
Department of Creative Informatics

Graduate School of Information Science and Technology

THE UNIVERSITY OF TOKYO

Master’s Thesis

A study of efficient effect handling in C++:

Encoding tail-resuming as function returning
C++ における効率的なエフェクトハンドリングの研究：

末尾リジュームの関数リターンによる実装

Yuze Fu
傅 禹沢

Supervisor: Professor Shigeru Chiba

January 2025

i

Abstract
Algebraic effect handling is a superior abstraction for non-local control flows, unifying

over the existing non-local control flow constructs such as try/catch, destructors, shared
state, async/await and generators. To encourage the adoption of effect handlers, improv-
ing their performance is essential. Despite having a number of implementations, they lack
a focus on tail resumptive handlers which leaves space for an improvement. We believe
that tail resumptive handlers are invoked more frequently and contributes more to the
overall performance of programs. The characteristic of them implies the possibility of an
implementation with little overhead over function invocation. We propose eff-unwind, an
implementation of effect handling as a C++ library which is optimized for tail resumptive
handlers at the cost of others. Our implementation uses function calling and returning
for tail resuming for improved efficiency while using stack copying and setjmp for general
resuming and stack unwinding for yielding. It eliminates the need of recomposing the
stack or preserving memory in the lifecycle of a tail resumptive handler at the cost of
a less efficient yielding and non-tail resuming. Additionally, our library exposes a func-
tional interface and preserves C++ destructor semantics. We evaluate our approach based
on a total of 12 cases containing both tail resumptive handlers and non-tail-resumptive
ones. The result shows about 1.5 - 3.2 times improvement for tail resuming and 1.9 - 73.9
times slowdown for non-tail-resuming. We also discover that multishot handlers presents
challenges with C++ destructors.

iii

概要
代数的エフェクトハンドリングは、非局所的な制御フローにおける優れた抽象化を提供し、

try/catch、デストラクタ、共有状態、async/await、ジェネレータといった既存の非局所的制
御フロー構造を統一する。エフェクトハンドリングの採用を促進するには、その性能向上が不
可欠である。既存の実装は数多く存在するものの、末尾再開型ハンドラに焦点を当てたものは
少なく、性能改善の余地がある。我々は、末尾再開型ハンドラがより頻繁に呼び出され、プロ
グラム全体の性能に大きく寄与すると考えている。その特性は、関数呼び出しと同等の低オー
バーヘッドで実現可能な実装の可能性を示唆している。そこで、我々は eff-unwind を提案す
る。これは、他のハンドラの性能を犠牲にして、末尾再開型ハンドラに最適化されたエフェク
トハンドリングの C++ライブラリ実装である。我々の実装では、効率向上のために末尾再開
には関数呼び出しと戻りを利用し、一般的な再開にはスタックコピーと setjmpを、生成には
スタックアンワインディングを使用する。この実装により、末尾再開型ハンドラのライフサイ
クルにおけるスタックの再構成やメモリの保持が不要になり、その代わりに生成や非末尾再開
の効率が低下する。さらに、我々のライブラリは関数型インターフェースを提供し、C++の
デストラクタのセマンティクスを保持する。我々は、末尾再開型ハンドラと非末尾再開型ハン
ドラの両方を含む合計 12のケースでこのアプローチを評価した。その結果、末尾再開では約
1.5倍から 3.2倍の性能向上が見られた。一方、非末尾再開では 1.9倍から 73.9倍の性能低下
が確認された。また、複数回実行型ハンドラが C++のデストラクタにおいて課題を呈するこ
とも発見した。

v

Contents

Chapter 1 Introduction 1

Chapter 2 Improving the performance of effect handling 3
2.1 Effect handling . 3
2.2 Related works . 14
2.3 Importance of tail-resumptive handlers 18

Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers 23
3.1 Implementation of do-handle . 23
3.2 Implementation of raise . 27
3.3 Implementation of resume . 32
3.4 Implementation of break . 34
3.5 Implementation of yield . 36

Chapter 4 Evaluation 40

Chapter 5 Conclusion 47
5.1 Summary . 47
5.2 Future work . 47

Publications and Research Activities 49

References 50

1

Chapter 1

Introduction

Algebraic effect handling [1, 2] is a superior abstraction for non-local control flows. It is
believed to be a unified abstraction over the existing non-local control flow constructs such
as try/catch, destructors, shared state, async/await and generators, which additionally
empowers new programming paradigms for probabilistic programming and more.

In order to promote adoption of effect handlers, it is important to optimize the perfor-
mance of effect handling. Especially, we believe that it is important to optimize for tail
resumptive cases of effect handling to achieve improved performance, since we hypothesis
that this kind of handlers are more frequently invoked than the other kinds of handlers,
which is based on observation of the discovered usecases of effect handling, and contributes
more to the overall performance of programs. However, the existing implementation is
not focused on the efficiency of tail resumptive handlers but prioritizes more complex
usecases, which leaves space for improvement.

We introduce eff-unwind, a C++ library for effect handling that prioritizes the per-
formance of raise and tail resume at the expense of yield. This trade-off enhances
the overall performance of effect handling when most invocations involve tail-resumptive
handlers. Our approach draws inspiration from exception handling, which optimizes for
the normal execution path at the cost of the exceptional path. Similarly, we design rais-
ing and tail resumption to function like standard invocation and return, avoiding stack
recomposition or closure creation to minimize overhead. This design incurs the cost of
using stack unwinding for yielding, and supporting non-tail resumption to handle addi-
tional control flow operations in effect handling, achieved through stack preservation and
the use of setjmp/longjmp.

We evaluate eff-unwind based on 11 cases from [3] and 1 case from [4], comparing
against 3 existing implementations, cpp-effects [4], Koka [5] and OCaml [6], which we
believe covers most of the explored usecases of effect handling and the state-of-the-art
works. It shows that our implementation has about 1.5 - 3.2 times faster than SOTA
works where invocations to tail resumptive handlers are taking the majority, while being
1.9 - 73.9 times slower than SOTA works for non-tail-resumptive handlers.

The main contributions of this thesis are:

• An implementation of effect handling containing different techniques for the dif-
ferent control-flow operations, which has a performance advantage based on the
hypothesis that most effect raising invokes a tail-resuming handler.

• A C++ library supporting effect handling with a functional interface and incorpo-
rates well with C++.

• Identifying a problem with C++ destructors while multiple resumption is used
which has not been reported by existing works.

The structure of this thesis is as follows: In Chapter 2, we first give a brief introduction

2 Chapter 1 Introduction

to effect handling, the categorization of effect handlers and the existing implementation
techniques, and then give an illustration of why we believe that tail resumptive han-
dlers are important. In Chapter 3, we give a detailed explanation of our approach for
the implementation of the control-flow operators, raise, resume, break and yield. In
Chapter 4, we give the results of our evaluation and an analysis of the performance of our
implementation. Finally, Chapter 5 concludes the thesis and gives discussion of future
works.

3

Chapter 2

Improving the performance of effect

handling

In this chapter, we first give a brief explanation of effect handling since it is a fairly
new programming construct. We demonstrate the control flow of effect handling along
with a variety of effect handing examples and the categorization of these examples. After
that, we give a typical formal definition of effect handing as an extra background. Then
we talk about the related works to this paper, including programming interfaces and
implementation techniques.

After presenting the preliminary, we give an explanation for the motivation of the
work in this thesis. It is observed that a specific kind of effect handlers, tail resumptive
handlers, are supposed to contribute a larger proportion to performance. However, the
existing works are mostly not focused on tail resumptive handlers and leaves room for
improvement. We identifies that tail resumptive handlers can be implemented close to a
function call and return which eventually improves the performance of effect handling if
our previous statement holds.

2.1 Effect handling
Algebraic effect handling [1, 2] is a superior abstraction for non-local control flows. It
provides a new programming language feature which could be used to express existing
use-cases like exceptions, destructors, shared state and much more, while providing new
methods for expressing probabilistic programs and others.

Elements of effect handling
In a typical program with effect handling, there are three constructs, effect declaration
which declares the name of an effect with its effect parameter and result type, do block
where the code to be executed is defined and effects could be raised and effect handlers
inside the handle block which define the code to be executed when a specific effect is raised.
The do block and handle block must come as a pair, forming a do-handle block. Addition-
ally, there are 4 operators which are raise, resume, break and yield for manipulating
control-flow.

For example, in Figure 2.1, the code uses effect handling to provide a random generator
available within a scope, and the nested function uses the random generator to split
the inbound web traffic to two different implementations for testing whether the new
method getUserIdNew contains any bug. It contains the effect declaration on line 1,
which declares an effect named as choice with no parameter but a result of type bool.
On line 4 - 11, there is the do-handle block, where the do block spans from the do keyword

4 Chapter 2 Improving the performance of effect handling

1 effect choice() -> bool
2

3 func handleRequest()

4 res := do {

5 userId := getUserId()

6 response := getUserEmails(userId)

7 break(response)
8 } handle { choice() {

9 r := resume(rand_bool())
10 yield(r)
11 } }

12 write(res)

13

14 func getUserId()

15 flag := raise choice()

16 if flag { return getUserIdOld() }

17 else { return getUserIdNew() }

Fig. 2.1: Random generator with effect handling

userId := getUserId()

response := getUserEmails(userId)

break(response)

handleRequest

flag := raise choice()

if ...

getUserId

flag := raise choice()

if ...

getUserId

userId := getUserId()

response := getUserEmails(userId)

break(response)

handleRequest

res := do { ... } handle { ... }

write(res)

handleRequest

r := resume(rand_bool())
yield(r)

handle choice

r := resume(rand_bool())

yield(r)

handle choice

r := resume(rand_bool())

yield(r)

handle choice

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Fig. 2.2: Control flow of random generator in Figure 2.1

getUserId

handleRequest*

Fig. 2.3: Call stack of random generator in Figure 2.1

2.1 Effect handling 5

on line 4 to the first closing brace on line 8, and there is an effect handler defined on line
8 - 11 spanning from the effect name count to the first closing brace on line 11.

The control-flow graph of the example is shown in Figure 2.2. When the function
handleRequest is executed, it begins with the code defined in the do block on line 5 and
calls the function getUserId which is marked with (1) in the control-flow graph, until it
reaches a raise which raises an effect. If an effect is raised, the control flow is passed
from the do block to the corresponding handler with the control-flow operators.
raise finds the nearest handler of the designated effect in the stack and executes it,

which is similar to throw in exception handling. It passes a value called argument of the
effect which is similar to the exception value passed to exception handlers.

For example, when code on line 15 of Figure 2.1 raises the effect choice, it finds
downwards the callstack shown in Figure 2.3, and discovers handleRequest which defines
the handler for the effect count (on line 8). It executes the code in the handler, which is
the edge marked with (2) in the control-flow graph Figure 2.2.

Being a dual, resume passes the control flow back to the do block as if raise is a
function and has just returned. It passes a value called result of the effect to the do block.
For example, when code on line 9 of Figure 2.1 resumes back to the do block, it passes
the control flow back to the point as if raise has returned, like shown with the edge (3)
in the control-flow graph, and continues with the code in do block like edge (4).

Different from try block in exception handling, the do block explicitly ends with a
break which provides the value of the do block. This operation passes the control flow
back to the handler as if resume is a function and has just returned which continues
the remaining code in handler after resume. The value of the do block is passed to the
handler.

For example, when code on line 7 of Figure 2.1 marks the end of the do block, it passes
the control flow back to the point as if resume has returned, and provides the value
response to the assignment statement r := resume(rand_bool()) like shown with the
edge (5) in the control-flow graph.

Finally, the handler explicitly ends with a yield which provides the resulting value of
the entire do-handle block. This is also different from exception handling since try-catch
is not an expression and do not have a value. For example, when code on line 10 of
Figure 2.1 yields, it marks the end of the do-handle block and provides the value r as
the value of the block which is later assigned to the variables res of handleRequest, as
shown with the edge (7) in the control-flow graph.

To sum it up, for the code shown in Figure 2.1, the handler is used to generate a random
number, and the do-handle construct is used to provide this handler within the scope of
the handleRequest function. This usage of effect handling enables decoupling an inter-
face of random generator (the effect declaration of choice) with the implementation of
it (the effect handler defined on line 8). The implementation of the handler could be
swapped easily in handleRequest without changing any code in getUserId to switch to
different random generating policies. Additionally, effect handling permits providing mul-
tiple different implementations for the same interface in different scopes of the program,
which could not be replaced by a global function.

From the explanation, it shows the power of effect handling in two aspects. First, the
handler can additionally continue with the do block and alternate the resulting value of
it (despite in the example of Figure 2.1 it does not alternate). Second, the control-flow
transitions are associated with a value which enables the exchange of values between the
do block and the effect handler. Therefore, it is a generalized abstraction to replace many
of the existing programming paradigms and provide new ways to express side effects or
other cases, whose examples are later shown in subsection 2.1.1.

The terminology used in this paper is one of the typical terminology for effect handling.

6 Chapter 2 Improving the performance of effect handling

1 effect count()

2

3 func runCounter() {

4 x, counter := do {

5 break (tarai(1, 2, 3), 0)

6 } handle { count() {

7 (x, counter) := resume()
8 yield (x, counter + 1)

9 } }

10 print(counter)

11 return x

12 }

13

14 func tarai(x, y, z) {

15 raise count()

16 if (x >= y) { return y }

17 else { return tarai(

18 tarai(x - 1, y, z),

19 tarai(y - 1, z, x),

20 tarai(z - 1, x, y)

21) }

22 }

Fig. 2.4: Counting function execution with effect handling (counter)

Different works or papers use slightly different terminologies, such as handle-with [7]
instead of do-handle, but the core idea of effect handling and the basic elements are the
same.

This paper introduces deep handlers, while there is a variant called shallow handlers
[8]. For deep effect handlers, it is automatically re-registered after it handles the effect,
which means it could handle subsequent effects. However, shallow handlers only handles
the first effect performed, and thus cannot handle subsequent effects.

This paper discusses effect handling where the handlers are found dynamically at run-
time. There are implementations where the handlers could be determined statically [9, 4].

Execution order of remaining code
It is a natural ask that what are the orders of executing the remaining code in the

handlers if multiple handler are invoked. The answer is that it is executed in the reverse
order of executing the handler. Additionally, the value of break is passed to the first
remaining code, and the value of yield is passed from the previous remaining code to the
next remaining code.

To illustrate this property, we demonstrate another example in counter Figure 2.4 [3]
where the code uses effect handling to trace the execution count of the function tarai.
It defines the effect count on line 1, and in the first line of tarai it raises the effect, so
it expects an handler defined in the outer scope to provide a counting implementation.

The control-flow graph is given in Figure 2.5. The invocations to the handler and the
variables x, counter inside the handler is annotated with subscript 1, 2, · · · , n in the order
of raise. When runCounter breaks with the value (tarai(1, 2, 3), 0), the value is
passed to the handler last invoked (i = n) as the edge (5) in the graph, and the handler

2.1 Effect handling 7

break (tarai(1, 2, 3), 0)

runCounter

raise count()

if ...

tarai

break (tarai(1, 2, 3), 0)

runCounter

(xi, counteri) := resume()

handle counti=1,2,··· ,n

(xn, countern) := resume()

yield (xn, countern + 1)

handle countn

(xn−1, countern−1) := resume()

yield (xn−1, countern−1 + 1)

handle countn−1

...

(x1, counter1) := resume()

yield (x1, counter1 + 1)

handle count1

(x, counter) := (do-handle)

print(counter)

return x

runCounter

(1)

(2,3)

(4)
(5)

(6)

(7)

(8)

(9)

Fig. 2.5: Control flow of counter

Term in Exception Handling Term in Effect Handling
Exception Class Effect Declaration

try do
catch handle
throw raise

End of try break
End of catch yield

Table 2.1: Term correspondence between exception handling and effect handling

increases the second component of the pair by 1 to get (tarai(1, 2, 3), 1), and yields the
value to the next last invoked handler (i = n − 1) as the edge (6) in the graph. The
yielded value is passed along the long chain of remaining code of the handlers, and each
handler increases the second component (counteri) by 1. Finally, the firstly invoked
handler yields the result x1 and counter1, and provides the value as the result of the
do-handle block back to runCounter as shown with the edge (9). As a result, the return
value of tarai(1, 2, 3) is kept as-is, which means xi is all the same, while counteri is
increasing stepping by 1 for i = n, n− 1, · · · , 1, counting the invocation count of tarai.

Another point of view: resume as delimited continuation
Another point of view is that effect handling is an abstract over delimited continuation,
where effect handling is mostly the same as exception handling while resume is added
as a delimited continuation which stands for some suspended computation to be possibly
continued later on. The terms in effect handling except resume have corresponding terms
in exception handling as in Table 2.1. resume is provided additionally to the handler,
which represents the computation to be executed from the returning point of raise until
the end of the current do-handle block.

In order to illustrate this viewpoint, the previous example of counting function execution

8 Chapter 2 Improving the performance of effect handling

1 effect count()

2

3 func runCounter() {

4 x, counter := do {

5 break (counter(3), 0)

6 } handle { count() {

7 (x, counter) := resume()
8 yield (x, counter + 1)

9 } }

10 print(counter)

11 return x

12 }

13

14 func counter(x) {

15 raise count()

16 if (x == 0) { return x }

17 else { return counter(x - 1) }

18 }

Fig. 2.6: Simplified counter

in Figure 2.4 is simplified into simplified counterFigure 2.6. This time tarai is replaced
by a simple counter function which uses recursion to count from x down to 0.

Every time the effect count is raised, the current execution inside the do block is
suspended, and it creates an delimited continuation resume representing the computation
to be executed from the returning point of raise until the end of the do-handle block. The
corresponding effect handler is executed similarly to exception handling which fully gains
the control, but it gets access to the resume, and may execute it at wish.

For instance, when the first time count is raised, the corresponding handler gets control
and the code to be executed for evaluating do-handle block becomes as in Figure 2.7a.
The remaining code in the do block are the rest recursions in counter on line 2 - 7 and
the break statement in do block (which is transformed into a return statement since it is
now in a function) on line 8, which forms the resume function on line 1 - 9. The variables
are subscripted with the index of the corresponding handler invocation just as previously
in Figure 2.5. The code transformation here only serves for illustration and may differ
from the actual implementation of effect handling.

When the second time count is raised, things are a little bit different as the continuation
should also include the remaining code of the first handler invocation since the end of do-
handle evaluation has been changed to include the first handler, where the code to be
executed are shown in Figure 2.7b. This time the continuation contains 4 parts, (1) the
remaining code in counter(2) on line 7 - 12, (2) the remaining code in counter(3) on
line 4 - 14, (3) the remaining code in do block on line 2 - 16 and (4) the remaining code
in handler1 of count on line 1 - 20.

2.1.1 Categorization of effect handlers

Effect handlers can be categorized into tail-resumptive, non-tail-resumptive and yielding
based on their occurrence and location of resume.

2.1 Effect handling 9

1 // counter(3)'s remaining code

2 resume1 := func() {

3 func counter1() {

4 x1 := 3 // captured

5 if (x1 == 0) { return x1 }

6 else
7 { return counter(x1 - 1) }

8 }

9 return (counter1(), 0)

10 }

11 // handler of count

12 (x1, counter1) := resume1()

13 yield (x1, counter1 + 1)

(a) First raise

1 resume2 := func() {

2 func resume1∗() {

3 // counter(3)'s remaining code

4 func counter1∗() {

5 x1 := 3 // captured

6 // counter(2)'s remaining code

7 func counter2() {

8 x2 := 2 // captured

9 if (x1 == 0) { return x2 }

10 else
11 { return counter(x2 - 1) }

12 }

13 return counter2()

14 }

15 return (counter1∗(), 0)

16 }

17 // handler of count

18 (x1, counter1) := resume1∗()

19 return (x1, counter1 + 1)

20 }

21 // handler of count

22 (x2, counter2) := resume2()

23 yield (x2, counter2 + 1)

(b) Second raise

Fig. 2.7: Code of resume

Tail-resumptive handler
Tail-resumptive cases contains a special combination of yield(resume(...)), which is
used in shared state, iterators and other cases. Recalling the introduction in section 2.1,
yield marks the end of a handler, so chaining resume with yield means there is no
remaining code in the handler, and therefore no code should be executed after break in
do. This kind of handlers are used for creating a scope where a “function” is available. As
an example of tail-resumptive handlers, the case shared state [7, 5] registers two handlers
for accessing a shared value, whose pseudocode is given in Figure 2.8.

In Figure 2.8, there are two effects get and set, which is used for getting and setting
the shared value correspondingly. The countdown function first declares a variable state
which is intended for shared access. The do block accesses the shared value state by
calling the two effects, decreases the value by 1 each iteration until reaching 0 and evaluates
to the final value of the shared value. In the handle block, it registers two handlers for the
two effects respectively, which resumes with the shared value and does not have additional
code after the resumption. Differentiating from capturing the shared value by closure or by
global variable, the usage of effect handlers provides well-defined and fine-grained control
over the variable as the semantic scope of the handlers defined by do-handle block and it
is possible for the handlers to add additional code to execute on accessing the variable.

10 Chapter 2 Improving the performance of effect handling

1 effect get() -> int
2 effect set(int) -> int
3

4 func countdown(int n)

5 state := n

6 do { while true {

7 i := raise get()

8 if i == 0 { break i }

9 else { raise set(i - 1) }

10 } } handle { get() {

11 yield(resume(state))
12 } set(int i) {

13 state = i

14 yield(resume(state))
15 } }

Fig. 2.8: Shared state with effect handling

1 effect divZero(int q)

2

3 func div(int d, int q)

4 do {

5 if q == 0

6 raise divZero(0)

7 break d / q

8 } handle { divZero() {

9 print("division by 0")

10 yield(0)
11 } }

Fig. 2.9: Exception handling

Yielding handler
Yielding is another simpler case of effect handlers, where the handler does not contain
any resume but only a single yield like in Figure 2.9 [5, 4]. Recalling the introduction in
section 2.1, the extra power of effect handling over exception handling is resume, so this
kind of handler is nothing more than a exception handler, and its discovered usage so far
is only exception handling.

In Figure 2.9, there is an effect divZero which stands for a division-by-zero error. To
add some context to the error, the dividend is passed as the effect argument. On line
5 - 6, if the divisor is 0, it raises the effect similarly to throwing an exception, and the
effect handler on line 8 - 10 is executed similarly to catching an exception. The handler
prints an error log and provides a fallback value 0 as the result in case the error happens,
without resuming line 7 since that division is invalid.

2.1 Effect handling 11

1 effect ray() -> vector3

2

3 func rayCast(pos: vector2)

4 do { while true {

5 ray := raise ray()

6 break render(ray, pos)

7 } } handle { ray() {

8 pixel-color := 0

9 for i := range(0, 1000) {

10 pixel-color += resume(random)
11 }

12 pixel-color /= 1000

13 yield(pixel-color)
14 } }

Fig. 2.10: Ray tracing with multi-shot resumption

Non-tail-resumptive handlers
Being the most generic and powerful case, non-tail-resumptive handlers does not cast
assumptions over the position and count of resume and yield. There could be remaining
code after resume and resume could be used multiple times. If there is only a single
resume, it is called single-shot handler while the others are called multi-short handlers.
Single-shot handlers are already demonstrated in Figure 2.4.

Multi-short handlers are much more complex and could create new programming
paradigms. For example, in Figure 2.10, the code uses effect handling to provide a
random ray generator to perform ray casting rendering, but unlike tail-resumptive
random generator before, it does not immediately yield(resume(...)) with a random
ray and resumes for a multiple of times to sample the pixel based on 1000 random
rays. This implementation provides the random generator while collecting the result
and performing sampling, which could provide new point of view of writing probabilistic
programs.

2.1.2 Formal definition of effect handling

To give a formal definition of effect handling, we give an introduction following the formal
definition of the language LS in [7] which is based on λρ

eff in [10]. There are a number
of various formal definitions [10, 5, 8, 11] and the definition of the first proposing paper
[1, 2], but we arbitrarily selected one out of them which is believed to cover the most
important commonalities of these definitions and easy to be understood.

Syntax
The syntax of the language is given in Figure 2.11. There are syntax items representing
types, effects and terms. The types and terms are spitted into 3 kinds, value, computation
and handlers.

Value types include the Unit type and function types A → C. It does not include
integers, strings nor others since these types are irrelevant to effect handling. Computation
types are composed from a value type A and a effect set E, which stands for the result
of the computation and the set of effects possibly to be raised during the computation.

12 Chapter 2 Improving the performance of effect handling

Value types A,B ::= Unit |A → C
Computation types C,D ::= A !E

Handler types F ::= C ⇒ D
Effect S ::= l : A → B

Effect sets E ::= ϕ |{S} ⊎ E
Values V,W ::= unit |x |λx. M

Computations

M,N ::= V W | return V |
raise l V |
let x = M in N |
doM handleH

Handlers H ::= {l p k → M}
Fig. 2.11: Syntax of LS

Handler types are composed from pairs of two computation types C and D, which stands
for the computation before and after installing the handlers as the result type and the set
of effects could be changed by effect handlers.

Effects are defined with the label l, the effect parameter type A and the effect result
type B. An effect set is composed from a set of effects S.

The values consist of the unit value, variables x and function abstractions (definitions)
λx. M . The computations consist of function applications (invocations) V W , return
expressions return V , raising expressions raise l V which raises effect l with argument V ,
let bindings let x = M in N which binds x to the evaluated result of M and evaluates N
with x in scope, and do-handle expressions doM handleH which evaluates M with the
handler H. Note that the language does not distinguish break, yield and break, but it
uses a unified return expression.

A handler is defined as {l p k → M}, where l stands for the label (name) of the effect to
be handled, p stands for the effect argument and r stands for resume which is represented
as a function of delimited continuation.

The definition here only permits a single do-handle expression to handle one effect for
simplicity, and the keywords for the expressions are aligned with the previous introduction,
which differs from the original definition in [7].

Typing rules
The typing rules of the language is given in Figure 2.12.

For the values, the typing rules are trivial. The unit value is of type Unit , variables in
the typing context Γ have the defined types, and the function abstractions have resulting
computation inferred by their body (M) when assigning a valid type to the parameter
(x : A) in the typing context.

For the computations, function applications (V W) have resulting type C inferred by the
type of the function (V : A → C) and the argument (W : A). Raise expressions (raise l V)
have type B !E inferred by the effect ((l : A → B) ∈ E) and the raise argument (V : A),
where the effect must be present in the set of effects of the type of computation of the raise
expression. Return expressions (return V) have type A !E inferred by the returning value
(V : A), where the set of effects are arbitrary. Let bindings (let x = M in N) have type
inferred from the body (N : B !E) with the type of variable (M : A !E) provided, which
deducts from replacing the variable name x with the value of the variable in the body N .
Do-handle expressions have computation types D inferred from the do part (M : C) and
the handler part H : C ⇒ D, which changes the original computation of type C into a

2.1 Effect handling 13

Γ ⊢ V : A

Γ ⊢ unit : Unit (T-Unit)
x : A ∈ Γ

Γ ⊢ x : A
(T-Var)

Γ, x : A ⊢ M : C

Γ ⊢ λx. M : A → C
(T-Abs)

Γ ⊢ M : C

Γ ⊢ V : A → C Γ ⊢ W : A

Γ ⊢ V W : C
(T-App)

(l : A → B) ∈ E Γ ⊢ V : A

Γ ⊢ raise l V : B !E
(T-Raise)

Γ ⊢ V : A

Γ ⊢ return V : A !E
(T-Return)

Γ ⊢ M : A !E Γ, x : A ⊢ N : B !E

Γ ⊢ let x = M in N : B !E
(T-Let)

Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ doM handleH : D
(T-Handle)

Γ ⊢ H : F

C = A !{l : Al → Bl;E
′} Γ, (p : Al), (k : Bl → A !E′) ⊢ Nl : D

Γ ⊢ {l p k → Nl} : C ⇒ D
(T-Handler)

Fig. 2.12: Typing rules of LS

E-App (λx. M) V ⇝M [V/x]
E-Let let x = return V in N ⇝ N [V/x]

E-Handle do E[raise l V] handle H ⇝M [V/p, (λy. do E[return y] handle H)/k]

where Hl = {l p k → M}
E-Lift E[M]⇝ E[N] if M ⇝ N

Evaluation Contexts E ::= []| let x = E in N

Fig. 2.13: Operational semantics of LS

computation of type D.
For the handlers, given a computation C which includes the effect {l : Al → Bl},

the handler have the raise argument p bound to type Al according to the effect and the
resumption r bound to type Bl → A !E′ based on the effect resulting type Bl and the
type of the body of the do part A !E′ which removes the handled effect {l : Al → Bl}
from computation C. The type of the handler is inferred from the do part and the handler
body (Nl : D) which forms the handler type transforming a computation of type C to a
computation of type D.

Operational semantics
The operational semantics of LS is given in Figure 2.13. The rules E-App and E-Let
are replacing the corresponding terms x with their values M or N . The rule E-Handle
invokes the corresponding handler for a raise l V expression, where the control flow is
handed to the handler with the continuation k representing the remaining code in the
do-handle expression.

14 Chapter 2 Improving the performance of effect handling

1 effect ask<a>

2 ctl ask() : a

3

4 fun add-twice() : ask<int> int

5 ask() + ask()

6

7 fun ask-random() : random int

8 with ctl ask() resume(random-int())

9 add-twice()

Fig. 2.14: Effect handling in Koka

2.2 Related works
For the related works of effect handling, there are explorations over the programming
interface and the implementation techniques.

2.2.1 Programming interfaces

There are a number of both industrial and research programming languages and libraries
which provides support of effect handling, including OCaml [12], Koka [13], cpp-effects
[4], Flix [14] and many more. Additionally, there are low-level programming interfaces
related to effect handling such as WasmFx [15] and libhandler [16].

For the programming languages and the libraries, most of them adopts a functional
interface. For example, in Koka [13], the effect handling are written like in Figure 2.14.
The effect is defined with the keyword effect continued by its name on line 1. It is
raised with a syntax similar to function invocation with ask() on line 5. The handler
is registered with a with expression on line 8 - 9 where the ctl defines the handler on
line 8, and the computation is defined with the expression on line 9. The resumption is
represented as a intrinsic function like resume(random-int()) on line 8.

Most languages also adopts explicit type annotation of the possible effects. For example,
in the Koka code in Figure 2.14, the function signature on line 4 includes the possible
effect raise. On line 7, since the effect ask is handled while the handler raises new effect
random, the type signature of ask-random only includes the effect random.

By contrast, cpp-effects [4], being the only existing work in C++, exhibits an Object-
Orientated Programming (OOP) style interface. The effects are defined as subclass of
eff::command and raised by eff::invoke_command. The handlers are defined as sub-
class of eff::handler and are registered with eff::handle which is equivalent to a
do-handle block.

For example, in Figure 2.15, it resembles the previous example of shared state in Fig-
ure 2.8. There are two effects Put and Set for the getter and setter respectively on line 2
and 6. The raise parameter are defined as member fields of the class on line 3. The result
is defined as the template parameter of eff::command on line 7. The effects are raised
by eff::invoke_command with the effect object constructed with the raise argument.

The handler is defined on line 19 - 34, where eff::flat_handler is a sugar for tail-
resumptive handler, and the template arguments are telling the list of the effects handled.
It keeps an internal state with the field state on line 25. It overrides handle_command
for the commands (effects) Put and Get to define the code to be executed when the

2.2 Related works 15

1 template <typename S>

2 struct Put : eff::command<> {

3 S newState;

4 };

5

6 template <typename S>

7 struct Get : eff::command<S> { };

8

9 template <typename S>

10 void put(S s) {

11 eff::invoke_command(Put<S>{{}, s});

12 }

13

14 template <typename S>

15 S get() {

16 return eff::invoke_command(Get<S>{});

17 }

18

19 template <typename Answer, typename S>

20 class HStateful : public eff::flat_handler<

21 Answer, eff::plain<Put<S>>, eff::plain<Get<S>>> {

22 public:
23 HStateful(S initialState) : state(initialState) { }

24 private:
25 S state;

26 void handle_command(Put<S> p) final override

27 {

28 state = p.newState;

29 }

30 S handle_command(Get<S>) final override

31 {

32 return state;

33 }

34 };

35

36 void test()

37 {

38 std::cout << get<int>() << " ";

39 put(get<int>() + 1);

40 std::cout << get<int>() << " ";

41 put(get<int>() * get<int>());
42 std::cout << get<int>() << std::endl;

43 }

44

45 void testStateful()

46 {

47 eff::handle<HStateful<void, int>>(test, 100);

48 }

Fig. 2.15: Effect handling in cpp-effects

16 Chapter 2 Improving the performance of effect handling

frame-1
frame-2

Handler<...>

frame-3
Handler<Cmd>

frame-4
. . .

(a) Before raising an effect

frame-4
. . .

Stack

frame-1
frame-2

Handler<...>

frame-3
Handler<Cmd>

Resumption r

(b) After raising an effect

Fig. 2.16: Stack layout of cpp-effects

can_invoke_command<Cmd1> . . . can_invoke_command<CmdN>

command_clause<Answer, Cmd1> . . . command_clause<Answer, CmdN>

handler<Answer, Body, Cmd1, ..., CmdN>

UserDefinedHandler

Fig. 2.17: Class hierarchy of cpp-effects

corresponding effect is raised.
The function testStateful executes the function test with the handler HStateful

in scope by calling eff::handle on line 47, and the constructor arguments to HStateful

are passed as the arguments of eff::handle.

2.2.2 Implementation techniques

Implementation of effect handling could be sorted into stack-manipulation-based and code-
transformation-based.

Implementation based on stack manipulation
MultiCore OCaml [6], Eff [17], cpp-effects [4], Helium [18], Frank [19], Links server backend
[20], WasmFx [15] and libseff [21] uses stack manipulation approach to implement effect
handlers. This kind of implementation usually splits the stack into smaller chunks (named
segmented stack) which contains several frames delimited by effect raising or handlers, and
the stack segments are recomposed to resemble the control-flow operations, but there are
also implementations based on copying the stack [22]. The stack splitting is usually based
on an existing coroutine (fiber) library, but there are also implementations with their own
implementation of segmenting [6].

Taking cpp-effects [4] for an example, the function eff::handle<H>(f) registers the
handler H by pushing a frame of object of type H (a handler frame) and executes f(),
like in Figure 2.16a. When an effect is raised with eff::invoke_command<Cmd>(c), the
stack is recomposed by moving the frames of and above Handle<Cmd> to a resumption
object r, and preserves all frames below frame-4, like in Figure 2.16b. This implementa-
tion technique is sometimes called segmented stack -based because it splits the stacks into
several continous chunks of frames delimited by handler frames.

To search for a handler responding to an effect, cpp-effects maintains a class hierar-
chy to minimize the number of doing dynamic casting. A concrete handler is a user-
defined class UserDefinedHandler, whose hierarchy is shown in Figure 2.17. When
determining whether a frame can handle the effect Cmd1, it only requires casting the
frame to can_invoke_command<Cmd1> instead of attempting all the concrete handler

2.2 Related works 17

1 effect flip() -> bool
2 effect fail()

3

4 func choice(n)

5 if (n < 1) raise fail()

6 else if (raise flip()) return n

7 else choice(n - 1)

8

9 func main(n)

10 do {

11 break [choice(n)]

12 } handle { flip() {

13 yield join(resume(true), resume(false))
14 } fail() {

15 yield []

16 } }

Fig. 2.18: Flipping a coin with effect handling

types UserDefinedHandler. To pass a resumption resulting in type Answer, it only
requires to cast to command_clause<Answer, Cmd1>.

This kind of implementation is inefficient in most cases since the heavy overhead of
switching and recomposing the stack segments. Despite there are optimizations to progres-
sively improve the performance for some special kind of handlers, the overall overhead of
manipulating the stack cannot be ignored and it has shown worse performance than using
existing programming constructs to express the same computation or code-transformation-
based implementations, but it has shown some advantage over code-transformation-based
ones for deeply nested recursive programs [4].

Implementation based on code transformation
Koka [23, 24, 25, 16, 22, 26, 27, 5], Effekt [9], Eff [28], Links JavaScript backend [20] and
an OCaml fork [29] uses some kind of code transformation to implement effect handlers.

Taking Effekt [9] for an example, let there be a program in Figure 2.18 doing random
choice similarly to Figure 2.1. The code in choice flips the coin for at most n times, and
returns the remaining attempts when succeeding (flip gives true). For each flip, the
handler in main resumes twice with true and false, and collects the various results in
an array.

The code transformed in iterated Continuation-Passing-Style (CPS) are given in Fig-
ure 2.19. Here the translated functions takes handlers as parameters since Effekt requires
explicit passing of the handlers which delegates the work of finding the corresponding
handler to programmers, so the work focuses on the transformation of raising an effect.
To efficiently find the handler, Koka [5] gives the idea of evidence vector.

The code transformation creates continuation at the control-flow operations raise,
break, resume and yield of effect handling. The functions are translated so that it
takes additional function parameters representing the computation to be continued after
some control-flow operation, and the continuation function are executed at control-flow
operations, which resembles CPS transformation used in async/await or generators for
effect handling.

This kind of implementation is generally more efficient than the former one in most

18 Chapter 2 Improving the performance of effect handling

1 effect flip() -> bool
2 effect fail()

3

4 // returning a function (k1, k2) -> int

5 func choice(flip, fail, n)

6 func loop(n, k1, k2)

7 if (n < 1) return fail(void, k1, k2)

8 else return flip(void, func(x, k3) {

9 if (x) return k1(n, k3)

10 else return loop(n - 1, k1, k3)

11 }, k2)

12 return loop(n)

13

14 func main(n)

15 func flip(_, k) {

16 return join(k(true), k(false))
17 }

18 func fail(_, k1, k2) {

19 return k2([])

20 }

21 func liftedFlip(_, k1, k2) {

22 flip(void, func(x) { return k1(x, k2) })

23 }

24 choice(liftedFlip, fail, n, func(x1, k2) {

25 return k2([x1])

26 }, func(x2) { return x2 })

Fig. 2.19: Flipping a coin in CPS

cases, but it requires global code transformation (which means library implementation is
not possible for most languages) and still has space for improvement. It is straightforward
to observe that the code transformation shown in Figure 2.19 introduces the additional
overhead of creating a closure with invocation and return of functions possibly raising
an effect. Existing code-transformation-based approaches exhibits similar property of
introducing overhead to function calling or returning.

2.3 Importance of tail-resumptive handlers
To encourage the adoption of effect handlers, improving their performance is essential. In
particular, there is still space of enhancement for tail resumptive handlers, an area that
existing research has largely overlooked. This kind of handler has a substantial position
based on its applications and special property which is explained later, whose performance
contributes a larger proportion to the application compared to the other cases.

From the discovered applications of effect handling, a fact has been observed that most
handlers are tail resumptive [5]. Additionally, these discovered cases of tail resumptive
handlers are invoked more frequently in the programs written with consideration of effect
handling compared to the other cases. As seen before, tail resumptive handlers are used
for shared state and similarly it could be used for contextual access (which is a shared state
without setter). For these cases, since contextual access and shared mutable access occurs

2.3 Importance of tail-resumptive handlers 19

frequently in the programs future written in effect handling, the handlers are invoked
more frequently than the other cases such as exception handling with an yielding handler
and coroutines or probabilistic programming with a non-tail-resumptive handler.

For example, it is obvious that a controller or middleware in web application accesses
contextual data such as user identity, connection information, session and request param-
eters more frequently than it throws an exception or performs I/O operations. Almost
every controller and middleware need to read the request URL, the query params, the
headers and the request body, and to avoid redundant code, the user identity or related
entities are often fetched from the data store once and kept in an object associated with
the request while the controllers and middlewares reads the fetched entity out from the ob-
ject, and it often requires obtaining database connection or configuration from the global
pool prior to perform I/O operations. To keep the code clear by avoiding adding too
much parameters to the controller or middleware function, these data could be accessed
with effects as contextual access or shared mutable state, which usually refers to a tail-
resumptive handler. It is straightforward to consider that these access are pretty frequent
and there are usually multiple accesses to these data in a single controller or middleware.
In contrast, exceptions which are used to handle rare conditions such as network failure
or unexpected input, are rare cases taking a small proportion of all the requests the server
processes, and most I/O operations may require an access to the connection pool or some
global lock prior to the execution.

Another case in point is the rendering function of React or other web frontend rendering
libraries. The core philosophy of React is to create functional components which are
functions generating DOM trees, and as an encapsulation of the complex state inside the
component such as user inputs and remote data fetched, React adopts effect handling to
provide React hooks [30] like useState in Figure 2.20 which they believes to be better
understandable and readable than monads. The invocation of these hooks are actually
referring to a tail-resumptive handler since these use cases are for shared mutable state
which fully covers all the usage of effect handling in a typical React application.

In the example, the function FeedbackForm renders a web form. The view of web form
is updated with invoking FeedbackForm by React when the state changes. It maintains
the state text, isSending and isSent over different invocations by using the function
useState which returns two effects like text and setText standing for the getter and
setter of the state. These effects are handled by React, and is referring to tail-resumptive
handlers like shown in the previous example of shared state in Figure 2.8.

Therefore, since tail resumptive handlers are taking a majority of observed handlers
usage, and the usecases of them imposes a higher rate of being invoked, we believe that
tail resumptive handlers contributes a larger proportion to the performance of programs
utilizing effect handling.

However, current implementations propose a unified approach focusing the support of
delimited continuation which is not well optimized for tail resumptive cases. Segmented
stack [6, 17, 4, 18, 19, 20, 15, 21] requires recomposing the stack where effects are invoked
to enforce the scope semantics of handlers which creates relatively large overhead on every
handler invocation. Code transformation [16, 27, 5, 9, 20, 29] creates additional branching
code where effectful functions return and it moves part of the stack variables onto the heap
which also creates heavy overhead for tail resumptive handlers which has relatively simpler
semantics.

It is observed that yield(resume(...)) call has a straightforward control flow which
could be implemented very close to a function call thus minimizing the overhead. Tail
resumption can be considered as nothing more than finding the correct handler by walking
the stack and execute it on top of the current execution stack (with tweaks to preserve the
handlers’ scope semantics) which is extremely simple and efficient. This approach may

20 Chapter 2 Improving the performance of effect handling

1 import { useState } from 'react';

2

3 export default function FeedbackForm() {

4 const [text, setText] = useState('');

5 const [isSending, setIsSending] = useState(false);

6 const [isSent, setIsSent] = useState(false);

7

8 async function handleSubmit(e) {

9 e.preventDefault();

10 setIsSending(true);

11 await sendMessage(text);

12 setIsSending(false);

13 setIsSent(true);

14 }

15

16 if (isSent) {

17 return <h1>Thanks for feedback!</h1>

18 }

19

20 return (

21 <form onSubmit={handleSubmit}>

22 <p>How was your stay at The Prancing Pony?</p>

23 <textarea

24 disabled={isSending} value={text}

25 onChange={e => setText(e.target.value)}

26 />

27 {/* ... */}

28 {isSending && <p>Sending...</p>}

29 </form>

30);

31 }

32

33 // Pretend to send a message.

34 function sendMessage(text) {

35 return new Promise(resolve => {

36 setTimeout(resolve, 2000);

37 });

38 }

Fig. 2.20: Example usage of React hook [30]

come at the expense of the performance of other types of handlers. However, given the
importance of tail resumption, as outlined above, we consider this trade-off to be both
reasonable and beneficial. Therefore, the performance of tail resumptive handlers could
be further improved which benefits the entire application.

Additionally, for cases other than tail resumptive ones, there are mitigations to avoid
the performance degrading or it sounds reasonable to programmers. First, most non-tail-
resumptive cases with a single resumption could be rewritten by moving the remaining
code to the end of the do-handle block as a mitigation. For example, in Figure 2.21 [3],

2.3 Importance of tail-resumptive handlers 21

1 effect operate(int)
2

3 func post_compute(n: int, s: int)
4 do {

5 for i := range(0, n) {

6 operate(i)

7 }

8 break s

9 } handle { operate(x) {

10 y := resume()
11 yield(abs(x - (503 * y) + 37) % 1009)

12 } }

Fig. 2.21: Example of non-tail-resumptive handler

1 effect operate(int)
2

3 func post-compute(n: int, s: int)
4 counter := 0

5 y := do {

6 for i := range(0, n) {

7 operate(i)

8 }

9 break s

10 } handle { operate() {

11 counter := counter + 1

12 yield(resume())
13 } }

14 while (counter != 0) {

15 counter := counter - 1

16 y := abs(x - (503 * y) + 37) % 1009

17 }

Fig. 2.22: Rewriting remaining code of handler in Figure 2.21

it registers a handler of the effect operate which alternates the result value y of the do
block by the formula |(x − 503 × y + 37) mod 1009|. The do block invokes the handler
by n times and evaluates to the value s, so the formula is applied n times on the value
s. For example, if n = 2, the result value of do-handle is |(x − 503 × |(x − 503 × s +
37) mod 1009|+ 37) mod 1009|.

The code can be rewritten to eliminate the non-tail-resumptive handler by manually
maintaining a counter and apply the formula by the counter like in Figure 2.22. Despite
that a formal method of eliminating remaining code in handlers is yet to be discovered,
the basic idea behind this rewriting is to push remaining code to the end of do-handle
instead of writing it in the handler which is mostly possible. Given this rewriting as a
mitigation, the performance is no longer degraded at the cost of writing code not styled
in effect handling.

In addition, it is acceptable that the others not being able to be rewritten has worse

22 Chapter 2 Improving the performance of effect handling

performance since these cases are rare. These cases together (tail-resumptive, rewritable
non-tail-resumptive and non-rewritable cases) fully covers the explored use cases of effect
handlers. A first non-rewritable case is yielding whose explored usage only contains the
case exception handling, and exceptions are expected to be rare in applications.

For example, in Figure 2.9, there is an effect divZero which represents for “division by
zero” exception. The div function detects whether the divisor q is 0, and raises the effect
to indicate the exception has occurred. A good application developer should validate user
inputs carefully to detect invalid values (such as 0 for the divisor) instead of passing the
value directly to the function and let it trigger an exception. Therefore, the performance
degrading of yielding handlers are acceptable since the invocations should be considered
as internal fault of programs instead of normal code paths.

The other case is multi-shot resumption which is a new complex pattern of programming
introduced by effect handling, which is used for Monte Carlo sampling or decision process,
whose performance degrading is acceptable since this pattern is new to programmers and
the space for improvement could be excepted.

For example, in Figure 2.10, there is an effect ray which generates a random ray at
each invocation. In addition it also collects the computed pixel by accumulating the
result of resume which is the result of rendering the pixel with the given random ray. By
utilizing the power of effect handling, the programmers could write the code of ray-tracing
programs more briefly. Since these use cases are relatively new programming paradigms
emerging after the introduction of effect handling, it is reasonable for the programmers
to expect a temporarily degraded performance.

23

Chapter 3

eff-unwind: Optimizing for

tail-resumptive handlers

We present an implementation for effect handling as a library eff-unwind in C++, which
prioritizes the performance of raise and resume at the cost of the performance of yield,
thereby improving the overall performance of effect handling when most invocations refer
to tail-resumptive handlers. Our proposal is based on the observation that exception han-
dling is optimized for the normal path at the expense of the exceptional path. Following
a similar structure, we implement raising and tail resuming close to function invocation
and return, without recomposing the stack or creating a closure to minimize overhead.
This approach incurs the cost of using stack unwinding for yielding, similar to exception
handling. Another cost is the support for non-tail resumption required to handle the
additional control flow operations of effect handling, achieved through stack preservation
and setjmp/longjmp.

Following the previous introduction of effect handling in section 2.1, we consider it
as a set of control-flow operators. The explanation to the implementation is given in
a typical order of effect handling flow, as shown in Figure 2.5. First, we introduce do-
handle block, which declares an effect handler and a computation. Next, we describe
raise, which invokes an effect handler. We then explain resume, which passes control
from handler to the computation. Following this, we show how a computation ends with
break and continues with the remaining code in the handler. Finally, we illustrate the
end of do-handle from a yield from the handler.

3.1 Implementation of do-handle

3.1.1 Interface of do-handle

The effects are declared as class inheriting from effect, where there are two template

1 effect Get() -> int
2 effect Set(int in) -> int

(a) Pesudocode

1 struct Get :

2 public effect<unit_t, int> {};

3 struct Set :

4 public effect<int, int> {};

(b) C++

Fig. 3.1: Code of effect in countdown

24 Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers

parameters to the base class standing for the effect parameter and the result type. For
example, for the effects shown in Figure 3.1a, effect handling is used for accessing shared
value, and the effect Get is defined with no effect parameter but resulting type int which
reads out the value, while the effect Set is defined with the effect parameter in of type
int and the resulting type int which sets the value and returns the updated value. It
is defined as two classes in eff-unwind as in Figure 3.1b. Effect Get declares the effect
parameter as unit_t to avoid having separate template definition for void of the base
class effect, where unit_t is a zero-sized struct as a placeholder.

The class effect creates two member typedefs for the type parameters, which are
raise_t for the effect parameter and resume_t for the result type. Therefore, the user
could use Effect::raise_t or Effect::resume_t for any effect declarations inheriting
from effect.

do-handle is implemented as a function call to do_handle taking two lambda functions
standing for the do block and the handle block respectively, and two template parameters
for the result type of do-handle block and the effect. The do lambda does not take
any parameters, and the return type of it becomes the return type of the invocation to
do_handle. The handle lambda takes 3 parameters, the effect parameter, the resume
operator and the yield operator.

For example, for the code in Figure 3.2a, it is written as in Figure 3.2b in eff-unwind.
The do-handle block on the pseudocode line 3 - 11 are transformed into a function call on
C++ code line 4 - 15. Our library does not support handling multiple effects in a single
do-handle block for simplicity, so the user has to nest do-handle blocks to handle both
Get and Set. Since the do block becomes a lambda, it uses return instead of break for
giving its resulting value. The resume and yield are given as parameters to the handler,
and can be called like a function to invoke the control-flow operations.

In order to distinguish tail resumptive handlers and others, we introduces a special
way of writing the tail resumptive handlers’ lambda function as in Figure 3.3. The first
version in Figure 3.3a, being generic, does not tell the library about the special property
of the handler being tail resumptive, while the second one in figure Figure 3.3b, omits
the parameter for operators and directly uses return to represent the same control-
flow operation as yield(resume(s)). The library could detect that the handler is tail
resumptive by type-checking that the handler function only accepts one parameter instead
of three.

3.1.2 Tracking the active handlers

We adopt dynamically bound [27, 31, 32] effect handling, which means runtime data
structures has to be maintained for keeping which handler is active and thus invoking.
Therefore in programs with eff-unwind, there is a global stack containing all the handler
frames named handler vector, each representing an active handler, which effectively tracks
all the handlers in scope. The handler frame class is hierarchical, like in cpp-effects [4] for
similar reason. The base class handler_frame_base is the most generic one for efficient
searching corresponding handler, which contains the following fields.

• id id: A sequential identifier for the frame to assert for bugs on deregistration of
the frame.

• effect typeid effect_type: The typeid of the effect to be handled by the handler
of this frame.

• resumption frame pointer resume_fp: The frame pointer of the caller of current
frame, which is used as a boundary of stack unwinding later in section 3.5.

• handler stack pointer handler_sp: The stack pointer of the current frame pointing

3.1 Implementation of do-handle 25

1 func run(n)

2 s := n

3 return do {

4 do {

5 break countdown()

6 } handle { Set(in) {

7 s = in; yield(resume(s))
8 } }

9 } handle { Get() {

10 resume(s)
11 } }

(a) Pesudocode

1 int run(int n) {

2 auto s = n;

3

4 return do_handle<int, Get>([&]() -> int {

5 return do_handle<int, Set>([]() -> int {

6 return countdown();

7 },

8 [&](int in, auto resume, auto yield) -> int {

9 s = in;

10 yield(resume(s));
11 });

12 },

13 [&](unit_t, auto resume, auto yield) -> int {

14 yield(resume(s));
15 });

16 }

(b) C++

Fig. 3.2: Code of do-handle in countdown

1 [&](unit_t, auto resume, auto yield) -> int {

2 yield(resume(s));
3 }

(a) Without optimization

1 [&](unit_t) -> int {

2 return s;

3 }

(b) With optimization

Fig. 3.3: Two ways of writing tail resuming in countdown

26 Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers

to the start memory address of the current stack frame, which is used as a boundary
for stack copying later in section 3.3.

• stack of resumption frames resumption_frames: A empty-initialized stack for stor-
ing the resumption frames used in break and yield as described later in section 3.3.

• parent frame offset parent_delta: An offset indicator to skip some of the handler
frames to ensure correct stack as described in section 3.2.

• tail resumptive indicator is_tail_resumptive: An indicator for being tail re-
sumptive or not to enable the optimization for tail resumptive handlers.

Then, a little specialized one, handler_frame_invoke, contains an extra template
parameter Effect standing for the effect to be handled. Thanks to this parameter, the
type signature of invoking the effect could be deduced to a function taking a parameter
of the effect parameter type Effect::raise_t returning a value of the effect result type
Effect::resume_t. This function signature is defined as a pure virtual member function,
so the library could simply cast the handler frame to handler_frame_invoke<Effect>

without knowing the type of handler function nor the result type of do-handle block at
raise, since the result type of do-handle block is not tied to effect declaration but to a
specific do-handle block (or to say, a specific handler definition).

The next level of subclass is handler_frame_yield additionally adding the type of
the value to break in do block as a template parameter yield type yield_t, which is
also the type for yield in the handler since we requires the result type of do block and
handler must be the same for simplicity without losing generality. It also contains a field
of the yield type named yield value yield_value holding the evaluation result of the
do-handle block after break. This level is introduced for creating the resume and yield
operators provided to handlers when invoking, but still do not provide the implementation
for invoking an effect handler.

The final level in the hierarchy is handler_frame which contains a template parameter
of the handler type (since each C++ closure has a different anonymous type), an object of
the handler type (which represents for an instance of the closure) and an implementation
for invoking the handler.

Since handler_frame is monomorphized for the template parameters, the handler vec-
tor is a C++ standard template library (STL) vector of std::shared_ptr holding objects
of common abstract type handler_frame_base since the base class handler_frame_base
is not monomorphized for not having any template parameter. The concrete type of the
objects in the vector varies basing on the effect and the handler, and it could dynamically
cast the references to the value inside smart pointers to get the concrete typed object.

Upon invocation of do_handle, it constructs handler frame and pushes to the global
vector. The construction is mostly trivial as filling the fields as described above, while
there are specializations of the function taking different kind of template parameters to
distinguish between tail resumptive handlers and others while setting the indicator. The
specialization is based on C++ concepts which asserts the number of parameters possibly
passed to the handler function to enable or disable the function template, which means
the template for tail resumptive handlers are used for the corresponding cases while the
template for general handlers are used for others.

It also constructs a scope_guard [33] which adds the code related to deregistering the
handler to be executed automatically when the frame of do_handle goes out of scope. Ad-
ditionally, it also executes remaining code in the handler as described later in section 3.4.

3.2 Implementation of raise 27

1 int countdown() {

2 auto i = raise<Get>({});
3 while (true) {

4 i = raise<Get>({});
5 if (i == 0) {

6 return i;

7 } else {

8 raise<Set>(i - 1);

9 }

10 }

11 assert(false);
12 return 0;

13 }

(a) Code of raise in countdown

handler
raise

countdown
run
. . .

(b) Call stack for countdown at raise

Fig. 3.4: raise in countdown

3.2 Implementation of raise
The first step in effect handling is raising an effect, which is achieved using the raise
operator. Recalling the introduction of effect handling before, raise finds the nearest
handler of the designated effect in the stack and executes it. In our library, raise is a
function taking a template parameter of the effect type and a parameter for the effect
parameter, which is implemented as finding the handler and executes it as a function call
on top of the current calling frame.

Continuing with our previous example in Figure 3.1 and Figure 3.2, we are still missing
the countdown function which accesses the shared state with the effects defined, so now
the code in Figure 3.4a is introduced. On line 2, 4 and 8, it raises the effects by calling
raise, where it uses the effect Get to read the shared value, and updates the value with
Set. It counts from the initial value down to 0 stepping by 1, and returns the final value
(which should be 0).
raise searches through the handler vector from the top (last registered) to the bottom

(first registered). If it encounters a frame with parent frame offset n > 0, it skips the
current frame and the following subsequent n− 1 frames, whose reason is explained later
in subsection 3.2.1. On each frame, it checks whether the frame could handle the effect
by comparing the typeid of the effect raised with the effect typeid field in the frame. If no
handler frames are found, the current process is aborted, which is similar to the behavior
in exception handling. If found, it goes through the process of invoking the handler, which
basically contains the following steps.

1. Cast the frame to a more concrete type handler_frame_invoke<Effect> to pre-
pare for the invocation of the handler.

2. Mask part of the handler vector by manipulating the parent frame offset of the last
frame in the vector.

3. Construct a raise context for the effect and the raise invocation.
4. If the handler is tail resumptive, (by examining the tail resumptive indicator in the

handler frame)
（a）Invokes the handler with the effect argument.

28 Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers

handler

do-handle
. . .

. . .
some functions

. . .

resumption

(a) Most other implementations

handler

. . .
some functions

. . .
do-handle

. . .

(b) Our implementation

Fig. 3.5: Call stack for executing the handler in countdown

（b）After the handler returns, return the effect result value from the return value
of the handler.

5. Otherwise,
（a）Save the current execution status by setjmp to the raise context.
（b）Construct a resume context and yield context.
（c）Invokes the handler with the effect argument and the two contexts.
（d）After the handler returns by longjmp to the previous saved execution status

in step 5a, return the effect result value from the raise context.

The raise context contains the following fields.

• Template parameter Effect: The effect type. For accessing the type of effect
parameter and effect result.

• jump buffer: A field for storing the execution status in step 5a.
• Effect result value: A field for storing the effect result value for non-tail-resumptive
handlers.

The resume context and yield context contain references to the raise context and other
things related to resume and yield, which is explained in section 3.3 and section 3.5.

Most of the steps are trivial, but skipping frames in searching and the step 2 seem to be
inordinary, which is explained as follows in subsection 3.2.1. In addition, the step 5a and
the resuming by longjmp from the handler seems to also be not straightforward, which is
explained later in subsection 3.2.2 and section 3.3.

3.2.1 Masking the handler vector

Differently from the other implementations, our approach are invoking the handler code
as a frame on top of the current execution stack (Figure 3.5b) instead of recomposing the
stack and put the frame on top of the registration frame (Figure 3.5a). This choice has
improved the performance by eliminating the overhead of recomposing the stack [5] while
introducing an additional problem of having to mask part of the handler vector in order
to keep the scope of handlers correct, since the handlers registered in foobar should not
be effective for the code in handler.

For example, in code in handler sieve (Figure 3.6) [3], the function run computes the
sum of all the primes less than n by using trial division. However, the list of all the primes
found are not kept in a data structure but as registered effect handlers of Prime. When
the effect Prime is raised with argument e, it finds some handler doing trial division over
i. As on line 11 - 18, the handler behaves as if the current trial division fails (which means
e mod i = 0), it yields false since e cannot be a prime; while if it succeeds, it delegates
the trial division to the next handler in the stack for some prime smaller than i. If the
code on line 7 finds some new prime, it adds the prime to the result, and pushes a new

3.2 Implementation of raise 29

1 struct Prime : public effect<uint64_t, bool> {};

2

3 int primes(int i, int n, int a) {

4 if (i >= n) {

5 return a;

6 }

7 if (raise<Prime>(i)) {

8 return do_handle<int, Prime>(

9 [&]() {

10 return primes(i + 1, n, a + i);

11 }, [i](int e) -> bool {

12 if (e % i == 0) {

13 return false;
14 } else {

15 auto val = raise<Prime>(e);
16 return val;

17 }

18 });

19 } else {

20 return primes(i + 1, n, a);

21 }

22 }

23

24 int run(int n) {

25 return do_handle<int, Prime>(

26 [&]() {

27 return primes(2, n, 0);

28 }, [](int) -> bool {

29 return true;
30 });

31 }

Fig. 3.6: Handler sieve

handler for the prime as on line 8. Therefore, the stack of handlers in scope also forms a
list of all the primes found, and the code uses effect handling to traverse over this list to
check if a number is a prime.

Therefore, a typical handler vector of handler sieve could be like in Figure 3.7a for
eff-unwind. For the handler of trial division on n, it is written as do_handle<Prime>[n]
in the figure. When the code raises Prime with the number 12, the calling stack could be
as in Figure 3.7b at some point. Taking Prime(7) for an example, since the do-handle
blocks are all in scope, the handler vector is like in Figure 3.7a. If it does not apply the
masking technique, the handler do_handle<Prime>[11] would be found.

However, the user expects the call stack to be in the shape shown in Figure 3.8a,
where the handler for Prime(7) is executed directly on top of primes(7, 12, 10) where
do_handle<Prime>[11] and do_handle<Prime>[7] is not in scope, and the handlers
with i < 7 should be found.

In order to address the problem of unwanted handlers being in scope, differently from
[5], we create a mask to temporarily deactivate the handlers registered between the frame

30 Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers

. . .
do_handle<Prime>[11] (line 11 - 18)
do_handle<Prime>[7] (line 11 - 18)
do_handle<Prime>[5] (line 11 - 18)
do_handle<Prime>[3] (line 11 - 18)
do_handle<Prime>[2] (line 29)

(a) Handler vector

handler for Prime(7) (line 11 - 18)
raise<Prime>(7) (line 15)

handler for Prime(11) (line 11 - 18)
raise<Prime>(12) (line 7)

do_handle<Prime>[11] (line 8)
primes(11, 12, 28) (line 7)

. . .
primes(8, 12, 17) (line 7)

do_handle<Prime>[7] (line 8)
primes(7, 12, 10) (line 7)

. . .

(b) Calling stack

Fig. 3.7: Runtime data structures for handler sieve (1)

handler for Prime(7)
primes(7, 12, 10)

. . .
do_handle<Prime>[5]

. . .

(a) Expected call stack

. . .
do_handle<Prime>[11]

(parent frame offset = 2 by raise<Prime>(7))
do_handle<Prime>[7]

do_handle<Prime>[5]

do_handle<Prime>[3]

do_handle<Prime>[2]

(b) Handler vector inside handler for Prime(7)

Fig. 3.8: Runtime data structures for handler sieve (2)

of the registration of invoked handler and the frame of invoked handler, which imposes
lighter overhead for raise. As previously introduced, the handler frames contain the
parent frame offset fields. When raising an effect, before invoking the handler, it sets the
parent frame offset of the last handler to be the distance between the handler found and
the last handler, which effectively skips all the handlers from the handler found (including)
and the last handler (including). It also sets up a scope guard which restores the parent
frame offset for the last handler when the raise function goes out of scope.

Therefore, going back to our previous example in Figure 3.6, when it executes
raise<Prime>(11), it sets the parent frame offset of do_handle<Prime>(11) to 1 since
there is a frame do_handle<Prime>(11) between the last frame and the current frame
(inclusive). Therefore, the raise in handler for Prime(11) does not find the handler
do_handle<Prime>[11] as the searching process of raise skips 1 frame when reaching
do_handle<Prime>[11]. Similarly, the raise in handler for Prime(7) skips 2 frames,
as shown in Figure 3.8b where the masked frames are in gray background, and finds
do_handle<Prime>[5] as expected by the user.

3.2.2 setjmp for resuming from handler

To give some background, setjmp [34] is a function in C standard library which saves
the current execution context into a jump buffer. The program could later restore the
execution context by longjmp, where the execution continues at the construction of the
jump buffer variable passed to longjmp. As setjmp returns twice, for saving the jumping

3.2 Implementation of raise 31

1 std::jmp_buf solver_error_handler;

2

3 std::array<double, 2> solve_quadratic_equation(

4 double a, double b, double c)

5 {

6 const double discriminant = b * b - 4.0 * a * c;

7 if (discriminant < 0)

8 std::longjmp(solver_error_handler, true); // Go to error handler

9

10 const double delta = std::sqrt(discriminant) / (2.0 * a);

11 const double argmin = -b / (2.0 * a);

12 return {argmin - delta, argmin + delta};

13 }

14

15 void show_quadratic_equation_solution(double a, double b, double c)

16 {

17 std::cout << std::format(

18 "Solving {}xˆˆc2ˆˆb2 + {}x + {} = 0...\n", a, b, c);

19 auto [x_0, x_1] = solve_quadratic_equation(a, b, c);

20 std::cout << std::format(

21 "xˆˆe2ˆˆ82ˆˆ81 = {}, xˆˆe2ˆˆ82ˆˆ82 = {}\n\n", x_0, x_1);

22 }

23

24 int main()

25 {

26 if (setjmp(solver_error_handler))

27 {

28 // Error handler for solver

29 std::cout << "No real solution\n";

30 return EXIT_FAILURE;

31 }

32

33 for (auto [a, b, c] : {

34 std::array{1, -3, 2}, {2, -3, -2}, {1, 2, 3}

35 })

36 show_quadratic_equation_solution(a, b, c);

37

38 return EXIT_SUCCESS;

39 }

Fig. 3.9: Example of setjmp and longjmp

buffer and for recovering from longjmp, the program distinguishes that by examining the
return value of setjmp.

For example, in the code in Figure 3.9 borrowed from [34], it solves quadratic equations
in solve_quadratic_equation, and it uses setjmp/longjmp to handle exceptions instead
of using try-catch. On line 26, it sets the jump buffer solver_error_handler declared on
line 1, which creates a execution context to be restored by longjmp later. The return value
of setjmp is falsy, so it knows that it is saving an execution context on line 26 and proceeds

32 Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers

with the logic on line 33. When solving an equation in solve_quadratic_equation,
if the discriminant is less than 0, the equation does not have an solution which is an
exceptional case, and it uses longjmp to restore the execution context in the jump buffer
solver_error_handler. The code on line 26 gets the control flow and knows it is a
resuming from longjmp as the return value of setjmp becomes truthy, so it proceeds
with the error handler defined on line 28.

setjmp is commonly used as a lightweight way of switching execution context between
non-local code. However, it has many limitations.[35] If replacing the jumping of longjmp
by try-catch would “invoke a non-trivial destructor for any automatic object”, the behavior
is undefined. An observation for the current implementation of the C standard library
shows that longjmp do not execute the non-trivial destructors of the objects for the frames
traversed, as it is not aware of non-trivial destructors for being a C construct. If “the
function that called setjmp has exited”, the behavior is also undefined, which means it
only permits jumping downwards the call stack. An observation shows that if the stack
frame containing call to setjmp is destroyed, the program encounters invalid state.

In order to utilize the properties of setjmp/longjmp, we sets up a jump buffer in step
5a for raise, which is resumed later by resume with longjmp. The reason behind this is
illustrated in section 3.3.

3.3 Implementation of resume
The second step in effect handling is resume from a handler. Recalling the introduc-
tion of effect handling before, resume passes the control flow back to the do block as
if raise is a function and has just returned. In our implementation, resume has two
different implementations, one for normal resume and one of the special tail resuming
(yield(resume(...))), where the specialization provides performance improvement.

3.3.1 Implementation of normal resumption

Normal resume is implemented as saving part of the stack frames and the registers and
then returning to the callsite of raise. The first part is conducted in order to execute
the remaining code in handler after break (or yield sometimes), and the second part is
about the control-flow semantics of resume.

As briefly introduced before, in eff-unwind, there is a resume context passed to the effect
handler as an argument. The resume context is indeed a class with template parameters
and fields to track the components required by performing resumption, which are as
follows.

• Template parameter effect type Effect: The type of the effect.
• Template parameter yield type yield_t: The type of the result of do-handle block.
• Field handler frame reference handler_frame: A reference to the handler frame of
the invoked handler.

• Field raise context reference ctx: A reference to the raising context.

The resume context overloads the function call operator (operator()), so in order
to perform a resumption, the handler code invokes the resume context similarly to a
function, passing a parameter of effect result type, and receiving a value of do-handle
result type yield_t, like on line 9 in Figure 3.10. Since the resume context is created
after a concrete handler is found, it knows the do-handle result type from the specialized
handler_frame_yield.

First, it sets the resumption value in the raise context. Since the resume context holds

3.3 Implementation of resume 33

1 struct count : public effect<unit_t, int> {};

2

3 int runCounter() {

4 auto [x, counter] = do_handle<std::pair<int, int>, count>(

5 []() -> int {

6 return std::make_pair(counter(3), 0);

7 },

8 [](unit_t, auto resume, auto yield) {

9 auto [x, counter] = resume({});
10 yield(std::make_pair(x, counter + 1));

11 });

12 return x;

13 }

14

15 int counter(int x) {

16 raise<count>({});
17 if (x == 0) return x;

18 else return counter(x - 1);

19 }

Fig. 3.10: Simplified counter in C++

raise context reference, it stores the value in the effect result value field by the reference.
The value is passed in this way as resume passes control flow back to raise by longjmp

instead of function returning.
Second, the stack and registers are saved with memory copying and setjmp, creating

a resumption frame, in order to restore execution of the remaining code in the handler in
the future. A resumption frame contains the following fields.

• jump buffer saved_jmp.
• Part of the stack preserved saved_stack.
• Preserved copy of handler frames saved_frames.

The jump buffer is constructed with setjmp. The copy of handler frames are copied
from the current handler vector. Since the handler vector is containing a list of shared
pointers (reference counting pointers) to handler frames, it does not copy the objects but
only the reference and increases the reference counter for memory management.

The part of the stack contains the stack frames from the current frame to the frame of
the do-handle block (inclusive). The memory address for the boundaries of these frames
are read out from the current stack pointer, and the handler stack pointer in the handler
frame. Since the remaining code of the handler is expected to be executed after the do
block ends, at that point, the frames in the specified range is destroyed as the function
returns, which should be preserved to completely restore the execution state as setjmp

do not preserve stack memory.
For example, considering the code in Figure 2.6, it uses effect handling to count the

execution of the function counter, and a typical call stack would be as in Figure 3.11a.
For the third invocation to the handler of count, it is denoted on the top of the stack. It
resumes back to raise count() and then to counter(1), but there are remaining code
to be executed before do-handle ends where the stack looks like in Figure 3.11b. The
frame “handler for count (3)” need to be restored in the same position, and the yielding

34 Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers

handler for count (3)
raise count()

counter(1)

counter(2)

counter(3)

do_handle

runCounter

. . .

(a) Stack when executing handler before resume

do_handle

runCounter

. . .

(b) Stack when executing remaining code

Fig. 3.11: Call stack for simplified counter

for the handler iterates over all the stacks below it as shown later in section 3.5, so the
stack highlighted in yellow in Figure 3.11a need to be preserved.

Finally, resume uses longjmp to pass control back to raise, and raise returns the stored
resumption value back to its callsite. This skips the non-trivial destructors in the handler
frame in order to preserve for the execution of non-tail code, as the frame is restored
later for remaining code and the execution of remaining code executes the non-trivial
destructors.

Looking back to Figure 3.11a, the frame “handler for count (3)” is restored later with
the technique explained later in section 3.4 in order to execute the remaining code, so the
non-trivial destructors in that frame should not be executed. Therefore, it uses longjmp
to resume back to raise count(), skipping the destructors in that frame.

3.3.2 Implementation of tail resumption

Tail resumption (yield(resume(_))) is specialized to be implemented as function return-
ing without any additional process. Recalling the introduction over the tail resumptive
handlers, the handlers are special in terms that they do not contain any remaining code
after resume changing the resulting value of do block, since yield marks the end of the
handler and yielding with the value from resumption does not impose any computations
between break and yield. Therefore, the stack frame for tail resumptive handlers does
not need to be preserved, which eliminates the need for using setjmp/longjmp in raising
and resuming, and the need for preserving the execution state in resuming.

Therefore, following the style of writing tail resumption as function returning like in
Figure 3.3b, the tail resumption is expresses as a simple return statement. The control
flow goes back to raise, and it directly returns the effect result value to the callsite.
Since this implementation skips unnecessarily saving the execution state, we suppose that
this technique minimizes the overhead for invoking a tail resumptive handler and imposes
performance improvement.

3.4 Implementation of break
Moving on to the third point, the do block concludes with a break. Recalling the intro-
duction of effect handling before, break marks the end of the do block, which provides
the value of the do block and passes the control flow back to the handler as if resume
is a function and has just returned which continues the remaining code in handler after
resume. break is expressed with a function returning in the do block lambda function as
on line 6 of Figure 3.10 for our previous example of simplified counter in Figure 2.6.

3.4 Implementation of break 35

scope guard
do_handle

runCounter

. . .

(a) Stack when executing break

handler for count (3)
raise count()

counter(1)

counter(2)

counter(3)

do_handle

runCounter

. . .

(b) Stack desired

Fig. 3.12: Call stack for simplified counter at break

With the function returning of the do block, the function do_handle gains control flow
again, sets the yield value field to the argument provided to break and declares a scope
guard to execute the additional logic for effect handling and returns the result of the
do-handle block from the yield value field of the handler frame to conclude it, as in C++
the destructors (scope guards) are executed before the function returns, and scope guards
ensures the execution for the logic in case of a stack unwinding used in section 3.5.

To properly conclude a do block, the implementation of the scope guard contains two
parts as briefly introduced in section 3.1 before, the execution of remaining code in the
handler and the deregistration of the handler frame, while properly maintain the current
evaluation result value of the do-handle block in the yield value field of the handler frame.
In summary, the implementation of break contains the following steps.

1. Set the yield value field to the argument provided to break (expressed as return).
2. Execute the steps in the scope guard.
（a）Restore the handler vector from the preserved copy of handler frames in the

resumption frame.
（b）Execute the remaining code in the handlers.
（c）Deregister the handler frame.

3. Return the value from the yield value field as the result of the do-handle block.

Restoring the handler vector is straightforward as copying the value back to the global
handler vector. The deregistration of handler frame is also as straightforward as popping
the last handler frame from the handler vector since the correspondence between the frame
of do_handle and the pushing to the handler vector. However, executing the remaining
code is not trivial, which is described below.

To execute the remaining code, we have saved the execution state of the handler in a
resumption frame with the technique explained in section 3.3. It first pops the frame out
from the stack of resumption frames in the current handler frame, and the remaining work
is to restore this resumption frame. The current stack is as Figure 3.12a, and we want
to restore the stack frames highlighted in yellow in Figure 3.12b which is saved before as
in Figure 3.11a. It is obvious that the frame of “scope guard” overlaps with the stack
frames we want to restore, and longjmp could only jump downwards to a frame recalling
the previous introduction of setjmp/longjmp.

Therefore, we first shift the stack upwards in the scope guard like the arrow (1) shows
in Figure 3.13, by subtracting the stack pointer by nsp− sp+ |saved stack|. The nsp is the
current stack pointer of the “scope guard” frame which points to the top of the frame, sp
is the stack pointer of do_handle, and |saved stack| is the size of the saved stack which
contains the frames between “handler for count3” and “counter(3)”. The shift forms

36 Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers

resume_remain

handler for count3

raise count()

counter(1)

counter(2)

scope guard scope guard counter(3)

do_handle do_handle do_handle

runCounter runCounter runCounter

.

(1)

(2)

Fig. 3.13: Restore the stack for executing remaining code

handler for count3

raise count()

counter(1)

counter(2)

counter(3)

do_handle

runCounter

. . .

Fig. 3.14: Control flow for yield

the stack shaped in the middle in Figure 3.13, and then it invokes resume_remain. Then
resume_remain jumps to the “handler for count3” by using longjmp to switch to the
checkpoint saved before with the resume as in section 3.3, passing control flow back to
the remaining code in the handler.

The control flow is passed back to the scope guard later by a yield from the handler
which is demonstrated later in section 3.5. Therefore, it executes all of the remaining
codes in handlers one-by-one in the order introduced before in the background as the
resumption frames forms a stack.

3.5 Implementation of yield
As a final point, yield indicates the end of an effect handler and gives return value to the
do-handle block, which requires jumping backwards over several frames on the call stack
as in Figure 3.14 for our previous example of simplified counting function invocations
Figure 2.6.

In eff-unwind, similarly to resume, there is a yield context passed to the effect handler
as an argument. The yield context is indeed a class with template parameters and fields
to track the components required by performing yielding, which are as follows.

3.5 Implementation of yield 37

• Template parameter effect type Effect: The type of the effect.
• Template parameter yield type yield_t: The type of the result of do-handle block.
• Field handler frame reference handler_frame: A reference to the handler frame of
the invoked handler.

The yield context likely overloads the function call operator (operator()), so in order
to perform a yielding, the handler code invokes the yield context similarly to a function,
passing a parameter of do-handle block result type, like on line 10 in Figure 3.2b. Since
the yield context is created after a concrete handler is found, it knows the do-handle result
type from the specialized handler_frame_yield.

When the handler calls yield, it first updates the yield value field of the handler frame
to the argument of yield, and then uses stack unwinding to obtain the execution context
of the target frame.

3.5.1 Stack unwinding

To give some background, stack unwinding is a technique introduced by C++ exception
handling for restoring the execution context of some functions below the current calling
frame, the target of which is similar to longjmp. The execution context contains the
registers and the memory, where the memory is not required to be restored since it is
going downwards on the stack. Therefore, stack unwinding is about restoring the registers
for a frame downwards the stack, without saving these registers beforehand which differs
from setjmp/longjmp.

To jump to the target frame, it requires changing the program counter (or named as
instruction pointer), and the data registers. We know that the registers are split into
two kinds, caller-saved and callee-saved, based on their preservation across function calls.
Caller-saved registers are preserved by the caller, and is expected to be clobbered by the
callee. Callee-saved registers, in contrast, is preserved by the callee, and is expected to
be restored before returning to the caller. Additionally, the return address, which is the
program counter of caller, should also be preserved by the callee. Since we are going to a
frame downwards (from callee to caller), the caller-saved registers are not concerned but
the callee-saved registers and the return address are important.

In C++ (and programs with unwinding), the compiler generates a unwind table which
tells the place where the function saves callee-saved registers and return address. There-
fore, we could restore the registers of caller by using this table and reading from the
callee’s registers and the memory.

To use stack unwinding, it requires initializing an unwind context by calling the func-
tion unw_getcontext, which parses the unwind table and sets up the essential data
structures. Then, an unwind cursor, which represents an execution context, is possible
to be obtained by calling unw_init_local which gives the cursor pointing to the current
execution context (and current frame). By using unw_step, it moves the cursor frame-
wise downwards the stack. The registers of the execution context in the cursor can be
read out by unw_get_reg and set by unw_set_reg.

Additionally, unw_get_proc_info reads out the information (procedure information)
related to the function containing the instruction which the execution context in unwind
cursor. The procedure information includes the boundary of program counter of the
function, address of language-specific data area, address of personality routine and other
information related to the unwind table.

Personality routine is related to the exception semantics of C++. By invoking it with
different unwind action _Unwind_Action parameter, it changes the unwind cursor passed
as one of the parameters instructing the code to be executed in different scenarios. One

38 Chapter 3 eff-unwind: Optimizing for tail-resumptive handlers

yield_context::operator()

cleanup

target frame

personality routine

_Unwind_Resume

eff_stop_fn

(1)

(2) (3)

(4)(5)

Fig. 3.15: Control flow of yield with destructors

of the scenarios includes executing the non-trivial destructors for the values contained in
the frame, where it changes the unwind cursor to the cleanup code of that frame.

Finally, after making the cursor reaching some designated execution context, it resumes
the execution context specified by the unwind cursor with unw_resume, which restores
the registers and jumps to the instruction defined in the program counter of the cursor.

3.5.2 Stack unwinding for yielding

Stack unwinding is chosen for two reasons. First, some of other “jumping” techniques
such as setjmp/longjmp or bubbling requires additional setup over code path where there
are no yield, which introduces performance penalty over tail-resuming cases. Second,
some of these techniques do not interoperate with C++ destructors well, since they only
restores registers and do not execute destructors over the frames they jump over, leading
to unexpected behavior such as resource leaking. Stack unwinding is a mature technique
used in C++ exception handling for a long time, which is optimized for the “normal”
path and handles destructors, so it suits the need for yielding well and is thus chosen.

Implementation without invoking non-trivial destructor
To start with simplicity, let all the frames not have a non-trivial destructor. Briefly
speaking, it steps downwards the stack frame-by-frame and stops at the frame of the
caller of do_handle, which marks the returning point of do_handle. The process of
yielding are as follows.

1. Initialize the unwind context, cursor and exception object.
2. Step the cursor down by a frame.
3. Compare the frame pointer of current cursor to the resumption frame pointer field

of the handler frame, which points to the frame of the caller of do_handle.
• If not equals, go back to step 2 to continue the stepping process.
• If equals, continues with the next step.

4. Sets the returning registers of the cursor to the result of do-handle, which comes
from the yield value field of the handler frame. This gives the return value of
do-handle block.

5. Resume the caller of do_handle by unw_resume.

Most parts of the procedure is trivial, but the exception object is initialized a little dif-
ferently from C++ exception handling. The exception class is initialized to "XFOXEH "

(0x58464f5845480000) which distinguishes itself from C++ exceptions. The other fields
could be uninitialized for the current simplified scenario.

Handling non-trivial destructors
To go deeper, if one of the frames stepped over contains a non-trivial destructor, it becomes
more complex as destructors of that frame need to be executed. Therefore, between step

3.5 Implementation of yield 39

2 and 3, it invokes the personality routine defined in the procedure info of the frame to
check if there are any cleanup (destructors) associated with the frame, which is marked
as the edge (1) in Figure 3.15. If there is a cleanup, the unwinding cursor is updated to
point to the execution context of the cleanup code. yield resumes to that unwinding
cursor to execute the cleanup code as the edge (2) in the figure.

However, the cleanup function does not return back to yield, and actually it cannot
since the stack frames above the frame containing the cleanup is no longer valid after
resuming to the cleanup. It hands over to the stack unwinding process of C++ as tail
calling _Unwind_Resume which is marked as the edge (3) in Figure 3.15. _Unwind_Resume
steps over all the frames below it and expects to reach some frame containing a matching
exception handler, which in our case does not exist at all as there is no C++ exception.

Therefore, we introduce a stopping function which is invoked when _Unwind_Resume

steps at a new frame. The stopping function checks if the current frame is our target
frame, and resumes the current cursor when matching to jump out of the C++ stack
unwinding process to the returning point of do_handle, which is marked as edge (5) in
Figure 3.15. Additionally, it sets the returning registers of the cursor before resuming to
pass the result value of do-handle block to the caller.

This depicts the entire flow of yielding. Considering the entire implementation, ad-
ditionally for the exception object, the first private field private_1 is initialized to the
function address of our custom stopping function which is required by C++ stack un-
winding ABI. The second private field private_2 is set to the target frame pointer (the
resumption frame pointer field of the handler frame) for storing our target frame which is
also required by C++ stack unwinding ABI. The exception cleanup exception_cleanup

is set to the yielding frame context since the field is not used for stack unwinding process
of non-exception cases. The yielding frame context is constructed when yielding, and
contains the result value of the do-handle block.

Another point is that since break is implemented as a scope guard in do_handle, yield
gives control flow back to the scope guard by the execution of cleanup in do_handle, which
eventually executes the remaining code of all the handlers.

40

Chapter 4

Evaluation

In order to illustrate the performance implications of the unbalanced implementation, we
conduct evaluation based on well-known applications of effect handlers which each contains
tens of lines of code and compare the execution time of our library against the existing
works. Our evaluation is constructed in order to answer the following two questions.

• Does our approach improve the performance of the invocation of tail resumptive
handlers, and if so, how much?

• How much does our approach worsen the performance of other kinds of effect han-
dlers?

We first takes the test cases from [3], which includes the following.

• countdown is the case previously shown in Figure 2.8 where there are only tail
resumptive handlers.

• fibonacci recursive calculates fibonacci by recursion without using effects, giving
insights into the performance of the platform.

• generator sums the total number in a binary tree by using first-class resumption.
It stores the resumption after the handler exits and resumes the execution later to
continuously emit numbers.

• handler sieve computes the sum of all primes less than n by trial division, which
has been shown in Figure 3.6.

• iterator creates the effect emit which is triggered over each element of a container,
and the tail resumptive handler computes the sum of the emitted values.

• nqueens traverses the solution space of a nqueens problem by using multishot han-
dlers.

• parsing dollars generates n lines which contains i $ characters for the i-th line.
The function parse consumes $ and yields the count in each line as an effect.
The function sum receives the yielded count and gives the total count of $s in the
generated file.

• product early computes the product of all the numbers between 1000 . . . 0, where the
effect abort is raised when encountering a 0 and the yielding handler short-circuits
the result to be 0.

• resume nontail is the case previously shown in Figure 2.21 where a non-tail-
resumptive handler is used to change the return value.

• tree explore explores a binary tree similarly to generator.
• triples counts the total number of triples (t1, t2, t3) where t1 > t2 > t3 and t1+ t2+
t3 = s.

We run these cases over the following implementations.

• eff-unwind is our implementation of the proposed approach as a library in C++.

41

0 1000 2000 3000 4000 5000
Time (ms)

countdown

fibonacci_recursive

handler_sieve

iterator

parsing_dollars

product_early

resume_nontail

triples

1828.97

813.042

2641.3

136.048

934.078

513.183

1533.75

3398.43

1194.36

4052.57

344.441

2967.81

1877.57

253.523

73.0625

817.541

275.912

359.232

4.26408

1444.45

1081.44

104.935

82.8494

0

Execution time by implementation

eff-unwind Koka cpp-effects OCaml

Fig. 4.1: Execution time averaged over 10 runs

Time (ms) eff-unwind Koka cpp-effects OCaml

countdown 1828.968 3398.433 74886.605 10146.831
fibonacci recursive 813.042 1194.364 817.541 1444.449
handler sieve 2641.296 4052.567 49177.091 8187.453
iterator 136.048 344.441 6413.194 1081.44
parsing dollars 934.078 2967.811 31968.717 6507.325
product early 513.183 1877.568 275.912 104.935
resume nontail 6121.71 253.523 359.232 82.849
triples 1533.755 73.063 N/A N/A

Table 4.1: Execution time averaged over 10 runs

• cpp-effects [4] is an implementation of effect handling in C++ with segmented stack
achieved by coroutines.

• Koka [5] is a programming language with effect handling support by monadic trans-
lation.

• OCaml [6] is the first industry programming language with effect handling support.
Its implementation is based on stack manipulation.

We omit the cases of generator and tree explore since we do not support stored resump-
tion after the handler yields and nqueens since it has problems with the lifetime of stack
frames.

The experiments are conducted on a MacBook Pro with M1 Pro chip (AArch64) and
32 GiB memory running macOS Sequoia (15.2), with Apple clang 16.0.0, CMake 3.31.2,
ninja 1.12.1, Koka v2.6.0, OCaml 5.2.1 and boost 1.87.0. We measure the execution time
of these programs and calculate mean and standard deviation by 10 times. The results
are in Figure 4.1, Table 4.1 and Table 4.2, of which the discussion is given below.

Baseline
fibonacci recursive: Our implementation is about 1.5 times faster than Koka, 1.8 times
faster than OCaml and almost the same as cpp-effects. As we are comparing mostly

42 Chapter 4 Evaluation

Time (ms) eff-unwind Koka cpp-effects OCaml

countdown 49.583 20.315 770.817 107.507
fibonacci recursive 6.393 8.741 9.41 7.717
handler sieve 17.21 14.046 1235.877 78.838
iterator 0.897 2.406 47.577 19.975
parsing dollars 29.458 19.238 596.058 20.175
product early 30.172 21.855 3.039 1.381
resume nontail 54.599 1.126 1.72 0.584
triples 10.081 0.786 N/A N/A

Table 4.2: Standard deviation of execution time over 10 runs

between different programming languages, this benchmark case reveals the possible per-
formance difference between these different platforms, eventually being a possible baseline.

Tail resumptive handlers
countdown: Our implementation is about 1.9 times faster than Koka, 5.5 times faster
than OCaml and 40.9 times faster than cpp-effects. In this use case, there are two effects
get and set, both of which are handled by a tail resumptive handler as shown before in
Figure 3.2. This case shows that our implementation achieves better performance than
the existing works evaluated in high confidence, but since it is comparing between different
programming languages, the conclusion is not definite.

handler sieve: Our implementation is about 1.5 times faster than Koka, 3.1 times faster
than OCaml and 18.6 times faster than cpp-effects. As shown before in Figure 3.6, this case
uses a tail resumptive handler, and we are achieving a similar performance improvement
over fibonacci recursive. Considering the fact that the handlers are invoked recursively, and
Koka incorporates tail recursion optimization over the recursive call [5] while we, being a
C++ library, cannot perform that optimization, our effect handling mechanism is believed
to be as efficient as Koka and more efficient than the other implementation compared.
Additionally, this reveals a weakness of our implementation being not supportive to tail
recursion optimization over effect handlers.

iterator : Our implementation is about 2.5 times faster than Koka, 7.9 times faster than
OCaml and 47.1 times faster than cpp-effects. As shown in Figure 4.2, this case has the
effect emit which emits an integer, and the handler sums all the emitted integers without
imposing any computations after resuming, being a tail resumptive handler. It shows that
our implementation has performance improvement over the existing works compared on
tail resumptive handlers.

parsing dollars : Our implementation is 3.2 times faster than Koka, 7.0 times faster
than OCaml and 34.2 times faster than cpp-effects. As shown in Figure 4.3, this case
has 3 effects, read, emit and stop. read simulates reading from a file, where the file
contains n lines, and there are i $s on the i-th line, and it is handled by a tail resumptive
handler. emit is similar to our previous example iterator, where the code emits the
number of $s for each line, and the handler sums the count up to get a total number
of dollars for the entire file, which is also tail-resumptive. stop is similar to throwing
an exception, where the code aborts the execution if it encounters a character which is
neither a dollar nor a newline, or if it reaches the end of the simulated input file, where
an yielding handler is used. This case is more complex than the previous ones while the
invocations to tail resumptive handlers is still dominating, and our implementation shows
performance improvement over the existing works compared.

43

1 effect emit(e: int)
2

3 func range(l, r)

4 for e in l..r {

5 raise emit(e)

6 }

7

8 func main(n)

9 sum := 0

10 do {

11 range(0, n)

12 break s

13 } handle { emit(e) {

14 sum += e

15 yield(resume())
16 } }

Fig. 4.2: Iterator

Non-tail-resumptive handlers
product early : Our implementation is 1.9 times slower than cpp-effects and 4.9 times
slower than OCaml, but 3.7 times faster than Koka. This case is similar to the exception
handling case introduced before in Figure 2.9, where there is a single yielding handler
aborting the production of a list of numbers when encountering a 0. This case shows that
the implementation technique of Koka, which uses bubbling instead of stack unwinding for
a deeply recursive call stack, has worse performance than our implementation, but using
stack manipulating has better performance than our technique of stack unwinding, which
we believe is related to the heavy overhead of parsing the unwinding table and invoking
the personality function.

However, if we construct some object with non-trivial destructor in the code of product
early and output some text to check if the non-trivial destructors are correctly executed,
a surprising finding is that the output of cpp-effects’s version does not contain the logging
from the destructor, while our implementation eff-unwind contains. Therefore, it shows
that our implementation successfully maintains the semantics of non-trivial destructors
of the objects referenced in effect handling, while cpp-effects does not.

resume nontail : Our implementation is 17.0 times slower than OCaml, 24.1 times slower
than Koka and 73.9 times slower than cpp-effects. This case has been introduced before
in Figure 2.21, where there is a handler with remaining code. This case shows that our
approach of stack copying and setjmp/longjmp has a enormous performance penalty over
the existing implementations compared, which means our implementation is extremely
biased for tail resumptive handlers.

triples : Our implementation is 21.0 times slower than Koka, but OCaml and cpp-effects
do not support multishot handlers. As shown in Figure 4.4, this case has an effect flip
which is handled by a multishot handler on line 31 - 33 where it permutes over the
possible results of flipping a coin. Our implementation technique of stack copying and
setjmp/longjmp has successfully supported multishot handlers while OCaml and cpp-
effects do not, but our performance is significantly slower than Koka.

44 Chapter 4 Evaluation

1 effect read() -> char_t

2 effect emit(int)
3 effect stop()

4

5 func newline() { return 10; }

6 func is_newline(c) { return c == 10; }

7 func dollar() { return 36; }

8 func is_dollar(char_t c) { return c == 36; }

9

10 func parse() {

11 a, c := 0

12 while ((c = raise read()) != 0) {

13 if (is_dollar(c)) { a += 1 }

14 else if (is_newline(c)) {

15 raise emit(a)

16 a = 0

17 } else { raise stop() }

18 }

19 }

20

21 func feed(int n)

22 i, j := 0

23 do {

24 parse()

25 break
26 } handle { read() {

27 if (i > n) { raise stop() }

28 else if (j == 0) {

29 i += 1

30 j = i

31 yield(resume(newline()))
32 } else {

33 j -= 1

34 yield(resume(dollar()))
35 }

36 } }

37

38 func sum(n)

39 s = 0

40 return do {

41 do { feed(n) } handle { stop() {

42 yield()
43 } }

44 break s

45 } handle { emit(e) {

46 s += e

47 yield(resume())
48 } }

Fig. 4.3: Parsing dollars

45

1 effect flip() -> bool
2 effect fail() -> int
3

4 func choice(n)

5 while (n >= 1) {

6 if (raise flip()) {

7 return n

8 } else {

9 n -= 1

10 }

11 }

12 raise fail()

13

14 func triple(n, s)

15 i := choice(n)

16 j := choice(i - 1)

17 k := choice(j - 1)

18 if (i + j + k == s) {

19 return {i, j, k}

20 } else {

21 raise fail()

22 }

23

24 func hash({a, b, c})

25 return (53 * a + 2809 * b + 148877 * c) % 1000000007

26

27 func run(n, s)

28 return do {

29 break hash(triple(n, s))

30 } handle { flip() {

31 v1 := resume(true)
32 v2 := resume(false)
33 yield((v1 + v2) % 1000000007)

34 } fail() {

35 yield(0)
36 } }

Fig. 4.4: Triples

Unsupported cases
generator and tree explore is not supported, where it stores the resumption in a handler to
be restored later where the handler has already yielded. In our implementation, resume is
only possible to be called within the scope of the handler and cannot be copied or moved
as a normal object.

nqueens is not supported since there is problem with vector, a C++ STL object with
non-trivial destructors. If multishot handlers are used in conjunction with objects with
non-trivial destructors, the timing for invoking the destructors are not trivial to be deter-
mined, where memory safely problems such as double freeing arises, which reveals some

46 Chapter 4 Evaluation

0 1000 2000 3000 4000 5000
Time (ms)

test_exception

3557.29

31.2689

2710.86

2068.89

Execution time by implementation

eff-unwind Koka cpp-effects C++

Fig. 4.5: Execution time averaged over 10 runs

challenges for introducing effect handling into C++.

Exception handling
We also conducted comparison against Koka, cpp-effects and vanilla C++ for exception
handling [4], whose result is shown in Figure 4.5. In the case, a function is executed for
a million times where each invocation throws an exception. The result shows that our
implementation has similar performance characteristics like cpp-effects and vanilla C++
but is significantly slower than Koka. This reveals more insights over the performance
degrading for non-tail-resumptive cases, despite being unrealistic since exceptions should
be an extremely rare case instead of happening at every invocation.

Summary
With the dataset in [3], it shows that our implementation has about 1.5 - 3.2 times faster
than state-of-the-art works where invocations to tail resumptive handlers are taking the
majority, while being 1.9 - 73.9 times slower than SOTA works for non-tail-resumptive
handlers.

We are supporting multishot handlers in comparison to OCaml and cpp-effects, but we
do not support first-class resumption cases such as generator and tree explore.

We are additionally keeping the non-trivial destructor semantics executed over cpp-
effects, which better ensures the C++ semantics.

47

Chapter 5

Conclusion

5.1 Summary
To sum up this thesis, algebraic effect handling [1, 2] is a new programming abstrac-
tion for non-local control flows, whose performance need to be improved. Especially, we
believe that the performance of tail resumptive handlers takes priority over the others
based on the hypothesis that the invocations to such kind of handlers are more frequent
than yielding and non-tail-resumptive ones. As a result, we proposes an implementa-
tion technique for effect handling which is optimized for tail resumptive handlers at the
cost of the performance of others. It enables the efficient execution of raise and tail
resuming with function call and returning by adopting stack unwinding, stack copying
and setjmp/longjmp for the operators not used in tail resumptive handlers.

The proposed technique has been carried out as a C++ library, and we have conducted
evaluation against SOTA works such as cpp-effects [4], Koka [5] and OCaml [6] based on a
dataset containing well-known use cases [3] and a case from existing work [4]. The result
shows that our implementation has achieved improved performance over all the SOTA
works for tail resumptive cases while has a significant degradation for non-tail-resumptive
cases. Additionally, we are the first to propose an implementation technique for C++
which supports multishot effect handlers and we are keeping the semantics of non-trivial
destructors in C++ correct compared to existing C++ implementations.

We believe that this implementation technique provides an insight into the implemen-
tation of effect handling which illustrates the importance of tail resumptive handlers and
shows the effectiveness of optimizing for tail resumptive handlers. Despite that there is
no real-world large applications with effect handling, we believe that we have given an
explanation of how people would use different kinds of effect handlers, and the eventual
focus of implementation based on that hypothesis.

5.2 Future work
There are still a list of unresolved problems for our implementation. First, the library
does not support first-class resumption, where resumption object is allowed to be saved
and executed later, which empowers cases such as generator and tree explore. From a first
glance, it is possible to save the preserved stack and jump buffer to an object and restore
it later, but the execution timepoint of non-trivial destructors of the variables contained
in that resumption object need to be considered thoughtfully.

Second, the user has to manually distinguish tail resumptive handlers by using a sepa-
rate interface to enable the optimization, which is due to our limitation of being a library.
We believe that it is trivial to automatically distinguish different kinds of effect handlers
if it is implemented as part of the compiler, which Koka [13] has successfully achieved.

48 Chapter 5 Conclusion

Finally, despite we have identified the problem of the execution of non-trivial destructors
in multishot handlers, we do not come up with a solution, which blocks the case nqueens.
It is straightforward to introduce some kind of reference counting to frames and execute
the non-trivial destructors as the reference count goes to 0, but first, the programmer may
expect that the destructors are executed once for each resumption if the destructors are
used for logging or similar scenarios, and second, the trivial workaround imposes a heavy
overhead to the program. Therefore, we are leaving this problem to the future.

49

Publications and Research Activities

(1) Yuze Fu, Tetsuro Yamazaki, Shigeru Chiba. Exploring possibility of using stack
unwinding for effect handlers in C++. Programming and Programming Language
Workshop (PPL), March 3-5, 2024. (Poster)

50

References

[1] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Giuseppe
Castagna, editor, Programming Languages and Systems, 18th European Symposium
on Programming, ESOP 2009, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Pro-
ceedings, volume 5502 of Lecture Notes in Computer Science, pages 80–94. Springer,
2009.

[2] Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Log. Methods
Comput. Sci., 9(4), 2013.

[3] Codrin Iftode, KC Sivaramakrishnan, Daniel Hillerström, Filip Koprivec, phis-
chu, Jesse Sigal, Sam Lindley, Jonathan Lindegaard Starup, and Teodoro
Freund. effect-handlers/effect-handlers-bench: Benchmark repository of poly-
glot effect handler examples. https://github.com/effect-handlers/
effect-handlers-bench, 2024. [Accessed 2024-07-26].

[4] Dan R. Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. High-level
effect handlers in C++. Proc. ACM Program. Lang., 6(OOPSLA2):1639–1667, 2022.

[5] Ningning Xie and Daan Leijen. Generalized evidence passing for effect handlers:
efficient compilation of effect handlers to C. Proc. ACM Program. Lang., 5(ICFP):1–
30, 2021.

[6] K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and
Anil Madhavapeddy. Retrofitting effect handlers onto ocaml. In Stephen N. Freund
and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, pages 206–221. ACM, 2021.

[7] Syouki Tsuyama, Youyou Cong, and Hidehiko Masuhara. An intrinsically typed
compiler for algebraic effect handlers. In Gabriele Keller and Meng Wang, editors,
Proceedings of the 2024 ACM SIGPLAN International Workshop on Partial Evalua-
tion and Program Manipulation, PEPM 2024, London, UK, 16 January 2024, pages
134–145. ACM, 2024.

[8] Daniel Hillerström and Sam Lindley. Shallow effect handlers. In Sukyoung Ryu,
editor, Programming Languages and Systems - 16th Asian Symposium, APLAS 2018,
Wellington, New Zealand, December 2-6, 2018, Proceedings, volume 11275 of Lecture
Notes in Computer Science, pages 415–435, Wellington, New Zealand, 2018. Springer.

[9] Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. Com-
piling effect handlers in capability-passing style. Proc. ACM Program. Lang.,
4(ICFP):93:1–93:28, 2020.

[10] Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. Contin-
uation passing style for effect handlers. In Dale Miller, editor, 2nd International Con-
ference on Formal Structures for Computation and Deduction, FSCD 2017, Septem-
ber 3-9, 2017, Oxford, UK, volume 84 of LIPIcs, pages 18:1–18:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

[11] Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garrett Morris. Soundly
handling linearity. Proc. ACM Program. Lang., 8(POPL):1600–1628, 2024.

https://github.com/effect-handlers/effect-handlers-bench
https://github.com/effect-handlers/effect-handlers-bench

51

[12] Institut National de Recherche en Informatique et en Automatique. Effect handlers,
the ocaml language. https://ocaml.org/manual/5.2/effects.html, 2024.
[Accessed 2024-12-18].

[13] Microsoft Research and Daan Leijen. The koka programming language. https:
//koka-lang.github.io/koka/doc/book.html, 2025. [Accessed 2025-01-03].

[14] The Flix contributors. The flix programming language. https://flix.dev/, 2025.
[Accessed 2025-01-05].

[15] Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hiller-
ström, K. C. Sivaramakrishnan, Matija Pretnar, and Sam Lindley. Continuing we-
bassembly with effect handlers. Proc. ACM Program. Lang., 7(OOPSLA2):460–485,
2023.

[16] Daan Leijen. Implementing algebraic effects in C - ”monads for free in c”. In Bor-
Yuh Evan Chang, editor, Programming Languages and Systems - 15th Asian Sym-
posium, APLAS 2017, Suzhou, China, November 27-29, 2017, Proceedings, volume
10695 of Lecture Notes in Computer Science, pages 339–363. Springer, 2017.

[17] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers.
J. Log. Algebraic Methods Program., 84(1):108–123, 2015.

[18] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Binders by
day, labels by night: effect instances via lexically scoped handlers. Proc. ACM Pro-
gram. Lang., 4(POPL):48:1–48:29, 2020.

[19] Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. Doo bee doo
bee doo. J. Funct. Program., 30:e9, 2020.

[20] Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via generalised
continuations. J. Funct. Program., 30:e5, 2020.

[21] Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley. Effect
handlers for C via coroutines. Proc. ACM Program. Lang., 8(OOPSLA2):2462–2489,
2024.

[22] Daan Leijen. Type directed compilation of row-typed algebraic effects. In Giuseppe
Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 486–499. ACM, 2017.

[23] Daan Leijen. Koka: Programming with row polymorphic effect types. In Paul Blain
Levy and Neel Krishnaswami, editors, Proceedings 5th Workshop on Mathemati-
cally Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France,
12 April 2014, volume 153 of EPTCS, pages 100–126, 2014.

[24] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in scope. In Wouter
Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN symposium on Haskell,
Gothenburg, Sweden, September 4-5, 2014, pages 1–12. ACM, 2014.

[25] Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers. In
James Chapman and Wouter Swierstra, editors, Proceedings of the 1st International
Workshop on Type-Driven Development, TyDe@ICFP 2016, Nara, Japan, September
18, 2016, pages 15–27. ACM, 2016.

[26] Ningning Xie and Daan Leijen. Effect handlers in haskell, evidently. In Tom Schri-
jvers, editor, Proceedings of the 13th ACM SIGPLAN International Symposium on
Haskell, Haskell@ICFP 2020, Virtual Event, USA, August 7, 2020, pages 95–108.
ACM, 2020.

[27] Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schus-
ter, and Daan Leijen. Effect handlers, evidently. Proc. ACM Program. Lang.,
4(ICFP):99:1–99:29, 2020.

[28] Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. Efficient
compilation of algebraic effect handlers. Proc. ACM Program. Lang., 5(OOPSLA):1–

https://ocaml.org/manual/5.2/effects.html
https://koka-lang.github.io/koka/doc/book.html
https://koka-lang.github.io/koka/doc/book.html
https://flix.dev/

52 References

28, 2021.
[29] Oleg Kiselyov and K. C. Sivaramakrishnan. Eff directly in ocaml. In Kenichi Asai

and Mark R. Shinwell, editors, Proceedings ML Family Workshop / OCaml Users
and Developers workshops, ML/OCAML 2016, Nara, Japan, September 22-23, 2016,
volume 285 of EPTCS, pages 23–58, 2016.

[30] Meta. Built-in react hooks. https://react.dev/reference/react/hooks,
2024. [Accessed 2024-12-18].

[31] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effect
handlers for the masses. Proc. ACM Program. Lang., 2(OOPSLA):111:1–111:27, 2018.

[32] Yizhou Zhang and Andrew C. Myers. Abstraction-safe effect handlers via tunneling.
Proc. ACM Program. Lang., 3(POPL):5:1–5:29, 2019.

[33] Ricardo Abreu and contributors. ricab/scope guard. https://github.com/
ricab/scope_guard, 2023. [Accessed 2025-01-05].

[34] cppreference.com contributors. setjmp - cppreference.com. https://en.
cppreference.com/w/cpp/utility/program/setjmp, 2025. [Accessed 2025-
01-06].

[35] cppreference.com contributors. longjmp - cppreference.com. https://en.
cppreference.com/w/cpp/utility/program/longjmp, 2025. [Accessed
2025-01-06].

https://react.dev/reference/react/hooks
https://github.com/ricab/scope_guard
https://github.com/ricab/scope_guard
https://en.cppreference.com/w/cpp/utility/program/setjmp
https://en.cppreference.com/w/cpp/utility/program/setjmp
https://en.cppreference.com/w/cpp/utility/program/longjmp
https://en.cppreference.com/w/cpp/utility/program/longjmp

53

Acknowledgements

Time flies, and the past two years of my master’s studies have passed in the blink of an
eye. Here, I would like to express my heartfelt gratitude to everyone who has supported
and helped me during this journey.

First and foremost, I am deeply grateful to my professor, Professor Shigeru Chiba.
Your education, guidance, encouragement, and support in your courses have made these
two years truly rewarding. During this time, I not only gained professional knowledge
but also learned the methods of scientific research. Although I may not have achieved
significant results, as a student with much to improve, I deeply appreciate the meaningful
and enriching two years you have given me.

Next, I extend my sincere thanks to my parents. Your unconditional love has taught
me to cherish life, your care and support have enabled me to persevere to this day, and
the curiosity and sincerity you instilled in me have strengthened my resolve to pursue my
studies.

Lastly, I wish to thank Dr. Yamazaki, my lab colleagues and friends. Thank you for
the discussions we shared about knowledge, technology, and hobbies.

These brief two years will forever remain a cherished memory in my heart.

	Introduction
	Improving the performance of effect handling
	Effect handling
	Related works
	Importance of tail-resumptive handlers

	eff-unwind: Optimizing for tail-resumptive handlers
	Implementation of do-handle
	Implementation of raise
	Implementation of resume
	Implementation of break
	Implementation of yield

	Evaluation
	Conclusion
	Summary
	Future work

	Publications and Research Activities
	References

