Check for
Updates

A Two-stage Approach for Structurally-similar Cross-language
Code-pair Detection

Feng Dai
The University of Tokyo
Tokyo, Japan
daifeng@csg.ci.i.u-tokyo.ac.jp

Abstract

A fast and reliable tool to detect structurally-similar cross-language
code pairs is crucial when maintaining large projects across differ-
ent programming languages. In this paper, we present a new tool!
for detecting such code pairs by adopting a two-stage approach.
Our approach first uses models trained on two-level generic ASTs to
filter candidates, and uses tree-based editing-distance algorithm for
accurate comparison. We create a new cross-language dataset, in-
cluding Java-Python, Java-C, Python-C structurally-similar method
body pairs, and evaluate our approach on this dataset. We manage
to obtain a much faster speed and similar detection accuracy in
detecting structurally-similar cross-language code pairs compared
with the state-of-the-art technique.

CCS Concepts

« Software and its engineering — Software maintenance tools.

Keywords

cross-language code pairs, code representation, software engineer-
ing, similar code pairs

ACM Reference Format:

Feng Dai and Shigeru Chiba. 2025. A Two-stage Approach for Structurally-
similar Cross-language Code-pair Detection. In The 40th ACM/SIGAPP Sym-
posium on Applied Computing (SAC’25), March 31-April 4, 2025, Catania,
Italy. ACM, New York, NY, USA, Article 4, 9 pages. https://doi.org/10.1145/
3672608.3707807

1 Introduction

Similar code pairs are a non-negligible issue in software mainte-
nance [10]. Researchers have studied detection of similar code pairs
with the same programming language for decades. This task is also
referred as code clone detection. Based on the degree of similarity,
[23] classifies code pairs with the same language into four types.
Among them, type-3 pairs are these with statement-level insertions,
deletions and substitutions, and type-4 pairs are these with the
same functionality while ignoring implementation details. Many

I The source code is posted in https://github.com/Eduardo95/sccd.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC °25, March 31-April 4, 2025, Catania, Italy

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0629-5/25/03

https://doi.org/10.1145/3672608.3707807

1657

Shigeru Chiba
The University of Tokyo
Tokyo, Japan
chiba@csg.ci.i.u-tokyo.ac.jp

approaches [12, 13, 15, 24, 25] have been developed for different
types of similar code pairs.

Recently, detecting similar code pairs across different program-
ming languages is attracting practitioners’ interests. This is because
large software projects are getting polyglot. For example, a web-
service project may include a server side and multiple client sides.
Programmers often use multiple languages for different platforms,
such as Java for servers, JavaScript for browsers, Kotlin for Android
and Swift for i0S. We are particularly interested in cross-language
code pairs with similar control structures because they are im-
portant in practice. For example, in web-service development, a
structurally-similar code pair on different client sides can be a
candidate function on the server side. It is challenging to detect
structurally-similar cross-language code pairs. This is because even
if two code fragments share the same control structure, they are
not identical at the token level. Existing works for traditional cross-
language code clone detection have some limitations. The works
in [5, 18, 19, 27, 28] are not suitable for structurally-similar cross-
language code pair detection because they ignore the importance
of control structures and only focus on the same functionality. The
works in [1, 14] realize the importance of similar structures. How-
ever, they utilize NET Code Document Object Model (CodeDOM)
and thus are only useful in .NET language family.

As far as we know, the state-of-the-art technique for detecting
a structually-similar cross-language code pair is proposed by [16].
This work develops a common representation across different pro-
gramming languages called generic abstract syntax trees (ASTs), and
adopts tree-based editing-distance algorithm to calculate similarity
scores between different generic ASTs. It takes control structures
into consideration by calculating the number of edits to make two
generic ASTs identical. Although a transformer from an original
AST to a generic AST must be developed for every source language
in advance, developing such a transformer is not expensive since
the transformation is simple node-by-node mapping. The accuracy
of this technique is ideal, but a drawback of the technique is its
detection speed. Since computing a tree-based editing distance is
highly time-consuming, the technique is not applicable for a large
code base.

In this paper, we develop a two-stage approach for detecting
cross-language code pairs with similar control structures. Our ap-
proach improves the speed of the state-of-the-art technique, while
keeps very close accuracy. In the first stage, our approach exploits
neural-network models to pre-determine a few most-likely candi-
dates. In the second stage, it calculates tree-based editing-distances
deterministically to select the most similar code fragment in control
structures. To promote the accuracy of the first stage, we develop a
new code representation technique called two-level generic AST

https://orcid.org/0009-0006-0995-2536
https://orcid.org/0000-0002-1058-5941
https://doi.org/10.1145/3672608.3707807
https://doi.org/10.1145/3672608.3707807
https://github.com/Eduardo95/sccd
https://doi.org/10.1145/3672608.3707807
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672608.3707807&domain=pdf&date_stamp=2025-05-14

SAC 25, March 31-April 4, 2025, Catania, Italy

representation for neural-network models. We discover that con-
structing two different kinds of generic ASTs and giving them to
a neural-network model can significantly increase the possibility
that the true pair is within the pre-determined candidates, and thus
improve final accuracy.

Our contributions are two-fold:

e We improve the speed of detecting pairs of structurally-
similar method bodies written in different programming
languages by developing a two-stage approach. A unique fea-
ture of our approach is to use two different kinds of generic
ASTs as inputs for neural network models. Our approach for
detecting structurally-similar cross-language code pairs in
Java, Python and C pairwise achieves comparable accuracy
with the state-of-the-art technique, but a much faster speed.
We create a code-pair dataset for evaluating a tool for detect-
ing cross-language code pairs with similar control structures.
The dataset includes similar Java-Python, Java-C and Python-
C code pairs. To the best of our knowledge, we are the first
to create a dataset specially targeting at structurally-similar
code pairs.

The rest of the paper is organized as follows. Section 2 discusses
the motivation of our work. Section 3 presents the overall structure
and the details of our approach. In Section 4, we present the results
of our experiments to compare our approach with other approaches.
In Section 5, we provide a discussion about our experiments and the
threats to validity of this paper. Finally, we present related works
in Section 6 and conclude this paper in Section 7.

2 Structurally-similar cross-language code pairs

When software development is polyglot, cross-language code pairs
with similar control structures are important causes of source code
refactoring and software maintenance. A typical scenario is micro-
service development where multiple languages are used for dif-
ferent modules. An important principle in micro-service devel-
opment is single-responsibility principle. If a service breaks the
single-responsibility principle, code pairs with similar control struc-
tures may appear. For example, a service which is responsible for
managing the user posts in a bulletin board system (BBS) may im-
plement some authorization logic, and another service responsible
for managing user comments may also implement a similar autho-
rization logic. This will result in code duplication. Although two
services implement different functionality, the authorzation logic
should be extracted and merged as an independent service.
Another scenario is modern web-based service development. If
code fragments from different client sides implement the same logic,
structurally-similar code duplication may also happen, and they
should be reconsidered and grouped into a function on the server
side. For example, in a web application, the grouping-posts feature
was not part of the initial application, and has been added later
on. The backend API only provides an HTTP endpoint with a GET
method to return a list of ungrouped user posts, and the frontend
clients need to group the posts by themselves, leading to duplicated
code fragments. For maintenance efficiency and system stability,
this pair of code fragments should be grouped into a common API
in the backend server. In Fig. 1, two code snippets are written in
different languages, and we can see a clear correspondence between

1658

F. Dai and S. Chiba

their control structures: both the code fragments contain an assign-
ment statement, a for statement and a return statement. Within
the for loop body, the logic of processing the dict/HashMap is also
similar. Although discussion between teams can help to mitigate
code duplication to a certain extend, it remains a very tedious issue
to track.

Our goal is similar to traditional cross-language clone detection,
as both try to find a similar code pair. However, we are more focused
on similar control structures while traditional cross-language clone
detection mainly considers the same functionality and ignores de-
tailed implementations. In real-world development, it is important
to detect similar structures as they are good candidates for code
refactoring. Finding a pair of code fragments with only the same
functionality is also an important research topic, but it is out of the
scope of this paper. If two functions have the same functionality but
with different algorithms, such difference might be intended by the
programmers, and might not be refactored or merged. Therefore,
we are more interested in similar control structures.

Tools [1, 5, 14, 18, 19, 27, 28] for traditional cross-language code
clone detection are not satisfying for various reasons. They are
either not specialized for structurally-similar cross-language code
pairs, or not applicable for large structurally-similar cross-language
code pair detection. [1, 14] detect cross-language code clones in the
NET language family by translating a program in a .NET language
into the .NET Code Document Object Model (CodeDOM). They
can represent the logical structure of source code, but are limited
in .NET language family. [28] analyzes an enriched Concrete Syn-
tax Tree [21], which is an intermediate state used by [4], to detect
cross-language code clones. This method gives some consideration
to control structures, but still has some limitations. For example,
this method requires two code fragments to have the same code
length. [5] analyzes commit logs recorded in version control sys-
tems to detect clones, which does not consider control structure
similarity. [18, 19, 27] train neural network models for traditional
cross-language code clone detection by using data collected from
competitive programming contest websites. The problem of these
methods is that they require large labeled datasets for training.
The dataset they use consists of different solutions by different
programmers to the same problem. These code fragments have the
same functionality, but not necessarily the similar control struc-
tures. It is difficult to collect a large dataset with structurally-similar
cross-language code pairs for supervised model training. Moreover,
the features these models choose for training the models are more
focused on code semantics instead of structures.

To the best of our knowledge, [16] provides a tool for successful
structurally-similar cross-language code pair detection. It notices
the importance of similar control structures between code pairs,
and successfully develops a technique to find such similarity. The
idea of this work is to use tree-based editing-distance algorithm
with generic ASTs across different programming languages. This
technique first transforms a given AST in a source language into a
generic AST, which is common tree-representation among multiple
languages to absorb syntactical differences between them. Then,
tree-based editing distances are computed to discover similar trees.
The code fragments with similar trees are a potential pair with
similar control structures. By mapping features from different pro-
gramming languages into generic nodes, this technique creates

A Two-stage Approach for Structurally-similar Cross-language Code-pair Detection

def group_posts:

1
2 res = {)
3 for post in posts:
4 bucket = res.setdefault (post.owner, [])
5 bucket . append (post)
6 return res
7
(a) Python code

~

[R S A R

SAC ’25, March 31-April 4, 2025, Catania, Italy

1 public Map<String, List<Post>> groupPosts(List<Post> posts){

Map<String , List<Post>> grouped = new HashMap<>();
for (Post post: posts){
if (1grouped.containsKey (post.getOwner())){
grouped . put (post . getOwner () ,
}
grouped . get (post.getOwner ()).add(post);
}
return grouped;

}

new ArrayList <Post>());

(b) Java code

Figure 1: A structurally-similar code pair in web-services

language-agnostic common intermediate representations, and can
encompass syntactic features from different languages while ab-
stracting away syntactical differences. For example, when detecting
code pairs between Java and Python, the if statements in Java and
Python are mapped to the same kind of tree node representing an
if statement. A list comprehension in Python is mapped to a loop
node in the generic AST. If a feature is only supported in some of
the languages, an exclusive node is still created in the generic AST,
such as a switch statement in Java. The capability of this technique
relies on how the transformation is done and how the generic ASTs
are designed. This work provides a simple design and a straight-
forward node-to-node mapping and shows that their design works
well. Although designing such a generic AST for Java and Prolog
would be difficult, it is feasible for an Algol-like language family, in
which a program consists of nested blocks and procedures.

This technique achieves good accuracy in finding cross-language
code pairs with similar control structures. However, there are some
drawbacks. The first one is the speed of detection. Constructing
a generic AST is not expensive but computing editing distances
between generic ASTs is heavily compute-intensive. If the number
of generic ASTs is n, n X n distances must be computed. Due to
this problem of being time-intensive, it is unrealistic to use this
technique for large-scale detection. The second drawback is that
their design of generic ASTs is ad-hoc, which makes it a bit difficult
to migrate to a third language.

3 System design

To address the speed issue of tree-based editing-distance algorithm
in Section 2, we develop a two-stage approach to detect structurally-
similar cross-language code pairs. The system overview of our tool
is shown in Fig. 2. In the first stage, we use neural network models
to pre-determine a few most-likely candidates, instead of calculat-
ing editing-distances of all candidates. In the second stage, we only
calculate editing-distances with the pre-determined candidates. Our
uniqueness is to develop a new code representation technique called
two-level generic ASTs as inputs for models to improve the accuracy
of the first stage. The technique uses two kinds of generic ASTs
with different abstraction levels, one is coarse-grained and another
is fine-grained, to model source code. After getting vector repre-
sentations of source code, we calculate aggregated cosine similarity
scores and compare them to pre-determine candidates. In this paper,
we use Java, Python and C as examples for structurally-similar
cross-language code pair detection.

. ------------ » Most structurally-similar

Stage 2: Calculate tree-based editing-distances

Figure 2: System overview

3.1 Two-level generic ASTs

In the first stage, we use two-level generic ASTs as inputs for mod-
els to focus on different aspects of syntactic features. A generic
AST is a mapping from language-specific AST nodes to generic
AST nodes with deletion, addition and modification. The coarse-
grained generic ASTs focus on high-level structural features, and
the fine-grained generic ASTs focus on low-level semantic fea-
tures. The mapping rules for coarse-grained generic ASTs and fine-
grained generic ASTs are different. In this paper, we use JavaParser?,
Python’s ast® library, and pycparser* to generate original Java-,
Python- and C-specific ASTs. We will introduce how to generate
generic ASTs in this section.

A fine-grained generic AST is a rough union of syntactic features
from two languages, and it preserves both common syntactic fea-
tures and language-specific syntactic features. A language-specific
syntactic feature means a syntactic feature that exists in one pro-
gramming language, but not necessarily exists in other languages.
For example, type declaration is enforced in Java, but Python does
not have static types. Therefore, type declaration is a language-
specific feature for Java. A common syntactic feature means a
syntactic feature that exists in both languages. For example, a for
statement exists in Java, Python and C. A common syntactic feature
for two programming languages could also be a language-specific

Zhttps://javaparser.org/
3https://docs.python.org/3.7/library/ast.html
“https://pypi.org/project/pycparser/

1659

https://javaparser.org/
https://docs.python.org/3.7/library/ast.html
https://pypi.org/project/pycparser/

SAC 25, March 31-April 4, 2025, Catania, Italy

1 There are some AST node types in C:ID, Constant, BinaryOpBitXor, UnaryOplnvert,
Goto, Also, there are some AST node types in Python: Name,
, FunctionDef, body, Str, BinOpSub, ...

2 Can you generate a mapping of the common syntactic features between two

languages? If some node types are specific in one particular language,
just ignore them.

Figure 3: An example of prompt in generating mappings
between two languages

feature for a third language. For example, both Java and Python are
object-oriented languages and support class definitions. However,
such feature does not exist in C.

The way of generating a fine-grained generic AST is to map
common syntactic features into common generic AST nodes, and
keep all other language-specific syntactic features as what they
are. To do so, we look into the documentation of original ASTs
and extract all syntactic features. Then, we adopt large-language
models (LLMs) > to generate a mapping between syntactic features
from two languages. We simply adopt the mapping by the LLM. If
one syntactic feature does not have a corresponding mapping in
another language, we regard it as a language-specific feature. The
prompt we use is shown in Fig. 3:

A coarse-grained generic AST is a rough intersection of syntactic
features from two languages. It ignores language-specific syntactic
features, and keeps essential features that refer to common key
control structures. The way of generating a coarse-grained generic
AST is as follows. We first use a large amount of source code and
generate original ASTs for all the source code. Then, we count
the number of occurrences of each syntactic feature, and sort them
based on their number of occurrences. Finally, based on the mapping
in fine-grained ASTs and a hyper-parameter node_num, we only
keep the most-frequently occurring common nodes, and ignore all
other nodes. If one node is not included in coarse-grained ASTs, its
children are directly concatenated to its parent, and this node is
deleted. One certain rule about coarse-grained ASTs is that all kinds
of binary operations and unary operations are ignored and they
are mapped into common BinaryOp and UnaryOp nodes. This is to
increase the variety of key control structures in the most-frequently
occurring nodes. After a coarse-grained generic AST is generated,
unnecessary information is ignored, and only key control structures
are kept.

3.2 Model training and usage

To train the models in the first stage, a code fragment is first trans-
formed into two generic ASTs designed in Section 3.1, and these
ASTs are given as inputs to neural models after being vectorized by
the path-based encoding [3]. We use an LSTM-based (Long short-
term memory) encoder-decoder model [6] to generate a vector
representation for the given AST, since LSTM processes sequences
of data with long-range dependencies. This model is trained to pre-
dict a method name for the given AST representing its method
body. In other words, it is trained so that its decoder’s output
will be a method name. Thus, the model training involves no true
structurally-similar code pair labels.

SWe use gpt-4-turbo API from OpenAl in this paper.

Call , Num

1660

F. Dai and S. Chiba

After the training, when we detect code pairs, the decoder is
not used; only the encoder is used. The vector representation from
the encoder’s output is used as the representation of the given
AST to calculate similarity between coarse-grained or fine-grained
ASTs, and finally to calculate similarity between code fragments.
We below give details about how the models are trained and used.
The model overview is shown in Fig. 4.

We use path-based encoding [3] to transform ASTs into model
inputs. A path means a shortest sequence of AST nodes from a
leaf node to another leaf node with all intermediate nodes through
parent-child connections. Since every node can only have one par-
ent, every pair of leaf nodes must be able to trace back to one
common ancestor, making a path between two leaf nodes unique.
If an AST has n leaf nodes, it has n x (n — 1) + 2 paths. For practical
training, We randomly sample m paths as inputs.

After paths are extracted from an AST, we use look-up tables [17]
to vectorize the paths, which transfer tokens in paths into numerical
vectors for models. In our system, there are three different look-up
tables. Two of them are for generic AST nodes. As the mapping rules
for coarse-grained generic ASTs and fine-grained generic ASTs are
different, they have independent look-up tables, and each of them
has all nodes in corresponding generic ASTs. Besides them, there
is a method name look-up table. A method name look-up table is
consisted of method names either by camel-case or by snake-case.
We split them into subtokens and use subtokens for the look-up
table. Specifically, <UNK> is used for unknown subtokens that are
not in the look-up table.

After paths and method names are vectorized, we put them
into the encoder-decoder model for training. Both the encoder and
the decoder are based on LSTM [11], and the architectures are
referred from [3]. Given a generic AST path, the encoder gives
nodes embedded by the look-up table to a bi-directional LSTM
(bi-LSTM) sequentially, and use the final state from the bi-LSTM
as the vector representation of this path. We incorporate attention
mechanism to aggregate vector representations of paths from the
same generic AST as the vector representation of this generic AST.
This representation will also be used for further calculation of
cosine similarity scores. The decoder gets the vector representation
from the encoder for a generic AST, and it predicts a method name.
During training, the predicted method name is compared with the
true method name, and if it is not correct, back-propagation is used
to modify the weights of models. When the model converges, the
vector representation of a given generic AST can successfully be
used to predict a method name.

When using the trained models to detect structurally-similar
code pairs, we use the vector representations from the encoders to
calculate cosine similarity scores. We get two vector representations
of a code fragment, one from the model for coarse-grained generic
ASTs and one from the model for fine-grained generic ASTs. To
compare two code fragments, four generic ASTs are generated, and
then four vector representations are generated from the ASTs by
the models. By using cosine similarity, their similarity scores are
calculated for the pair of coarse-grained ASTs and the pair of fine-
grained ASTs. The final score is the sum of the two scores. In detail,
given a target code fragment ¢ and a candidate code fragment c,
fin

t—c

e .
we calculate score and scoreff‘z”e, and add the fine-grained

A Two-stage Approach for Structurally-similar Cross-language Code-pair Detection

/' Two-level generic AST processor

Fine-grained

Fine-grained
ASTs

¥ generic AST parser Y
Code 1 <4
fi 1 A
ragment ¢
Coarse-grained

generic AST parser Coarse-grained /

ASTs

Path extractor

SAC ’25, March 31-April 4, 2025, Catania, Italy

LSTM model: Fine-grained
Fine-grained
4 AST paths » Encoder » Decoder
Method
Names

N LSTM model: Coarse-grained
9 Coarse-grained

[
AST paths > Encoder > Decoder

AA 4

Vector Representation of ASTs

Figure 4: Model structure overview

similarity score and coarse-grained similarity score together to get
an aggregated similarity score score,’, . The higher the score, the
higher possibility the candidate is similar to the target. Since cosine
similarity is always between 0 and 1, the aggregated similarity score

scoretaggcr is always no larger than 2.

4 Experiments

We want to evaluate both accuracy and speed of our tool against
other approaches in detecting structurally-similar cross-language
code pairs. The first competitor is tree-based editing-distance algo-
rithm from [16], and it is the state-of-the-art approach. It calculates
the edits needed to transform an ordered labeled tree to another.
Specifically, this work uses Zhang-Sasha algorithm to calculate
tree-based editing distance between two generic ASTs. Since [16]
provides their source code to generate Java and Python generic
ASTs, we reuse their design in this algorithm. However, [16] does
not provide code to generate generic ASTs for C language. We use
our coarse-grained ASTs for C in this algorithm.

The second competitor is token-based Jaccard similarity algo-
rithm from [16]. It calculates the frequency of common tokens
between two code fragments by Jaccard similarity coefficient. To
avoid rare tokens and limit vocabulary size, it splits identifiers to ad-
dress nomenclature, and removes unnecessary tokens from source
code, such as English stopwords and tokens shorter than a certain
length.

The third and fourth competitors are pre-trained large neural net-
work models. One is CodeBert [8]. The other one is Unixcoder [9],
which is fine-tuned on code search dataset based on CodeBert.
They both use a linear token sequence of source code as input. The
sequence is generated by tokenizing source code using a lexical
analyzer, and splitting camel-case or snake-case identifiers into
subtokens. The models will output a vector representation of the
sequence. We calculate cosine similarity of two vectors as the simi-
larity of two code fragments.

We also do ablation study for our approach. The fifth to seventh
competitors utilize neural network models only and do not combine
editing-distance algorithm. We train the models on only one kind
of generic ASTs (fine-grained and coarse-grained) and two-level
generic ASTs respectively, and evaluate the performance of these
models. The rest two competitors combine neural network models
with editing-distance algorithm, but the models are trained on
single kind of generic ASTs.

1661

To train models on generic ASTs, we use Java-small [2], py150k [22]
and CodeNet [20] datasets. They are large code collections based
on open-source projects. The training requires no similarity labels.
We only need the source files and process them into corresponding
generic AST formats.

4.1 Evaluation metrics

Our approach outputs a similar code fragment among a set of
candidates, which is similar to an information retrieval system.
Therefore, we use average rank (AR), quantile rank, SuccessRate@k
and mean reciprocal rank (MRR) [29] to measure the accuracy of
approaches. Consider a given target and multiple candidates, we
try to find the most structurally-similar code fragment to the target
among all the candidates. In our experiment setting, there is one and
only one ground truth among the candidates in a single detection.
By sorting all candidates according to their similarity scores with
the target, the ground truth is ranked among the candidates. If the
ground truth is ranked higher, the approach is more powerful in
structurally-similar code pair detection.

Consider a detection d in a set of detections D. R(d) is the rank
of ground truth. 8 is the indicator function which returns 1 if the
input is less than or equal to k and 0 otherwise. SuccessRate@k or
SR@k is the percentage of detections for which the ground truth
exists among the top-k candidates. Mathematically, AR, MRR and

SR@k are defined as AR = W ,SR@k =
Zaep Sk (R(d))
[D|

Quantile rank means the rank at a certain point after sorting the
ranks of all detections ascendingly. For example, 25% quantile rank
means the worst rank of the most well-performing 25% detections.
Quantile rank represents the accuracy of the system on a certain
proportion of well-performing cases.

We use the average inferring time of all detections to measure
the speed of approaches. The inferring time of one detection is
the time to calculate the similarity scores between the target and
all candidates. To note, for machine learning models, we do not
consider training time. Once a model finishes training, it can be used
multiple times, and the inferring time is independent of training
process.

For hardware configurations, we use an 11th Gen Intel(R) Core(TM)
i5-11400 CPU with a total of 6 cores and 12 threads, a 32GB memory,
and an Nvidia RTX A6000 GPU. For software configurations, we use

MRR = 240 B@.
’ D]

SAC 25, March 31-April 4, 2025, Catania, Italy

Table 1: Lines of code of datasets

Metrics Java Python C
Average 17 12 18
25% quantile 10 6 10
50% quantile 14 10 15
75% quantile 21 15 23

PyTorch® to implement all machine learning models, and Numpy”’
for calculation.

4.2 Evaluation dataset

This paper focuses on detecting structurally-similar cross-language
code pairs. To this extend, we find that there is not an appropriate
dataset for evaluation. One of the most famous dataset available for
cross-language code clone detection is AtCoder dataset organized
by [19] and used by [16]. It comprises solutions of competitive
programming problems from a competitive programming contest
platform AtCoder, and the solutions are contributed by different
programmers independently. Although solutions from the same
problem implement the same functionality, they might have differ-
ent algorithms, structures and number of code lines. Therefore, it
is not suitable for evaluation of structurally-similar cross-language
code pair detection. We did rough estimation and over 70 percent
cases in current dataset are not suitable.

To conduct proper evaluation, one of the authors organized a
new dataset based on the original AtCoder dataset with the help
of a graduate student with industrial experiences. Specifically, we
look into all programming contest problems in current dataset, and
select solutions written by the same author. We find that the same
author tends to use the same algorithm but different programming
languages for the same problem. We manually check the solutions
for each problem to ensure that they have similar control structures.
Our criteria include number of code lines, number of key structures
such as loops and conditions, and how they are structured. As
a contribution, we manage to organize a dataset with 310 pairs
of code fragments written in Java and Python, 100 pairs of code
fragments written in Java and C and 100 pairs of code fragments
written in Python and C. All these pairs have the same functionality
with similar control structures. We show the number of lines of
code (LoC) in Table 1.

4.3 Results

The results are presented in Table 2, Table 3 and Table 4. In Java-
Python experiments, our approach can successfully pick up the
most structurally-similar code fragment to the target in 63% of the
cases. It achieves the best accuracy in terms of AR, SR@1, SR@3
and MRR, and outperforms all other approaches including editing-
distance algorithm. Meanwhile, our approach is 20 times faster for a
single detection compared with editing-distance algorithm. In Java-
C experiments and Python-C experiments, our approach also leads
a large advance over all other approaches except editing-distance

SPyTorch version: 1.10.0
7Numpy version: 1.17.2

1662

F. Dai and S. Chiba

algorithm, but is very close to the tree-based editing-distance al-
gorithm. However, compared with tree-based editing-distance al-
gorithm, our tool is 10 times faster for a single detection, and still
keeps a very close accuracy.

The results show that our tool improves the accuracy a lot com-
pared with other approaches in detecting structurally-similar cross-
language code pairs. It achieves close accuracy compared with tree-
based editing-distance algorithm, but with a much faster speed.
Although our model is trained on a single Nvidia RTX A6000 GPU
card for around 15 hours, the model can be used to inferring cases at
alarge scale. Tree-based editing-distance algorithm can not be used
at the same scale because the time consumption is unacceptable.
Therefore, our tool is of practical use in detecting structurally-
similar cross-language code pairs.

Moreover, from the ablation study, we find that using two kinds
of generic ASTs improves the accuracy compared to using only one
kind of generic ASTs for all language combinations. It indicates
that using two kinds of generic ASTs improves the representation
quality for neural network models, and helps better find code pairs
with similar structures. We will provide a discussion about this
in later section. We also conduct an experiment to analyze the
influence of the hyper-parameter k and see how the changes of it
can affect the results. The results are conducted on Java-Python
experiments and are presented in Table 5. With the increase of k,
the accuracy improves, but the time also increases. The marginal
change of accuracy decreases with respect to k, and the time spent
is linear to k. We notice that when k increases to a certain extend,
the changes of SR and MRR is very small or even zero. Overall,
there is a trade-off between accuracy and time when using our tool.
We should choose an appropriate hyper-parameter k to balance the
speed and accuracy.

5 Discussion

We empirically show that combining a neural-network model with
heuristic algorithms works well for detecting structurally-similar
cross-language code pairs. Here, we provide a discussion about our
generic ASTs and our two-stage approach. The results show that
two kinds of generic ASTs work better than single kind of generic
ASTs. In fact, this phenomenon can be seen as data augmentation.
On the one hand, with only fine-grained generic ASTs, we do focus
more on low-level semantic features in certain languages, but there
are also some syntactic features that occur very rarely in the whole
corpus. Such features may add extra noise when trying to find
code pairs with similar structures. On the other hand, with only
coarse-grained generic ASTs, we focus on a high-level structure of
source code, but some language-specific code details are lost. For
example, Python supports list comprehension that offers a shorter
syntax to allow programmers to manipulate a list within one line,
but such syntactic feature is ignored in coarse-grained generic ASTs.
These details also help train a better model in finding code pairs
with similar structures. Finding a best design of generic ASTs is
subjective and difficult. We show that using two kinds of generic
ASTs in an objective way also works.

We also show that a two-stage approach improves the accu-
racy compared with only using one stage. It is interesting that our
two-stage approach works better than the pure editing-distance

A Two-stage Approach for Structurally-similar Cross-language Code-pair Detection SAC ’25, March 31-April 4, 2025, Catania, Italy

Table 2: Comparison between our approach and other approaches for Java-Python pairs

Methods AR 25% Quan. 50% Quan. SR@1 SR@3 MRR Time

Token-based Jaccard similarity algorithm 67 1 15 0.34 0.41 0391 0.36s
Tree-based editing distance algorithm 11 1 1 0.51 0.64 0.605 131s

CodeBert 95 27 73 0.03 0.06 0.068 0.018s

Unixcoder 63 5 31 0.16 0.21 0.223 0.022s

Single-level (Coarse-grained generic ASTs) 32 3 14 0.14 0.25 0.238 0.021s

Single-level (Fine-grained generic ASTs) 16 2 8 0.21 0.34 0326 0.026s

Two-level generic ASTs 12 2 6 0.24 0.41 0366 0.047s
Coarse-grained + Editing distance (Top-15) 30 1 3 0.48 0.5 0.511 6.36s
Fine-grained + Editing distance (Top-15) 14 1 2 0.49 0.61 059 6.37s
Our tool (Top-15) 11 1 1 0.63 0.67 0.665 6.39s

Table 3: Comparison between our approach and other approaches for Java-C pairs

Methods AR 25% Quan. 50% Quan. SR@1 SR@3 MRR Time
Token-based Jaccard similarity algorithm 28 1 10 0.32 042 0393 0.14
Tree-based editing distance algorithm 3 1 1 0.75 086 0.82 282s
CodeBert 17 3 8 0.19 0.35 0.369 0.023s
Unixcoder 18 2 7 0.24 044 0.439 0.028s
Only coarse-grained generic ASTs 8 1 3 0.35 0.52 0.48 0.027s
Only fine-grained generic ASTs 10 1 5 0.31 043 041 0.029s
Two-level generic ASTs 7 1 3 0.44 0.55 0.53 0.056s
Coarse-grained + Editing distance (Top-10) 7 1 1 0.6 0.75 0.71 28.2s
Fine-grained + Editing distance (Top-10) 10 1 2 0.49 0.59 0.56 28.23s
Our tool (Top-10) 3 1 1 073 0.89 0.81 28.3s

Table 4: Comparison between our approach and other approaches for Python-C pairs

Methods AR 25% Quan. 50% Quan. SR@1 SR@3 MRR Time
Token-based Jaccard similarity algorithm 24 1 16 0.25 0.33 0.32 0.14
Tree-based editing distance algorithm 3 1 1 0.75 088 0.81 354s
CodeBert 12 5 6 0.21 0.24 0.329 0.022s
Unixcoder 13 4 6 0.16 0.21 0.223 0.027s
Single-level (Coarse-grained generic ASTs) 14 2 7 0.19 0.39 0.33 0.025s
Single-level (Fine-grained generic ASTs) 12 2 7 0.22 036 034 0.028s
Two-level generic ASTs 10 2 5 0.24 043 0.39 0.052s
Coarse-grained + Editing distance (Top-10) 12 1 1 0.57 0.61 0.6 35.42s
Fine-grained + Editing distance (Top-10) 10 1 1 0.6 0.63 0.63 3543s
Our tool (Top-10) 3 1 1 0.76 088 0.82 35.49s
algorithm. This is because the editing distances of some candidates k, the accuracy of our two-stage approach will not increase ul-
are smaller than the ground truth. After filtering in the first stage, timately, but approach the accuracy of the pure editing-distance
these candidates are blocked outside top-k candidates. Therefore, algorithm.
the editing-distance algorithm in the second stage can successfully One threat of validity is our dataset. It contains code pairs with
pick up the ground truth. In fact, if we enlarge the hyper-parameter both similar control structures and the same functionality. Although

1663

SAC 25, March 31-April 4, 2025, Catania, Italy

Table 5: Comparison between different top-k

Methods AR 25%Q. 50%Q. SR@1 SR@3 MRR Time
Top-5 15 1 6 0.47 0.49 0.51 2.16s
Top-10 14 1 1 0.57 0.61 0.61 4.27s
Top-12 13 1 1 0.6 0.64 0.63 5.12s
Top-15 11 1 1 0.63 0.67 0.67 6.39s
Top-20 11 1 1 0.7 0.78 0.75 8.5s
Top-30 10 1 1 0.75 0.81 0.80 12.72s
Top-40 9 1 1 0.75 0.82 0.80 63.43s
Top-50 9 1 1 0.75 0.83 0.80 21.18s
Top-60 9 1 1 0.76 0.84 0.81 31.74s

Table 6: Comparison between two-level generic ASTs with
other approaches on AtCoder Dataset

Methods AR 25%Q. 50%Q. 75%Q. Time

Jaccard sim. algorithm 86 6 45 158 0.35s
Tree-editing-distance 97 23 66 153 121s
Two-level generic ASTs 89 15 54 149 0.05s
Coarse-grained ASTs 98 27 72 155 0.016s
Fine-grained ASTs 104 26 72 174 0.33s
CodeBert 125 47 109 204 0.019s
Unixcoder 108 25 86 185 0.022s

we are targeting at structurally-similar code pairs, it is extremely
hard or impossible to create a dataset with only similar structures
without considering functionality. Therefore, we use this dataset for
experiments. However, we conduct another experiment to prove
that the same functionality has limited impact in the detection.
The results are shown in Table 6. This experiment is conducted on
Java-Python code pairs without similar control structures, but only
the same functionality. This dataset is also based on the original
AtCoder dataset and is manually created. We can see that all ap-
proaches work badly on these code pairs, indicating that structural
dissimilarity could interfere the ability of these approaches a lot. It
also indicates that the same functionality has very limited influence
on these approaches in finding structurally-similar code pairs.

Further, the dataset is relatively small. Although we select the
similar code pairs based on their authors, we still need human
experts to read code solutions, and make final decisions. These
experts have experiences of working in industries and writing
code in multiple programming languages and are trustworthy. But
it is still very time-consuming to create a dataset that contains
structurally-similar cross-language code pairs in our work. To better
validate the effectiveness of our approach against other approaches,
a larger dataset is needed for massive evaluation.

6 Related works

Similar code pair detection is a popular topic with a long history.
Before, people were more interested in single-language code clone
detection. For example, [13] and [25] develop token-based match-
ing algorithms to find clones, while [12] develops an AST-based

1664

F. Dai and S. Chiba

matching algorithm to detect clones. These approaches rely on pre-
defined rules to generate matching patterns, and use static-analysis
algorithms to compare patterns. After machine learning shows its
dominating power in other fields, researchers want to apply its
power to code clone detection. [15] develops a solely token-based
clone detection approach using deep learning. [30] builds a tree-
LSTM model based on hashed features of information about code
structure and grammar extracted from ASTs. [31] splits ASTs into
trees consisting of statement nodes as roots and corresponding AST
nodes of statements, and builds a Bi-GRU model upon the encoded
vectors of these statement trees. All these approaches build neural
network models based on code-related data structures, and rely on
true code clone labels.

Compared with single-language code clone detection, cross-
language code clone detection has a shorter history, but faster
growth in attention since development in multiple programming
languages becomes trendy. [19] trains an LSTM-based neural net-
work using ASTs and uses tree-based skip-gram algorithm to ini-
tialize node vectors. It also provides a large cross-language code
clone dataset based on competitive programming contest submis-
sions. [27] adopts a contrastive learning objective to fine-tune the
pretrained model CodeBert to detect clones. [18] trains a model
based on API documentation to detect clones. But these approaches
still require true labels of code clones. Specially, [26] questions
the generalizability of CodeBert, and points out that CodeBert per-
forms less than expected on unseen data in code clone detection
task. There are also some works avoiding using machine learning
models. [5] analyzes revision logs and version control histories
to find cross-language clones. [28] analyzes an enriched Concrete
Syntax Tree, but requires two code fragments to have the same
code length. [14] detects cross-language code clones in the .NET
language family by translating a program in a .NET language into
the NET Code Document Object Model (CodeDOM). However, all
these works either focus on functionality and neglect structural
similarity, or they are only limited in .NET family of programming
languages. One of the most recent works is [16], which utilizes
static analysis of code text and ASTs and dynamic analysis of in-
put/output results to find clones. This work provides an approach
to detect structurally-similar cross-language code pairs. However,
the drawback of this approach is that it is very slow. As far as we
know, there is not a fast and accurate tool targeting at detecting
structurally-similar cross-language code pairs.

This paper is based on a poster paper [7] written by the same
authors. There are three major differences between this paper and
the poster paper. First, we redesign and formalize the algorithms for
generating two kinds of generic ASTs for Java, Python and C. The
new algorithms avoid ad-hoc designs of generic ASTs, and provide
an accuracy improvement in the evaluation. Second, we expand our
evaluation to Java-C code pairs and Python-C code pairs, which is
not included in the poster paper. Third, we conduct an evaluation
on Java-Python code pairs with only the same functionality to prove
that the same functionality has limited influence on our tool.

7 Conclusion

In this paper, we improve the speed of detecting structurally-similar
cross-language code pairs between Java, Python and C pairwise,

A Two-stage Approach for Structurally-similar Cross-language Code-pair Detection

and keep a very close accuracy compared with the state-of-the-art
approach. We achieve this by developing a two-stage approach,
which first determines a few most-likely candidates using neural
network models, and then calculates editing distances determin-
istically to select the most similar code fragment. To promote the
accuracy of neural network models, we use two-level generic ASTs
as inputs for the models. We conduct our experiments on Java-
Python, Java-C and Python-C code pairs, and successfully show
that our approach works on these datasets.

Acknowledgments

This work is partly supported by JSPS KAKENHI JP20H00578 and
JP24H00688.

References

(1]

™
=

=

=

=

[10

[11]

[12

[13]

[14]

(15

Farouq Al-omari, Iman Keivanloo, Chanchal Roy, and Juergen Rilling. 2012.
Detecting Clones Across Microsoft NET Programming Languages. Proceedings -
Working Conference on Reverse Engineering, WCRE, 405-414. https://doi.org/10.
1109/WCRE.2012.50

Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. In International
Conference on Machine Learning. PMLR, 2091-2100.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2vec: Learn-
ing Distributed Representations of Code. Proc. ACM Program. Lang. 3, POPL,
Article 40 (jan 2019), 29 pages. https://doi.org/10.1145/3290353

Zoran Budimac, Gordana Rakié¢, and Milo$ Savié¢. 2012. SSQSA Architecture.
In Proceedings of the Fifth Balkan Conference in Informatics (Novi Sad, Serbia)
(BCI ’12). Association for Computing Machinery, New York, NY, USA, 287-290.
https://doi.org/10.1145/2371316.2371380

Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun
Zhao. 2017. CLCMiner: Detecting Cross-Language Clones without Intermediates.
IEICE Transactions on Information and Systems E100.D (02 2017), 273-284. https:
//doi.org/10.1587/transinf.2016EDP7334

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724-1734. https://doi.org/10.3115/v1/D14-1179

Feng Dai and Shigeru Chiba. 2024. A practical tool for detecting cross-language
code pairs with similar control structures. In Proceedings of the 39th ACM/SI-
GAPP Symposium on Applied Computing (Avila, Spain) (SAC °24). Association for
Computing Machinery, New York, NY, USA, 1301-1303. https://doi.org/10.1145/
3605098.3636134

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536-1547. https://doi.org/10.18653/v1/2020.findings-
emnlp.139

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. 7212—
7225. https://doi.org/10.18653/v1/2022.acl-long.499

Aakanshi Gupta and Bharti Suri. 2018. A Survey on Code Clone, Its Behavior and
Applications. 27-39. https://doi.org/10.1007/978-981-10-4600-1_3

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735-1780. https://doi.org/10.1162/neco.1997.9.
8.1735

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In
29th International Conference on Software Engineering (ICSE’07). 96-105. https:
//doi.org/10.1109/ICSE.2007.30

T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions
on Software Engineering 28, 7 (2002), 654-670. https://doi.org/10.1109/TSE.2002.
1019480

N.A. Kraft, B.W. Bonds, and R K. Smith. 2008. Cross-Language Clone Detection.
In Proceedings of the 20th International Conference on Software Engineering and
Knowledge Engineering (SEKE’08) (San Francisco, CA, USA). 54-59.

Liuging Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
CCLearner: A Deep Learning-Based Clone Detection Approach. In 2017 IEEE

SAC ’25, March 31-April 4, 2025, Catania, Italy

International Conference on Software Maintenance and Evolution (ICSME). 249-260.
https://doi.org/10.1109/ICSME.2017.46

George Mathew and Kathryn T. Stolee. 2021. Cross-Language Code Search Using
Static and Dynamic Analyses. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Comput-
ing Machinery, New York, NY, USA, 205-217. https://doi.org/10.1145/3468264.
3468538

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. arXiv:1301.3781 [cs.CL]
https://arxiv.org/abs/1301.3781

Kawser Wazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K. Roy, and
Kevin A. Schneider. 2019. CLCDSA: Cross Language Code Clone Detection
using Syntactical Features and API Documentation. In 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering. 1026-1037. https:
//doi.org/10.1109/ASE.2019.00099

Daniel Perez and Shigeru Chiba. 2019. Cross-language Clone Detection by
Learning over Abstract Syntax Trees. In Proceedings of the 16th International
Conference on Mining Software Repositories (Montreal, Quebec, Canada) (MSR ’19).
IEEE Press, Piscataway, NJ, USA, 518-528. https://doi.org/10.1109/MSR.2019.
00078

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam Ramyji, Ulrich Finkler, Susan
Malaika, and Frederick Reiss. 2021. CodeNet: A Large-Scale Al for Code Dataset
for Learning a Diversity of Coding Tasks. arXiv:2105.12655 [cs.SE] https:
//arxiv.org/abs/2105.12655

Gordana Raki¢ and Zoran Budimac. 2011. Introducing enriched concrete syntax
trees. Proc. of the 14th International Multiconference on Information Society (IS),
Collaboration, Software And Services In Information Society (CSS) A (01 2011),
211-214.

Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic Model for
Code with Decision Trees. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing Machinery,
New York, NY, USA, 731-747. https://doi.org/10.1145/2983990.2984041
Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64-68.
Chanchal K. Roy and James R. Cordy. 2008. NICAD: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code Normalization.
In 2008 16th IEEE International Conference on Program Comprehension. 172-181.
https://doi.org/10.1109/ICPC.2008.41

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-Code. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). 1157—
1168. https://doi.org/10.1145/2884781.2884877

Tim Sonnekalb, Bernd Gruner, Clemens-Alexander Brust, and Patrick Mader. 2023.
Generalizability of Code Clone Detection on CodeBERT. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3551349.3561165
Chenning Tao, Qi Zhan, Xing Hu, and Xin Xia. 2022. C4: Contrastive Cross-
Language Code Clone Detection. In Proceedings of the 30th IEEE/ACM Inter-
national Conference on Program Comprehension (Virtual Event) (ICPC °22). As-
sociation for Computing Machinery, New York, NY, USA, 413-424. https:
//doi.org/10.1145/3524610.3527911

Tijana Vislavski, Gordana Raki¢, Nicolas Cardozo, and Zoran Budimac. 2018.
LICCA: A tool for cross-language clone detection. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering. 512-516. https:
//doi.org/10.1109/SANER.2018.8330250

Ellen M. Voorhees and Dawn M. Tice. 2000. The TREC-8 Question Answer-
ing Track. In Proceedings of the Second International Conference on Language
Resources and Evaluation (LREC 00), M. Gavrilidou, G. Carayannis, S. Markan-
tonatou, S. Piperidis, and G. Stainhauer (Eds.). European Language Resources
Association (ELRA), Athens, Greece. http://www.lrec-conf.org/proceedings/
Irec2000/pdf/26.pdf

Hui-Hui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source Code.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(Melbourne, Australia) (IJCAI’17). AAAI Press, 3034-3040.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A Novel Neural Source Code Representation Based on Abstract Syntax
Tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 783-794. https://doi.org/10.1109/ICSE.2019.00086

https://doi.org/10.1109/WCRE.2012.50
https://doi.org/10.1109/WCRE.2012.50
https://doi.org/10.1145/3290353
https://doi.org/10.1145/2371316.2371380
https://doi.org/10.1587/transinf.2016EDP7334
https://doi.org/10.1587/transinf.2016EDP7334
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1145/3605098.3636134
https://doi.org/10.1145/3605098.3636134
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.1007/978-981-10-4600-1_3
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1145/3468264.3468538
https://doi.org/10.1145/3468264.3468538
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.1109/ASE.2019.00099
https://doi.org/10.1109/ASE.2019.00099
https://doi.org/10.1109/MSR.2019.00078
https://doi.org/10.1109/MSR.2019.00078
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1109/ICPC.2008.41
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/3551349.3561165
https://doi.org/10.1145/3524610.3527911
https://doi.org/10.1145/3524610.3527911
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.1109/SANER.2018.8330250
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
https://doi.org/10.1109/ICSE.2019.00086

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryList_V1
 qi2base

