
An extended analysis of the cause of software regressions in 
Python and JavaScript

Feng Dai, Yuefeng Hu, Tetsuro Yamazaki, Shigeru Chiba

The University of Tokyo

What is Software Regression?
• A software bug: a feature that has worked before 

stops working due to changes of the code

• Most tools try to find regressions instead of 
finding the causes of regressions

• Hu et al., SLE 2024

• Runtime tracing of inputs and outputs

• Based on JavaScript dataset

• Limitations

• Accuracy not satisfying, only for JavaScript

Reference

12 regressions from Python dataset and 11 regressions 

from JavaScript dataset: 

• FDF algorithm and Top-2 algorithm are from Hu et al. 

2024

• Both our heuristics outperform the algorithms from Hu 

et al.

• The LLM-powered technique identifies the most causes 

of regressions in both Python and JavaScript datasets

• Failed cases are affected by unrelated information in 

source code, such as random variables, and big code 

refactoring 

[1] Hiromu Ishibe. 2023. A cause detector of software regressions by comparing program execution traces. https://csg-www.s3.ap-northeast-1.amazonaws.com/public/papers/23/master-ishibe.pdf

[2] Yuefeng Hu, Hiromu Ishibe, Feng Dai, Tetsuro Yamazaki, and Shigeru Chiba. 2024. Bugfox: A Trace-Based Analyzer for Localizing the Cause of Software Regression in JavaScript. In Proceedings of the 17th ACM SIGPLAN 
International Conference on Software Language Engineering (SLE '24). Association for Computing Machinery, New York, NY, USA, 224–233. https://doi.org/10.1145/3687997.3695648

I. Transform both the base and faulty program into 
tree structures where each node represents one 
function execution

II. Trace only the order of function executions and 
source code changes instead of input/output 
changes

Heuristic 1: Find the first change of source code at 
the same position of two function executions
• The same position means two nodes have the 

same depth and breadth, and also the same name 
and the same type

• In the example, E and E’ have the same name but 
different function body, and they are at the same 
position

• E and E’ are the first pair of code change, and are 
reported by this heuristic 

Each node 
represents an 
instance of 
function 
execution

Existing technique

We want to extend this work..
• To improve accuracy

• Proposing 2 new heuristics, and 1 LLM-

powered technique

• To support another language, Python

• Organizing a Python dataset

• Implementing a Python tracer

Idea: trace source code change

Heuristic 2: Find the deepest change of source code 
at the same position of two function executions
• In the example, F and F’ are the deepest pair of 

code change, and are reported by this heuristic 

Evaluation

Datas
et

FDF Top
-2

First 
code 
change

Deepest 
code 
change

LLM-
powered 
technique

Pytho
n

6 8 7 9 9

JS 6 3 6 8 9

Total 12 11 13 17 18

• Instead of tracing inputs and outputs, tracing the order 

of function executions and code changes has better 

accuracy

• An LLM-powered technique combined with error 

messages of regressions achieves the best accuracy

Conclusion

LLM-powered technique: Linearize function 
executions, and let an LLM compare two function 
executions

• To avoid input limitation, we only part of the 
function execution

• We also give an LLM the error messages of the 
regression


	Slide 1

