
Avoiding Confusion in Metacircularity:
The Meta-Helix

Shigeru Chiba Gregor Kiczales John Lamping

Xerox Palo Alto Research Center
chiba gregor lamping@parc.xerox.com

Keywords: metaobject protocol, reflection, metacircular, CLOS

Abstract

A system with a metaobject protocol (MOP) allows programmers to extend it and
then use the extended system as naturally as the original non-extended one. Such
metaobject protocols often use a metacircular architecture to make the extensions
easier to write. Unfortunately, this use of metacircularity can lead to problems
stemming from a conflation of the extended and non-extended functionalities. We
present a new architecture, called the meta-helix, that preserves the advantages of
metacircularity but also addresses the problems with conflation.

1 Introduction
A system with a metaobject protocol (MOP) allows programmers to extend it, and then
use the extended system as naturally as the original non-extended system. Metaobject
protocols have been designed and implemented for programming languages [KdRB91,
Mae87, WY88, MWY91], window systems [Rao91], and operating systems [Yok92,
YTR 87, MA90, Mae96].

A common element of metaobject protocol design is the use of metacircularity to
allow extensions to be implemented in terms of the original non-extended functionality.
This can greatly simplify the implementation of a number of extensions. Unfortunately,
it can also lead to a conflation of the extended and non-extended functionalities, which
in turns complicates both the code that uses the extension and the code that implements
the extension.

In this paper, we present an analysis of this problem and a general architectural so-
lution which we call the meta-helix. The intuition behind the meta-helix is that even
though the extended and non-extended languages may be very similar, the fact that one
is used to implement the other makes it important to reify them as distinct entities. The
meta-helix makes it possible to preserve what is good about metacircular MOPs while

Appeared in Proc. of the 2nd Int’l Symp. on Object Technologies for Advanced Software (ISOTAS),
LNCS 1049, Springer, pp.157–172, 1996.

at the same time resolving the problem we have identified. We show how the meta-helix
can be implemented in both compile-time and runtime MOPs.

2 Using Metaobject Protocol Based Extensions
In this section we show an example of using a MOP-based extension, specifically an
extension to the Common Lisp Object System (CLOS) [BDG 88], which the CLOS
MOP [KdRB91] enables. In this extension the object system’s original notion of slots
is augmented to support slots with an access history. That is, slots which store not only
their current value, but also a history of all their reads and writes.

Following is an example of a program that uses the extension. It defines a class
point, with two slots x and y. The third line of the definition specifies that the class
point uses the extended version of class that supports slots with history.

(defclass point ()
(x y)

(:metaclass history-class))

All the accesses to the slots of instances of point are recorded, and the access log is
available via the functionslot-history. For example, the following program frag-
ment builds an instance of point, accesses some of its slots, and then prints out the
whole history:

(setq p1 (make-instance ’point)) make a point, p1

(set-slot p1 ’x 3) set the x slot to 3

(get-slot p1 ’x) read slot x

(set-slot p1 ’y 5) set the y slot to 5

(print (slot-history p1)) this last expression
shows the whole

((set x 3) (get x) (set y 5)) sequence of events

3 Implementing Extensions Using Metacircularity
The CLOS MOP is designed to allow meta-programs that implement extensions to
themselves use the full power of non-extended CLOS. This property—referred to as
metacircularity—makes it much easier to implement many extensions, since they can
use the powerful facilities of the system being extended, rather than having to rely on
lower-level functionality.

In this case, slots with access history can be implemented using the underlying non-
extended slots. The way this works is simply for instances of the class point to actually
have three slots, the two visible slots x and y as well as a third, “hidden” slot history

To make it easier for non CLOS programmers to read the paper, we use a slightly simplified version of
the CLOS syntax and the CLOS MOP. The simplification is carefully chosen not to affect the argument the
paper presents.

for storing the history. The code for implementing the slots with history extension is as
follows (note that this code has an important bug, which will be addressed shortly):

(defclass history-class (class) ())

; Every history class should have an extra slot,
; to store the history
;
(defmethod compute-slots ((c history-class))
(cons ’history (call-next-method)))

; Specialize get-slot so that it updates the history before
; using call-next-method to invoke the non-extended
; functionality.
;
(defmethod do-get-slot

((c history-class) object slot-name)
(set-slot object

’history
‘((get ,slot-name)
,@(get-slot object ’history)))

(call-next-method))

(defmethod do-set-slot ...)

The simplicity of this code is due in large part to its use of the CLOS MOP’s metacir-
cularity. The implementor of the slots with history extension has the full power of CLOS
available in which to implement the extension, and that makes the code simpler.

4 Implementation Level Conflation
Unfortunately, this kind of metacircularity can also lead to confusion between the ex-
tended and non-extended functionality. To see how, it is first important to notice that
with this extension in place, there are two concepts of class, object and slot in the world.
There is the original, non-extended concepts of class, object and slot, in which the his-
tory of slots is not recorded. Then there is the extended language, with its own concept
of class, object and slot.

Moreover, the parallel concepts of class, object and slot exist not only side-by-
side—in that some entirely unrelated class like astronaut might not be using
history-class—but also in an implemented-by relationship. Extended slots that
record their history are implemented in terms of non-extended slots that don’t.

The problem in which we are interested arises when a MOP fails to appropriately
reify the distinctionbetween the extended and non-extended functionalities. We call this
implementation level conflation because the implemented and implementing levels are
conflated into a single structure.

The way this appears in the example program is illustrated in Figure 1. There is
only one point object, p1 and only one class metaobject, point; there is no distinction

Readers who are unfamiliar with the Lisp backquote facility should read this expression as: (cons
(list ’get slot-name) (get-slot object ’history)).

p1 point

instance−of

(history x y) extended slots

Figure 1: Implementation level conflation in the CLOS MOP. The implemented and im-
plementing objects are conflated into a single object (i.e. p1). The implemented and
implementing classes are conflated into a single class metaobject (i.e. point).

between a point object with the extended slots functionalityand an implementing object
without the extended slots. This implementation level conflation results in confusion for
both users and implementors of extensions.

Problems for Users of the Extension

Implementation level conflation can cause problems for users of the extension, such as
for another part of the example program. Consider, for example, code that uses one of
the MOP’s introspective facilities to ask what slots a class has:

(print (class-slots (find-class ’point)))

(history x y)

Notice that the result includes the history slot. But this program, which is a user of
the extension, wants to operate in terms of implemented classes and objects, not imple-
menting classes and objects. So, for this result to include the history slot is entirely
inappropriate, it shouldn’t know it even exists. This problem particularly shows up when
using browsers and debuggers that rely on the introspective part of the MOP to work.
Exposing this detail of how the slots with history extension is implemented can leave
programmers confused, or worse yet, can tempt them to rely on this implementation de-
tail in ways that they shouldn’t.

Problems for the Implementor of the Extension

Implementation level conflation can also affect the implementor of the extension. A
careful reading of the method for do-get-slot shown in Section 3 above provides
an example of this.

This code has a bug which manifests itself as infinite recursion, but is better under-
stood as resulting from implementation-level conflation. Operationally, the bug is that
the body of the method, as part of updating the history, must read the history slot,
and so calls get-slot recursively, which runs this method, which starts to update the
history, which reads the history slot, and so on ad infinitum.

The standard solution to this problem is to introduce a special purpose test that pre-
vents the infinite recursion. This is often called “making sure the tower grounds out”
[dRS84, dR90]. This solution, while effective, seems ad hoc, can be difficult to reason
about, and is not effective in general.

This problem can be better described as having to do with implementation level con-
flation. As shown below, the issue is that there are two concepts of slot in play: the
implemented history slots, and the implementing slots without history[Dix91]. But, be-
cause of the conflation, there is only one thing get-slot (and set-slot) of an ob-
ject can possibly refer to, which in this case turns out to be slots with history.

slots with history

ordinary slots

(defmethod get−slot ((c history−class) object slot−name)
 (set−slot object
 ‘history
 (cons ‘get ,slot−name)
 (get−slot object ’history)))
 (call−next−method))

If, somehow, the references to the concept of slots in the body of the method could
be to non-extended slots, the ad-hoc solution to the infinite recursion could be avoided.

4.1 The Importance of an N-to-N Correspondence
Fundamentally, there needs to be some way for instances of the class point to be
viewed in terms of either the implemented functionalityor the implementing functional-
ity, not a conflation of both. As discussed above, the user of the extension wants a view
in terms of the implemented functionality. The implementor of the extension wants to be
able to take one view or the other at different times. Taking an additional step back, we
can say that if there are distinct important views of an object—or any other structure—
there needs to be distinct handles to it.

The revised code ends up looking something like:
(defmethod do-get-slot

((c history-class) object slot-name)
(unless (eq slot-name ’history)

(set-slot object
’history
‘((get ,slot-name)

,@(get-slot object ’history))))
(call-next-method))

The use of C++’s qualified member function call, which makes it possible to directly invoke a method
supplied by a specific super-class, could be used to solve this particular problem. Unfortunately, it does not
the address the more general problem of implementation level conflation.

5 Solutions
In this section, we propose a solution to the problem of implementation level conflation
in metacircular systems, based on a concept that we call the meta-helix. Rather than pre-
senting the solution immediately, we first present two earlier solutions that, in different
ways, fail to meet our needs. These solutions serve to further flesh out the criteria which
the more general solution should meet.

5.1 A First Inadequate Solution
One possible solution to this problem involves implementing the extension in a different
way, specifically by storing the slot histories in the class metaobject rather than directly
in the objects themselves. The following meta-level code implements history classes
this way:

(defclass history-class (class)
(histories)) ; Slot histories will be stored

; in the class metaobject.

(defmethod do-get-slot
((c history-class) object slot-name)

(let ((history-storage
(slot-history-storage c object)))

(setf (cdr history-storage)
‘((get ,slot-name)
,@(cdr history-storage)))

(call-next-method)))

(defmethod do-set-slot ...)

; This support function maintains a correspondence to each
; individual object’s slot history.
;
(defun slot-history-storage (c object)
(let* ((entries (get-slot c ’histories))

(entry (assoc entries object)))
(if entry

entry
(let ((new-entry (list object)))
(set-slot c

’histories
(cons new-entry entries))

new-entry))))

This solution solves the specific problems mentioned in Section 4, but it has several
significant problems of its own, which we would like a more general solution to avoid.
These include:

First, it loses many of the advantages of metacircularity. This solution must
manually implement the mapping from individual objects to associated data (i.e.
slot-history-storage), even though that basic functionality is already
present in CLOS.

Second, it is difficult to optimize automatically. While this paper does not address
the performance issue at length, it is worth noting that the extra hand-coded map-
ping from an object to its associated storage won’t be optimized in the way that
normal slot access is optimized, and so slots with history will be unduly slow to
access.

5.2 A Second Inadequate Solution
A second possible solution comes from the Tiny CLOS MOP, which is an extremely
simplified version of CLOS with a MOP that we developed for research purposes. One
goal of the Tiny CLOS MOP design was to address the problem of implementation level
conflation in a way that does not have the problems associated with the first solution.

To do this, the Tiny CLOS MOP provides two different abstractions for per instance
storage: slots and fields. Fields are a lower-level abstraction used to implement slots;
they have a more primitive naming mechanism in terms of indices. Base-level Tiny
CLOS programs never know that fields exist, they only operate in terms of slots. Meta-
level programs that extend slot functionality do so by implementing slots in terms of
fields.

In the specific example of the history class, the extension works by allocating an
extra field for each object. So, for example, point objects have two slots x and y; but
they have three fields, for holding the x and y slots and the slot access history.

The implementation of the slot access history extension in Tiny CLOS looks like:

(defclass history-class (class)
(history-index)) ;the index of the field that will

;store the history for instances
;of the class

; Allocate an extra field for the slot access history and
; remember its index in the class.
;
(defmethod compute-fields ((c history-class))
(set-slot c ’history-index (allocate-field c))
(call-next-method))

(defmethod do-get-slot
((c history-class) object slot-name)

(let ((index (get-slot c ’history-index)))
(set-field object

index
‘((get ,slot-name)
,@(get-field object index)))

(call-next-method)))

(defmethod do-set-slot ...)

Again, this solutionsolves the specific problems mentioned in Section 4. Implemen-
tation level conflation is avoided because there are distinct abstractions (views) for slots

The actual syntax of Tiny CLOS is more primitive, but to make the paper easier to read, we present this
code in a syntax similar to the CLOS syntax we have been using. Again, we have been careful not to affect
the validity of the paper in doing so.

p1

instance−of

point
(x y) extended slots
(#0 #1 #2) non−extended fields

Figure 2: In Tiny CLOS there is only a single object, and a single class metaobject, but
the class metaobject splits, to some extent, into two views, one in terms of slots and the
other in terms of fields.

and fields. The slot abstraction is used for the implemented functionality and the field
abstraction is used for the implementing functionality. Users of the extension can ask
for the slots of a class and not get the history. The implementation of the extension can
ask for either the slots or the fields, and can do access in terms of either the slots or the
fields.

Unfortunately, this solution has significant problems of its own which make it un-
suitable as a general solution.

As with the previous solution, the Tiny CLOS approach loses many of the advan-
tages of metacircularity. Note that this code uses set-field and get-field
to access the history, and the fact that the extension must itself keep track, on a
per-class basis, of the location of the field for the slot access history. Because this
part of the Tiny CLOS MOP is not metacircular in the way the CLOS MOP is, the
extension programmer must learn a new abstraction (i.e. fields) and programming
in that lower-level abstraction can be more complex.

The second problem is that this solution is only effective in the presence of a sin-
gle extension to slot functionality. If, for example, someone wanted an additional
extension (i.e. to store the objects in a persistent database [Pae90]) there would
still be conflation. This is because in such a situation there needs to be (at least)
3 views. The view of persistent objects with a slot access history, built on top
of the view of persistent objects, built on top of ordinary objects. But the Tiny
CLOS MOP provides only two levels, so there will still be some conflation. To
avoid implementation level conflation in levels of implementation, the MOP
must provide support for different views.

5.3 The Meta-Helix
The common idea underlying the two unsatisfactory solutions is to distinguish the im-
plemented and implementing functionality by using a different “handle” for each. In the
first proposed solution the objects are the handle to the implemented functionality, the
class metaobject is the handle to the implementing functionality. Figure 2 shows how

p1 point

instance−of
implemented−by

p1* point*
(history x y)

(x y)

non−extended slots

extended slots

Figure 3: The implemented and implementing levels are distinctly reified in our ap-
proach.

Tiny CLOS, while providing only a single class metaobject, does provide two views of
that class, one in terms of slots and one in terms of fields.

But the problem with both of these solutions is that the use of the two distinct
mechanisms destroys the benefits of metacircularity. The idea of our proposed so-
lution is to retain the benefits of metacircularity, but address its problems by reify-
ing the implemented-by relationship. In addition to the usual instance-of and
subclass-of relationships, we introduce an implemented-by relationship to
capture the relationship between implemented and implementing objects and class
metaobjects.

For example, in the case of the history-class extension, our solution has two
class metaobjects, point and point*, to represent different implementation levels
(Figure 3). The class point corresponds to the class in the extended language, which
keeps slot access histories, while the class point* corresponds to the class in the non-
extended language, which is used to implement the extended one.

The crucial difference between Figure 3 and Figure 2 is in the use of the
implemented-by relationship. That is what allows implemented and implementing
classes to be kept distinct. The use of the implemented-by relation avoids conflation.
It recognizes that, however similar they may be, the implemented and implementing
classes describe distinct objects which must not be conflated. Thus, the history slot
of point* is not a slot of point.

Our choice of the name meta-helix for this architecture is best seen when thinking
in terms of the relation between interfaces that the different solutions use. As shown in
Figure 4, in the pure metacircular approach, the implementation loops directly back onto
itself—leading to conflation. In the Tiny CLOS approach, the implementation maps
between two distinct functionalities—leading to added complexity. In the meta-helical
approach, the implementation spirals between two distinct interfaces of (nearly) identi-
cal functionality—preserving what is good about the metacircular approach, while still
reifying the distinction that prevents conflation of implementation levels.

slots

fields

plain slots

history slots
slots

Tiny CLOSPure Metacircular Meta-helical

Figure 4: The implementation relation between interfaces.

A three level meta-helix

persistent history slots
persistent slots

plain slots

Figure 5: The Meta-Helix Architecture Supports Implementation Levels.

While distinguishing implementation levels, the meta-helix preserves the benefits of
metacircularity, because the implementing classes are free to use the full power of the
language being extended. So, for example, unlike the Tiny CLOS solution, program-
mers do not need a different abstraction such as fields to implement an extended concept
of slots.

Similarly, the meta-helix works when there are more than two implementation lev-
els. So, for example, in the case of the persistent history class mentioned above, we can
create the three levels that are needed to maintain separate views, and relate them using
implemented-by relationships. This is shown in Figure 5, which illustrates the helical
nature of this architecture.

5.4 Proper Use of the Meta-Helix
There is a seductive mistake that can be when implementing an extension using the meta-
helix. The implemented class is often very similar to the implementing class, as in this
example. This makes it easy to imagine that the implemented class is an extension of the
implementing class, and should be implemented as a subclass of the implementing class
(i.e. pointwould be a subclass of point*). But it is important not to do this, because
it would once again be implementation level conflation. Some properties of point*,
like having a history slot, must not become properties of point. The actual rela-

tionship between point and point* is implemented-by, not extension-of.

6 Implementing the Meta-Helix
Since the meta-helix applies to several different kinds of MOP, we present meta-helix
versions of several styles of MOP. All of these will be class-based MOPs, rather than
object-based MOPs. That is, classes will have metaobjects, but objects won’t (except
via their classes). We will thus have a different class metaobject for each layer of an
implementation hierarchy. Each will know what class metaobject to use to implement
it.

6.1 A Compile-Time MOP Based on the Meta-Helix
We first present a compile-time MOP based on the meta-helix. In a compile-time
MOP, the meta-level code runs only at compile time. The meta-level code controls
the compilation of the program, and thereby indirectly controls its runtime behavior
[Rod92, LKRR92, Chi95].

A compile-time MOP controls compilation from its source language to its target lan-
guage. For a compile time MOP based on the meta-helix, the target language is simply
the non-extended language. The compile-time MOP we present will control translation
from extended CLOS to non-extended CLOS.

The MOP controls the translation of programs that use extensions, such as slots with
history, into programs in non-extended CLOS. The translated programs are then com-
piled by ordinary CLOS compilers. Since this MOP is a translator from extended CLOS
to CLOS, the translated program will be identical to the source program, except where
it makes use of extended features. The translator thus behaves as the identity function
by default. This default behavior is extended to handle the translation of extensions.

To implement thehistory-class extension shown in Section 2, the programmer
specializes the translation of classes and slot access primitives for history-class
classes. For example, the definition of the class point in the source program:

(defclass point ()
(x y)

(:metaclass history-class))

is translated into a definition of the class point* and a method for slot-history:

(defclass point* ()
(history x y))

(defmethod slot-history ((object point*))
(get-slot object ’history))

Note that the definition of point* is in non-extended CLOS. Instances of that class
have three non-extended slots history, x and y. All occurences of the class point

The actual meta-helical compile-time MOP we have developed—described in [Chi95]—translates from
extended C++ to non-extendedC++; but for simplicity in this paper we continue with a presentation in terms
of a CLOS-like syntax. Again, we have been careful not to affect the validity of the paper in doing so.

in the source program are replaced with point* during the translation. The objects
created as instances of point are thus implemented by instances of point*.

In compile-time MOPs based on the meta-helix, the implemented-by relationship in
Figure 3 is thus manifested as a compile-time translation from the implemented class to
the implementing class. Thus, the class point is implemented by the class point*.

The meta-level code does the translation. That is, the meta-level code that imple-
ments history-class classes is responsible for creating a new implementing class
for each history-class class, point* in this case, and for translating all other as-
pects of the implemented class into the appropriate operations on the implemented class.
The MOP guarantees that all aspects of an implemented class will go through the trans-
lation process, so that there will be no conflation of levels.

Thus, all occurences of the slot access expression (get-slot object slot-name)
on point objects will also go through a translation process, resulting in the CLOS ex-
pression:

(progn (set-slot object
’history
(cons ‘(get slot-name)

(get-slot object ’history)))
(get-slot object slot-name))

Note that the translated expression will be executed on instances of the class point*,
since all occurrences of point are replaced with point*. The get-slot and
set-slotprimitives in the translated expression will thus operate onpoint*objects,
so their behavior will be the default one. Thus the infinite recursion on get-slot that
showed up in Section 3 is not an issue here.

6.2 A Runtime MOP based on the Meta-Helix
The meta-helix is applicable to run-time MOPs as well as to compile-time MOPs. In this
section, we discuss how to adapt one run-time MOP, the CLOS MOP, to be meta-helical.

In compile-time meta-helical MOPs, the translation process reduces all constructs
in the extensions to non-extended constructs, so that the final code which is executed
at run-time contains only non-extended constructs. A call for creation of an extended
object will have been translated—possibly through several levels—to a call for creation
of a non-extended object that implements it. In a literal sense, only the non-extended
objects exist at run-time.

In a run-time meta-helical MOP, on the other hand, the implementation process must
be carried out at run-time, so there will be a run-time object for each level of implementa-
tion. The implemented-by relation becomes manifested as an implemented-by field
in every extended object, which gives the object one level down that implements it.

Just as in a compile-time meta-helical MOP, the metaobject for an extended class is
responsible for defining the class that will implement it. But now, both classes will exist
at run-time. The metaclass for point will create a class equivalent to the definition:

Of course, if history-class had been erroneously implemented in terms of itself, that is if
history-class classes translated into history-class classes, then there would be in infinite recur-
sion of translation. The meta-helix doesn’t eliminate real implementation circularities, it just avoids extrane-
ous ones.

(defclass point* ()
(history x y))

At runtime, the class point delegates most of its slot access work to the class
point*. For example, when an instance of point is created, the class point asks
the class point* (its implementing class) to create a point* instance. All the point
object contains is a tag saying that it is a point and an implemented-by field that holds
the point* object.

The slot access primitiveget-slot is then specialized by the class metaobject for
point. Its implementation is:

(defmethod do-get-slot
((c history-class) object slot-name)

(let ((implemented-by (implemented-by object)))
(set-slot implemented-by

’history
‘((get-slot ,slot-name)
,@(get-slot implemented-by

’history)))
(get-slot implemented-by slot-name)))

The meta-level generic function is passed the object of the extended class. The method
first gets the implementing object for that object (i.e. an instance of point*) and then
operates on the implementing object to carry out the actual work of implementation.
Thus, when it invokes get-slot internally, it is invoking it on a point* object. The
levels are not conflated. This delegation keeps the levels clearly separated.

7 Related Work
There are numerous metacircular MOPs with architectures that differ in important ways
from that of the CLOS MOP. The Smalltalk-80 MOP [GR83] distinguishes classes and
metaclasses, the 3-KRS MOP [Mae87] creates distinct metaobjects for individual ob-
jects, and the ObjVlisp MOP [Coi87] takes a uniform model of metaclasses. But these
MOPs also suffer from the problem of implementation level conflation, because none of
those differences reify the implemented-by relation in the way the meta-helix does.

The AL-1/D MOP [OIT92] provides multiple views in that objects are controlled by
multiple metaobjects each of which represents different aspects of implementation, such
as operational behavior and resource allocation. But the AL-1/D MOP is not metacircu-
lar, and so the issue of separation between the implemented view and the implementing
view does not arise in the same way. The focus in AL-1/D is on dividing the implement-
ing view into different parts.

Work on subject-oriented programming [HO93, SZ89] is targeted at one of the un-
derlying problems we have faced—how to have multipled clearly distinguished views
of an object. But our focus here is not on the general issues of subjectivity, but rather
on the more specific problem of implementation-level conflation in metacircular MOPS.
Our solution is informed by that work, but is more specific to our needs.

8 Conclusion
We have developed a new analysis of a problem that arises in existing metacircular
metaobject protocols. This analysis, in terms of the notion of implementation level con-
flation, shows how pure metacircularity causes confusion when there aren’t clearly dis-
tinguished views of the implemented and implementing functionality.

A new architectural approach, called the meta-helix, retains the benefits of metacir-
cularity, but address the traditional problems. It does this by reifying the implemented-
by relation, so that even if the implementing language is the same as the implemented
language, the two levels are reified distinctly. In a meta-helical MOP, the implement-
ing code can be written in the non-extended language—this preserves the benefits of
metacircularity. A clear separation between implemented and implementing objects and
classes prevents the traditionalproblems that stem from implementation level conflation.

Acknowledgements
We would like to thank the members of the Embedded Computation Area at Xerox
PARC who commented on earlier drafts of this paper. We would also like to thank the
anonymous reviewers for suggestions that improved the quality of the presentation.

References
[BDG 88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E.

Keene, Gregor Kiczales, and David A. Moon. Common lisp object system
specification. Sigplan Notices, 23(Special Issue), September 1988.

[Chi95] Shigeru Chiba. A metaobject protocol for C++. In OOPSLA ’95 Confer-
ence Proceedings Object-Oriented Programming Systems, Languages, and
Applications (to appear), October 1995.

[Coi87] Pierre Cointe. Metaclasses are first class: The ObjVlisp model. In Pro-
ceedings of the ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), Orlando, FL, pages 156–
167, 1987.

[Dix91] Michael Dixon. Embedded Computation and the Semantics of Programs.
PhD thesis, Stanford University, 1991.

[dR90] Jim des Rivières. The secret tower of CLOS. In Informal Proceedings of
ECOOP/OOPSLA ’90Workshop on Reflection andMetalevel Architectures
in Object-Oriented Programming, October 1990.

[dRS84] Jim des Rivières and Brian Cantwell Smith. The implementation of pro-
cedurally reflective languages. In Proceedings of the ACM Conference on
LISP and Functional Programming, pages 331–347. ACM, 1984.

[GR83] Adele Goldberg and Dave Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

[HO93] William Harrison and Harold Ossher. Subject-oriented programming (a cri-
tique of pure objects). In Andreas Paepcke, editor, OOPSLA ’93 Confer-
ence Proceedings Object-Oriented Programming Systems, Languages, and
Applications, pages 411–428. ACM/SIGPLAN, ACM Press, October 1993.
Volume 28, Number 10.

[KdRB91] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[LKRR92] John Lamping, Gregor Kiczales, Luis H. Rodriguez Jr., and Erik Ruf. An
architecture for an open compiler. In Proceedings of the IMSA’92 Work-
shop on Reflection and Meta-level Architectures, 1992. Also to appear in
forthcoming PARC Technical Report.

[MA90] Dylan McNamee and Katherine Armstrong. Extending the mach external
pager interface to allow user-level page replacement policies. Technical Re-
port UWCSE 90-09-05, University of Washington, September 1990.

[Mae87] P. Maes. Concepts and experiments in computational reflection. In OOP-
SLA ’87 Conference Proceedings, Sigplan Notices 22(12), pages 147–155.
ACM, Dec 1987.

[Mae96] Chris Maeda. A metaobject protocol for file systems. In Proceedings of
ISOTAS’96 (International Symposium on Advanced Technologies for Ob-
ject Software), March 1996.

[MWY91] Satoshi Matsuoka, Takuo Watanabe, and Akinori Yonezawa. Hybrid group
reflective architecture for object-oriented concurrent reflective program-
ming. In European Conference on Object Oriented Programming, pages
231–250, 1991.

[OIT92] Hideaki Okamura, Yutaka Ishikawa, and Mario Tokoro. Al-1/d: A dis-
tributed programming system with multi-model reflection framework. In
Proceedings of the InternationalWorkshop onNewModels for Software Ar-
chitecture ’92; Reflection andMeta-Level Architecture, pages 36–47, 1992.

[Pae90] Andreas Paepcke. PCLOS: Stress testing CLOS Experiencing the metaob-
ject protocol. In Proceedings of the Conference on Object-Oriented Pro-
gramming: Systems, Languages, and Applications and the European Con-
ference on Object-Oriented Programming, pages 194–211, 1990.

[Rao91] Ramana Rao. Implementational reflection in silica. In European Confer-
ence on Object-Oriented Programming, pages 251–266, 1991.

[Rod92] Luis H. Rodriguez Jr. Towards a better understandingof compile-time mops
for parallelizing compilers. In Proceedings of the IMSA’92 Workshop on
Reflection andMeta-level Architectures, 1992. Also to appear in forthcom-
ing PARC Technical Report.

[SZ89] Lynn Andrea Stein and Stanley B. Zdonik. Clovers: The dynamic behav-
ior of types and instances. Technical Report CS-89-42, Brown University,
1989.

[WY88] Takuo Watanabe and Akinori Yonezawa. Reflection in an object-oriented
concurrent language. In Object Oriented Programming, Systems, Lan-
guages, and Applications Conference Proceedings, pages 306–315, 1988.

[Yok92] Yasuhiko Yokote. The apertos reflective operating system: The concept and
its implementation. In Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications, pages 414–434, Oc-
tober 1992.

[YTR 87] Michael Young, Avadis Tevanian, Richard Rashid, David Golub, Jeffrey
Eppinger, Jonathan Chew, William Bolosky, David Black, and Robert
Baron. The dualityof memory and communication in the implementation of
a multiprocessor operating system. In Proceedings of the 11th Symposium
on Operating Systems Principles, 1987.

