
A Metaobject Protocol for C��

Shigeru Chiba

Xerox PARC � University of Tokyo

chiba�parc�xerox�com chiba�is�s�u�tokyo�ac�jp

Abstract

This paper presents a metaobject protocol �MOP�
for C��� This MOP was designed to bring the
power of meta�programming to C�� program�
mers� It avoids penalties on runtime performance
by adopting a new meta�architecture in which the
metaobjects control the compilation of programs
instead of being active during program execution�
This allows the MOP to be used to implement
libraries of e�cient� transparent language exten�
sions�

� Introduction

A metaobject protocol �MOP� is an object�oriented

interface for programmers to customize the be�

havior and implementation of programming lan�

guages and other system software� The useful�

ness of this kind of customizability has been ar�

gued elsewhere���� 	� �
�� and interesting MOPs

have been included in languages such as Lisp��
��

ABCL����� and� to a lesser degree� Smalltalk���

The goal of our work is to bring the power of meta�

programming to the more mainstream language

C��� while respecting their performance concerns

in that community�

This paper proposes a new MOP for C��� called

OpenC�� Version �� Like previous MOPs� it al�

lows programmers to implement customized lan�

guage extensions such as persistent or distributed

objects� or customized compiler optimizations such

Appeared in OOPSLA��� Proceedings pp��������
c����� Association of Computing Machinery� Permission to copy without fee all or part
of this material is granted provided that the copies are not made or distributed for direct
commercial advantage� the ACM copyright and the title of this publication and its date
appear� and notice is given that copying is by permission of the Association for Computing
Machinery� To copy otherwise� or to republish� requires a fee and�or speci�c permission�

as inlining of matrix arithmetic� These can be im�

plemented as libraries� and then used repeatedly�

Unlike previous MOPs� our proposal incurs zero

runtime speed or space overhead compared to or�

dinary C���

To make this possible� our MOP works by pro�

viding control over the compilation of programs

rather than over the runtime environment in which

they execute� Speci�cally� our MOP provides con�

trol over the compilation of the following key as�

pects of C��� class de�nition� member access� vir�

tual function invocation� and object creation� This

feature means that the design of our MOP is in�

herently e�cient� as opposed to MOPs� such as the

CLOS MOP� where only sophisticated implemen�

tation techniques enable e�cient execution�

Our MOP has been developed by a synthesis and

re�engineering of a number of ideas in this �eld� we

took our basic protocol structure from the CLOS

MOP ����� we took the basic structure of a compile�

time MOP from Anibus and Intrigue ���� ���� and

we took some ideas for the basic structure of a

MOP for C�� from the meta�information proto�

col �MIP� ��� and our previous work on Open C��

Version � ����

This paper is a status report on the development

of OpenC�� Version �� Our MOP has been pro�

totyped in Scheme and a number of examples are

running using the prototype� For simplicity� how�

ever� we use C�� notation in this paper� In the

rest of the paper� we �rst discuss what we want our

�We use the term library to mean a collection of reusable

code such as functions� data types� and constants� written

by the language users within the description capability of

the language�

MOP to support� then we present the basic archi�

tecture of the MOP� and we illustrate its suitability

for real�world programming�

� What We Want to Enable

The motivation for our C�� MOP is to enable

programmers to easily write libraries that provide

language extensions transparently and e�ciently�

This section illustrates what we want to enable

with the MOP�

Suppose we want to implement persistent objects

as a C�� library� In terms of transparency� the

goal is to allow the library users to specify that

some of their classes should produce persistent ob�

jects simply by adding an annotation to ordinary

class de�nitions�

persistent class Node �
public�
Node� next�
double value�

��

The program that deals with persistent objects

should look like�

Node� get�next�of�next�Node� p�
�
Node� q � p	
next�
return q	
next�

�

The key point is that adding or removing the sim�

ple annotation persistent should be all that is

required to change this from de�ning persistent ob�

jects or transient ones�

Unfortunately� such a simple annotation is quite

di�cult to implement in C��� For example� one

way to try to do this in C�� is to develop a class

library that provides a class PersistentObject

from which other classes can inherit if they want to

be persistent� In such a scheme� the hope is that

the de�nition of the class Node would look like�

class Node � public PersistentObject �
public�
Node� next�
double value�

��

But� the inheritance mechanism does not provide

enough access to implement persistent objects by

itself� the library user will also have to edit their

programs to correctly use that functionality� To

implement persistence� references to persistent ob�

jects must be detected at runtime� If this is not

done in hardware� the software will need to be

edited to look something like�

Node� get�next�of�next�Node� p�
�
Node� q � �p	
Load��� p	
next��
return �q	
Load��� q	
next��

�

Because the class PersistentObject cannot

control its subclasses� member accesses� the li�

brary user will have to call the member func�

tion Load�� before every access to the object�

Load�� is a member function supplied by the class

PersistentObject to load objects from disk on

demand�

The situation may not appear so bad in this sim�

ple example� but tracking down and editing all such

accesses can be quite di�cult� The library imple�

mentor must describe the need for editing in a doc�

ument� and the user must carefully read and fol�

low those instructions� More importantly� chang�

ing code back and forth from persistent to transient

is extremely labor�intensive�

Our MOP provides the ability to implement a

persistent object library so that persistence can be

selected with only a simple edit to the class de�ni�

tion� It enables not only annotations for language

extensions but also ones for compiler optimizations�

From the pragmatic viewpoint� the design crite�

ria of such a MOP are high performance and ar�

bitrary customizability� For the former� the MOP

should not include any runtime overhead or pre�

clude optimization by the current C�� compiler�

For the latter� the MOP should provide the abil�

ity to implement common C�� extensions such as

persistent C�� or distributed C���

(1)

 C++
compiler

 code
fragments

if OpenC++ code

OpenC++
source

metaobjects

C++
source

(2) (3)

Open C++
compiler

Figure �� The Protocol Structure

� The Basic Architecture

The basic architecture of the OpenC�� MOP is

similar to that of the CLOS MOP in that metaob�

jects represent language entities visible to the pro�

grammer� There are class metaobjects and func�

tion metaobjects� The behavior of the program is

controlled by those metaobjects�

��� Compile�time and Runtime

A distinguishing feature of the OpenC�� MOP as

compared to the CLOS MOP is that the OpenC��

MOP clearly separates the compile�time environ�

ment and the runtime environment� Ordinary ob�

jects exist only at runtime� and metaobjects exist

only at compile�time��

Since the metaobjects exist only at compile�time�

the way they alter the behavior of the objects is by

controlling the compilation of the program� The

metaobjects appropriately translate top�level de��

nitions of the program� and� if necessary� append

supplementary runtime functions� types� and data

to the translated code�

This means that our MOP inherently implies no

penalty in runtime space or speed� On the other

hand� in the CLOS MOP� key aspects of the ob�

�A simple programmer extension that we will show later

can allow some of the functionality of runtime metaobjects�

ject system are executed through runtime method

invocation of the metaobjects� The CLOS MOP

hence requires sophisticated implementation tricks

to achieve good runtime performance�

��� Basic Protocol Structure

The OpenC�� MOP controls source�to�source

translation from OpenC�� �extended C��� to

C��� First of all� the source code of the OpenC��

program is parsed and divided into top�level de�ni�

tions for classes and �member��functions�� Then a

metaobject is constructed for each such de�nition�

The metaobject then translates the top�level de��

nition into appropriate ordinary C�� �or C� code�

The translated code is then collected and assem�

bled into contiguous source code� Figure � shows

this protocol structure�

To see how this works� we now walk through an

example of how the MOP compiles a small pro�

gram� speci�cally the two de�nitions shown below�

class Point �
public�
void MoveTo�int� int��
int x� y�

��

�The de�nition of global variables is also a top�level def�

inition� But in this paper� we ignore it for simplicity�

CompileSelf()
ComputeMetaclassName()

CompileMemberFunctionCall()
CompileReadDataMember()
CompileWriteDateMember()

CompileNew()

Class Metaobject:Function Metaobject:
CompileSelf()

CompileBody()

intra−object function invocation
inter−object function invocation

CompileVarDeclaration()

Figure �� Overview of the Protocol

void Point��MoveTo�int new�x�
int new�y�

�
x � new�x� y � new�y�

�

In phase �� after parsing� the MOP constructs

two metaobjects� one for the class Point and one

for the member function MoveTo��� By default�

the class metaobject is an instance of the class

Class� It contains information given by the class

de�nition such as its name� base classes� members�

etc� The function metaobject is an instance of the

class Function by default� It contains similar in�

formation from the function de�nition� such as its

name� parameters� and the parse tree of the func�

tion body� Since this is a member function� it also

has a pointer to the class metaobject that supplies

this member function�

In phase �� the metaobjects are called upon to

generate appropriate code fragments to substitute

for the original code fragments of their de�nitions�

To do that� the member function CompileSelf��

of each metaobject is invoked�

In response to CompileSelf��� class metaob�

jects generate an ordinary C�� de�nition � in the

form of parse tree � for their class� The default is

just to emit the original de�nition� Similarly� func�

tion metaobjects generate an ordinary C�� de��

nition � also in the form of a parse tree� Again�

the default is to just emit the original de�nition�

To translate the function body� function metaob�

jects follow a layered sub�protocol� walking the

parse tree of the body step by step� asking appro�

priate class metaobjects to translate each fragment

of the body� This is done by passing the parse tree

of the code fragment to the class metaobject� and

getting the parse tree of the translated fragment

back� This layered protocol is shown in Figure ��

Note that since the function metaobject compiles

the function body by making queries of the class

metaobjects� the compilation of the program is

mainly the responsibility of the class metaobjects�

The default action of the class metaobjects is to

just return the given parse tree without any trans�

lation�

In the example of MoveTo��� since x is a data

member of the class Point� it means that when

x�new x is encountered during the tree traver�

sal� the function metaobject invokes the member

function CompileWriteDataMember�� of the class

metaobject Point� That member function trans�

lates the parse tree that corresponds to the ex�

pression x�new x� and returns the translated parse

tree� By default� the translated expression is also

x�new x� The original subtree is then replaced with

the returned subtree� Similarly� if the function

metaobject encounters a variable declaration such

as �Point� p�� it invokes the member function

CompileVarDeclaration�� of the class metaob�

ject Point to translate the subtree of the variable

declaration�

In phase �� the parse trees generated by the in�

dividual metaobjects are then collected and con�

verted into C�� source text� This source text is

then compiled by the C�� compiler� Since the

MOP is implemented as a separate preprocessor of

the C�� compiler� the converted C�� text is in

the form of character �le� So the C�� compiler

must parse the contents of the �le again� We could

avoid this overhead� however� if we integrated the

MOP into the C�� compiler�

A conceptually signi�cant point is that the meta�

objects are permitted to generate arbitrary code

fragments� so the generated fragments may contain

OpenC�� code� If that happens� the translation

is recursively applied to each generated fragment

until it becomes ordinary C�� code� Phases � and

� are repeated on each fragment so that all code

fragments become C�� code before starting phase

��

��� A Simple Programmer Customiza�
tion

Now we show a simple example of what program�

mers can do with this MOP� Suppose we want to

specialize class metaobjects to implement a mech�

anism for getting class information such as data

member names at runtime� In essence� the idea is

to implement a subset of the functionality of the

Meta�Information Protocol���� At runtime� for ev�

ery class� this mechanism will automatically and

transparently make available a record that contains

the class information�

Any C�� customization implemented as a

MOP�based library is usually divided into two

parts� compile�time code and runtime code� The

former is a class library of metaobjects� and the

latter is a set of runtime support routines� Given

the two� the programmer can then write a user pro�

gram that simply uses the C�� customization �see

Figure ���

First we show the user program the library user

wants to be able to write�

Library

User Program

 class
ClassInfoClass

compile−time code runtime code

 struct
ClassInfo

class
Point

Figure �� MOP�based library

metaclass Point � ClassInfoClass�
class Point � ��� ��
���

int i � �
char� name�
while��name�ClassDataMemberNames�Point�

�i���� �� NULL�
printf��Point�s data member� �s�n��

name��

This program prints the names of the data mem�

bers of the class Point� The �rst statement speci�

�es the metaclass of the class Point� It declares

that the class metaobject for Point should be

an instance of the class ClassInfoClass� This

annotation directs the MOP to produce runtime

class information for the class Point� The user

can then access it through the runtime func�

tions supplied by the library� In the code above�

ClassDataMemberNames�� is one such runtime ac�

cess function�

To enable such a user program� the library im�

plementor must write the appropriate compile�time

and runtime library� as shown below� First� we

show the runtime code� It includes the de�nition of

ClassInfo� a record type for class information such

as the class name and the data members� It also

includes the function ClassDataMemberNames�� to

access ClassInfo��

struct ClassInfo �
char� class�name�
char�� data�member�names�

��

�That function is implemented as a macro because C��

does not deal with a symbol name as �rst�class data� �� is

a macro operator for concatenating two symbol names�

�define ClassDataMemberNames�name��
��info���name��data�member�names�

���

Next� we show the compile�time code� Its ob�

jective is to control the compilation so that the

runtime support routines work appropriately with

the user�s program� In this example� compilation

of the de�nition of the class Point must translate

it into this�

class Point � ��� �� �� not changed
ClassInfo info�Point � �
�Point��
��x�� �y�� NULL�

��

The second line makes the record info Point�

which contains the class information of Point� To

do such translation� we de�ne a subclass of Class

for the compile�time library�

class ClassInfoClass � public Class �
public�
Expression CompileSelf���

��

Expression
ClassInfoClass��CompileSelf��
�
Expression code � MakeParseTree�
�ClassInfo info��s � ����s��� ���
name� name��

for�int i � �
i � n�data�members�
��i�

code	
Append�
MakeParseTree�
����s�����
data�member�names�i����

code	
Append�
MakeParseTree��NULL�������

return Class��CompileSelf��
	
Append�code��

�

The member function CompileSelf�� simply pro�

duces a parse tree that corresponds to a C��

statement that makes the record data such as

info Point� It �rst constructs the statement

in the form of a character string� then converts

it to a parse tree by using a utility function

MakeParseTree��� which receives a string and re�

places �s symbols with other sub�strings in a sim�

ilar way to C language�s printf�� function� Then

it converts the string to a parse tree� The result

of CompileSelf�� is the concatenation of the pro�

duced parse tree and the result of the base class�

CompileSelf��� It is substituted for the original

de�nition of the class Point in the user�s program�

� Suitability for the Real World

A MOP itself is a mechanism to implement some�

thing necessary� This section presents how the

OpenC�� MOP is utilized for practical program�

ming�

The OpenC�� MOP can be viewed as a tool for

implementing libraries that e�ciently and trans�

parently provide useful facilities for the program�

mer� In other words� the OpenC�� MOP is pri�

marily a mechanism for library implementors� The

bene�t to library users is not the MOP itself but

the transparency and e�ciency of the library im�

plemented with the MOP�

��� Persistent�Object Library �revis�
ited�

Using the OpenC�� MOP� the persistent objects

described in Section � can be transparently pro�

vided for library users� A new metaclass is used to

encapsulate the implementation of the extension

from the user�de�ned classes� Such a new meta�

class is developed through the three steps seen be�

fore� �� decide what the user program should look

like� �� �gure out what it should be translated to�

and �� write appropriate compile�time and runtime

code to perform and support the translation� We

show the persistent�object library along those three

steps�

First� the program the library user writes should

look as follows�

metaclass Node � PersistentClass�
class Node �
public�
Node� next�
double value�

��

Node� get�next�of�next�Node� p�
�
Node� q � p	
next�
return q	
next�

�

That is� the library user can obtain persis�

tent objects simply by specifying the metaclass

PersistentClass�� There is no need for the user

program to explicitly invoke Load�� as in the C��

code in Section ��

The next step is to �gure out how to translate the

user program� The library implementor must de�

cide what should be supplied as the runtime code of

the library� what should be generated for each user

class and should be directly embedded in the trans�

lated code� In this example� the function Load��

is supplied as a runtime support routine� while in�

vocation of Load�� is embedded in the translated

code by the metaobjects� The user program should

be translated to�

Node� get�next�of�next�Node� p�
�
Node� q � �Load�p�� p	
next��
return �Load�q�� q	
next��

�

Italic letters indicate code inserted by the metaob�

jects� The metaobjects translate the user program

so that it appropriately invokes runtime support

routines� Unlike in Section �� the inserted code is

Load�p� instead of p	
Load��� This syntactical

change is because Load�� is an ordinary function�

Load�� is not supplied as a member function any

more since the class Node does not inherit from any

base class�

Finally� the library implementor writes the

compile�time code of the library� For the trans�

�Our MOP makes it possible to put even more syn�

tactic sugar on this so the programmer can simply write�

persistent class Node f���g�� This is discussed in Sec�

tion ��

lation speci�ed at the previous step� the class

PersistentClass is de�ned as a subclass of Class�

It rede�nes the member function CompileRead	

DataMember�� and CompileWriteDataMember��

so that the member accesses like p	
next are ap�

propriately translated� The de�nition of Compile	

ReadDataMember�� is as follows�

Expression
PersistentClass��CompileReadDataMember�

Environment env�
String member�name�
String variable�name�

�
return MakeParseTree�

��Load��s�� �e���
member�name�
Class��CompileReadDataMember�

������
�

The CompileReadDataMember�� supplied by the

base class Class returns the parse tree that cor�

responds to the original code� in this example�

p	
next�

More Realistic Implementation

The implementation shown above is only part of

the persistent library� In a typical implementation�

when a persistent object is loaded onto memory�

pointers that the object contains must be trans�

lated to point to correct memory addresses because

the actual layout of objects changes every session�

This translation� which is often called pointer swiz�

zling� is needed even if references to persistent ob�

jects are detected by a virtual memory system�

which is more sophisticated implementation�

To perform pointer swizzling� the runtime func�

tion Load�� has to know which data �elds of per�

sistent objects hold pointer values� So the library

must record the type of an object and its type def�

initions when the object is constructed at runtime�

Recording the type de�nitions can be implemented

in a similar way to the Meta�Information Protocol

shown in Section ����

To record the type of the object� for example� an

expression new Node�� should be translated into�

�Node��RecordObjectType�new Node���
�Node��

The runtime support function RecordObject	

Type�� receives a pointer to the constructed object

and the type of that object� records the type� and

returns the received pointer�

The de�nition of the member function Compile	

New�� that performs that translation is as follows�

Expression
PersistentClass��CompileNew�

Environment env�
Expression arguments�
Expression keywords�

�
char� pat �
���s��RecordObjectType��e� ���s�����

return MakeParseTree�
pat�
name�
Class��CompileNew�env�

arguments�
keywords��

name��
�

��� Matrix Library

The next example is a matrix library that can be

implemented more e�ciently if our MOP is ex�

ploited� A new metaclass is used to optimize the

implementation of a speci�c class� which is also pro�

vided by the library�

This example is based on C���s mechanism of

overloading operators that allows us to implement

a matrix library with which matrices are available

in an arithmetic expression� For example� the pro�

grammer can write�

Matrix a� b� c� d�
���

a � b � c � d�

Although matrix arithmetic is transparently pro�

vided� the performance of this library is quite bad

because each � operation is done through a func�

tion call and thus the intermediate value is passed

as a Matrix object between the function calls� The

following inlining is clearly better�

Matrix a� b� c� d�
���

for�i � � i � number of rows� ��i�
for�j � �

j � number of columns�
��j�

�
a�element�i��j� � b�element�i��j�

� c�element�i��j�
� d�element�i��j��

�

Directing such an inlining scheme to the com�

piler is not possible within the con�nes of C���

Expecting the C�� compiler to automatically de�

tect all such kinds of optimization is not realistic

����

Our MOP enables the programmer to write a li�

brary of such customized optimizations� It allows

the library implementor to provide the class Matrix

with a metaclass for the inlining by using knowl�

edge of implementation details of the class Matrix�

The metaclass MatrixClass will have this member

function�

Expression
MatrixClass��CompileMemberFunctionCall�

Environment env�
String member�name�
String variable�name�
Expression arguments�

�
if�member�name �� �����
Expression assigned�expr

� arguments	
GetFirst���
if�inlining is applicable�
return MakeParseTree�

�for�i � � ����� �����
�

�� Otherwise� do the default translation�
return
Class��CompileMemberFunctionCall�

env� member�name� �����
�

Because C�� regards an overloaded operator

as a member function call� the member func�

tion CompileMemberFunctionCall�� shown above

is invoked to translate the expression a � b � c

� d into the inlined form� On this invocation�

the operator � is interpreted as a member func�

tion call on the object a� The sub�expression

b � c � d is an argument of the � operator� so

the parse tree of that sub�expression is passed to

CompileMemberFunctionCall�� as the parameter

arguments� The invoked member function checks

the passed parse tree� and then� if the inlining is

applicable� it actually applies the inlining to the ex�

pression� it generates a parse tree that corresponds

to the inlined expression� Otherwise it would have

delegated the translation to the base class�

To determine whether the inlining is applicable�

the compile�time code must traverse the passed

parse tree and see whether the shape of the tree

matches a particular pattern� For example� if the

parse tree represents repetition of an identi�er and

the symbol �� then the inlining is applicable�

��� Customizing Implementation of Ob�
jects

Some C�� compilers� such as GNU C�� ����� for

SPARC and Sun C�� ��
� do not allocate objects

in registers� For example� if we compile the follow�

ing program�

class Vector �
public�
double x� y�

��

double xpos���� ypos����
Vector v�
���

for�int i � � i � �� ��i��
xpos�i� �� v�x�
ypos�i� �� v�y�

�

In the for loop� the compiled code loads the values

of v�x and v�y into registers for every iteration�

This is obviously redundant since the values should

be loaded only once before the iteration starts�

An experienced programmer can remove those

redundant load instructions by editing the for

statement as follows�

double s � v�x� t � v�y�
for�int i � � i � �� ��i��
xpos�i� �� s�
ypos�i� �� t�

�

Since double variables s and t are allocated on

registers� the compiled code does not include re�

dundant load instructions and runs faster�

Although this kind of technique is popular in C

and C�� programming� the performance of the

compiled code depends on implementation of com�

pilers� The technique shown above works for par�

ticular compilers� but it may not for other compil�

ers or even other versions of those compilers�

Our MOP provides the ability to do such op�

timization in a more sophisticated way� Pro�

grammers can separate description for optimization

from the rest of the program� The program would

look like�

metaclass Vector LightWeightClass�
class Vector �
public�
double x� y�

��

double xpos���� ypos����
Vector v�
���

for�int i � � i � �� ��i��
xpos�i� �� v�x�
ypos�i� �� v�y�

�

The metaclass LightWeightClass specializes im�

plementation of instances of the class Vector��

Since the implementation scheme is separately de�

scribed from the program above� programmers can

independently customize it to �t their compilers�

To do the optimization shown �rst� the metaclass

LightWeightClass rede�nes the member functions

to translate the program into�

double xpos���� ypos����
double x�of�v� y�of�v�
���

�Our MOP enables more smart annotation� As discussed

later� programmers can switch implementation by simply

adding or removing an annotation lightweight to variable

declaration� For example� if they write�

lightweight Vector v�

the variable v is implemented in the lightweight way� Oth�

erwise� it is done in the ordinary way�

for�int i � � i � �� ��i��
xpos�i� �� x�of�v�
ypos�i� �� y�of�v�

�

Now the Vector object v is implemented with two

distinct double variables�

The de�nition of the member function Compile	

VarDeclaration�� is as below� It translates vari�

able declarations�

Expression
LightWeightClass��CompileVarDeclaration�

Environment env�
String variable�name�

�
return MakeParseTree�

�double x�of��s� y�of��s��
variable�name�
variable�name��

�

Also� the member function CompileDotReadData	

Member�� is rede�ned to translate data�member ac�

cesses�

Expression
LightWeightClass
��CompileDotReadDataMember�

Environment env�
String member�name�
String variable�name�

�
return MakeParseTree���s�of��s��

member�name�
variable�name��

�

��� Selecting a Concrete Class at Com�
pile Time

The last example is a mechanism to select the most

appropriate concrete class for a given abstract class

at compile time� With this mechanism� program�

mers do not have to directly instantiate a speci�c

concrete class� Instead� they can instantiate an ab�

stract class with an annotation about the require�

ment for the implementation of the instance� The

e�ective concrete class is selected by the compiler�

A class like Set can be implemented with di�er�

ent data structures and algorithms� Since appro�

priate implementation depends on user programs� a

typical implementation scheme is to de�ne several

subclasses each of which corresponds to a di�erent

implementation scheme� such as LinkedListSet�

ArraySet� and SortedSet� But in the typical

implementation scheme� selecting the appropriate

concrete class happens at runtime� thereby incur�

ring a performance overhead�

The mechanism we show below is similar to that

in ����� but it automatically selects the most ap�

propriate subclass at compile time� The user just

annotates requirements for each instantiation of a

class� then the compiler selects a subclass to mostly

satisfy the requirements� For example� the user

program of the Set library will look like�

Set� s � new Set��size����sorted���

The requirement is speci�ed as the �rst initializa�

tion parameter to the class Set�� The compiler

selects a subclass of Set that matches the spec�

i�ed requirement� and translates the code above

into like�

Set� s � new SortedArraySet���

SortedArraySet is a subclass of Set� which the

compiler selects for that particular user program�

To enable that translation� the library implemen�

tor de�nes a metaclass SetClass of the class Set�

It rede�nes the member function CompileNew�� as

follows�

Expression
SetClass��CompileNew�Environment env�

Expression arguments�
Expression keywords�

�
Expression requirement

� arguments	
GetFirst���
String class�name � SelectSubclass�

requirement��
return MakeParseTree��new �s����

class�name��
�

�If we use our MOP�s capability to extend the syntax� we

can separate the requirement from the initialization param�

eter� The program could be�

new require��size�������sorted�	 Set�	�

String SetClass��SelectSubclass�
Expression requirement�

�
���

�

The member function SelectSubclass�� inter�

pretes the requirement� which is passed as a char�

acter string� and returns the name of the selected

subclass for that requirement�

Although the code shown above selects a sub�

class at compile time� it is also possible to postpone

the �nal decision to runtime� For example� the user

may want to use runtime information for the re�

quirement� In this case� the metaobject translates

a new expression into an expression that calls an ap�

propriate runtime support function� which selects a

subclass and returns its instance� This implemen�

tation is also available without the MOP� but if we

use the MOP� interpretation of the requirement can

be done at compile�time� For example� the metaob�

ject may translate the requirement from a string to

an appropriate data structure for the runtime sup�

port function to e�ciently handle it�

� Other Issues

This section brie�y surveys several other issues on

the OpenC�� MOP�

Inheritance

An interesting issue is whether a subclass should

inherit the metaclass of its base class� This is

important because selecting the metaclass is the

main mechanism for directing what MOP�based

customization programmers use� The OpenC��

MOP provides customizability on this issue as well�

Our MOP selects the metaclass of a given class

X with the following algorithm�

�� If the class X has a base class� then call

ComputeMetaclassName�� on the metaobject

for that base class� and select its resulting

value for the metaclass of X� By default� this

member function simply returns the same

metaclass as that of the base class�

�� If the metaclass of X is explicitly speci�ed by

the programmer with the metaclass declara�

tion� then select that metaclass�

�� Otherwise� select the default metaclass Class�

By the �rst rule� subclasses inherit the metaclass

from their base class� This inheritance policy can

be customized by programmers� however� They can

rede�ne the member function ComputeMetaclass	

Name�� to customize the policy�

In the case where a class has more than one base

class and the class metaobjects for them give dif�

ferent metaclasses� we simply raise a compilation

error� Other researchers have proposed automatic

derivation of a mixed�in metaclass in this case ����

but applying that idea to the OpenC�� MOP is

not straightforward because combining the same

member function of two metaclasses is not always

possible�

Syntax extension

The OpenC�� MOP provides limited ability to

extend the language syntax� The programmer can

register new keywords� which can appear only in

certain limited places� the modi�ers of type names�

class names� and the new operator� For example�

the following code is available�

distributed class Point � ��� ��
lightweight Vector v�
p � require��sorted�� new Set�

distributed� lightweight and require are reg�

istered keywords� These keywords are passed to

a metaobject when a code fragment is translated�

The metaobject can use those keywords to decide

how to translate that code fragment� The keywords

may be followed by some meta arguments� For ex�

ample� �sorted� is an argument of the keyword

require� The arguments are simply passed to the

metaobject together�

Otherwise� the keyword registered by the pro�

grammer must appear as the member name in a

member access expression� In this case� the parser

recognizes the whole member access expression as

a user�de�ned statement� For example�

Matrix big�matrix � ����
big�matrix	
foreach�row �� �� �
element � ���

�

foreach is a keyword� It must be followed by

an arbitrary expression �row �� ��� and a state�

ment f element � �� g� The expression may

be a list of formal arguments� or it may take the

for statement�s style� which is ��expression��

�expression�� �expression��� The OpenC��

MOP itself does not specify any meaning to the in�

terpretation of that foreach statement� The inter�

pretation is responsibility of the class metaobject

for Matrix� which may translate that statement to

an appropriate statement of C�� as macros do in

Lisp� The translated code may look like�

for�int row � �
row � number of rows�
��row�

for�int col � �
col � number of columns�
��col�

if�row �� ���
big�matrix	
element�row��col�
� ���

�

Although this code is not e�cient� the library im�

plementor can write compile�time code to trans�

late the statement into more e�cient code if the

condition such as �row �� �� matches a particu�

lar pattern� For example� the compile�time code

may check whether the parse tree of the given con�

dition represents a sequence of the identi�er row�

the symbol ��� and an integer� If so� the compile�

time code can remove the for loop on row�

Protocol Overheads

Since programs translated by the OpenC�� MOP

invoke runtime support functions� the MOP may

initially seem to involve runtime penalties� But this

kind of penalty is not due to the MOP itself� It is

due to the implementation scheme of the library�

For example� in the persistent�object library� the

translated program invokes a function Load�� ev�

ery member access� But the performance penalty

Class

PersistentClass

Node n1

Point p1

instance−of
subclass−of

<metaclass> <class> <object>

Figure �� Metaclass� Class� and Object

with this function invocation is inherent in the im�

plementation scheme we chose for the library� In

fact� this function invocation is needed even if we

do not use the MOP� as we saw in Section ��

Although the OpenC�� MOP does not involve

runtime penalties� it involves compile�time penal�

ties since it moves meta�level computation from

runtime to compile�time� However� at least regard�

ing to the default metaobjects� the compile�time

penalties can be reduced by elaborate implemen�

tation� The phase � and � of the protocol struc�

ture� which we showed in Section ���� are fused into

very simple computation since the member func�

tion CompileSelf�� on the default class metaob�

jects is an identity function that generates the same

source code as the input�

Meta Circularity

The design of the OpenC�� MOP is� like other

MOPs� conceptually meta�circular� There are no

substantial di�erences between metaclasses and

classes� A metaclass is simply a class that in�

stantiates other classes �i�e� metaobjects for the

classes�� The relationship between a class and a

metaclass is equivalent to the class�instance rela�

tionship �Figure ��� Thus when a program in�

cludes de�nitions of metaclasses� the MOP also

constructs class metaobjects for those metaclasses�

The constructed metaobjects control compilation

of the metaclasses�

The OpenC�� MOP� however� avoids the appar�

ent in�nite regress of this meta circularity in a way

similar to that of other meta�circular MOPs� To

compile a class� its metaclass must be �rst com�

piled� before compiling that metaclass� its meta�

class must be compiled� and so on� But such a chain

of compilation is not in�nite because the metaclass

Class is the root of any class�metaclass chain and

it is the metaclass of itself� The only question we

have to answer is how the MOP compiles Class

for bootstrapping� The answer is simple� Class

is directly compiled by the C�� compiler because

the compilation specialized by Class is equivalent

to the compilation done by the C�� compiler�

� Related Work

In previous work� we have proposed another MOP

for C��� called OpenC�� Version � ���� That

MOP had the ability to transparently implement

language extensions for distributed computing as

libraries on top of ordinary C��� But� because

that MOP was based on a meta�architecture in

which the metaobjects exist at runtime� it implied

runtime overheads� Also� that MOP provided only

limited ability to control program behavior� cover�

ing only member access and object creation� The

degree of transparency of libraries written with

that MOP was not enough for real�world program�

ming�

A number of ideas for the OpenC�� MOP came

from previous work� The idea of a compile�time

MOP is due to Anibus and Intrigue ���� ���� These

are compile�time MOPs for controlling a Scheme

compiler� In those MOPs� the metaobjects are not

just language entities� but also represent global in�

formation such as the results of �ow analysis� Our

basic protocol architecture is due to the CLOS

MOP����� The major di�erence is that the CLOS

MOP�s metaobjects are runtime ones and thus the

CLOS MOP requires relatively large runtime envi�

ronment if it is directly applied to C��� The idea

of a meta�interface of the early�stage of compilation

was also proposed in MPC������

Like the CLOS MOP and OpenC�� Version ��

a number of systems ���� �� ��� ��� adopt runtime

metaobjects� which represent underlying mecha�

nisms such as the language interpreter and the OS

kernel� and are responsible for runtime behavior of

the system� Since the runtime metaobjects allow

users to change various decision policies of the sys�

tem� such as scheduling and migration� the users

can tune the system performance to �t their needs�

A drawback of the runtime metaobjects is runtime

overhead� A few ideas have been proposed on this

problem ���� �� �	�� For example� inlining and par�

tial evaluation are e�ective techniques to reduce

the overhead� It is di�cult to recover the whole

overhead of a runtime meta architecture� however�

� Current Status

We are in the process of developing OpenC�� Ver�

sion �� Our methodology is to �rst develop a sim�

pli�ed version of the target system �i�e� C����

then design and test a MOP for that simpli�ed

system� and �nally port the developed MOP back

to the target system� We have thus developed a

C���like object system� called S��� on top of

Scheme� and designed the MOP presented in this

paper for S��� A number of examples similar to

these presented here have been implemented to test

the S�� MOP� and we have repeatedly re�designed

the MOP based on the results of the tests� We are

currently porting our MOP back to C���

� Conclusion

This paper describes a metaobject protocol for

C��� It was developed to bring the power of meta�

programming to a more mainstream language�

This MOP di�ers from most existing MOPs in that

the metaobjects exist exclusively at compile�time

� they control the compilation of programs to al�

ter the behavior of the basic language constructs of

C��� This feature means that this MOP involves

no runtime speed or space overheads�

This paper also illustrates how the customizabil�

ity provided by our C�� MOP can be used to im�

plement language extensions e�ciently and trans�

parently as libraries� Currently� many language ex�

tensions such as persistence or distribution end up

being re�implemented for each application because

the existing language mechanisms are insu�cient

for customizing existing code to �t each applica�

tion� Our C�� MOP enables us to implement

those extensions as libraries� making such exten�

sions easier to develop and maintain and thus more

reusable�

Acknowledgments

The basic idea of the OpenC�� MOP was pro�

duced through discussions with Gregor Kiczales�

The author thanks John Lamping� Ellen Siegel�

and Chris Maeda for their comments on early drafts

of this paper� The author�s work was partially sup�

ported by Japan Society for the Promotion of Sci�

ence�

References

��� Angus� I� G�� �Applications Demand Class�

Speci�c Optimizations� The C�� Compiler

Can DoMore�� Scienti�c Programming� vol� ��

no� �� pp� �������� �		��

��� Buschmann� F�� K� Kiefer� F� Paulisch� and

M� Stal� �The Meta�Information�Protocol�

Run�Time Type Information for C���� in

Proc� of the Int�l Workshop on Re�ection and

Meta�Level Architecture �A� Yonezawa and

B� C� Smith� eds��� pp� ������ �		��

��� Chiba� S�� �Open C�� Programmer�s Guide��

Technical Report 	���� Dept� of Information

Science� Univ� of Tokyo� Tokyo� Japan� �		��

��� Chiba� S� and T� Masuda� �Designing an Ex�

tensible Distributed Language with a Meta�

Level Architecture�� in Proc� of the �th Eu�

ropean Conference on Object�Oriented Pro�

gramming� LNCS �
�� pp� �����
�� Springer�

Verlag� �		��

��� Danforth� S� and I� R� Forman� �Re�ections

on Metaclass Programming in SOM�� in Proc�

of ACM Conf� on Object�Oriented Program�

ming Systems� Languages� and Applications�

pp� ��
����� �		��

�� Goldberg� A� and D� Robson� Smalltalk�

	
� The Language and Its Implementation�

Addison�Wesley� �	���

��� Honda� Y� and M� Tokoro� �Soft Real�Time

Programming through Re�ection�� in Proc� of

the Int�l Workshop on Re�ection and Meta�

Level Architecture �A� Yonezawa and B� C�

Smith� eds��� pp� ������ �		��

��� Ishikawa� Y�� �Meta�Level Architecture for

Extendable C���� Technical Report 	�
���

Real World Computing Partnership� Japan�

�		��

�	� Kiczales� G�� �Towards a New Model of Ab�

straction in Software Engineering�� in Proc� of

the Int�l Workshop on Re�ection and Meta�

Level Architecture �A� Yonezawa and B� C�

Smith� eds��� pp� ����� �		��

��
� G� Kiczales� ed�� Workshop on Open Imple�

mentation��� internet publication �http�

��www�parc�xerox�com�PARC�spl�eca�oi�

workshop	���� Oct� �		��

���� Kiczales� G�� J� des Rivi�eres� and D� G� Bo�

brow� The Art of the Metaobject Protocol� The

MIT Press� �		��

���� Kiczales� G� J� and L� H� Rodriguez Jr�� �Ef�

�cient Method Dispatch in PCL�� in Proceed�

ings of the ���
 ACM Conference on Lisp and

Functional Programming� pp� 		��
�� �		
�

���� Lamping� J�� G� Kiczales� L� Rodriguez�

and E� Ruf� �An Architecture for an Open

Compiler�� in Proc� of the Int�l Workshop

on Re�ection and Meta�Level Architecture

�A� Yonezawa and B� C� Smith� eds��� pp� 	��

�
� �		��

���� Lortz� V� B� and K� G� Shin� �Combining Con�

tracts and Exemplar�Based Programming for

Class Hiding and Customization�� in Proc�

of ACM Conf� on Object�Oriented Program�

ming Systems� Languages� and Applications�

pp� ������� �		��

���� Maes� P�� �Concepts and Experiments in

Computational Re�ection�� in Proc� of ACM

Conf� on Object�Oriented Programming Sys�

tems� Languages� and Applications� pp� ����

���� �	���

��� Masuhara� H�� S� Matsuoka� T� Watanabe�

and A� Yonezawa� �Object�Oriented Concur�

rent Re�ective Languages can be Implemented

E�ciently�� in Proc� of ACM Conf� on Object�

Oriented Programming Systems� Languages�

and Applications� pp� �������� �		��

���� Okamura� H�� Y� Ishikawa� and M� Tokoro�

�AL���D� A Distributed Programming Sys�

tem with Multi�Model Re�ection Framework��

in Proc� of the Int�l Workshop on Re�ection

and Meta�Level Architecture �A� Yonezawa

and B� C� Smith� eds��� pp� ����� �		��

���� Rodriguez Jr�� L� H�� �Coarse�Grained Paral�

lelism Using Metaobject Protocols�� Techincal

Report SSL�	���� XEROX PARC� Palo Alto�

CA� �		��

��	� Ruf� E�� �Partial Evaluation in Re�ective Sys�

tem Implementation�� in Proc� of OOPSLA���

Workshop on Re�ection and Metalevel Archi�

tectures� �		��

��
� Steele� G�� Common Lisp� The Language� Dig�

ital Press� �nd ed�� �		
�

���� Watanabe� T� and A� Yonezawa� �Re�ection in

an Object�Oriented Concurrent Language�� in

Proc� of ACM Conf� on Object�Oriented Pro�

gramming Systems� Languages� and Applica�

tions� pp� �
����� �	���

���� Yokote� Y�� �The Apertos Re�ective Operat�

ing System� The Concept and Its Implemen�

tation�� in Proc� of ACM Conf� on Object�

Oriented Programming Systems� Languages�

and Applications� pp� �������� �		��

