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Abstract

This paper presents a metaobject protocol (MOP)
for C++. This MOP was designed to bring the
power of meta-programming to C++ program-
mers. It avoids penalties on runtime performance
by adopting a new meta-architecture in which the
metaobjects control the compilation of programs
instead of being active during program execution.
This allows the MOP to be used to implement
libraries of efficient, transparent language exten-
sions.

1 Introduction

A metaobject protocol (MOP) is an object-oriented
interface for programmers to customize the be-
havior and implementation of programming lan-
The useful-
ness of this kind of customizability has been ar-
gued elsewhere[11, 9, 10], and interesting MOPs
have been included in languages such as Lisp[20],
ABCL[21], and, to a lesser degree, Smalltalk[6].
The goal of our work is to bring the power of meta-

guages and other system software.

programming to the more mainstream language
C++, while respecting their performance concerns
in that community.

This paper proposes a new MOP for C++, called
OpenC++ Version 2. Like previous MOPs, it al-
lows programmers to implement customized lan-
guage extensions such as persistent or distributed
objects, or customized compiler optimizations such
Appeared in OOPSLA’95 Proceedings pp.285-299
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as inlining of matrix arithmetic. These can be im-
plemented as libraries! and then used repeatedly.
Unlike previous MOPs, our proposal incurs zero
runtime speed or space overhead compared to or-
dinary C++.

To make this possible, our MOP works by pro-
viding control over the compilation of programs
rather than over the runtime environment in which
they execute. Specifically, our MOP provides con-
trol over the compilation of the following key as-
pects of C++: class definition, member access, vir-
tual function invocation, and object creation. This
feature means that the design of our MOP is in-
herently efficient, as opposed to MOPs, such as the
CLOS MOP, where only sophisticated implemen-
tation techniques enable efficient execution.

Our MOP has been developed by a synthesis and
re-engineering of a number of ideas in this field: we
took our basic protocol structure from the CLOS
MOP [11], we took the basic structure of a compile-
time MOP from Anibus and Intrigue [18, 13], and
we took some ideas for the basic structure of a
MOP for C4++ from the meta-information proto-
col (MIP) [2] and our previous work on Open C++
Version 1 [4].

This paper is a status report on the development
of OpenC++ Version 2. Our MOP has been pro-
totyped in Scheme and a number of examples are
running using the prototype. For simplicity, how-
ever, we use C+4 notation in this paper. In the
rest of the paper, we first discuss what we want our

1We use the term library to mean a collection of reusable
code such as functions, data types, and constants, written
by the language users within the description capability of
the language.



MOP to support, then we present the basic archi-
tecture of the MOP, and we illustrate its suitability
for real-world programming.

2 What We Want to Enable

The motivation for our C+4+ MOP is to enable
programmers to easily write libraries that provide
language extensions transparently and efficiently.
This section illustrates what we want to enable
with the MOP.

Suppose we want to implement persistent objects
as a C++4 library. In terms of transparency, the
goal is to allow the library users to specify that
some of their classes should produce persistent ob-
jects simply by adding an annotation to ordinary
class definitions.

persistent class Node {

public:
Node* next;
double value;
}s

The program that deals with persistent objects
should look like:

Node* get_next_of_next(Nodex p)

Node* q = p->next;
return q->next;

The key point is that adding or removing the sim-
ple annotation persistent should be all that is
required to change this from defining persistent ob-
jects or transient ones.

Unfortunately, such a simple annotation is quite
difficult to implement in C++. For example, one
way to try to do this in C++ is to develop a class
library that provides a class PersistentObject
from which other classes can inherit if they want to
be persistent. In such a scheme, the hope is that
the definition of the class Node would look like:

class Node

public:
Node* next;
double value;

};

: public PersistentObject {

But, the inheritance mechanism does not provide
enough access to implement persistent objects by
itself; the library user will also have to edit their
programs to correctly use that functionality. To
implement persistence, references to persistent ob-
jects must be detected at runtime. If this is not
done in hardware, the software will need to be
edited to look something like:

Node* get_next_of_next(Nodex p)

{
Node* q = (p->Load(), p->next);
return (gq->Load(), g->next);

Because the class PersistentObject cannot
control its subclasses” member accesses, the li-
brary user will have to call the member func-
tion Load() before every access to the object.
Load() is a member function supplied by the class
PersistentObject to load objects from disk on
demand.

The situation may not appear so bad in this sim-
ple example, but tracking down and editing all such
accesses can be quite difficult. The library imple-
mentor must describe the need for editing in a doc-
ument, and the user must carefully read and fol-
low those instructions. More importantly, chang-
ing code back and forth from persistent to transient
is extremely labor-intensive.

Our MOP provides the ability to implement a
persistent object library so that persistence can be
selected with only a simple edit to the class defini-
tion. It enables not only annotations for language
extensions but also ones for compiler optimizations.

From the pragmatic viewpoint, the design crite-
ria of such a MOP are high performance and ar-
bitrary customizability. For the former, the MOP
should not include any runtime overhead or pre-
clude optimization by the current C++ compiler.
For the latter, the MOP should provide the abil-
ity to implement common C++ extensions such as

persistent C++ or distributed C++.
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Figure 1: The Protocol Structure

3 The Basic Architecture

The basic architecture of the OpenC++ MOP is
similar to that of the CLLOS MOP in that metaob-
jects represent language entities visible to the pro-
grammer. There are class metaobjects and func-
tion metaobjects. The behavior of the program is
controlled by those metaob jects.

3.1 Compile-time and Runtime

A distinguishing feature of the OpenC++ MOP as
compared to the CLOS MOP is that the OpenC++
MOP clearly separates the compile-time environ-
ment and the runtime environment. Ordinary ob-
jects exist only at runtime, and metaobjects exist
only at compile-time.?

Since the metaobjects exist only at compile-time,
the way they alter the behavior of the objects is by
controlling the compilation of the program. The
metaobjects appropriately translate top-level defi-
nitions of the program, and, if necessary, append
supplementary runtime functions, types, and data
to the translated code.

This means that our MOP inherently implies no
penalty in runtime space or speed. On the other

hand, in the CLOS MOP, key aspects of the ob-

2A simple programmer extension that we will show later
can allow some of the functionality of runtime metaobjects.

ject system are executed through runtime method
invocation of the metaobjects. The CLOS MOP
hence requires sophisticated implementation tricks
to achieve good runtime performance.

3.2 Basic Protocol Structure

The OpenC++ MOP controls source-to-source
translation from OpenC++ (extended C++) to
C++. First of all, the source code of the OpenC++
program is parsed and divided into top-level defini-
tions for classes and (member-)functions.” Then a
metaobject is constructed for each such definition.
The metaobject then translates the top-level defi-
nition into appropriate ordinary C++ (or C) code.
The translated code is then collected and assem-
bled into contiguous source code. Figure 1 shows
this protocol structure.

To see how this works, we now walk through an
example of how the MOP compiles a small pro-
gram, specifically the two definitions shown below:

class Point {

public:

void MoveTo(int, int);
int x, v;

};

?The definition of global variables is also a top-level def-
inition. But in this paper, we ignore it for simplicity.
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Figure 2: Overview of the Protocol

void Point::MoveTo(int new_x,
int new_y)
{

¥

X T new_x; y = new_y;

In phase 1, after parsing, the MOP constructs
two metaobjects, one for the class Point and one
for the member function MoveTo(). By default,
the class metaobject is an instance of the class
Class. It contains information given by the class
definition such as its name, base classes, members,
etc. The function metaobject is an instance of the
class Function by default. It contains similar in-
formation from the function definition, such as its
name, parameters, and the parse tree of the func-
tion body. Since this is a member function, it also
has a pointer to the class metaobject that supplies
this member function.

In phase 2, the metaobjects are called upon to
generate appropriate code fragments to substitute
for the original code fragments of their definitions.
To do that, the member function CompileSelf ()
of each metaobject is invoked.

In response to CompileSelf (), class metaob-
jects generate an ordinary C++ definition — in the
form of parse tree — for their class. The default is
just to emit the original definition. Similarly, func-
tion metaobjects generate an ordinary C++ defi-
nition — also in the form of a parse tree. Again,
the default is to just emit the original definition.

To translate the function body, function metaob-

jects follow a layered sub-protocol, walking the
parse tree of the body step by step, asking appro-
priate class metaobjects to translate each fragment
of the body. This is done by passing the parse tree
of the code fragment to the class metaobject, and
getting the parse tree of the translated fragment
back. This layered protocol is shown in Figure 2.
Note that since the function metaobject compiles
the function body by making queries of the class
metaobjects, the compilation of the program is
mainly the responsibility of the class metaobjects.
The default action of the class metaobjects is to
just return the given parse tree without any trans-
lation.

In the example of MoveTo(), since x is a data
member of the class Point, it means that when
x=new x is encountered during the tree traver-
sal, the function metaobject invokes the member
function CompileWriteDataMember () of the class
metaobject Point. That member function trans-
lates the parse tree that corresponds to the ex-
pression x=new_x, and returns the translated parse
tree. By default, the translated expression is also
x=new x. The original subtree is then replaced with
the returned subtree. Similarly, if the function
metaobject encounters a variable declaration such
as “Point* p”, it invokes the member function
CompileVarDeclaration() of the class metaob-
ject Point to translate the subtree of the variable
declaration.



In phase 3, the parse trees generated by the in-
dividual metaobjects are then collected and con-
verted into C4+4 source text. This source text is
Since the
MOP is implemented as a separate preprocessor of
the C++ compiler, the converted C++ text is in
the form of character file. So the C++4 compiler
must parse the contents of the file again. We could

then compiled by the C+4 compiler.

avoid this overhead, however, if we integrated the
MOP into the C4++ compiler.

A conceptually significant point is that the meta-
objects are permitted to generate arbitrary code
fragments, so the generated fragments may contain
OpenC++ code. If that happens, the translation
is recursively applied to each generated fragment
until it becomes ordinary C++ code. Phases 1 and
2 are repeated on each fragment so that all code
fragments become C++ code before starting phase

3.

3.3 A Simple Programmer Customiza-
tion

Now we show a simple example of what program-
mers can do with this MOP. Suppose we want to
specialize class metaobjects to implement a mech-
anism for getting class information such as data
member names at runtime. In essence, the idea is
to implement a subset of the functionality of the
Meta-Information Protocol[2]. At runtime, for ev-
ery class, this mechanism will automatically and
transparently make available a record that contains
the class information.

Any CH++ customization implemented as a
MOP-based library is usually divided into two
parts: compile-time code and runtime code. The
former is a class library of metaobjects, and the
latter is a set of runtime support routines. Given
the two, the programmer can then write a user pro-
gram that simply uses the C+4 customization (see
Figure 3).

First we show the user program the library user
wants to be able to write:

| class
| Point
| User Program
\ )
Librar
class \ struct y
ClassInfoClass | Classinfo
|

compile-time codq runtime code

Figure 3: MOP-based library

metaclass Point : ClassInfoClass;
class Point { ... };

int i=0;
char* name;
while((name=ClassDataMemberNames (Point)
[i++]) !'= NULL)
printf ("Point’s data member: %s\n",
name) ;

This program prints the names of the data mem-
bers of the class Point. The first statement speci-
fies the metaclass of the class Point. It declares
that the class metaobject for Point should be
an instance of the class ClassInfoClass. This
annotation directs the MOP to produce runtime
class information for the class Point. The user
can then access it through the runtime func-
tions supplied by the library. In the code above,
ClassDataMemberNames () is one such runtime ac-
cess function.

To enable such a user program, the library im-
plementor must write the appropriate compile-time
and runtime library, as shown below. First, we
show the runtime code. It includes the definition of
ClassInfo, a record type for class information such
as the class name and the data members. It also
includes the function ClassDataMemberNames () to
access ClassInfo.?

struct ClassInfo {
charx class_name;
charx*x data_member_names;

};

*That function is implemented as a macro because C++

does not deal with a symbol name as first-class data. #i is
a macro operator for concatenating two symbol names.



#define ClassDataMemberNames (name)\
((info_##name) .data_member_names)

Next, we show the compile-time code. Its ob-
jective is to control the compilation so that the
runtime support routines work appropriately with
the user’s program. In this example, compilation
of the definition of the class Point must translate
it into this:

class Point { ... }; // not changed
ClassInfo info_Point = {
"Point",

{IIXII nyn NULL}
The second line makes the record info_Point,
which contains the class information of Point. To
do such translation, we define a subclass of Class
for the compile-time library.

class ClassInfoClass

public:
Expression CompileSelf();

: public Class {

b

Expression
ClassInfoClass: :CompileSelf ()
{

Expression code = MakeParseTree(
“ClassInfo info_%s = {\"%s\", {",
name, name);

for(int i = 0;
i < n_data_members;
++i)
code->Append(
MakeParseTree(
II\II%S\II s n s

data_member_names[i]));

code->Append(
MakeParseTree ("NULL}};"));

return Class::CompileSelf ()
->Append(code);
+

The member function CompileSelf () simply pro-
duces a parse tree that corresponds to a C++
statement that makes the record data such as
info_ Point. It first constructs the statement
in the form of a character string, then converts

it to a parse tree by using a utility function

MakeParseTree(), which receives a string and re-
places %s symbols with other sub-strings in a sim-
ilar way to C language’s printf () function. Then
it converts the string to a parse tree. The result
of CompileSelf () is the concatenation of the pro-
duced parse tree and the result of the base class’
CompileSelf (). It is substituted for the original
definition of the class Point in the user’s program.

4 Suitability for the Real World

A MOP itself is a mechanism to implement some-
thing necessary. This section presents how the
OpenC++ MOP is utilized for practical program-
ming.

The OpenC++ MOP can be viewed as a tool for
implementing libraries that efficiently and trans-
parently provide useful facilities for the program-
mer. In other words, the OpenC++4+ MOP is pri-
marily a mechanism for library implementors. The
benefit to library users is not the MOP itself but
the transparency and efficiency of the library im-
plemented with the MOP.

4.1 Persistent-Object Library (revis-
ited)

Using the OpenC++ MOP, the persistent objects
described in Section 2 can be transparently pro-
vided for library users. A new metaclass is used to
encapsulate the implementation of the extension
from the user-defined classes. Such a new meta-
class is developed through the three steps seen be-
fore: 1) decide what the user program should look
like, 2) figure out what it should be translated to,
and 3) write appropriate compile-time and runtime
code to perform and support the translation. We
show the persistent-object library along those three
steps.

First, the program the library user writes should
look as follows:



metaclass Node :
class Node {
public:
Node* next;
double value;

};

PersistentClass;

Node* get_next_of_next(Nodex p)
{

Node* q = p->next;

return g->next;

That is, the library wuser can obtain persis-
tent objects simply by specifying the metaclass
PersistentClass.® There is no need for the user
program to explicitly invoke Load () asin the C++
code in Section 2.

The next step is to figure out how to translate the
user program. The library implementor must de-
cide what should be supplied as the runtime code of
the library, what should be generated for each user
class and should be directly embedded in the trans-
lated code. In this example, the function Load()
is supplied as a runtime support routine, while in-
vocation of Load() is embedded in the translated
code by the metaobjects. The user program should
be translated to:

Node* get_next_of_next(Nodex p)

{
Node* q = (Load(p), p->next);
return (Load(q), q->next);

Ttalic letters indicate code inserted by the metaob-
jects. The metaobjects translate the user program
so that it appropriately invokes runtime support
routines. Unlike in Section 2, the inserted code is
Load(p) instead of p->Load(). This syntactical
change is because Load() is an ordinary function.
Load() is not supplied as a member function any
more since the class Node does not inherit from any
base class.

Finally, the library implementor writes the
compile-time code of the library. For the trans-

®0Our MOP makes it possible to put even more syn-
tactic sugar on this so the programmer can simply write:
persistent class Node {...};. This is discussed in Sec-
tion 5.

lation specified at the previous step, the class
PersistentClass is defined as a subclass of Class.
It redefines the member function CompileRead-
DataMember() and CompileWriteDataMember()
so that the member accesses like p->next are ap-
propriately translated. The definition of Compile-
ReadDatalMember () is as follows:

Expression

PersistentClass: :CompileReadDataMember (
Environment env,
String member_name,
String variable_name)

{

return MakeParseTree(
"(Load(%s), %e)",
member_name,
Class::CompileReadDataMember (
SO
}

The CompileReadDataMember() supplied by the
base class Class returns the parse tree that cor-
responds to the original code, in this example,
p->next.

More Realistic Implementation

The implementation shown above is only part of
the persistent library. In a typical implementation,
when a persistent object is loaded onto memory,
pointers that the object contains must be trans-
lated to point to correct memory addresses because
the actual layout of objects changes every session.
This translation, which is often called pointer swiz-
zling, is needed even if references to persistent ob-
jects are detected by a virtual memory system,
which is more sophisticated implementation.

To perform pointer swizzling, the runtime func-
tion Load() has to know which data fields of per-
sistent objects hold pointer values. So the library
must record the type of an object and its type def-
initions when the object is constructed at runtime.
Recording the type definitions can be implemented
in a similar way to the Meta-Information Protocol
shown in Section 3.3.

To record the type of the object, for example, an
expression new Node() should be translated into:



(Node*)RecordObjectType(new Node(),
“Node“)

The runtime support function RecordObject-
Type () receives a pointer to the constructed object
and the type of that object, records the type, and
returns the received pointer.

The definition of the member function Compile-
New() that performs that translation is as follows:

Expression

PersistentClass: :CompileNew(
Environment env,
Expression arguments,
Expression keywords)

{
char* pat =
"(%s*)RecordObjectType (e, \"%4s\'")";
return MakeParseTree(

pat,

name,

Class::CompileNew(env,
arguments,
keywords),

name) ;

b

4.2 Matrix Library

The next example is a matrix library that can be
implemented more efficiently if our MOP is ex-
ploited. A new metaclass is used to optimize the
implementation of a specific class, which is also pro-
vided by the library.

This example is based on C++’s mechanism of
overloading operators that allows us to implement
a matrix library with which matrices are available
in an arithmetic expression. For example, the pro-
grammer can write:

Matrix a, b, c, d;
a=b+c+d;

Although matrix arithmetic is transparently pro-
vided, the performance of this library is quite bad
because each + operation is done through a func-
tion call and thus the intermediate value is passed
as a Matrix object between the function calls. The
following inlining is clearly better.

Matrix a, b, c, d;

for(i = 0; i < number_of_rows; ++1)
for(j = 0;
j < number_of_columns;
++3)

a.element[i][j] = b.element[i][j]
+ c.element[i] [j]
+ d.element[i]1[j];
}

Directing such an inlining scheme to the com-
piler is not possible within the confines of C++.
Expecting the C++ compiler to automatically de-
tect all such kinds of optimization is not realistic
[1].

Our MOP enables the programmer to write a li-
brary of such customized optimizations. It allows
the library implementor to provide the class Matrix
with a metaclass for the inlining by using knowl-
edge of implementation details of the class Matrix.
The metaclass MatrixClass will have this member
function:

Expression

MatrixClass: :CompileMemberFunctionCall(
Environment env,
String member_name,
String variable_name,
Expression arguments)

{
if (member_name == "="){
Expression assigned_expr
= arguments->GetFirst();
if CGinlining is applicable)
return MakeParseTree(
“for(i = 0; ...", ...);
+
// Otherwise, do the default translation.
return
Class: :CompileMemberFunctionCall(
env, member_name, ...);
+

Because C+4 regards an overloaded operator
as a member function call, the member func-
tion CompileMemberFunctionCall() shown above
is invoked to translate the expression a = b + ¢
+ d into the inlined form. On this invocation,
the operator = is interpreted as a member func-

tion call on the object a. The sub-expression



b + ¢ + d is an argument of the = operator, so
the parse tree of that sub-expression is passed to
CompileMemberFunctionCall() as the parameter
arguments. The invoked member function checks
the passed parse tree, and then, if the inlining is
applicable, it actually applies the inlining to the ex-
pression; it generates a parse tree that corresponds
to the inlined expression. Otherwise it would have
delegated the translation to the base class.

To determine whether the inlining is applicable,
the compile-time code must traverse the passed
parse tree and see whether the shape of the tree
matches a particular pattern. For example, if the
parse tree represents repetition of an identifier and
the symbol +, then the inlining is applicable.

4.3 Customizing Implementation of Ob-
jects

Some C++ compilers, such as GNU C++ 2.5.8 for
SPARC and Sun C++ 2.0, do not allocate objects
in registers. For example, if we compile the follow-
ing program:

class Vector {
public:

double x, y;
};

double xpos[1000], ypos[1000];
Vector v;

for(int 1 = 0; i < 1000; ++i){

xpos[i] += v.x;
ypos[i] += v.y;

In the for loop, the compiled code loads the values
of v.x and v.y into registers for every iteration.
This is obviously redundant since the values should
be loaded only once before the iteration starts.

An experienced programmer can remove those
redundant load instructions by editing the for
statement as follows:

double 8 = v.x, t = v.y;
for(int 1 = 0; i < 1000; ++i){
xpos[i] += s;
ypos[i] += t;

Since double variables s and t are allocated on
registers, the compiled code does not include re-
dundant load instructions and runs faster.

Although this kind of technique is popular in C
and C++4 programming, the performance of the
compiled code depends on implementation of com-
pilers. The technique shown above works for par-
ticular compilers, but it may not for other compil-
ers or even other versions of those compilers.

Our MOP provides the ability to do such op-
timization in a more sophisticated way. Pro-
grammers can separate description for optimization
from the rest of the program. The program would

look like:

metaclass Vector LightWeightClass;
class Vector {

public:

double x, y;

s

double xpos[1000], ypos[1000];
Vector v;

for(int i = 0; i < 1000; ++i){

xpos[i] += v.x;
ypos[i] += v.y;

The metaclass LightWeightClass specializes im-
plementation of instances of the class Vector.®
Since the implementation scheme is separately de-
scribed from the program above, programmers can
independently customize it to fit their compilers.

To do the optimization shown first, the metaclass
LightWeightClass redefines the member functions
to translate the program into:

double xpos[1000], ypos[1000];
double x_of_v, y_of_v;

50ur MOP enables more smart annotation. As discussed
later, programmers can switch implementation by simply
adding or removing an annotation lightweight to variable
declaration. For example, if they write:
lightweight Vector v;
the variable v is implemented in the lightweight way. Oth-
erwise, it is done in the ordinary way.



for(int 1 = 0; i < 1000; ++i){
xpos[i] += x_of_v;
ypos[i] += y_of_v;

Now the Vector object v is implemented with two
distinct double variables.

The definition of the member function Compile-
VarDeclaration() is as below. It translates vari-
able declarations.

Expression

LightWeightClass: :CompileVarDeclaration(
Environment env,
String variable_name)

{
return MakeParseTree(
"double x_of_Ys, y_of_%s",
variable_name,
variable_name);
}

Also, the member function CompileDotReadData-
Member () is redefined to translate data-member ac-
cesses.

Expression

LightWeightClass

: :CompileDotReadDataMember (
Environment env,
String member_name,
String variable_name)

{
return MakeParseTree("}s_of_Ys",
member_name,
variable_name);
¥

4.4 Selecting a Concrete Class at Com-
pile Time

The last example is a mechanism to select the most
appropriate concrete class for a given abstract class
at compile time. With this mechanism, program-
mers do not have to directly instantiate a specific
concrete class. Instead, they can instantiate an ab-
stract class with an annotation about the require-
ment for the implementation of the instance. The
effective concrete class is selected by the compiler.

A class like Set can be implemented with differ-
ent data structures and algorithms. Since appro-
priate implementation depends on user programs, a

typical implementation scheme is to define several
subclasses each of which corresponds to a different
implementation scheme, such as LinkedListSet,
ArraySet, and SortedSet.
implementation scheme, selecting the appropriate

But in the typical

concrete class happens at runtime, thereby incur-
ring a performance overhead.

The mechanism we show below is similar to that
n [14], but it automatically selects the most ap-
propriate subclass at compile time. The user just
annotates requirements for each instantiation of a
class, then the compiler selects a subclass to mostly
satisfy the requirements. For example, the user
program of the Set library will look like:

Set* 5 = new Set("size<=1000;so0rted");

The requirement is specified as the first initializa-
tion parameter to the class Set.” The compiler
selects a subclass of Set that matches the spec-
ified requirement, and translates the code above
into like:

Set* s = new SortedArraySet();

SortedArraySet is a subclass of Set, which the
compiler selects for that particular user program.

To enable that translation, the library implemen-
tor defines a metaclass SetClass of the class Set.
It redefines the member function CompileNew () as
follows:

Expression
SetClass: :CompileNew(Environment env,
Expression arguments,
Expression keywords)
{
Expression requirement
= arguments->GetFirst();
String class_name = SelectSubclass(
requirement);
return MakeParseTree(''new %s()",
class_name);

"If we use our MOP’s capability to extend the syntax, we
can separate the requirement from the initialization param-
eter. The program could be:

new require("size<=1000;sorted") Set().



String SetClass::SelectSubclass(
Expression requirement)
{

L

The member function SelectSubclass() inter-
pretes the requirement, which is passed as a char-
acter string, and returns the name of the selected
subclass for that requirement.

Although the code shown above selects a sub-
class at compile time, it is also possible to postpone
the final decision to runtime. For example, the user
may want to use runtime information for the re-
quirement. In this case, the metaobject translates
a new expression into an expression that calls an ap-
propriate runtime support function, which selects a
subclass and returns its instance. This implemen-
tation is also available without the MOP, but if we
use the MOP, interpretation of the requirement can
be done at compile-time. For example, the metaoh-
ject may translate the requirement from a string to
an appropriate data structure for the runtime sup-
port function to efficiently handle it.

5 Other Issues

This section briefly surveys several other issues on

the OpenC++ MOP.

Inheritance

An interesting issue is whether a subclass should
This is
important because selecting the metaclass is the

inherit the metaclass of its base class.

main mechanism for directing what MOP-based
customization programmers use. The OpenC++
MOP provides customizability on this issue as well.

Our MOP selects the metaclass of a given class
X with the following algorithm:

1. If the class X has a base class, then call
ComputeMetaclassName () on the metaobject
for that base class, and select its resulting
value for the metaclass of X. By default, this
member function simply returns the same
metaclass as that of the base class.

2. If the metaclass of X is explicitly specified by
the programmer with the metaclass declara-
tion, then select that metaclass.

3. Otherwise, select the default metaclass Class.

By the first rule, subclasses inherit the metaclass
from their base class. This inheritance policy can
be customized by programmers, however. They can
redefine the member function ComputeMetaclass-
Name () to customize the policy.

In the case where a class has more than one base
class and the class metaobjects for them give dif-
ferent metaclasses, we simply raise a compilation
error. Other researchers have proposed automatic
derivation of a mixed-in metaclass in this case [5],
but applying that idea to the OpenC++ MOP is
not straightforward because combining the same
member function of two metaclasses is not always
possible.

Syntax extension

The OpenC++ MOP provides limited ability to
extend the language syntax. The programmer can
register new keywords, which can appear only in
certain limited places: the modifiers of type names,
class names, and the new operator. For example,
the following code is available.

distributed class Point { ... };
lightweight Vector v;
p = require("sorted") new Set;

distributed, lightweight and require are reg-
istered keywords. These keywords are passed to
a metaobject when a code fragment is translated.
The metaobject can use those keywords to decide
how to translate that code fragment. The keywords
may be followed by some meta arguments. For ex-
ample, "sorted" is an argument of the keyword
require. The arguments are simply passed to the
metaobject together.

Otherwise, the keyword registered by the pro-
grammer must appear as the member name in a
member access expression. In this case, the parser
recognizes the whole member access expression as
a user-defined statement. For example,



Matrix big_matrix = ...;

big_matrix->foreach(row == 1) {
element = 1.0;

b

foreach is a keyword. It must be followed by
an arbitrary expression (row == 1), and a state-
ment { element = 1.0 }. The expression may
be a list of formal arguments, or it may take the
for statement’s style, which is (<expression>;
<expression>; <expression>). The OpenCH+
MOP itself does not specify any meaning to the in-
terpretation of that foreach statement. The inter-
pretation is responsibility of the class metaobject
for Matrix, which may translate that statement to
an appropriate statement of C4++4 as macros do in
Lisp. The translated code may look like:

for(int row = 0;
row < number_of_rows;
++row)
for(int col = 0;

col < number_of_columns;
++col)

if (row == 1){
big_matrix->element [row] [col]

=1.0;
}

Although this code is not efficient, the library im-
plementor can write compile-time code to trans-
late the statement into more efficient code if the
condition such as (row == 1) matches a particu-
lar pattern. For example, the compile-time code
may check whether the parse tree of the given con-
dition represents a sequence of the identifier row,
the symbol ==, and an integer. If so, the compile-
time code can remove the for loop on row.

Protocol Overheads

Since programs translated by the OpenC++ MOP
invoke runtime support functions, the MOP may
initially seem to involve runtime penalties. But this
kind of penalty is not due to the MOP itself. It is
due to the implementation scheme of the library.
For example, in the persistent-object library, the
translated program invokes a function Load() ev-
ery member access. But the performance penalty

<metaclass> <class> <object>
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Figure 4: Metaclass, Class, and Object

with this function invocation is inherent in the im-
plementation scheme we chose for the library. In
fact, this function invocation is needed even if we
do not use the MOP, as we saw in Section 2.

Although the OpenC++4+ MOP does not involve
runtime penalties, it involves compile-time penal-
ties since it moves meta-level computation from
runtime to compile-time. However, at least regard-
ing to the default metaobjects, the compile-time
penalties can be reduced by elaborate implemen-
tation. The phase 2 and 3 of the protocol struc-
ture, which we showed in Section 3.2, are fused into
very simple computation since the member func-
tion CompileSelf () on the default class metaob-
jectsis an identity function that generates the same
source code as the input.

Meta Circularity
The design of the OpenC++ MOP is, like other

MOPs, conceptually meta-circular. There are no
substantial differences between metaclasses and
classes. A metaclass is simply a class that in-
stantiates other classes (i.e. metaobjects for the
classes). The relationship between a class and a
metaclass is equivalent to the class-instance rela-
tionship (Figure 4).
cludes definitions of metaclasses, the MOP also

Thus when a program in-

constructs class metaobjects for those metaclasses.
The constructed metaobjects control compilation
of the metaclasses.

The OpenC++ MOP, however, avoids the appar-



ent infinite regress of this meta circularity in a way
similar to that of other meta-circular MOPs. To
compile a class, its metaclass must be first com-
piled, before compiling that metaclass, its meta-
class must be compiled, and so on. But such a chain
of compilation is not infinite because the metaclass
Class is the root of any class-metaclass chain and
it is the metaclass of itself. The only question we
have to answer is how the MOP compiles Class
for bootstrapping. The answer is simple. Class
is directly compiled by the C4++4 compiler because
the compilation specialized by Class is equivalent
to the compilation done by the C++ compiler.

6 Related Work

In previous work, we have proposed another MOP
for C++, called OpenC++ Version 1 [3]. That
MOP had the ability to transparently implement
language extensions for distributed computing as
libraries on top of ordinary C++. But, because
that MOP was based on a meta-architecture in
which the metaobjects exist at runtime, it implied
runtime overheads. Also, that MOP provided only
limited ability to control program behavior, cover-
ing only member access and object creation. The
degree of transparency of libraries written with
that MOP was not enough for real-world program-
ming.

A number of ideas for the OpenC++ MOP came
from previous work. The idea of a compile-time
MOP is due to Anibus and Intrigue [18, 13]. These
are compile-time MOPs for controlling a Scheme
compiler. In those MOPs, the metaobjects are not
just language entities, but also represent global in-
formation such as the results of flow analysis. Our
basic protocol architecture is due to the CLOS
MOPJ11]. The major difference is that the CLOS
MOP’s metaobjects are runtime ones and thus the
CLOS MOP requires relatively large runtime envi-
ronment if it is directly applied to C++4. The idea
of a meta-interface of the early-stage of compilation
was also proposed in MPC++(8].

Like the CLOS MOP and OpenC++ Version 1,
a number of systems [15, 7, 17, 22] adopt runtime

metaobjects, which represent underlying mecha-
nisms such as the language interpreter and the OS
kernel, and are responsible for runtime behavior of
the system. Since the runtime metaobjects allow
users to change various decision policies of the sys-
tem, such as scheduling and migration, the users
can tune the system performance to fit their needs.
A drawback of the runtime metaobjects is runtime
overhead. A few ideas have been proposed on this
problem [12, 16, 19]. For example, inlining and par-
tial evaluation are effective techniques to reduce
the overhead. It is difficult to recover the whole
overhead of a runtime meta architecture, however.

7 Current Status

We are in the process of developing OpenC++ Ver-
sion 2. Our methodology is to first develop a sim-
plified version of the target system (i.e. C+4),
then design and test a MOP for that simplified
system, and finally port the developed MOP back
to the target system. We have thus developed a
C++-like object system, called S4++4, on top of
Scheme, and designed the MOP presented in this
paper for S++. A number of examples similar to
these presented here have been implemented to test
the S+4+ MOP, and we have repeatedly re-designed
the MOP based on the results of the tests. We are
currently porting our MOP back to C++.

8 Conclusion

This paper describes a metaobject protocol for
C++. It was developed to bring the power of meta-
programming to a more mainstream language.
This MOP differs from most existing MOPs in that
the metaobjects exist exclusively at compile-time
— they control the compilation of programs to al-
ter the behavior of the basic language constructs of
C++. This feature means that this MOP involves
no runtime speed or space overheads.

This paper also illustrates how the customizabil-
ity provided by our C+4+ MOP can be used to im-
plement language extensions efficiently and trans-
parently as libraries. Currently, many language ex-



tensions such as persistence or distribution end up
being re-implemented for each application because
the existing language mechanisms are insufficient
for customizing existing code to fit each applica-
Our C++ MOP enables us to implement
those extensions as libraries, making such exten-

tion.

sions easier to develop and maintain and thus more
reusable.
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