defined statement beginning with a class name. This
is named after that the syntax is similar to one for static member function
calls. The meaning of the arguments is the same as that of
TranslateUserStatement().

The MOP does not allow programmers to customize array access or
pointer operations. Suppose that p is a pointer to a class A. Then the
class metaobject for A cannot translate expressions such as *p or p[3].
This design decision is based on C++’s one. For example, C++’s operator
overloading on [ ] does not change the meaning of array access. It changes
the meaning of the operator [ ] applied to not an array of objects but an
object.

If the MOP allows programmers to customize array access and pointer
operations, they could implement an inconsistent extension. For example,
they want to translate an expression p[2] into p->get(2), where p is a
pointer to a class X. Then, what should this expression *(p + 2) be trans-
lated into? Should the MOP regard it as an array access or a pointer
dereference? Because C++ provides strong pointer arithmetic, designing
an interface to consistently customize array access and pointer operations is
difficult.

Protocol for Initialization and Finalization

The MOP provides functions to initialize and finalize class metaobjects.
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• static BOOL Initialize()
This is called only once on each metaclass right after the compiler starts.
It returns TRUE if the initialization succeeds. The subclasses of Class may
define their own Initialize() but they have to call their base classes’
Initialize(). This function is not overridable.

— Default implementation by Class
This does nothing except returning TRUE.

• virtual Ptree* Finalize()
This is called on each class metaobject after all the translation is finished.
The returned Ptree object is inserted at the end of the translated source
file.

— Default implementation by Class
This returns nil.

Protocol for Registering Keywords

To make user-defined keywords available at the base level, programmers
must register the keywords by the static member functions on Class shown
below. Those member functions are called within Initialize() in Sec-
tion B.4.4.

• void RegisterNewModifier(char* keyword)
This registers keyword as a new type modifier.

• void RegisterNewAccessSpecifier(char* keyword)
This registers keyword as a new access specifier.

• void RegisterNewWhileStatement(char* keyword)
This registers keyword as a new while statement.

• void RegisterNewForStatement(char* keyword)
This registers keyword as a new for statement.

• void RegisterNewClosureStatement(char* keyword)
This registers keyword as a new closure statement.

• void RegisterMetaclass(char* keyword, char* metaclass)
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This registers keyword as a new type modifier and associates it with metaclass.
If this keyword appears in front of a class declaration, then metaclass is
selected for the declared class. See also Section B.4.4.

Service Functions

These are also static member functions on Class:

• Ptree* TranslateNewType(Environment* env, Ptree* type name)
This translates the type name field of new expressions.

• Ptree* TranslateArgumentList(Environment* env, Ptree* arglist)
This translates an argument list.

• Ptree* TranslateIndex(Environment* env, Ptree* index)
This translates the index field of subscript expressions.

• Ptree* TranslateExpression(Environment* env, Ptree* expr)
This translates an expression.

• Ptree* TranslateExpression(Environment* env,
Ptree* expr, TypeInfo& t)

This translates an expression and stores its type in t.

• Ptree* TranslateStatement(Environment* env, Ptree* expr)
This translates a statement, including a block statement surrounded by {}.

The next two member functions insert given code into the translated
source code. As for insertion, also see InsertDeclaration() in Section B.4.3.

• void InsertBeforeToplevel(Ptree* list)
This inserts list before the toplevel declaration, such as function defini-
tions, that are currently translated.

• void AppendAfterToplevel(Ptree* list)
This appends list after the toplevel declaration, such as function defini-
tions, that are currently translated.
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Figure B.2: Instance-of Relationship

Template Class

Metaclasses for template classes must be TemplateClass or its subclass
programmers define. TemplateClass is a subclass of Class and it defines
the following member functions for introspection:

• Ptree* TemplateDefinition()
This returns the whole definition of the template, including the keyword
template and the template arguments.

• Ptree* TemplateArguments()
This returns the template argument.

Metaclass for Class

Since OpenC++ is a self-reflective language, the meta-level programs are
also in OpenC++. They must be compiled by the OpenC++ compiler.
Because of this self-reflection, metaclasses also have their metaclasses. The
metaclass for Class and its subclasses must be Metaclass. However, pro-
grammers do not have to explicitly declare the metaclass for their meta-
classes because the subclasses of Class inherit the metaclass from Class.

Metaclass makes it easy to define a subclass of Class. It automatically
inserts the definition of MetaclassName() of that subclass and also generates
house-keeping code internally used by the compiler.

Since Metaclass is a subclass of Class, its metaclass is Metaclass itself.
This relationship is illustrated in Figure B.2.

B.4.5 Error Message

The following functions reports an error that occurs during the source-to-
source translation.
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• void ErrorMessage(char* message, Ptree* what = nil,
Ptree* where = nil)

This displays an error message “message "what" in where”.

• void WarningMessage(char* message, Ptree* what = nil,
Ptree* where = nil)

This displays a waning message “message "what" in where”.

B.4.6 C++ Preprocessing

The OpenC++ programs are first preprocessed by the C++ preprocessor.
During processing, the macro opencxx is predefined.
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B.5 Command Reference

NAME
occ — the Open C++ compiler

SYNOPSIS
occ [-l] [-s] [-v] [-c] [-E] [-Iinclude directory]

[-Dname[=def]] [-- C++ compiler options] source file

DESCRIPTION
occ compiles an OpenC++ program into an object file. It first invokes
the C++ preprocessor and generates a .occ file, then translates it into
a .ii file according to meta-level code. The .ii file is compiled by the
back-end C++ compiler, and finally an a.out file is produced. If occ
is run with the -c option, it generates a .o file but suppresses linking.

OPTIONS

-D Define a macro name as def.
-E Don’t run the back-end C++ compiler. Stop after generating a

.ii file.
-I Add a directory to the search path of the #include directive.
-c Suppress linking and produce a .o file.
-l Print the list of loaded metaclasses.
-s Print the whole parse tree of the given source program. Don’t

perform translation or compilation. If no source file is given, occ
reads from the standard input.

-v Specify the verbose mode.
-- Following options are interpreted as options for the back-end

C++ compiler. For example, if you type

occ -I.. -- -g foo.c

Then the -g option is passed to the C++ compiler.

FILES

file.cc source file.
file.occ output file after C++ preprocessing.
file.ii output file after translation.
file.o object file.
opencxx.a library to link with meta-level code.
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NOTES

• When the C++ processor runs, the macro opencxx is prede-
fined.

• The current version of the compiler cannot dynamically load
meta-level programs on demand.

COPYRIGHT

Copyright c©1995, 1996 Xerox Corporation. All Rights Reserved.

AUTHOR

Shigeru Chiba, The University of Tokyo.
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Programs

C.1 The Distributed Object Library

Meta-level program (distobj.cc)

#include "mop.h"

metaclass DistributionClass : Metaclass;

class DistributionClass : public Class {

public:

DistributionClass(Ptree* d, Ptree* m) : Class(d, m) {}

Ptree* TranslateSelf(Environment*);

Ptree* TranslateBody(Environment*, Ptree*);

Ptree* AppendDecoder(Ptree*, Ptree*, int, TypeInfo&);

Ptree* TranslateMemberCall(Environment*, Ptree*, Ptree*, Ptree*, Ptree*);

};

#define BUF_NAME "mBuffer"

Ptree* DistributionClass::TranslateSelf(Environment* env)

{

Ptree* name;

TypeInfo t;

int i;

Ptree* code = nil;

for(i = 0; (name = NthMemberName(i)) != nil; ++i){

PtreeId whatis = name->WhatIs();

if(whatis != LeafClassNameId && whatis != PtreeDestructorId)

if(LookupMemberType(env, name, t) && t.WhatIs() == FunctionType){

// Unless the member is a constructor, a destructor,

// or a data member, then ...

code = AppendDecoder(code, name, i, t);

}

}

169
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AppendAfterToplevel(Ptree::qMake(

"void ‘Name()‘::Dispatch(int* buffer, void* object, int member){\n"

"switch(member){\n ‘code‘ }}"));

return Class::TranslateSelf(env);

}

Ptree* DistributionClass::TranslateBody(Environment* env, Ptree* body)

{

Ptree* decl = Ptree::qMake("public:"

"static void Dispatch(int*, void*, int);\n");

return Ptree::Append(body, decl);

}

Ptree* DistributionClass::AppendDecoder(Ptree* code, Ptree* name,

int nth, TypeInfo& t)

{

int i;

TypeInfo atype;

TypeInfo rtype;

code = Ptree::Snoc(code, Ptree::qMake("case ‘nth‘: {\n"

"int s = 0;"));

for(i = 0; t.NthArgument(i, atype); ++i){

Ptree* argtype = atype.MakePtree();

code = Ptree::Snoc(code, Ptree::qMake(

"‘argtype‘ p‘i‘ = *(‘argtype‘*)&buffer[s];\n"

"s += sizeof(‘argtype‘);\n"));

}

t.Dereference(rtype);

if(rtype.WhatIs() != UndefType)

code = Ptree::Snoc(code, Ptree::qMake(

"*(int*)buffer = ((‘Name()‘*)object)->‘name‘("));

else if(rtype.IsBuiltInType() & VoidType)

code = Ptree::Snoc(code, Ptree::qMake(

"((‘Name()‘*)object)->‘name‘("));

else

code = Ptree::Snoc(code, Ptree::qMake(

"*(‘rtype.MakePtree()‘*)buffer"

"= ((‘Name()‘*)object)->‘name‘("));

for(int j = 0; j < i; ++j)

if(j + 1 >= i)

code = Ptree::Snoc(code, Ptree::qMake("p‘j‘"));

else

code = Ptree::Snoc(code, Ptree::qMake("p‘j‘,"));

code = Ptree::Snoc(code, Ptree::qMake(");}\nbreak;\n"));

return code;

}

Ptree* DistributionClass::TranslateMemberCall(Environment* env, Ptree* object,
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Ptree* op, Ptree* member,

Ptree* arglist)

{

TypeInfo ftype, atype;

int id = IsMember(member);

if(id == 0){

ErrorMessage("no such a member", member);

return Class::TranslateMemberCall(env, object, op, member, arglist);

}

Ptree* p;

PtreeIter next(Ptree::Second(arglist));

Ptree* code = nil;

Ptree* tmp = Ptree::GenSym();

int i = 0;

env->InsertDeclaration(Ptree::qMake("int ‘tmp‘;"));

LookupMemberType(env, member, ftype);

for(i = 0; ftype.NthArgument(i, atype); ++i){

p = next();

Ptree* tname = atype.MakePtree();

code = Ptree::Snoc(code, Ptree::qMake(

"*(‘tname‘*)&" BUF_NAME "[‘tmp‘] = ‘TranslateExpression(env, p)‘,"

"‘tmp‘ += sizeof(‘tname‘),"));

next(); // skip ,

}

return Ptree::qMake("(‘tmp‘=0,‘code‘ CallRemote(‘tmp‘, ‘object‘, ‘id‘))");

}

Runtime Library (remote.h)

#ifndef __remote_h

#define __remote_h

void ExportObject(void * object, char* name, void* dispatch);

void ServerLoop();

void StartupClient(char* server_name);

int CallRemote(int numofargs, void* object, int member);

int ImportObject(char* name);

extern int* mBuffer;

#define Export(object,name,type) \

ExportObject((void*)object,name,(void*)&type::Dispatch)

#define Import(name,type) (type*)ImportObject(name)

#endif __remote_h

Runtime Library (remote.cc)

#include <string.h>

#include "ipc.h"



APPENDIX C. PROGRAMS 172

#include "remote.h"

const int PORT = 4002;

const int MAX = 64;

const int LOOKUP = -1;

typedef void (*DispatchProc)(int*, void*, int);

static TcpServer* tcpServer;

static TcpClient* tcpClient;

static int tcpBuffer[32];

static struct {

char* name;

void* object;

void* dispatch;

} exportTable[MAX];

static struct {

void* object;

void* dispatch;

} importTable[MAX];

static int numOfExport = 0;

static int numOfImport = 0;

/*

The first four words are for house keeping: size, member,

dispatcher, object.

*/

int* mBuffer = &tcpBuffer[4];

static int LookupExportedObject(char* name);

void ExportObject(void * object, char* name, void* dispatch)

{

exportTable[numOfExport].name = name;

exportTable[numOfExport].object = object;

exportTable[numOfExport].dispatch = dispatch;

++numOfExport;

}

static int LookupExportedObject(char* name)

{

for(int i = 0; i < numOfExport; ++i)

if(strcmp(exportTable[i].name, name) == 0)

return i;

return -1;

}

void ServerLoop()

{

int size;

tcpServer = new TcpServer(PORT);

for(;;){
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BOOL is_new_client;

int fd = tcpServer->Wait(is_new_client);

if(tcpServer->Recv(fd, (char*)&size, sizeof(size)) == 0)

continue;

tcpServer->Recv(fd, (char*)&tcpBuffer[1], size - sizeof(int));

int member = tcpBuffer[1];

if(member == LOOKUP){

int index = LookupExportedObject((char*)&tcpBuffer[2]);

tcpBuffer[0] = (int)exportTable[index].object;

tcpBuffer[1] = (int)exportTable[index].dispatch;

tcpServer->Send(fd, (char*)tcpBuffer, sizeof(int) * 2);

}

else{

(*(DispatchProc)tcpBuffer[2])(mBuffer, (void*)tcpBuffer[3],

member);

tcpServer->Send(fd, (char*)mBuffer, sizeof(int));

}

}

}

void StartupClient(char* server_name)

{

tcpClient = new TcpClient(server_name, PORT);

}

int CallRemote(int numofargs, void* object, int member)

{

int size = sizeof(int) * (numofargs + 5);

tcpBuffer[0] = size;

tcpBuffer[1] = member;

tcpBuffer[2] = (int)importTable[(int)object].dispatch;

tcpBuffer[3] = (int)importTable[(int)object].object;

tcpClient->Send((char*)tcpBuffer, size);

tcpClient->Recv((char*)tcpBuffer, sizeof(int));

return tcpBuffer[0];

}

int ImportObject(char* name)

{

int size = sizeof(int) * 2 + strlen(name) + 1;

strcpy((char*)&tcpBuffer[2], name);

tcpBuffer[0] = size;

tcpBuffer[1] = LOOKUP;

tcpClient->Send((char*)tcpBuffer, size);

tcpClient->Recv((char*)tcpBuffer, sizeof(int) * 2);

importTable[numOfImport].object = (void*)tcpBuffer[0];

importTable[numOfImport].dispatch = (void*)tcpBuffer[1];

return numOfImport++;

}
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C.2 The Wrapper Function Metaclass Library

Included File (wrapper.h)

#include "mop.h"

class WrapperClass : public Class {

public:

WrapperClass(Ptree* d, Ptree* m) : Class(d, m) {}

Ptree* TranslateBody(Environment*, Ptree*);

virtual Ptree* WrapperName(Ptree* name);

Ptree* TranslateMemberFunctionBody(Environment*, Ptree*, BOOL, Ptree*);

virtual void MakeWrapper(Environment*, Ptree*, Ptree*, TypeInfo&, BOOL);

virtual Ptree* WrapperBody(Environment*, Ptree*, Ptree*, int, TypeInfo&);

Ptree* TranslateMemberCall(Environment*, Ptree*, Ptree*, Ptree*,

Ptree*);

Ptree* TranslateMemberCall(Environment*, Ptree*, Ptree*);

};

Implementation (wrapper.cc)

#include "wrapper.h"

// TranslateBody() inserts declarations for wrapper functions.

Ptree* WrapperClass::TranslateBody(Environment* env, Ptree* body)

{

Ptree* decl = Ptree::qMake("public:\n");

Ptree* name;

TypeInfo t;

int i = 0;

while((name = NthMemberName(i++)) != nil){

PtreeId whatis = name->WhatIs();

if(whatis != LeafClassNameId && whatis != PtreeDestructorId)

if(LookupMemberType(env, name, t) && t.WhatIs() == FunctionType){

// if the member is not a constructor, a destructor,

// or a data member, insert the declaration for the wrapper.

Ptree* m = t.MakePtree(WrapperName(name));

decl = Ptree::qMake("‘decl‘ ‘m‘;\n");

}

}

return Ptree::Append(body, decl);

}

Ptree* WrapperClass::WrapperName(Ptree* name)

{

return Ptree::qMake("_wrap_‘name‘");

}

/*

TranslateMemberFunctionBody() defines wrapper functions.



APPENDIX C. PROGRAMS 175

They are defined just after the wrapped function is defined.

Note that if they are defined in the header file, their duplicated

copies would be unnecessarily produced.

*/

Ptree* WrapperClass::TranslateMemberFunctionBody(Environment* env,

Ptree* name, BOOL inlined,

Ptree* body)

{

TypeInfo t;

PtreeId whatis = name->WhatIs();

if(whatis != LeafClassNameId && whatis != PtreeDestructorId)

if(LookupMemberType(env, name, t))

MakeWrapper(env, name, WrapperName(name), t, inlined);

return Class::TranslateMemberFunctionBody(env, name, inlined, body);

}

/*

MakeWrapper() generates the member function such as:

<return type> CLASS::WRAPPER_NAME(<type> p1, <type> p2, ...)

{

<The code retured by WrapperBody()>

}

*/

void WrapperClass::MakeWrapper(Environment* env, Ptree* name,

Ptree* wrapper_name, TypeInfo& t, BOOL inlined)

{

TypeInfo atype;

TypeInfo rtype;

int i;

Ptree* arglist = nil;

for(i = 0; t.NthArgument(i, atype); ++i){

Ptree* arg = atype.MakePtree(Ptree::qMake("p‘i‘"));

if(i == 0)

arglist = arg;

else

arglist = Ptree::qMake("‘arglist‘,‘arg‘");

}

t.Dereference(rtype);

Ptree* body = WrapperBody(env, name, wrapper_name, i, t);

Ptree* head = Ptree::qMake("‘Name()‘::‘wrapper_name‘(‘arglist‘)");

if(rtype.WhatIs() != UndefType)

head = rtype.MakePtree(head);

if(inlined)

AppendAfterToplevel(Ptree::qMake("inline ‘head‘{‘body‘}\n"));

else

AppendAfterToplevel(Ptree::qMake("‘head‘{‘body‘}\n"));

}

/*

WrapperBody() returns the body of the wrapper. NAME is the name of
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the member function wrapped by this wrapper. WRAPPER_NAME is the

name of this wrapper. NUM_OF_ARGS is the number of the arguments

needed to call the wrapped member function. The arguments are

(p1, p2, ..., p<NUM_OF_ARGS>).

This function returns a return statement:

return <the wrapped function>(p1, p2, ...);

*/

Ptree* WrapperClass::WrapperBody(Environment* env, Ptree* name,

Ptree* wrapper_name, int num_of_args,

TypeInfo& ftype)

{

// first make the argument list needed to call the wrapped function.

Ptree* arglist = nil;

while(num_of_args > 0){

if(num_of_args > 1)

arglist = Ptree::qMake(",p‘--num_of_args‘ ‘arglist‘");

else{

arglist = Ptree::qMake("p0 ‘arglist‘");

--num_of_args;

}

}

// then make a statement that calls the wrapped member function

ftype.Dereference();

if(ftype.IsBuiltInType() & VoidType)

return Ptree::qMake("‘name‘(‘arglist‘);");

else

return Ptree::qMake("return ‘name‘(‘arglist‘);");

}

// TranslateMemberCall() replaces the called function with the wrapper

// function.

Ptree* WrapperClass::TranslateMemberCall(Environment* env,

Ptree* object, Ptree* op,

Ptree* member, Ptree* arglist)

{

return Class::TranslateMemberCall(env, object, op, WrapperName(member),

arglist);

}

Ptree* WrapperClass::TranslateMemberCall(Environment* env,

Ptree* member, Ptree* arglist)

{

return Class::TranslateMemberCall(env, WrapperName(member), arglist);

}



APPENDIX C. PROGRAMS 177

C.3 Vector Library

Vector library (vector.h)

const SIZE = 8;

#ifdef __opencxx

metaclass Vector : VectorClass;

#endif

template <class T> class Vector {

public:

T element[SIZE];

Vector() {}

Vector(T t){

for(int i = 0; i < SIZE; ++i)

element[i] = t;

}

Vector operator + (Vector& a){

Vector<T> v;

for(int i = 0; i < SIZE; ++i)

v.element[i] = element[i] + a.element[i];

return v;

}

Vector operator - (Vector& a){

Vector<T> v;

for(int i = 0; i < SIZE; ++i)

v.element[i] = element[i] - a.element[i];

return v;

}

};

template <class T>

Vector<T> operator * (T k, Vector<T>& a){

Vector<T> v;

for(int i = 0; i < SIZE; ++i)

v.element[i] = k * a.element[i];

return v;

};

Micro benchmark program with the vector library

#include <iostream.h>

#include "vector.h"

extern "C" { long clock(); }

const N = 1000000;
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main()

{

Vector<double> v1(2.167), v2(10.95), v3(50196), v4(44.4077);

Vector<double> v0;

int i;

long t0 = clock();

for(i = 0; i < N; ++i)

v0 = v1;

long t1 = clock();

for(i = 0; i < N; ++i)

v0 = v1 + v2;

long t2 = clock();

for(i = 0; i < N; ++i)

v0 = v1 + v2 + v3;

long t3 = clock();

for(i = 0; i < N; ++i)

v0 = v1 + v2 + v3 + v4;

long t4 = clock();

cout << "N=" << N << ", SIZE=" << SIZE << "\n";

cout << "1)" << (t1 - t0) / 1000 << "msec, 2)" << (t2 - t1) / 1000

<< "msec, 3)" << (t3 - t2) / 1000 << "msec, 4)"

<< (t4 - t3) / 1000 << "msec.\n";

}

Micro benchmark program written by hand

#include <iostream.h>

extern "C" { long clock(); }

const SIZE = 8;

const N = 1000000;

main()

{

double v1[SIZE], v2[SIZE], v3[SIZE], v4[SIZE];

double v0[SIZE];

int i, j;

for(i = 0; i < SIZE; ++i){

v1[i] = 2.167;

v2[i] = 10.95;

v3[i] = 50196;

v4[i] = 44.4077;

}
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long t0 = clock();

for(i = 0; i < N; ++i)

for(j = 0; j < SIZE; ++j)

v0[j] = v1[j];

long t1 = clock();

for(i = 0; i < N; ++i)

for(j = 0; j < SIZE; ++j)

v0[j] = v1[j] + v2[j];

long t2 = clock();

for(i = 0; i < N; ++i)

for(j = 0; j < SIZE; ++j)

v0[j] = v1[j] + v2[j] + v3[j];

long t3 = clock();

for(i = 0; i < N; ++i)

for(j = 0; j < SIZE; ++j)

v0[j] = v1[j] + v2[j] + v3[j] + v4[j];

long t4 = clock();

cout << "N=" << N << ", SIZE=" << SIZE << "\n";

cout << "1)" << (t1 - t0) / 1000 << "msec, 2)" << (t2 - t1) / 1000

<< "msec, 3)" << (t3 - t2) / 1000 << "msec, 4)"

<< (t4 - t3) / 1000 << "msec.\n";

}

C.4 The Standard Template Library

Meta-level program (stl-class.cc)

#include "mop.h"

// for List

class ListIteratorClass : public Class {

public:

ListIteratorClass(Ptree* d, Ptree* m) : Class(d, m) {}

Ptree* TranslateSelf(Environment*);

Ptree* TranslatePostfix(Environment*, Ptree*, Ptree*);

Ptree* TranslateUnary(Environment*, Ptree*, Ptree*);

};

Ptree* ListIteratorClass::TranslateSelf(Environment* env)

{

return Ptree::Make("typedef List<T>* iterator");

}

Ptree* ListIteratorClass::TranslateUnary(Environment* env, Ptree* op,
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Ptree* object)

{

if(op->Eq(’*’)){

object = TranslateExpression(env, object);

return Ptree::qMake("‘object‘->value");

}

else if(op->Eq("++")){

object = TranslateExpression(env, object);

return Ptree::qMake("(‘object‘=‘object‘->next)");

}

else

return Class::TranslateUnary(env, op, object);

}

Ptree* ListIteratorClass::TranslatePostfix(Environment* env, Ptree* object,

Ptree* op)

{

TypeInfo type;

Ptree* tmp = Ptree::GenSym();

object = TranslateExpression(env, object, type);

Ptree* decl = Ptree::qMake("‘type.FullTypeName()‘ ‘tmp‘;");

env->InsertDeclaration(decl);

return Ptree::qMake("(‘tmp‘=‘object‘,‘object‘=‘object‘->next,‘tmp‘)");

}

// for Set

class SetIteratorClass : public Class {

public:

SetIteratorClass(Ptree* d, Ptree* m) : Class(d, m) {}

Ptree* TranslateSelf(Environment*);

Ptree* TranslatePostfix(Environment*, Ptree*, Ptree*);

Ptree* TranslateUnary(Environment*, Ptree*, Ptree*);

};

Ptree* SetIteratorClass::TranslateSelf(Environment* env)

{

return Ptree::qMake("typedef Set<T>* iterator");

}

Ptree* SetIteratorClass::TranslateUnary(Environment* env, Ptree* op,

Ptree* object)

{

if(op->Eq(’*’)){

object = TranslateExpression(env, object);

return Ptree::qMake("‘object‘->value");

}

else if(op->Eq("++")){

TypeInfo type;

object = TranslateExpression(env, object, type);

Ptree* tname = type.FullTypeName();

return Ptree::qMake("(‘object‘=(‘tname‘)Tree::Right(‘object‘))");

}

else

return Class::TranslateUnary(env, op, object);
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}

Ptree* SetIteratorClass::TranslatePostfix(Environment* env, Ptree* object,

Ptree* op)

{

TypeInfo type;

Ptree* tmp = Ptree::GenSym();

object = TranslateExpression(env, object, type);

Ptree* tname = type.FullTypeName();

Ptree* decl = Ptree::qMake("‘tname‘ ‘tmp‘;");

env->InsertDeclaration(decl);

return Ptree::qMake("(‘tmp‘=‘object‘,"

"‘object‘=(‘tname‘)Tree::Right(‘object‘),"

"‘tmp‘)");

}

Base-level library (stl.h)

#define nil 0

template <class T> class List {

public:

List<T>* next;

T value;

typedef T valuetype;

#ifdef __opencxx

metaclass iterator : ListIteratorClass;

#endif

class iterator {

public:

iterator(List<T>* p) { ptr = p; }

List<T>* ptr;

int eof() { return ptr == nil; }

int operator != (iterator& a) { return ptr != a.ptr; }

T operator * () { return ptr->value; }

iterator& operator ++ () { ptr = ptr->next; return *this; }

iterator operator ++ (int) {

iterator prev = *this;

ptr = ptr->next;

return prev;

}

};

iterator begin() { return iterator(this); }

iterator end() { return iterator(nil); }

};

class Tree {

public:

Tree* parent;

Tree* right;

Tree* left;
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inline static Tree* RightMost(Tree* p){

while(p->right != nil)

p = p->right;

return p;

}

inline static Tree* LeftMost(Tree* p){

while(p->left != nil)

p = p->left;

return p;

}

inline static Tree* Right(Tree* p){

if(p->right != nil){

p = p->right;

while(p->left != nil)

p = p->left;

return p;

}

else{

Tree* q = p->parent;

while(q != nil && p == q->right){

p = q;

q = q->parent;

}

return q;

}

}

};

template <class T> class Set : public Tree {

public:

T value;

#ifdef __opencxx

metaclass iterator : SetIteratorClass;

#endif

class iterator {

public:

iterator(Tree* p) { ptr = (Set<T>*)p; }

Set<T>* ptr;

int operator != (iterator& a) { return ptr != a.ptr; }

T operator * () { return ptr->value; }

iterator& operator ++ () {

ptr = (Set<T>*)Tree::Right(ptr);

return *this;

}

iterator operator ++ (int) {

iterator prev = *this;

ptr = (Set<T>*)Tree::Right(ptr);

return prev;

}
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};

iterator begin() { return iterator(Tree::LeftMost(this)); }

iterator end() { return iterator(0); }

};

Micro benchmark program (stl-test.cc)

#include <iostream.h>

#include "stl.h"

const N = 100000;

const R = 100;

const S = 10;

const L = 20; // 1048574 elements

extern "C" { long clock(); }

template <class I, class T> int count(I first, I last, T value)

{

int n = 0;

while(first != last)

if(*first++ == value)

++n;

return n;

}

int list_count(List<int>* first, List<int>* last, int value)

{

int n;

for(n = 0; first != last; first = first->next)

if(first->value == value)

++n;

return n;

}

int set_count(Set<int>* first, Set<int>* last, int value)

{

int n;

for(n = 0; first != last; first = (Set<int>*)Tree::Right(first))

if(first->value == value)

++n;

return n;

}

// initialize routines

List<int>* list_init(){

List<int>* lst = nil;

for(int i = 0; i < N; ++i){

List<int>* node = new List<int>;

node->value = N;

node->next = lst;
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lst = node;

}

return lst;

}

Set<int>* MakeTree(int start, int size)

{

Set<int>* node = new Set<int>;

if(size == 1){

node->left = node->right = nil;

node->value = start;

node->parent = nil;

return node;

}

else{

int size2 = (size - 1) / 2;

node->value = start + size2;

node->left = MakeTree(start, size2);

node->left->parent = node;

node->right = MakeTree(start + size2 + 1, size2);

node->right->parent = node;

node->parent = nil;

return node;

}

}

Set<int>* set_init()

{

int n;

int level = L;

for(n = 1; level > 1; --level)

n = n * 2 + 1;

return MakeTree(1, n);

}

main()

{

int i;

List<int>* lst = list_init();

Set<int>* set = set_init();

int s0 = list_count(lst, nil, N);

long t0 = clock();

for(i = 0; i < R; ++i)

s0 = list_count(lst, nil, N);

t0 = clock() - t0;

int s1 = count(lst->begin(), lst->end(), N);

long t1 = clock();

for(i = 0; i < R; ++i)

s1 = count(lst->begin(), lst->end(), N);

t1 = clock() - t1;
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#ifdef __opencxx

int s2 = set_count(set->begin(), nil, N);

long t2 = clock();

for(i = 0; i < S; ++i)

s2 = set_count(set->begin(), nil, N);

t2 = clock() - t2;

#else

int s2 = set_count(set->begin().ptr, nil, N);

long t2 = clock();

for(i = 0; i < S; ++i)

s2 = set_count(set->begin().ptr, nil, N);

t2 = clock() - t2;

#endif

int s3 = count(set->begin(), set->end(), N);

long t3 = clock();

for(i = 0; i < S; ++i)

s3 = count(set->begin(), set->end(), N);

t3 = clock() - t3;

cout << "N=" << N << ", R=" << R;

cout << ", L=" << L << ", S=" << S << "\n";

cout << "list_count()=" << s0 << ", time: " << t0 / 1000 << "msec\n";

cout << "count(list) =" << s1 << ", time: " << t1 / 1000 << "msec\n";

cout << "set_count() =" << s2 << ", time: " << t2 / 1000 << "msec\n";

cout << "count(set) =" << s3 << ", time: " << t3 / 1000 << "msec\n";

}

C.5 OOPACK benchmark

The OOPACK benchmark program

//=============================================================================

//

// OOPACK - a benchmark for comparing OOP vs. C-style programming.

// Copyright (C) 1995 Arch D. Robison

//

// This program is free software; you can redistribute it and/or modify

// it under the terms of the GNU General Public License as published by

// the Free Software Foundation; either version 2 of the License, or

// (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// For a copy of the GNU General Public License, write to the Free Software

// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

//
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//=============================================================================

//

// OOPACK: a benchmark for comparing OOP vs. C-style programming.

//

// Version: 1.7

//

// Author: Arch D. Robison (robison@kai.com)

// Kuck & Associates

// 1906 Fox Dr.

// Champaign IL 61820

//

// Web Info: http://www.kai.com/oopack/oopack.html

//

// Last revised: November 21, 1995

//

// This benchmark program contains a suite of tests that measure the relative

// performance of object-oriented-programming (OOP) in C++ versus just writing

// plain C-style code in C++. All of the tests are written so that a

// compiler can in principle transform the OOP code into the C-style code.

// After you run this benchmark and discover just how much you are paying to

// use object-oriented programming, you will probably say: OOP? ACK!

// (Unless, of course, you have Kuck & Associates’ Photon C++ compiler.)

//

// TO COMPILE

//

// Compile with your favorite C++ compiler. E.g. ‘‘CC -O2 oopack.C’’.

// On most machines, no special command-line options are required.

// For Suns only, you need to define the symbol ‘‘sun4’’.

// E.g. ‘‘g++ -O -Dsun4 oopack.C’’.

//

// TO RUN

//

// To run the benchmark, run ‘‘a.out Max=50000 Matrix=500 Complex=20000

// Iterator=50000’’.

// This runs the four tests for the specified number of iterations.

// E.g., the Max test is run for 50000 iterations. You may want to

// adjust the number of iterations to be small enough to get

// an answer in reasonable time, but large enough to get a reasonably

// accurate answer.

//

// INTERPRETING THE RESULTS

//

// Below is an example command line and the program’s output.

//

// $ a.out Max=5000 Matrix=50 Complex=2000 Iterator=5000

// OOPACK Version 1.7

//

// For results on various systems and compilers, examine this Web Page:

// http://www.kai.com/oopack/oopack.html

//

// Report your results by sending e-mail to oopack@kai.com.

// For a run to be accepted, adjust the number of iterations for each test

// so that each time reported is greater than 10 seconds.

//

// Send this output, along with:

//
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// * your

// + name -------------------

// + company/institution ----

//

// * the compiler

// + name -------------------

// + version number ---------

// + options used -----------

//

// * the operating system

// + name -------------------

// + version number ---------

//

// * the machine

// + manufacturer -----------

// + model number -----------

// + processor clock speed --

// + cache memory size ------

//

// Seconds Mflops

// Test Iterations C OOP C OOP Ratio

// ---- ---------- ----------- ----------- -----

// Max 5000 1.3 1.3 3.8 4.0 1.0

// Matrix 50 1.5 2.8 8.6 4.5 1.9

// Complex 2000 1.5 5.3 10.8 3.0 3.6

// Iterator 5000 1.1 1.6 9.4 6.3 1.5

//

// The ‘‘Test’’ column gives the names of the four tests that are run.

// The ‘‘Iterations’’ column gives the number of iterations that a test

// was run. The The two ‘‘Seconds’’ columns give the C-style

// and OOP-style running times for a test. The two ‘‘Mflops’’ columns

// give the corresponding megaflop rates. The ‘‘Ratio’’ column gives

// the ratio between the times. The value of 1.5 at the bottom, for

// example, indicates that the OOP-style code for Iterator ran 1.5 times

// more slowly than the C-style code.

//

// Beware that a low ‘‘Ratio’’ could indicate either that the OOP-style

// code is compiled very well, or that the C-style code is compiled poorly.

// OOPACK performance figures for KAI’s Photon C++ and some other compilers

// can be found in http://www.kai.com/oopack/oopack.html.

//

// Revison History

// 9/17/93 Version 1.0 released

// 10/ 5/93 Allow results to be printed even if checksums do not match.

// 10/ 5/93 Increased ‘‘Tolerance’’ to allow 10-second runs on RS/6000.

// 10/ 5/93 Version 1.1 released

// 1/10/94 Change author’s address from Shell to KAI

// 1/13/94 Added #define’s for conditional compilation of individual tests

// 1/21/94 Converted test functions to virtual members of class Benchmark.

// 10/11/94 Added routine to inform user of command-line usage.

// 10/11/94 Version 1.5 released.

// 11/21/95 V1.6 Added "mail results to oopack@kai.com" message in output

// 11/28/95 V1.7 Added company/institution to requested information

//=============================================================================
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#include <assert.h>

#include <ctype.h>

#include <float.h>

#include <math.h>

#include <stdio.h>

#include <time.h>

#include <string.h>

#include <stdlib.h>

//

// The source-code begins with the benchmark computations themselves and

// ends with code for collecting statistics. Each benchmark ‘‘Foo’’ is

// a class FooBenchmark derived from class Benchmark. The relevant methods

// are:

//

// init - Initialize the input data for the benchmark

//

// c_style - C-style code

//

// oop_style - OOP-style code

//

// check - computes number of floating-point operations and a checksum.

//

const int BenchmarkListMax = 4;

class Benchmark {

public:

void time_both( int iteration_count ) const;

void time_one( void (Benchmark::*function)() const, int iterations,

double& sec, double& Mflop, double& checksum ) const;

virtual const char * name() const = 0;

virtual void init() const = 0;

virtual void c_style() const = 0;

virtual void oop_style() const = 0;

virtual void check(int iterations, double& flops, double& checksum)

const = 0;

static Benchmark * find( const char * name );

private:

static Benchmark * list[BenchmarkListMax];

static int count;

protected:

Benchmark() {list[count++] = this;}

};

// The initializer for Benchmark::count *must* precede the declarations

// of derived of class Benchmark.

int Benchmark::count = 0;

Benchmark * Benchmark::list[BenchmarkListMax];

//

// The ‘‘iterations’’ argument is the number of times that the benchmark

// computation was called. The computed checksum that ensures that the

// C-style code and OOP code are computing the same result. This

// variable also prevents really clever optimizers from removing the

// the guts of the computations that otherwise would be unused.

//
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// Each of the following symbols must be defined to enable a test, or

// undefined to disable a test. The reason for doing this with the

// preprocessor is that some compilers may choke on specific tests.

#define HAVE_MAX 1

#define HAVE_MATRIX 1

#define HAVE_COMPLEX 1

#define HAVE_ITERATOR 1

const int N = 1000;

#if HAVE_MAX

//=============================================================================

//

// Max benchmark

//

// This benchmark measures how well a C++ compiler inlines a function that

// returns the result of a comparison.

//

// The functions C_Max and OOP_Max compute the maximum over a vector.

// The only difference is that C_Max writes out the comparison operation

// explicitly, and OOP_Max calls an inline function to do the comparison.

//

// This benchmark is included because some compilers do not compile

// inline functions into conditional branches as well as they might.

//

const int M = 100; // Dimension of vector

double U[M]; // The vector

double MaxResult; // Result of max computation

class MaxBenchmark: public Benchmark {

private:

const char * name() const {return "Max";}

void init() const;

void c_style() const;

void oop_style() const;

void check( int iterations, double& flops, double& checksum ) const;

} TheMaxBenchmark;

void MaxBenchmark::c_style() const // Compute max of vector (C-style)

{

double max = U[0];

for( int k=1; k<M; k++ ) // Loop over vector elements

if( U[k] > max )

max=U[k];

MaxResult = max;

}

inline int Greater( double i, double j )

{

return i>j;

}

void MaxBenchmark::oop_style() const // Compute max of vector (OOP-style)

{

double max = U[0];
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for( int k=1; k<M; k++ ) // Loop over vector elements

if( Greater( U[k], max ) )

max=U[k];

MaxResult = max;

}

void MaxBenchmark::init() const

{

for( int k=0; k<M; k++ )

U[k] = k&1 ? -k : k;

}

void MaxBenchmark::check(int iterations, double& flops, double& checksum) const

{

flops = (double)M*iterations;

checksum = MaxResult;

}

#endif /* HAVE_MAX */

#if HAVE_MATRIX

//=============================================================================

//

// Matrix benchmark

//

//

// This benchmark measures how well a C++ compiler performs constant

// propagation and strength-reduction on classes. C_Matrix multiplies

// two matrices using C-style code; OOP_Matrix does the same with

// OOP-style code. To maximize performance on most RISC processors, the

// benchmark requires that the compiler perform strength-reduction and

// constant-propagation in order to simplify the indexing calculations in

// the inner loop.

//

const int L = 50; // Dimension of (square) matrices.

double C[L*L], D[L*L], E[L*L]; // The matrices to be multiplied.

class MatrixBenchmark: public Benchmark {

private:

const char * name() const {return "Matrix";}

void init() const;

void c_style() const;

void oop_style() const;

void check( int iterations, double& flops, double& checksum ) const;

} TheMatrixBenchmark;

void MatrixBenchmark::c_style() const { // Compute E=C*D with C-style code.

for( int i=0; i<L; i++ )

for( int j=0; j<L; j++ ) {

double sum = 0;

for( int k=0; k<L; k++ )

sum += C[L*i+k]*D[L*k+j];

E[L*i+j] = sum;

}

}
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// Class Matrix represents a matrix stored in row-major format (same as C).

class Matrix {

private:

double *data; // Pointer to matrix data

public:

int rows, cols; // Number of rows and columns

Matrix( int rows_, int cols_, double * data_ ) :

rows(rows_), cols(cols_), data(data_)

{}

double& operator()( int i, int j ) { // Access element at row i, column j

return data[cols*i+j];

}

};

void MatrixBenchmark::oop_style() const{ // Compute E=C*D with OOP-style code.

Matrix c( L, L, C ); // Set up three matrices

Matrix d( L, L, D );

Matrix e( L, L, E );

for( int i=0; i<e.rows; i++ ) // Do matrix-multiplication

for( int j=0; j<e.cols; j++ ) {

double sum = 0;

for( int k=0; k<e.cols; k++ )

sum += c(i,k)*d(k,j);

e(i,j) = sum;

}

}

void MatrixBenchmark::init() const

{

for( int j=0; j<L*L; j++ ) {

C[j] = j+1;

D[j] = 1.0/(j+1);

}

}

void MatrixBenchmark::check(int iterations, double& flops, double& checksum)const

{

double sum = 0;

for( int k=0; k<L*L; k++ )

sum += E[k];

checksum = sum;

flops = 2.0*L*L*L*iterations;

}

#endif /* HAVE_MATRIX */

#if HAVE_ITERATOR

//=============================================================================

//

// Iterator benchmark

//

// Iterators are a common abstraction in object-oriented programming, which

// unfortunately may incur a high cost if compiled inefficiently.

// The iterator benchmark below computes a dot-product using C-style code

// and OOP-style code. All methods of the iterator are inline, and in
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// principle correspond exactly to the C-style code.

//

// Note that the OOP-style code uses two iterators, but the C-style

// code uses a single index. Good common-subexpression elimination should,

// in principle, reduce the two iterators to a single index variable, or

// conversely, good strength-reduction should convert the single index into

// two iterators!

//

double A[N];

double B[N];

double IteratorResult;

class IteratorBenchmark: public Benchmark {

private:

const char * name() const {return "Iterator";}

void init() const;

void c_style() const;

void oop_style() const;

void check( int iterations, double& flops, double& checksum ) const;

} TheIteratorBenchmark;

void IteratorBenchmark::c_style() const // Compute dot-product with C-style code

{

double sum = 0;

for( int i=0; i<N; i++ )

sum += A[i]*B[i];

IteratorResult = sum;

}

class Iterator { // Iterator for iterating over array of double

private:

int index; // Index of current element

const int limit; // 1 + index of last element

double * const array; // Pointer to array

public:

double look() {return array[index];} // Get current element

void next() {index++;} // Go to next element

int done() {return index>=limit;} // True iff no more elements

Iterator( double * array1, int limit1 ) :

array(array1),

limit(limit1),

index(0)

{}

};

// Compute dot-product with OOP-style code

void IteratorBenchmark::oop_style() const

{

double sum = 0;

for( Iterator ai(A,N), bi(B,N); !ai.done(); ai.next(), bi.next() )

sum += ai.look()*bi.look();

IteratorResult = sum;

}

void IteratorBenchmark::init() const

{
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for( int i=0; i<N; i++ ) {

A[i] = i+1;

B[i] = 1.0/(i+1);

}

}

void IteratorBenchmark::check(int iterations, double& flops,

double& checksum ) const {

flops = 2*N*iterations;

checksum = IteratorResult;

}

#endif /* HAVE_ITERATOR */

#if HAVE_COMPLEX

//=============================================================================

//

// Complex benchmark

//

// Complex numbers are a common abstraction in scientific programming.

// This benchmark measures how fast they are in C++ relative to the same

// calculation done by explicitly writing out the real and imaginary parts.

// The calculation is a complex-valued ‘‘SAXPY’’ operation.

//

// The complex arithmetic is all inlined, so in principle the code should

// run as fast as the version using explicit real and imaginary parts.

//

class ComplexBenchmark: public Benchmark {

private:

const char * name() const {return "Complex";}

void init() const;

void c_style() const;

void oop_style() const;

void check( int iterations, double& flops, double& checksum ) const;

} TheComplexBenchmark;

class Complex {

public:

double re, im;

Complex( double r, double i ) : re(r), im(i) {}

Complex() {}

};

inline Complex operator+( Complex a, Complex b ) // Complex add

{

return Complex( a.re+b.re, a.im+b.im );

}

inline Complex operator*( Complex a, Complex b ) // Complex multiply

{

return Complex( a.re*b.re-a.im*b.im, a.re*b.im+a.im*b.re );

}

Complex X[N], Y[N]; // Arrays used by benchmark

void ComplexBenchmark::c_style() const // C-style complex-valued SAXPY operation

{
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double factor_re = 0.5;

double factor_im = 0.86602540378443864676;

for( int k=0; k<N; k++ ) {

Y[k].re = Y[k].re + factor_re*X[k].re - factor_im*X[k].im;

Y[k].im = Y[k].im + factor_re*X[k].im + factor_im*X[k].re;

}

}

// OOP-style complex-valued SAXPY operation

void ComplexBenchmark::oop_style() const

{

Complex factor( 0.5, 0.86602540378443864676 );

for( int k=0; k<N; k++ )

Y[k] = Y[k] + factor*X[k];

}

void ComplexBenchmark::init() const

{

for( int k=0; k<N; k++ ) {

X[k] = Complex( k+1, 1.0/(k+1) );

Y[k] = Complex( 0, 0 );

}

}

void ComplexBenchmark::check(int iterations, double& flops, double& checksum)

const{

double sum = 0;

for( int k=0; k<N; k++ )

sum += Y[k].re + Y[k].im;

checksum = sum;

flops = 8*N*iterations;

}

#endif /* HAVE_COMPLEX */

//=============================================================================

// End of benchmark computations.

//=============================================================================

// All the code below is for running and timing the benchmarks.

#if defined(sun4) && !defined(CLOCKS_PER_SEC)

// Sun/4 include-files seem to be missing CLOCKS_PER_SEC.

#define CLOCKS_PER_SEC 1000000

#endif

//

// TimeOne

//

// Time a single benchmark computation.

//

// Inputs

// function = pointer to function to be run and timed.

// iterations = number of times to call function.

//

// Outputs

// sec = Total number of seconds for calls of function.

// Mflop = Megaflop rate of function.
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// checksum = checksum computed by function.

//

void Benchmark::time_one(void (Benchmark::*function)() const, int iterations,

double& sec, double& Mflop, double& checksum ) const

{

// Initialize and run code once to load caches

init();

(this->*function)();

// Initialize and run code.

init();

clock_t t0 = clock();

for( int k=0; k<iterations; k++ )

(this->*function)();

clock_t t1 = clock();

// Update checksum and compute number of floating-point operations.

double flops;

check( iterations, flops, checksum );

sec = (t1-t0) / (double)CLOCKS_PER_SEC;

Mflop = flops/sec*1e-6;

}

//

// The variable ‘‘C_Seconds’’ is the time in seconds in which to run the

// C-style benchmarks.

//

double C_Seconds = 1;

//

// The variable ‘‘Tolerance’’ is the maximum allowed relative difference

// between the C and OOP checksums. Machines with multiply-add

// instructions may produce different answers when they use those

// instructions rather than separate instructions.

//

// There is nothing magic about the 32, it’s just the result of tweaking.

//

const double Tolerance = 64*DBL_EPSILON;

Benchmark * Benchmark::find( const char * name ) {

for( int i=0; i<count; i++ )

if( strcmp( name, list[i]->name() )== 0 )

return list[i];

return NULL;

}

//

// Benchmark::time_both

//

// Runs the C and Oop versions of a benchmark computation, and print the

// results.

//

// Inputs

// name = name of the benchmark
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// c_style = benchmark written in C-style code

// oop_style = benchmark written in OOP-style code

// check = routine to compute checksum on answer

//

void Benchmark::time_both( int iterations ) const {

// Run the C-style code.

double c_sec, c_Mflop, c_checksum;

time_one( &Benchmark::c_style, iterations, c_sec, c_Mflop, c_checksum );

// Run the OOP-style code.

double oop_sec, oop_Mflop, oop_checksum;

time_one(&Benchmark::oop_style, iterations, oop_sec, oop_Mflop, oop_checksum);

// Compute execution-time ratio of OOP to C. This is also the

// reciprocal of the Megaflop ratios.

double ratio = oop_sec/c_sec;

// Compute the absolute and relative differences between the checksums

// for the two codes.

double diff = c_checksum - oop_checksum;

double min = c_checksum < oop_checksum ? c_checksum : oop_checksum;

double rel = diff/min;

// If the relative difference exceeds the tolerance, print an error-message,

// otherwise print the statistics.

if( rel > Tolerance || rel < -Tolerance ) {

printf("%-10s: warning: relative checksum error of %g"

" between C (%g) and oop (%g)\n",

name(), rel, c_checksum, oop_checksum );

}

printf( "%-10s %10d %5.1f %5.1f %5.1f %5.1f %5.1f\n",

name(), iterations, c_sec, oop_sec, c_Mflop, oop_Mflop, ratio );

}

const char * Version = "Version 1.7"; // The OOPACK version number

void Usage( int /*argc*/, char * argv[] ) {

printf( "Usage:\t%s test1=iterations1 test2=iterations2 ...\n", argv[0] );

printf( "E.g.:\ta.out Max=5000 Matrix=50 Complex=2000 Iterator=5000\n" );

exit(1);

}

int main( int argc, char * argv[] )

{

// The available benchmarks are automatically put into the list of available

// benchmarks by the constructor for Benchmark.

// Check if user does not know command-line format.

if( argc==1 ) {

Usage( argc, argv );

}

int i;

for( i=1; i<argc; i++ ) {

if( !isalpha(argv[i][0]) )

Usage( argc, argv );

}
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// Print the request for results

printf("\n");

printf("OOPACK %s\n",Version);

printf("\n");

printf("For results on various systems and compilers, examine this Web");

printf("Page:\n http://www.kai.com/oopack/oopack.html\n");

printf("\n");

printf("Report your results by sending e-mail to oopack@kai.com.\n");

printf("For a run to be accepted, adjust the number of iterations for");

printf(" each test\nso that each time reported is greater than 10 seconds.");

printf("\n\n");

printf("Send this output, along with:\n");

printf("\n");

printf(" * your\n");

printf(" + name ------------------- \n");

printf(" + company/institution ---- \n");

printf("\n");

printf(" * the compiler\n");

printf(" + name ------------------- \n");

printf(" + version number --------- \n");

printf(" + options used ----------- \n");

printf("\n");

printf(" * the operating system\n");

printf(" + name ------------------- \n");

printf(" + version number --------- \n");

printf("\n");

printf(" * the machine\n");

printf(" + manufacturer ----------- \n");

printf(" + model number ----------- \n");

printf(" + processor clock speed -- \n");

printf(" + cache memory size ------ \n");

printf("\n");

// Print header.

printf("%-10s %10s %11s %11s %5s\n", "", "", "Seconds ", "Mflops ", "" );

printf("%-10s %10s %5s %5s %5s %5s %5s\n",

"Test", "Iterations", " C ", "OOP", " C ", "OOP", "Ratio" );

printf("%-10s %10s %11s %11s %5s\n", "----", "----------",

"-----------", "-----------", "-----" );

for( i=1; i<argc; i++ ) {

const char * test_name = strtok( argv[i], "=" );

const char * rhs = strtok( NULL, "" );

if( rhs==NULL ) {

printf("missing iteration count for test ’%s’\n", test_name );

} else {

int test_count = (int)strtol( rhs, 0, 0 );

Benchmark * b = Benchmark::find( test_name );

if( b==NULL ) {

printf("skipping non-existent test = ’%s’\n", test_name );

} else {

b->time_both( test_count );

}

}

}
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/* Print blank line. */

printf("\n");

return 0;

}

The benchmark program for OpenC++ (only difference)

// Matrix benchmark

metaclass Matrix : MatrixClass;

// Class Matrix represents a matrix stored in row-major format (same as C).

class Matrix {

private:

double *data; // Pointer to matrix data

public:

int rows, cols; // Number of rows and columns

Matrix( int rows_, int cols_, double * data_ ) :

rows(rows_), cols(cols_), data(data_)

{}

double* Data() { return data; }

double& operator()( int i, int j ) { // Access element at row i, column j

return data[cols*i+j];

}

};

void MatrixBenchmark::oop_style() const { // Compute E=C*D with OOP-style code.

Matrix c( L, L, C ); // Set up three matrices

Matrix d( L, L, D );

Matrix e( L, L, E );

c.foreach(i){

for(int j = 0; j < e.cols; ++j){

double sum = 0;

d.foreach(k){

sum += c(k) * d(j);

};

e(i,j) = sum;

}

};

}

// Iterator benchmark

metaclass Iterator : IteratorClass;

class Iterator { // Iterator for iterating over array of double

private:

int index; // Index of current element

const int limit; // 1 + index of last element

double * const array; // Pointer to array
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public:

double look() {return array[index];} // Get current element

void next() {index++;} // Go to next element

int done() {return index>=limit;} // True iff no more elements

Iterator( double * array1, int limit1 ) :

array(array1),

limit(limit1),

index(0)

{}

const int Limit() { return limit; }

double Array(int i) { return array[i]; }

};

// Compute dot-product with OOP-style code

void IteratorBenchmark::oop_style() const

{

double sum = 0;

Iterator ai(A,N), bi(B,N);

ai.foreach(v){

sum += v * bi.look();

bi.next();

};

IteratorResult = sum;

}

Meta-level program

#include "../mop.h"

// Max benchmark

// I need a function template...

// Matrix benchmark

class MatrixClass : public Class {

public:

MatrixClass(Ptree* d, Ptree* m) : Class(d, m) {}

static BOOL Initialize();

Ptree* TranslateUserStatement(Environment*, Ptree*, Ptree*, Ptree*,

Ptree*);

Ptree* TranslateFunctionCall(Environment*, Ptree*, Ptree*);

};

class ForeachData

: public Environment::ClientData {

public:

ForeachData(Ptree* p) { tempname = p; }

Ptree* tempname;

};

BOOL MatrixClass::Initialize()

{

RegisterNewWhileStatement("foreach");
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return TRUE;

}

Ptree* MatrixClass::TranslateUserStatement(Environment* env, Ptree* object,

Ptree* op,

Ptree* keyword, Ptree* rest)

{

Ptree *index, *body, *tmp, *tmp2, *tmp3, *body2;

if(!Ptree::Eq(keyword, "foreach"))

return Class::TranslateUserStatement(env, object, op, keyword,

rest);

if(object->WhatIs() != LeafNameId){

ErrorMessage("sorry, the object field must be a variable name",

keyword);

return nil;

}

if(!Ptree::Match(rest, "[([%?]) %?]", &index, &body)){

ErrorMessage("invalid foreach statement");

return nil;

}

tmp = Ptree::GenSym();

tmp2 = Ptree::GenSym();

tmp3 = Ptree::GenSym();

ForeachData* data = new ForeachData(tmp3);

env->AddClientData(this, object, data);

body2 = TranslateStatement(env, body);

env->DeleteClientData(data);

return Ptree::MakeStatement(

"for(int %p = %p.rows, %p = %p.cols, %p = (%p.rows - 1) * %p.cols; "

"--%p >= 0; %p -= %p){\n"

" double const* %p = &(%p%pData())[%p];\n"

" %p }\n",

index, object, tmp, object, tmp2, object, object,

index, tmp2, tmp,

tmp3, object, op, tmp2, body2);

}

Ptree* MatrixClass::TranslateFunctionCall(Environment* env, Ptree* object,

Ptree* args)

{

ForeachData* ent = (ForeachData*)env->LookupClientData(this, object);

if(ent == nil)

return Class::TranslateFunctionCall(env, object, args);

else

return Ptree::Make("%p[%p]", ent->tempname,

Ptree::First(Ptree::Second(args)));

}

// Iterator benchmark
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class IteratorClass : public Class {

public:

IteratorClass(Ptree* d, Ptree* m) : Class(d, m) {}

static BOOL Initialize();

Ptree* TranslateUserStatement(Environment*, Ptree*, Ptree*, Ptree*,

Ptree*);

};

BOOL IteratorClass::Initialize()

{

RegisterNewWhileStatement("foreach");

return TRUE;

}

Ptree* IteratorClass::TranslateUserStatement(Environment* env, Ptree* object,

Ptree* op,

Ptree* keyword, Ptree* rest)

{

Ptree *arg, *body, *index, *limit;

if(!Ptree::Eq(keyword, "foreach"))

return Class::TranslateUserStatement(env, object, op, keyword,

rest);

if(object->WhatIs() != LeafNameId){

ErrorMessage("sorry, the object field must be a variable name",

keyword);

return nil;

}

if(!Ptree::Match(rest, "[([%?]) %?]", &arg, &body)){

ErrorMessage("invalid foreach statement");

return nil;

}

index = Ptree::GenSym();

limit = Ptree::GenSym();

return Ptree::MakeStatement(

"for(int %p = 0, %p = %p.Limit(); %p < %p; ++%p){\n"

" const double& %p = %p.Array(%p);\n"

" %p }\n",

index, limit, object, index, limit, index,

arg, object, index,

TranslateStatement(env, body));

}

// Complex benchmark

class ComplexClass : public Class {

public:

ComplexClass(Ptree* d, Ptree* m) : Class(d, m) {}

Ptree* TranslateAssign(Environment*, Ptree*, Ptree*, Ptree*);

BOOL IsComplex(Environment*, Ptree*);

BOOL IsArray(Ptree*);

Ptree* TransEachPart(Environment*, Ptree*, BOOL);
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private:

BOOL giveUp;

};

Ptree* ComplexClass::TranslateAssign(Environment* env, Ptree* object,

Ptree* op, Ptree* expr)

{

Ptree *repart, *impart, *array;

if(!op->Eq(’=’))

goto giveup_opt;

if(!object->IsLeaf() && !IsArray(object))

goto giveup_opt;

if(expr->IsLeaf()) // e.g. a = b;

goto giveup_opt;

giveUp = FALSE;

repart = TransEachPart(env, expr, TRUE);

impart = TransEachPart(env, expr, FALSE);

if(!giveUp)

return Ptree::Make("%p.re = %p,\n%p.im = %p",

object, repart, object, impart);

giveup_opt: // give up optimization

return Class::TranslateAssign(env, object, op, expr);

}

BOOL ComplexClass::IsComplex(Environment* env, Ptree* var)

{

Class* metaobj = env->LookupClassMetaobject(var);

return BOOL(metaobj == this);

}

BOOL ComplexClass::IsArray(Ptree* expr)

{

Ptree* array;

return BOOL(Ptree::Match(expr, "[%? [%[ %* %]]]", &array)

&& array->IsLeaf());

}

Ptree* ComplexClass::TransEachPart(Environment* env, Ptree* expr,

BOOL real_part)

{

Ptree* lexpr;

Ptree* rexpr;

Ptree *l_re, *l_im, *r_re, *r_im;

if(expr->IsLeaf()){

if(IsComplex(env, expr))

if(real_part)

return Ptree::Make("%p.re", expr);
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else

return Ptree::Make("%p.im", expr);

else

return expr;

}

else if(IsArray(expr)){

TypeInfo t;

Ptree* expr2 = TranslateExpression(env, expr, t);

if(t.ClassMetaobject() == this)

if(real_part)

return Ptree::Make("%p.re", expr2);

else

return Ptree::Make("%p.im", expr2);

else

return expr2;

}

else if(Ptree::Match(expr, "[%? + %?]", &lexpr, &rexpr))

return Ptree::Make("%p+%p", TransEachPart(env, lexpr, real_part),

TransEachPart(env, rexpr, real_part));

else if(Ptree::Match(expr, "[%? - %?]", &lexpr, &rexpr))

return Ptree::Make("%p-%p", TransEachPart(env, lexpr, real_part),

TransEachPart(env, rexpr, real_part));

else if(Ptree::Match(expr, "[( %? )]", &lexpr))

return Ptree::Make("(%p)", TransEachPart(env, lexpr, real_part));

else if(Ptree::Match(expr, "[- %?]", &rexpr))

return Ptree::Make("-%p", TransEachPart(env, rexpr, real_part));

else if(Ptree::Match(expr, "[%? * %?]", &lexpr, &rexpr)){

l_re = TransEachPart(env, lexpr, TRUE);

l_im = TransEachPart(env, lexpr, FALSE);

r_re = TransEachPart(env, rexpr, TRUE);

r_im = TransEachPart(env, rexpr, FALSE);

if(real_part)

return Ptree::Make("%p*%p-%p*%p", l_re, r_re, l_im, r_im);

else

return Ptree::Make("%p*%p+%p*%p", l_re, r_im, l_im, r_re);

}

else {

giveUp = TRUE;

return expr;

}

}


