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Abstract
Software regression has been a persistent issue in software development. Although

numerous techniques have been proposed to prevent regression from being introduced
before release, few are available to address regression as it occurs post-release. Therefore,
identifying the root cause of regression has always been a time-consuming and labor-
intensive task. We aim to deliver automated solutions for solving regressions based on
tracing. We present Bugfox, a trace-based analyzer that reports functions as the possible
cause of regression in JavaScript. The idea is to generate runtime trace with instrumented
programs, then extract the differences between clean and regression traces, and apply two
heuristic strategies based on invocation order and frequency to identify the suspicious
functions among differences. We evaluate our approach on 12 real-world regressions taken
from the benchmark BugsJS. First strategy solves 6 regressions, and second strategy
solves other 4 regressions, resulting in an overall accuracy of 83% on test cases. Notably,
Bugfox solves each regression in under 1 minute with minimal memory overhead (<200
Megabytes). Our findings suggest Bugfox could help developers solve regression in real
development.
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概要
ソフトウェアの回帰は、ソフトウェア開発における持続的な問題となっています。リリース

前に回帰が導入されるのを防ぐための技術が数多く提案されている一方で、リリース後に発生
する回帰に対処するための手法は限られています。そのため、回帰の根本原因を特定すること
は、時間と労力を要する作業となっています。我々はトレースに基づく自動化ソリューション
を提供することを目指しています。本論文では、回帰の可能性のある原因として関数を報告す
るトレースベースのアナライザーである Bugfoxを提案します。このアイデアは、インストル
メント化されたプログラムでランタイムトレースを生成し、クリーンなトレースと回帰トレー
スの違いを抽出し、呼び出し順序と頻度に基づく二つのヒューリスティック戦略を適用して、
違いの中から疑わしい関数を特定するものです。我々のアプローチは、ベンチマーク BugsJS
から採取した 12 の実際の回帰に対して評価されました。第一の戦略は 6 つの回帰を解決し、
第二の戦略は他の 4つの回帰を解決し、テストケースにおける全体的な精度は 83%となりま
した。特筆すべきは、Bugfoxは各回帰を 1分未満で解決し、メモリのオーバーヘッドは最小
限（200メガバイト未満）であることです。我々の研究結果は、Bugfoxが実際の開発におい
て開発者が回帰を解決するのに役立つ可能性があることを示唆しています。
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Chapter 1

Introduction

Software regression, where previously functional software exhibits new faults after up-
dates, remains a persistent challenge in software development. While many techniques
focus on preventing regressions before release, fewer tools effectively address regressions
post-release. Identifying the root cause of these regressions can be a tedious and time-
consuming task for developers, often requiring extensive manual debugging. This issue
is particularly pronounced in complex codebases with extensive commit histories and nu-
merous interconnected components.

The ability to manage and rectify regressions efficiently is crucial for maintaining the
quality and reliability of software systems. In today’s fast-paced development environ-
ments, continuous integration and continuous deployment (CI/CD) practices are preva-
lent, and they emphasize the need for rapid detection and resolution of issues. However,
traditional regression testing methods can fall short in these dynamic settings due to their
reliance on manual processes and the inherent complexity of modern software applications.
Therefore, there is a growing need for automated tools that can accurately and swiftly
localize the causes of regressions.

In this thesis, we propose Bugfox, a trace-based analyzer designed to automate the local-
ization of the root causes of software regressions in JavaScript. Our approach is grounded
on the premise that discrepancies in execution traces between a properly functioning base
program and a faulty, updated program can reveal the root cause of regressions. Based
on this idea, we develop Bugfox, which traces both base and faulty programs by instru-
menting their source code, extracts the differences of two traces, and reports suspicious
functions among the differences based on two heuristic strategies. The first strategy fo-
cuses on the invocation relationships of function calls, aiming to identify the starting point
of deviated behavior of the buggy program and return that one function call as the root
cause of regression. The second strategy examines the frequency of function calls inside
the differences of two traces, and returns top four functions with most occurrences as can-
didates. Bugfox collects those candidates and reports five candidates in total as possible
root causes of regression.

We evaluate Bugfox on 12 real-world regressions from the BugsJS [1] benchmark,
demonstrating its effectiveness and efficiency. The first strategy successfully resolves 6
regressions, and the second strategy resolves an additional 4 regressions, achieving an
overall accuracy of 83% across test cases. Notably, Bugfox was able to solve each regres-
sion in under one minute with minimal memory overhead, making it a practical tool for
real-world development environments.

The significance of Bugfox lies not only in its ability to accurately pinpoint the root
causes of regressions but also in its practicality and ease of integration into existing de-
velopment workflows. By automating the regression localization process, Bugfox reduces
the time and effort required by developers, allowing them to focus on more critical tasks
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and improving overall productivity. Additionally, the tool’s minimal performance over-
head ensures that it can be seamlessly integrated into CI/CD pipelines without adversely
affecting build times or system performance.

In summary, the introduction of Bugfox offers a useful approach to automated regres-
sion testing. By utilizing execution traces and heuristic analysis, Bugfox helps address
the challenge of identifying software regressions in JavaScript applications. The results
from our evaluation show that Bugfox can assist developers in improving the process of
regression testing. While Bugfox may not represent a major breakthrough, it validates the
feasibility of automated tool that help solve regression in a more efficient and manageable
way in real-world scenarios.

The structure of this thesis is as follows: In Chapter 2.1, we provide an overview of
relevant background concepts, including different types of software testing, the nature of
regressions, and various debugging techniques. Chapter 3 details the methodology used
in the development and evaluation of Bugfox. This includes a description of the instru-
mentation process, the trace analysis algorithms, and the experimental setup. In Chapter
4, we present the experimental setup, results, and discussion. This chapter provides a
detailed analysis of Bugfox’s performance, including case studies and a discussion of its
strengths and limitations. Finally, Chapter 5.1 concludes the thesis with a summary of
findings and suggestions for future work.
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Chapter 2

Localize the Cause of Regression

2.1 Background
Software regressions represent a significant challenge in software development, where a
change or update inadvertently introduces new or previously resolved bugs. The detec-
tion and resolution of these regressions are critical for maintaining software quality and
reliability. Initially, addressing regressions involved manual inspection and re-execution of
test cases, a labor-intensive process that often led to delays and inefficiencies. Over time,
the field of regression testing has evolved to incorporate automated testing tools designed
to quickly execute extensive test suites and identify any new defects introduced by recent
changes. This evolution has paralleled advancements in debugging techniques aimed at
localizing the root cause of regressions. Tools and methodologies have been developed to
enhance the precision of debugging processes, such as trace analysis and logging, which
help developers pinpoint the exact source of defects. This progression highlights the on-
going effort to improve the efficiency and effectiveness of regression testing, reflecting the
need for robust solutions in an increasingly complex software landscape.

To understand the context and significance of these advancements, it is essential to
delve into the foundations of software testing, the nature of regressions, and the various
debugging techniques employed in modern development. The following subsections will
explore these areas in detail, beginning with an overview of software testing methodologies.

2.1.1 Software Testing

Software testing is a critical phase in the software development workflow that ensures the
quality and functionality of the whole system. It involves the execution of software com-
ponents to evaluate independent or integrated functionalities. The main goal of software
testing is to find and fix defects, ensure that the software meets the expected require-
ments, and improve software quality. In this thesis, we talk about three common types of
software testing: unit testing, integration testing, and system testing.

Unit Testing
Unit testing is a type of software testing where individual units or components of a software
are tested in isolation from the rest of the application. Each unit, often a single function
or method, is tested independently to verify that it behaves as expected. Unit tests
are typically written by developers and are executed automatically, often as part of a
continuous integration pipeline. They are essential for validating that the smallest parts
of an application work correctly and for catching bugs early in the development process,
and unit testing is one of the most commonly used testing methodology in real world.
Unit testing frameworks, such as JUnit [2] for Java, NUnit [3] for .NET, and Mocha [4]
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1 function sum(a, b) {

2 return a + b;

3 }

4 module.exports = sum;

Fig. 2.1: Function sum.

1 const sum = require(’./sum’);

2

3 describe("Test function sum", () => {

4 it(’adds 1 + 2 should equal 3’, () => {

5 assert.strictEqual(sum(1, 2), 3);

6 });

7 });

Fig. 2.2: Unit test code for function sum.

1 function addAndMultiply(a, b, c) {

2 return sum(a, b) * c;

3 }

4 module.exports = addAndMultiply;

Fig. 2.3: Function addAndMultiply using sum.

for JavaScript, provide tools and libraries to facilitate the creation and execution of unit
tests.

Figure 2.1 and Figure 2.2 are examples of unit testing by using Mocha, a commonly
used JavaScript testing framework. Figure 2.1 defines function sum which receives two
values and return the sum of them. Figure 2.2 is the test code for function sum, line 5
verifies the the result of sum(1, 2) should be 3. Unit testing is a testing methodology
which writes test code to verify the functionality of program components.

Integration Testing
Integration testing is a type of software testing where individual units or components are
combined and tested as a group. The primary goal of integration testing is to identify is-
sues that occur when different units interact with each other. Unlike unit tests, which test
components in isolation, integration tests ensure that multiple components work together
as intended. This type of testing can uncover issues related to interface mismatches, in-
correct data sharing, and other integration problems that are not apparent in unit testing.
Integration testing is often performed after unit testing and before system testing in the
software development lifecycle.

Figure 2.3 and Figure 2.4 is a example of integration testing using Mocha. Figure
2.3 defines function addAndMultiply which relies on the previously defined sum function.
Figure 2.4 is the test code for addAndMultiply, verifying that the combined functionality
of summing and then multiplying works as expected. While this example demonstrates the
basic concept of integration testing, real-world scenarios are often much more complex. In
practice, integration testing might involve multiple interconnected components, databases,
external APIs, and various configurations, all of which need to be validated to ensure the
system operates correctly as a whole. The simplicity of this example serves to illustrate
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1 const addAndMultiply = require(’./ addAndMultiply ’);

2 const sum = require(’./sum’);

3

4 describe("Test function addAndMultiply", () => {

5 it(’adds 1 + 2 and multiplies by 3 should equal 9’, () => {

6 assert.strictEqual(addAndMultiply (1, 2, 3), 9);

7 });

8 });

Fig. 2.4: Integration test code for intermediate function addAndMultiply.

the fundamental approach, but actual applications would require more sophisticated test
setups to handle the intricacies of real-world software systems.

System Testing
System testing is a type of software testing where a complete and integrated software
system is tested as a whole. The objective of system testing is to validate the system’s
compliance with the specified requirements. This testing phase is crucial for identifying
defects that may not be detected during unit or integration testing, as it tests the entire
application in an environment that closely resembles production.

System tests evaluate the behavior of the entire system, including its interactions with
external systems and components. This testing stage encompasses functional and non-
functional testing types such as performance, usability, and security testing. System
testing is usually performed by a dedicated testing team after integration testing and
before acceptance testing.

2.1.2 Regression

Software regression refers to situations where previously functional software begins to
exhibit new faults after updates or modifications. This challenge is prevalent in software
development, especially as codebases grow and evolve. Regression testing is crucial for
identifying these issues by ensuring that recent changes have not adversely affected existing
functionality.

Regression Testing involves re-running previously executed tests to verify that new code
changes have not introduced any unintended faults. Automated testing frameworks are
commonly used to facilitate this process, enabling efficient and repeated execution of test
cases. Causes of regression include:

1. Code Changes: Modifications to existing code may inadvertently affect other parts
of the software.

2. Integration Issues: Merging new code with existing code can lead to conflicts and
unintended side effects.

3. Dependency Updates: Changes to external libraries or frameworks might introduce
compatibility issues.

4. Configuration Changes: Alterations in configuration or environment settings can
impact software behavior.

Among those causes, one of the most common causes of regression bugs is the modifica-
tion of existing code. When developers make changes to a codebase, whether to add new
features, improve performance, or fix bugs, there is always a risk that these modifications
can inadvertently affect other parts of the system. This unintentional impact can lead to
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1 function formatDate(date) {

2 // Original implementation formats date to ’MM/DD/YYYY’

3 const month = String(date.getMonth () + 1).padStart(2, ’0’);

4 const day = String(date.getDate ()).padStart(2, ’0’);

5 const year = date.getFullYear ();

6 return ‘${month}/${day}/${year}‘;

7 }

8

9 function formatEvent(event) {

10 return ‘Event: ${event.title} - Date: ${formatDate(new Date(

event.date))}‘;

11 }

Fig. 2.5: Original function formateDate and formateEvent.

1 describe(’formatEvent ’, () => {

2 it(’should format an event with the date in MM/DD/YYYY’, () =>

{

3 const today = new Date();

4 const event = { title: ’Meeting ’, date: today.toISOString ()

};

5 const todayFormatted = formatDate(today); // Assume

formatDate returns MM/DD/YYYY by default

6

7 const expected = ‘Event: Meeting - Date: ${todayFormatted }‘;

8 expect(formatEvent(event)).to.equal(expected);

9 });

10 });

Fig. 2.6: Test code for function formateEvent.

the reappearance of previously resolved issues or introduce new problems in areas of the
application that were not directly altered.

Figure 2.5 to Figure 2.7 are simple examples of regressions. Figure 2.5 is the code of
function formatDate and formatEvent, where the former return formatted date and the
latter return formatted report of event based on former function. Figure 2.6 is the test
code of function formatEvent. These codes before modifications pass the test perfectly.
After a certain period of time, the coder wants to exchange the order of month and day
in date, so he changes the code of function formatDate, as shown in Figure 2.7. However,
the coder forgets to update function formatEvent which based on formatDate. Now the
test code in Figure 2.6 would fail, represents the unintentional destruction of existing
functionality. Such software faults during the code modification is called a regression.

2.1.3 Debugging Techniques

Debugging is a crucial phase in the software development lifecycle, aimed at identifying,
analyzing, and fixing bugs or defects in software. Several techniques are employed to
facilitate this process, each offering distinct advantages depending on the nature of the
problem. This section discusses some of the most common debugging techniques, including
logging, using debuggers, profiling, and code reviews.
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1 function formatDate(date , format = ’DD -MM -YYYY’) {

2 const day = String(date.getDate ()).padStart(2, ’0’);

3 const month = String(date.getMonth () + 1).padStart(2, ’0’);

4 const year = date.getFullYear ();

5 return ‘${day}-${month}-${year}‘;

6 }

Fig. 2.7: Updated function formatDate which introduces regression.

Logging
Logging is a fundamental debugging technique that involves recording information about
the program’s execution at various points during runtime. By inserting log statements in
the code, developers can capture the state of the application, including variable values,
execution flow, and function calls. This information is typically written to log files or
system consoles, providing insights into the program’s behavior and helping to trace the
origin of bugs.

Logs can be categorized into different levels, such as DEBUG, INFO, WARN, ERROR,
and FATAL, each representing the severity or type of information recorded. For instance,
DEBUG logs provide detailed information useful for development and troubleshooting,
while ERROR logs highlight critical issues that need immediate attention. Effective log-
ging can greatly aid in diagnosing issues, particularly in complex systems where interactive
debugging might be challenging.

Debugger
A debugger is a specialized tool that allows developers to pause the execution of a program,
inspect its state, and step through the code line by line. This interactive approach provides
a detailed view of the program’s execution, including variable values, memory usage, and
control flow. Modern integrated development environments (IDEs) often include built-in
debuggers that offer features such as breakpoints, watchpoints, and stack traces.

Breakpoints enable developers to halt execution at specific lines of code, facilitating the
examination of the program’s state at critical points. Watchpoints monitor the value of
variables or expressions, triggering a pause when changes occur. By stepping through the
code, developers can observe how the program reaches its current state, making it easier
to pinpoint the source of errors and understand the impact of code changes.

In case of debugging in JavaScript runtime environments, people always prefer the IDE
graphical debuggers. Figure 2.8 shows the JavaScrit debugger of Visual Studio Code,
which is a popular IDE [5]. The upper right part of the screen is the source code. A
breakpoint is set as line 15 of this source code, and the executed program will be paused
at this breakpoint. The bottom is the debug console where coder interacts with the
program. The left side is several debug panels where coder can check the contents of
variables, call stacks and breakpoints. These information could be used to find out the
reason of unexpected behaviour through line-by-line execution and breakpoints.

In case of debugging website, built-in web broswer debuggers are oftenly used in real
world. Figure 2.9 shows the built-in debugger of Chrome, which is a widely used web
broswer around the world [6]. Similar to IDE debuggers, the screen of web broswer
debuggers also consist of the panel of source code, variables, call stacks, breakpoints and
graphical interaction interface.
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Fig. 2.8: Screenshot of JavaScritp debugger of Visual Studio Code.

Fig. 2.9: Screenshot of built-in JavaScript debugger in Chrome.
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Fig. 2.10: Screenshot of Profiler in Chrome Devtools.

Profiling
Profiling involves analyzing the performance of a program to identify bottlenecks, resource
consumption, and inefficient code paths. Profilers are tools that measure various aspects of
program execution, such as CPU usage, memory allocation, and function call frequency.
This information helps developers optimize performance and address issues related to
resource management. Profilers can be classified into different types, including sampling
profilers, which periodically check the program’s state, and instrumented profilers, which
add extra code to track execution details. By examining profiling data, developers can
identify performance hotspots, evaluate the impact of code changes, and make informed
decisions about optimizations.

Figure 2.10 is a screenshot of profiling engine in Chrome DevTools, a very popular
profiler used in web development [7]. The center panel shows the performance of each
function call, the x-axis represent the scale of execution time, each rectangle stands for
a single function execution. The bottom of the screen includes the summary, call graph
and logs of a program.

Code Review
Code review is a collaborative process in which developers examine each other’s code to
ensure quality, correctness, and adherence to coding standards. This technique involves
reviewing code changes, providing feedback, and discussing potential improvements or is-
sues. Code reviews can be conducted manually, through peer reviews, or using automated
tools that analyze code for common issues.

The benefits of code reviews include catching bugs early in the development process,
improving code readability and maintainability, and sharing knowledge among team mem-
bers. By leveraging the collective expertise of the development team, code reviews help
identify potential problems, enforce best practices, and enhance the overall quality of the
software.
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2.2 Related Work
The general methodology of existing regression debugging tools involves identifying, trac-
ing, and analyzing behavioral changes between different software versions. These tools
utilize dynamic analysis, change identification, machine learning, and historical data to
pinpoint suspicious differences that might cause regression faults. However, the accuracy
of these tools is often limited, and they typically do not provide direct contextual infor-
mation, making it challenging for developers to quickly and effectively identify the root
cause of regressions. Additionally, the automation level of these tools is constrained as
they often require extra settings and configurations, which can be time-consuming and
require specialized knowledge. These limitations underscore the need for more compre-
hensive, context-aware, and fully automated approaches to regression debugging. Next,
we introduce related works that highlight the methods and limitations of existing tools,
setting the stage for our approach.

Pastore et al. [8] introduce RADAR, a tool aimed at assisting developers in debug-
ging regression issues in C/C++ software. RADAR combines change identification and
dynamic analysis to detect and explain regression faults by highlighting suspicious be-
havioral differences between the base and upgraded software versions. The tool operates
through three main steps:

1. Generation of Monitoring Scripts: RADAR generates scripts using the GDB de-
bugger to monitor modified functions, their callers, and their callees, focusing on
statements that remain unaltered in both versions for lightweight monitoring.

2. Data Collection: The tool collects behavioral data by executing test cases on both
the base and upgraded versions separately, tracing variable values and sequences of
executed statements, and distinguishing between passing and failing tests.

3. Analysis: RADAR generates models representing the legal behavior of the base
version using Boolean expressions and Finite State Automata (FSA). It then com-
pares these models with traces from the upgraded version to identify anomalies
likely causing the regression.

Empirical results on both open-source and industrial software demonstrate RADAR’s
effectiveness, successfully identifying anomalies in 8 out of 10 regression faults. It pro-
vides valuable contextual information, aiding developers in quickly identifying and fixing
regression faults. However, RADAR’s applicability is limited by the constraints of low-
level procedural languages, restricting universal tracing with complete data serialization.
To explore universal tracing’s feasibility for regressions, we develop a trace-based analyzer
in JavaScript, capturing a comprehensive range of program information.

Maksimovic et al. [9] address a critical challenge in debugging large and complex digital
systems by proposing an advanced framework for regression verification. Recognizing that
debugging can constitute up to 70% of the design cycle and is often performed manually,
the authors introduce a novel method that leverages machine learning and historical data
to enhance the debugging process. Their framework focuses on automating the revision
ranking process, which significantly improves the efficiency of identifying design changes
that are likely to cause failures.

The proposed approach utilizes Support Vector Machine (SVM) classification to rank
design revisions based on their likelihood of being the source of errors. Affinity Propaga-
tion (AP) clustering is then applied to group revisions with similar error profiles, further
refining the ranking and prioritizing the most probable error sources. This method not
only streamlines the debugging process by reducing the number of potential revisions
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to examine but also improves the accuracy of failure diagnosis. Empirical results demon-
strated the effectiveness of this framework, showing a 68% improvement in the accuracy of
revision ranking compared to traditional brute force methods. Additionally, the runtime
overhead of the proposed method is minimal, averaging just 4.631 seconds, making it a
practical solution for real-world applications. This advancement in automated debugging
addresses the inefficiencies of manual methods and offers a more systematic approach to
handling large-scale digital designs.

By integrating machine learning with version control data, Maksimovic et al. provide
a significant enhancement over existing debugging techniques, offering a more precise and
efficient method for identifying and resolving errors in complex digital systems. This
research motivates the construction of a regression bug dataset based on the version
control system in this paper.

Unit testing frameworks have been implemented for various languages and platforms,
including C [10], Java [2], JavaScript [11], Python [12], .NET [3, 13], Node.js [14, 4, 15] and
React [16]. These frameworks are widely used in modern software development process,
providing the possibilitiy to extend our approach to other programming languages.

Rosero [17] presents a survey, which reviews 15 years of software regression testing
techniques from 2000 to 2015, covering 31 techniques from 25 papers. The paper classifies
these techniques into minimization, selection, prioritization, and optimization categories.
Key findings indicate that cost and fault detection efficiency are major considerations in
technique evaluation. Most techniques were assessed in academic settings, with limited
application in industrial contexts. The paper also highlights a trend towards incorporating
regression testing in agile methodologies. The survey provides a comprehensive overview of
the techniques’ application domains, metrics used, strategies, and phases in the software
development process. Our approach is inspired by its survey on regression test selection
(RTS) techniques, where it describes the trend of testing techniques based on graphs,
dependency relationships, historical data and heuristics.

2.3 Motivation with Examples
Regression has long been a persistent problem in software development process. Although
detecting the regression is well studied in previous works [18, 17], localizing the cause of
regression is still under exploration. In Figure 2.11, we show an example of a regression
from a real-world project. The regression is from Hessian.js [19], which is the JavaScript
implementation of Hessian binary web service protocol [20]. In Hessian.js, there are many
utility functions implementing the encoding of raw data and decoding of binary data based
on Hessian protocol. This example involves the release version 2.1.9 (2b53d13) (referred as
the base version) and its subsequent commit (a46fbc9) (referred as the upgraded version).
The green code with a minus - symbol is from the base version, and the red code with a
plus + symbol is from the upgraded version.

The example implicitly introduces a regression in the upgraded version by incorrectly
decoding the binary when raw data is null object. As shown in Figure 2.11, the condition
of the if statement in base version is a regular expression that matches everything except
strings with the word this followed by a dollar sign $ and then one or more digits at the
end of the string, such as this$123 or this$4567. Therefore, the program would enter
the if branch when key is a null object, and it would be encoded to an object with
property null and value ’null’, which is the correct implementation based on Hessian
protocol when dealing with null. The upgraded version mistakenly adds a precondition
to the if statement, leading to the program only entering the if branch when key is a
string or number, and the null object would not be encoded in that scenario. To side with
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the modification in Figure 2.11, the upgraded version also changes its corresponding unit
testing function of decoding null object as illustrated in Figure 2.12, to pass all testing
modules. Since the upgraded commit (a46fbc9) also involves new features and dozens of
file changes, the developer merges this commit to the main tree without carefully reviewing
this small change. This commit is blamed by other developers as a regression later and
gets rolled back in a later fix (37d19e7).

1 proto.readObject = function (withType) {

2 ...

3 key = this.read();

4 ...

5 - if (!/^this\$\d+$/.test(key) {
6 + t = typeof key;

7 + if ((t === ’string’ || t === ’number’) && !/^this\$\d+$/.test(key) {
8 result.$[key] = value;

9 }

10 ...

11 }

Fig. 2.11: Base (green) and upgraded (red) “buggy” version of function
proto.readObject in decoder.js.

1 describe(’map.test.js’, function () {

2 it(’should decode successful when key is null’, function () {

3 var data = new Buffer ([77, 116, 0, 0, 78, 83, 0, 4, 110, 117,

108, 108, 122]);

4 var rv = hessian.decode(data);

5 - rv.should.eql(null: ’null’);

6 + rv.should.eql();

7 });

8 }

Fig. 2.12: Base and upgraded “buggy” version of testing function related to foregoing
proto.readObject function.

In most cases, addressing regressions still relies heavily on manual debugging by devel-
opers rather than relying on automated tools. This regression example may be perceived
as straightforward to resolve, but imagine the regression is discovered after a long pe-
riod of time along with numerous commits covering on the “regression” one, localizing
the root cause of regression would become greatly difficult. In addition, in this exam-
ple proto.readObject is just a middle-ware utility function used for implementing the
decoding in hessian.js, while hessian.decode relates to hundreds of functions which all
could possibly be regarded as the root cause of regression when developers inspect the
limited output of failures reported by testing framework such as Mocha [4]. Given the
complexity of pinpointing regression among extensive commits and intricate codebases,
automated tools become indispensable and time-saving for efficiently resolving such tasks.

Among all testing techniques in modern test-driven development, unit testing as the
most commonly used technique, still has limitations on addressing regressions and is not
satisfying. Unit testing is also known as module testing, where individual units or compo-
nents of a software application are tested in isolation to ensure they function correctly as
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standalone units. However, with the tremendous expansion of modern software scale, it is
considered burdensome and unpractical to design testing modules and test cases for every
single unit and boundary condition; accordingly, testing modules always includes unit
that directly or indirectly invokes other units, and regression often causes the infection
of failures in this situation where one failed unit may affect the behavior of other units.
As similar circumstance arises in integration testing, this chain reaction might result in
vast failed test cases and bring greater difficulty to developers to locate the root cause of
regression.
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Chapter 3

Bugfox

In this thesis, we present Bugfox, which is a trace-based analyzer for localizing the cause of
software regression in JavaScript. Our approach is based on the speculation that the root
cause of regression could be detected inside the differences between execution traces of
base program and buggy program, where the former represents the program that functions
properly with a given unit test and the latter represents the updated program but fails on
the same unit test. On the basis of this idea, we develop Bugfox, which traces both base
and buggy programs by instrumenting their source code, extracts their differences, and
reports suspicious functions among the differences based on two heuristic strategies. In
addition, Git, as the state-of-the-art version control system, is responsible for maintaining
and switching the version of source code in our approach. We assume that a buggy
program is also committed, probably, to a debugging branch. So we below call base and
buggy programs base commit and buggy commit, respectively.

Bugfox is designed to be a highly automated and user-friendly tool, all that is needed
is a configuration file in json format, and developer does not have to write any extra code
to make Bugfox running. Figure 3.2 shows an real example of that configuration file used
in later experiment. Attribute sourceFolder means the relative path to home directory
of source Git project, generateFolder means the relative path to home directory of
generated folder that stores all outputs of Bugfox. Attribute baseIgnoreFolder and

Fig. 3.1: Framework of Bugfox.
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newIgnoreFolder stands for the folders or files being ignored in the code transformation
in the project, often includes the path of external library. Attribute baseCommitID and
newCommitID could be the SHA1 hash of one git commit, git tags, git branch or anything
could be used by command git switch -d $(argument), these attributes are used to
indicate the version of base and buggy commit. Attribute baseCommand and newCommand

are commands being executed for the test code that triggers the regression. After filling
this configuration file, we only need one command to run Bugfox:

node Bugfox.js /path/to/config.json

Here the ‘Bugfox.js’ is the main program of Bugfox, and ‘/path/to/config.js’ is the file
path of our configuration file. After this simple command, Bugfox will automatically start
tracing two versions of program during execution, comparing their traces, extracting the
differences of two traces, analzying the suspicious functions inside the differences using
two heuristic strategies and finally reporting the candidates of regression to users via
command line. All results of experimental log and shell standard output will also be
stored automatically into disk for later manual check.

1 {

2 "sourceFolder": "BugJS/hessian",

3 "generateFolder": "BugJS/hessian -result/Bug -2",

4 "baseIgnoreFolder": [

5 "node_modules"

6 ],

7 "newIgnoreFolder": [

8 "node_modules"

9 ],

10 "baseCommitID": "Bug -2-base",

11 "newCommitID": "Bug -2-new",

12 "baseCommand": [

13 "npm install",

14 "NODE_OPTIONS =\"--max -old -space -size =64000\" ./ node_modules /.

bin/_mocha --timeout 99999 test/map.test.js"

15 ],

16 "newCommand": [

17 "npm install",

18 "NODE_OPTIONS =\"--max -old -space -size =64000\" ./ node_modules /.

bin/_mocha --timeout 99999 test/map.test.js"

19 ]

20 }

Fig. 3.2: Example of that only needed configuration file config.json in Bugfox.

Compared to existing regression debugging tools, Bugfox offers significant improve-
ments in both accuracy, contextual information and automation. While traditional tools
often suffer from limited accuracy and lack direct context, Bugfox excels by providing
detailed and direct contextual information about regression faults. This capability is
achieved through comprehensive trace that allows for a clear understanding of how and
where the program’s behavior deviates between versions. Additionally, Bugfox’s high level
of automation minimizes the need for extensive configuration and manual setup. Unlike
previous tools that require substantial extra settings or specialized knowledge, Bugfox
operates with a single configuration file and a straightforward command, making it acces-
sible and user-friendly. This ease of use, combined with its detailed contextual insights,
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addresses many of the limitations of earlier methods, offering a more effective solution for
identifying and resolving regression issues in software.

We give an overview of the workflow of Bugfox in Figure 3.1. The workflow could be
divided into three independent process: tracing, comparing and analyzing. Section 3.1 to
section 3.3 describes their specification.

3.1 Runtime tracing in JavaScript
As illustrated in Figure 3.1, the inputs of this workflow include two versions of source code,
namely the base commit and the buggy commit. The base commit functions correctly,
while the buggy commit introduces regressions in certain modules. Usually, the buggy
commit resides chronologically after the base commit on the Git tree. Bugfox traces the
execution of these programs and generates call graph [21] separately, namely a tree that
represents the calling relationships between various functions within a program. Each
node in the call graph represents a single function call, and the edges between nodes
indicate the flow of invocation relationships between functions. An edge connects a node
f to a node g when a function f is invoked, and a function g is invoked within the body
of that function f .

A call-graph node has several attributes. One is an identifier to identify a called func-
tion. It is a concatenation of the path name of a source file, the names of functions
surrounding the definition of the called function. For example, let function onfinish be
defined in function sendfile in file lib/response.js. The identifier is this character
string:

lib/response.js#Func@sendfile/Func@onfinish

Here, # and / are separators. Func@ represents the kind of the function. BugFox sup-
ports seven kinds of functions: Func (normal function), FuncVar (function variable),
FuncExpr (function expression), method (method in a class), PropFunc (property func-
tion), ArrowMethod (special arrow function as a method in a class), and AnonFunc (anony-
mous function). When a function does not have a name, the hash value of its body is
used as its name. Figure 3.3 shows the example of each function type and how they will
be named in our system.

Besides an identifier, a call-graph node has other attributes. It contains the hash value
of the body of a called function, function arguments (the values of function parameters),
the this object, and a return value. The value of this and the values of function param-
eters are obtained and recorded as node attributes twice, before and after the execution
of the function body. There are all attributes inside one function node in the real imple-
mentation:

• funcID: The identifier of this function, includes their name with type and hash
value of its function body.

• index: The index of this function node in the call graph.
• caller: The identifier of the caller of this function call.
• beforeThis: this arguments before its execution.
• beforeArgs: Function arguments before its execution.
• afterThis: this arguments after its execution.
• afterArgs: Function arguments after its execution.
• returnVal: Return value of this function execution.
• callee: The callees of this function call (functions invoked by it).

Those values about function specifications (this, arguments, return value) are repre-
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1 // Func@func (normal function)

2 function func() {

3 console.log("This is a normal function.");

4 }

5

6 // FuncVar@func (function variable)

7 var func = function () {

8 console.log("This is a function variable.");

9 };

10

11 // FuncExpr@expr.func (function expression)

12 expr.func = function () {

13 console.log("This is a function expression.");

14 };

15

16 // method@func (method in a class)

17 class MyClass {

18 func() {

19 console.log("This is a method in a class.");

20 }

21 }

22

23 // PropFunc@func (property function)

24 const obj = {

25 func: function () {

26 console.log("This is a property function.");

27 }

28 };

29

30 // ArrowMethod@func (special arrow function as a method in a

class)

31 class MyOtherClass {

32 func = () => {

33 console.log("This is an arrow function as a method in a

class.");

34 };

35 }

36

37 // AnonFunc@af3y2c0 (anonymous function)

38 () => {

39 console.log("This is an anonymous function.");

40 };

Fig. 3.3: Code example with their name ID for each function type in JavaScript.

sented by character strings produced by the built-in library JSON.stringify in JavaScript
with our extension. Although JSON.stringify can handle most objects correctly in
JavaScript, there are still exceptions needed to be solved to achieve full coverage, includes
function objects, circular objects and objects with accessors. Figure 3.4 shows the code
example of these data types. The function objects will be ignored by JSON.stringify,
circular objects are unable to be stringified, and objects with get accessors will cause
unexpected extra function call and contaminate the call graph.
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1 // Function objects

2 var func = function () { return 0; };

3 JSON.stringify(func); // return undefined

4

5 // Circular objects

6 const objA = {};

7 const objB = {};

8 objA.reference = objB;

9 objB.reference = objA;

10 JSON.stringify(objA); // runtime error , can’t stringify circular

object

11

12 // Objects with get accessor

13 const objWithAccessors = {

14 _hiddenValue: 42,

15 get hiddenValue () {

16 return this._hiddenValue;

17 }

18 };

19 JSON.stringify(objWithAccessors); // will call that hiddenValue

function , causing unexpected extra behaviour

Fig. 3.4: Object types that could not be handled correctly by built-in JSON.stringify.

Figure 3.5 shows the code used to serialize every objects in JavaScript with our extension
to built-in JSON.stringify. The function object will be wrapped into another normal
object with certain attributes. The attributes which cause circulation in circular objects
and get accessors will be pruning by using WeakSet to traverse all attributes and eliminate
repetitive attributes which caused circulation and get accessors during serialization. The
original object would not be modified during the serialization to guarantee the integrity
of the program.

Bugfox generates call graphs for a base commit and a buggy commit taken from a git
repository. For this aim, Bugfox conducts code transformation, which instruments the
original source code in JavaScript to insert tracing statements that record runtime values
as execution trace during program execution. To achieve that, we parse the source code
into abstract syntax tree (AST) by using a JavaScript parse acorn [22], where abstract
syntax tree is a data structure to represent the structure of a program or code snippet.
Then we traverse the abstract syntax tree in depth first order using estree walker [23], a
tool used for traversing an ESTree-compliant AST. During the traversal of AST, whenever
we meet a node that represents a function declaration, we start to modify the subtree of
this node and insert our tracing statements into their subtree.

However, before transforming these function declarations, we first regenerate a canoni-
calized form of function declaration using the unchanged function node with the help of
a code generator astring in JavaScript, which is a tool to generate codes from abstract
syntax tree. Then we calculate the hash value of the generated code as the hash value
of a function declaration, which will be used to determine whether the code is different
between two version. In this way, irrelevant code changes like linefeeds and spaces will
be ignored, as long as the two codes share the same abstract syntax tree, they will be
considered as identical function declaration. At this moment, the function identifier is
also determined for each function declaration, in case it is an anonymous function, the
hash value of its canonicalized function body will be used as the function identifier. After
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1 const formatObj = (obj , seen = new WeakSet ()) => {

2 if (obj === undefined)

3 return "-undefined -";

4 else if (typeof obj !== ’object ’ && typeof obj !== ’function ’)

5 return obj;

6 else if (obj === null)

7 return obj;

8

9 if (seen.has(obj))

10 return ’[Circular]’;

11 seen.add(obj);

12

13 const result = Array.isArray(obj) ? [] : {};

14 for (const key of Object.getOwnPropertyNames(obj)) {

15 const descriptor = Object.getOwnPropertyDescriptor(obj , key);

16 if (descriptor && typeof descriptor.get === ’function ’)

17 continue;

18

19 const value = obj[key];

20 result[key] = formatObj(value , seen);

21 }

22 seen.delete(obj);

23

24 return result;

25 };

Fig. 3.5: Code used to serialize every object in JavaScript.

these process, we store the hash value and canonicalized function body separately into
disk for later use.

Now we have to transform the source code and instrument our tracing statements
into the AST. Figure 3.6 illustrates an example of code transformation. The process
of transforming a JavaScript function involves several steps to enable detailed execution
tracking. The following algorithm outlines these steps:

1. Wrap Original Function: Construct a new function with same name of origianl
function, and move the original function inside the new function’s body (becoming
a internal function) and add a prefix to the original function name. This internal
function retains the original functionality and will be used for actual execution while
the outer function handles data serialization and tracing.

2. Insert Pre-execution Tracing Statement: Before invoking the original function, code
is inserted to record the specification of the function call before its execution.
The pseudocode Record before exec(arg: [a, b], context: this) demon-
strates this step, where arg represents the serialized function arguments, and con-
text captures the serialized this object. The data serialization of these values are
automatically processed inside this pre-execution tracing statement.

3. Bind Context and Execute Function: The original function is executed within the
correct context using .bind(this). This ensures that the function behaves as
intended in relation to original this context. The result of the function execution
is captured in the variable result.

4. Insert Post-execution Tracing Statment: After the original function has executed,
additional code records the specifications of this execution. The pseudocode
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Record after exec(arg: [a, b], context: this, ret: result) illus-
trates this process. Here, arg and context are recorded again, and result

represents the return value of the function. This post-execution data is serialized
similarly to the pre-execution tracing statement.

5. Return Function Result: Return the result as it does not affect the behaviour of
this function call.

With this proper wrapping of original function, the behaviour of this function execution
does not change except tracing the information we need. The transformed function still
maintain the original functionality. From other function’s point of view, it still receive
original arguments, have same function context, process the data as expected and return
the original value. In this way, we gaurantee the code transformation does not influence
the original functionality and cause unexpected behaviours. After code transformation,
the instrumented program is run to record execution trace in memory. The recorded
execution trace is finally written in a file before the program execution finishes.

Fig. 3.6: Code transformation of a function definition (italic text represents pseudo-code
for a tracing statement).

3.2 Differences extraction between call graphs
After obtaining the call graphs from tracing, we need to extract the differences between
the base and the buggy traces. A difference is hereby defined as a pair of matching
function node coming from two call graphs, but differing in the value of arguments, this
object and return value. In order to accurately match up the homologous function node
from two call graphs, we set up four prerequisites to guarantee two nodes represents same
function call in their programs: 1) Same path (from root node) in the call graphs, 2) Both
are n-th child node of same parent node, 3) Node with same function name, 4) All their
previous sibling nodes are matched under same rules. Rule 1 and 2 guarantee two function
calls have same invocation relationship in their program. Rule 3 ensures they stands for
same function, so that we can analyze their differences legally. Last rule express that
once two nodes are not matched, we stop the traversal of its remain sibling nodes since
the unmatch indicates the invocation path inside its parent function execution has been
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altered, therefore we can’t guarantee the remaining sibiling nodes represents the same
function call even if satisfy the first three prerequisites. Figure 3.7 shows an example of
matching two call graphs. Function zoo is matched since they are both being invoked by
Func2 and they have same function name. Function goo and foo are not being matched
since they have function name even they share the same index in the call graphs.

Fig. 3.7: Example of matching two call graphs.

After matching function nodes from two call graphs in depth first order (DFS), we com-
pare their value of arguments, this object and return value before and after its execution.
If any of them is different, we mark this pair of function node as a difference between two
traces. In case these values are different before its execution, it indicates this deviation of
its behaviour might be caused by its caller (passing different arguments or changing the
context of one function call) instead of itself. Similarly, if these values are different only
after its execution, it signifies the function itself is responsible for the different behaviour
due to its code modification or inner functino calls. Furthermore, we compare the hash
value of their function definitions to judge whether the function is being modified in the
buggy commit. These results of comparison, including whether function specifications are
being changed before its execution, and whether being changed after its execution, and
whether function definition is modified in buggy commit, are collected for later analysis.
With these information being collected, we can monitor the entrance and exit of each
function call. As shown in Figure 3.8, three boolean values are created when comparing
two matched function nodes:

• isCodeChanged: Whether the code of this function is being modified in current
buggy program.

• isBeforeChanged: Whether those function specifications are different before its
execution.

• isAfterChanged: Whether thoss function specifications and result are different
after its execution.

3.3 Localization of the root causes
Finally, Bugfox localizes the root causes of regression by analyzing the differences ex-
tracted in the previous step. It adopts two heuristic strategies to prioritize the most likely
candidates among the pairs of graph nodes marked as difference. One strategy focuses
on the invocation order of function calls, and it chooses one candidate. The other focuses
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Fig. 3.8: Comparison of two function nodes.

on the frequency of function calls inside the differences, and it chooses four candidates.
Bugfox collects those candidates and present them as a root cause of regression. Thus,
Bugfox reports five candidates in total for the cause of regression.

3.3.1 First deepest function (FDF)

The first heuristic strategy identifies the first deepest function (FDF) among the differ-
ences, aiming to identify the starting point of deviated behavior of the buggy program.
Deepest functions are the node pairs that are marked as difference but do not have descen-
dants marked as difference in their subtrees. The function calls represented by those pairs
show deviated behavior, but the nested calls to other functions from those calls do not
show deviated behavior. We consider those deepest function calls as possible root causes
of regression. Among all those deepest function calls, the chronologically first one could
be regarded as the starting point of deviation of the buggy program, and thus it could be
also considered as the beginning of the regression.

Fig. 3.9: Example of deepest functions in differences of two call graphs.
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Figure 3.9 shows an example of deepest functions in differences of two call graphs. Each
node represents one function execution, and the number inside of it stands for the index
of this node in the call graph. After comparing, the different function executions will be
marked, we label them with red color in this example. Among these differences, node [0,
0, 1] and [1, 0] are considered as deepest functions, and FDF strategy will return node
[0, 0, 1] as the result since it is the chronologically first one in the call graph comparing
to the latter. We think this function might be the beginning of the unexpected behaviour
in the regression.

Bugfox selects the first deepest function (FDF) call as a candidate of the cause of
regression. Before reporting it as a candidate, however, Bugfox checks how the selected
pair of graph nodes is different from each other. As listed in Figure 3.1, Bugfox compares
the attributes of the graph nodes of that pair. It compares the hash value of function
bodies to check whether the source code changes between the base and buggy programs.
It also compares the arguments (the values of the function parameters) and this object
before and after the function execution. In Figure 3.1, the input states are those values
before function execution while the output states are those values after function execution.
If the results of the comparison match case 3, 4, or 5, then Bugfox reports that a candidate
is the parent of the first deepest function call, which is the function that invokes the first
deepest function call. For example, when a function f calls another function g and the
call to g is the first deepest, the function f is a candidate of the cause of regression. If
the results of the comparison match the other cases 1, 2, or 6, then Bugfox reports that
a candidate is the function invoked by the first deepest function call. For the example
above, the function g is a candidate.

Case
Is code
changed

Is input
state changed

Is output
state changed

Speculation
Final reported

function

1 no no yes Deviated behaviour inside its execution itself

2 yes no yes
Regard code modification as the cause of
deviated behavior inside its execution

itself

3 no yes no
Rare condition where input state

varies while output state remains the same
caller

4 yes yes no
Rare condition where input state

varies while output state remains the same
caller

5 no yes yes
Possibly caused by the different arguments

or this object before execution
caller

6 yes yes yes
Most complicated situation, need further
inspection on the detail of difference

itself

Table 3.1: The decision table for the first deepest function strategy.

3.3.2 Top-n

The other heuristic strategy counts the occurrences of each function in the differences,
then ranks them, and reports the top-n functions as candidates of the cause of regression.
If multiple functions share the same counts, the function with the earliest invocation is
being selected. Each pair of nodes marked as difference has an identifier as an attribute.
This identifier represents the name of a called function. Bugfox checks this attribute to
count the calls to each function. We assume that a function called in more node pairs
marked as differences is the cause of regression with a greater likelihood.

Bugfox uses 4 as n for the Top-n strategy. It reports the top-4 functions as candidates
of the cause of regression. We choose 4 to balance the accuracy and efficiency of this
strategy. It is more likely that the selected candidates include the true cause of regression
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when n is larger. However, the users of Bugfox must spend more time to investigate which
candidate is a true cause.

The selection of the top-4 functions is based on simplifying the process of checking the
results. Reporting too many candidates would require the user to invest a significant
amount of time in investigating each one, which can be impractical and inefficient. On
the other hand, reporting too few candidates increases the risk of missing the actual cause
of regression. Thus, selecting n=4 provides a practical balance, ensuring a manageable
number of candidates for the user to examine without overlooking potential causes.

Additionally, the Top-n strategy’s robustness is enhanced by considering the context in
which functions are invoked. Functions that are frequently called in different code paths
or during various execution scenarios are given priority. This ensures that the strategy
does not overly focus on a single execution path, which might be an anomaly, but rather
provides a comprehensive view of potential regression causes.

By balancing between comprehensiveness and usability, the Top-n strategy aims to
streamline the debugging process. It provides users with a manageable number of high-
probability candidates to examine, thereby improving the efficiency of regression debug-
ging in complex software systems. Future work may explore adaptive n-values based on
the size and complexity of the codebase, further optimizing the strategy’s effectiveness.

3.4 Limitation
Our methodology highly depends on the differences extracted from two call graphs. Pre-
dictably, whether two call graphs match well and whether valuable differences are collected
directly affects the accuracy of our heuristic strategies. There are plenty situations might
lead to the above dilemma, the most significant of which is large scale refactoring. Big
scale refactoring always concerns the addition or deletion of functions and huge change of
invocation order of function calls. In that case, one call graph might contain function calls
that the other one does not have, and the matching of functions would be difficult due
to the change of invocation order. Thereupon according to the rule of matching two call
graphs, function calls which related to those refactorings would not be legally extracted
into the differences. The tool can hardly solve the regression if those refactorings are
responsible for the regression.

In addition, there are scenarios where our tool would fail even the desired differences
are collected. Depending on the functionality of programs, there exists function calls
related to “mutable” information such as port number, IP address, timestampe, or other
randomly generated data. Differences extracted from such function calls might impede
the analysis of our heuristic strategies in several ways. As for FDF strategy, once these
differences appears chronologically earlier than the actual answer, FDF strategy might
return these unrelated functions as the answer. In Top-n strategy, in case the frequency
of such differences is higher than the actual answer, these unrelated functions will be
ranked ahead the actual answer in n-candidates. Since these unrelated functions might
result in false poisitive in our approach, we consider them as noisy functions.
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Chapter 4

Experiments

In this thesis, we propose two research questions as follows.

RQ1. Can Bugfox be used to localize the root causes of regression?
RQ2. Can Bugfox meet the performance demands in real-world development?

In order to answer these research questions, we evaluate our system on 12 real-world
regressions extracted from a JavaScript bug dataset BugsJS [1]. In this section, we will
introduce our experiment settings, experiment results and the answers to the RQs. The
experiments are conducted on a machine with an 11th Gen Intel(R) Core(TM) i7-11700
@ 2.50GHz CPU and 64GB RAM, and the operating system is Ubuntu 20.04.4 LTS.

4.1 Dataset and experiment settings
Currently, there is a lack of dataset especially focusing on regression bugs. In order
for better evaluation, we screen and extract 12 regressions from a famous JavaScript
bug dataset called BugsJS [1], which is a benchmark containing 453 real and manually-
validated JavaScript bugs from 10 popular JavaScript server-side projects [24].

In order to extract these regressions, we take an automated approach to identify re-
gression bugs systematically and efficiently, instead of manually inspecting each bug to
determine if it is a regression. In BugsJS, each bug corresponds to a real Git commit and
is labeled with a unique ID, its bug description, and its fix in real world that includes
the update of the unit tests and source code. To note, the labeled Git commit may not
include the cause of the bug, and it simply states the occurrence or detection of bug. To
determine if a bug is a regression, we traverse the Git tree in reverse chronological order
starting from the commit labeled as a bug, and execute the updated unit tests on every
preceding commits. If we ever get a test failure in a commit followed by a test success in
its parent commit, the bug could be considered as a regression since the same functionality
has been correctly implemented before the code stops working. Meanwhile, we mark the
commit that firstly introduces the bug as the regression commit.

We successfully recognize 12 bugs in BugsJS that could be considered as regressions.
These bugs will be used to evaluate the accuracy and performance of Bugfox in this re-
search. We collect their regression commits, and identify the functions being updated in
a later fix as the root cause of the regressions. These functions are also considered as the
ground truth to be compared with the results from Bugfox. In detail, 7 of these regression
bugs come from Express [25], 3 of them come from ESLint [26], and 2 of them come from
Hessian.js [19]. Express is a lightweight and flexible Node.js web application framework
that simplifies building APIs and web servers with its robust features like routing, middle-
ware support, and templating. ESLint is a JavaScript linting utility that helps developers
find and fix problems in their code by enforcing coding standards, detecting errors, and
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promoting consistent coding practices across projects. Hessian.js is a JavaScript library
for encoding and decoding data using the Hessian binary protocol, enabling efficient and
interoperable data transfer between JavaScript applications and systems that use the Hes-
sian format. We give an overview of the collected bugs in Table 4.1. Note that the unit
test of each bug case fails, and the generated log messages show only the failed assertion
and the call stack of its test unit. Testing frameworks give no reasonable analysis or
speculation for users to further understand and solve the regression. Finding the causes
of regression is difficult without an extra tool like Bugfox.

Project Bug-ID
Regression
commit

Unit testing module

Express 1 f41d09a test/app.options.js

Express 8 cf41a8f test/app.use.js

Express 9 997a558 test/app.js

Express 13 31b2e2d test/app.param.js

Express 16 c6e6203 test/res.redirect.js

Express 18 fb2d918 test/app.param.js

Express 27 7f04916 test/app.param.js

ESLint 10 a21dd32 tests/lib/config.js

ESLint 134 5266793 tests/lib/rules/no-useless-escape.js

ESLint 307 0f97279 tests/lib/rules/no-multi-spaces.js

hessian.js 2 a46fbc9 test/map.test.js

hessian.js 8 29f434e test/v1.test.js

Table 4.1: List of 12 regressions extracted from BugsJS.

4.2 RQ1: Can Bugfox be used to localize the root causes of

regression?
In each regression in Table 4.1, Bugfox will report 5 potential functions in total as the
possible root causes of the regression, including one from FDF strategy and four from
Top-n strategy. If the reported function aligns with the ground truth, we consider it
as a success. Table 4.2 summarizes the results of applying Bugfox to localize the root
cause of regression on the previously mentioned dataset. The 3rd column shows the
fixed function for each regression in real world, considered as the ground truth in our
experiment. The 4th column indicates whether the function reported by FDF strategy
matches the ground truth. The 5th column shows whether the ground truth is included
in the top-4 candidates reported by Top-n strategy with n = 4, and if included, which
candidate matches the ground truth. Checkmark symbol ✓indicates the result of the
strategy matches the expected result, while blank cell indicates the opposite.
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As shown in Table 4.2, FDF strategy solves 6 regressions out of 12, and Top-n strategy
solves 8 regressions out of 12. Among them, 4 regressions are shared by both strategies.
In FDF strategy, all 7 cases from Express meet the case 5 in Table 3.1, which return the
caller of first deepest function as the root cause. Hessian.js Bug-2 meet the case 1, and
remaining 4 cases meet the case 2, these 5 cases return the first deepest function itself.
By the integration of two strategies, Bugfox covers a total of 10 regressions, resulting in
an overall accuracy of 83.3%.

We further verify the limitations of Bugfox in real scenario by investigating the failures
of our experiments. It can be seen that the results of FDF strategy on Express project are
not ideal. After inspecting the details of these cases, we find that Express, as a de facto
standard server framework for Node.js, contains a massive amount of utility or middle-
ware functions that include unrelated information such as port numbers, timestamps, IP
addresses, or other randomly generated data. Such noise is liable to cause different be-
havior between two versions, leading to undesired differences of traces being collected and
analyzed before the real suspicious difference. This situation happens in many regressions
from Express project, resulting in the false reports of FDF strategy on Bug-9, 13, 16, 18,
27 from Express project. It also results in the failure of Top-n strategy on Bug-16 from
Express project. However, Top-n strategy shows more tolerance since it provides more
than one candidate.

Particularly, the complete failure of Bug-1 from Express project relates to the large-
scale refactoring: the function that introduces the regression is added to the buggy commit
for the first time. Hence, the base trace does not contain that function, resulting in the
inability to extract meaningful differences and resolve the regression effectively.

Project Bug-ID Expected result FDF strategy
Top-n strategy

with n=4

Express

1 lib/router/index.js#FuncExpr@proto.handle
8 lib/application.js#FuncExpr@app.use ✓ 2nd candidate
9 lib/application.js#FuncExpr@app.use 3rd candidate
13 lib/router/index.js#FuncExpr@proto.process params 4th candidate
16 lib/response.js#FuncExpr@res.redirect
18 lib/router/index.js#FuncExpr@proto.process params 1st candidate
27 lib/router/index.js#FuncExpr@proto.process params 4th candidate

ESLint
10 lib/config.js#Class@Config/Method@constructor ✓ 1st candidate
134 lib/rules/no-useless-escape.js#PropFunc@create ✓
307 lib/rules/no-multi-spaces.js#PropFunc@create/PropFunc@Program ✓

hessian.js
2 lib/v1/decoder.js#FuncExpr@proto.readObject ✓ 4th candidate
8 lib/utils.js#FuncExpr@exports.handleLong ✓ 3rd candidate

Table 4.2: Experimental results of Bugfox on 12 regression test cases.

The following subsections detail the individual bug cases and how Bugfox was applied
to each. These examples illustrate the specific contexts and output of each regression,
providing a comprehensive understanding of Bugfox’s performance and limitations.
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4.2.1 Express Bug-1

1 var express = require(’../’)

2 , request = require(’supertest ’);

3

4 describe(’OPTIONS ’, function (){

5 it(’should only include each method once’, function(done){

6 var app = express ();

7

8 app.del(’/’, function (){});

9 app.get(’/users ’, function(req , res){});

10 app.put(’/users ’, function(req , res){});

11 app.get(’/users ’, function(req , res){});

12

13 request(app)

14 .options(’/users’)

15 .expect(’GET ,PUT’)

16 .expect(’Allow’, ’GET ,PUT’, done);

17 })

18 })

Fig. 4.1: Test code to be executed in Express Bug-1.

Figure 4.1 is the test code being executed in Express Bug-1 case. It is designed to verify
the behavior of the Express application when handling OPTIONS requests. The test sets
up an Express app, defines various HTTP methods for specific routes, and then makes
an OPTIONS request to the ’/users’ endpoint. It expects the ’Allow’ header to list each
HTTP method only once, specifically ’GET’ and ’PUT’. This test is essential for ensuring
that the application correctly handles HTTP method declarations without duplication.
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OPTIONS
1) should only include each method once

0 passing (31s)
1 failing

1) OPTIONS should only include each method once:
Error: expected ’GET ,PUT’ response body , got ’GET ,PUT ,GET’
at error (/home/icefox99/BugJS/express -result/Bug -1/ project/

express_run/node_modules/supertest/lib/test.js :235:13)
at Test.assert (/home/icefox99/BugJS/express -result/Bug -1/

project/express_run/node_modules/supertest/lib/test.js
:180:21)

at Server.assert (/home/icefox99/BugJS/express -result/Bug -1/
project/express_run/node_modules/supertest/lib/test.js
:132:12)

at Object.onceWrapper (node:events :633:28)
at Server.emit (node:events :519:28)
at emitCloseNT (node:net :2279:8)
at process.processTicksAndRejections (node:internal/process/

task_queues :81:21)

Fig. 4.2: Output of regression bug in Express Bug-1.

Figure 4.2 is the shell output of test code above in Express Bug-1 regression commit.
The test fails because the ’Allow’ header incorrectly includes the ’GET’ method twice
instead of once, resulting in the response ’GET,PUT,GET’ rather than the expected
’GET,PUT’. This failure indicates a regression in the handling of the OPTIONS method
within the Express framework, where methods are not properly de-duplicated.



Chapter 4 Experiments 30

[TEST 69 & 134] test/app.options.js#AnonFunc@e7c2853/
AnonFunc@d7809f6 ,d7809f6

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set
,c7befa3 ~~~~~~~~~~~~~~~~~~~~

[CODE_DIFF]
@@ -8,6 +8,10 @@

debug(’compile etag %s’, val);
this.set(’etag fn’, compileETag(val));
break;

+ case ’query parser ’:
+ debug(’compile query parser %s’, val);
+ this.set(’query parser fn’, compileQueryParser(val));
+ break;

case ’trust proxy ’:
debug(’compile trust proxy %s’, val);
this.set(’trust proxy fn’, compileTrust(val));

[DETAILS]
baseIndex: [69,0,0,0,0,0]
newIndex: [134,0,0,0,0,0]
caller: lib/application.js#FuncExpr@app.enable ,a98a97d
isCodeChanged: true
isBeforeThisChanged: true
isBeforeArgsChanged: false
isAfterThisChanged: true
isAfterArgsChanged: false
isRetChanged: true

[ANALYSIS]
Most complicated situation , probably caused by the huge refactor

of this function , please check all information includes its
caller , callee and arguments.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set

,c7befa3 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.3: Report of First Deepest Function strategy in Express Bug-1.

Figure 4.3 presents the report generated by the First Deepest Function (FDF) strategy
for identifying the root cause of the regression. It reports the ‘app.set’ function in ‘lib/ap-
plication.js’ as the root cause of regression, which fails on this case while the right answer
is ‘proto.handle’ function in ‘lib/router/index.js’. After manually analyzing this regression
case, we found that the function which causes the regression is not even included in the
base commit, leading to nearly impossible to solve this case based on our methodology.

Function (Counts)
-----------------------------------
lib/application.js#FuncExpr@app.set (4)
lib/application.js#AnonFunc@d7d4b9c/FuncExpr@app[method] (4)
lib/application.js#FuncExpr@app.enable (2)
lib/express.js#Func@createApplication (1)

Fig. 4.4: Report of Top-n strategy in Express Bug-1.

Figure 4.4 shows the output of Top-n strategy, which lists the functions most frequently
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appearing in the execution trace differences between the base and buggy versions. Same
as FDF strategy in this case, Top-n strategy also fails due to the big refactoring.

4.2.2 Express Bug-8

1 var after = require(’after ’);

2 var express = require(’..’);

3 var request = require(’supertest ’);

4

5 describe(’app’, function (){

6 it(’should support empty string path’, function (done) {

7 var app = express ();

8

9 app.use(’’, function (req , res) {

10 res.send(’saw ’ + req.method + ’ ’ + req.url + ’ through ’

+ req.originalUrl);

11 });

12

13 request(app)

14 .get(’/’)

15 .expect (200, ’saw GET / through /’, done);

16 })

17 })

Fig. 4.5: Test code to be executed in Express Bug-8.

Figure 4.5 is the test code being executed in the Express Bug-8 case. This test is
designed to verify the behavior of the Express application when using an empty string
path. It sets up an Express app, applies a middleware to an empty string path, and makes
a GET request to the root endpoint. The test expects the response to confirm that the
path was correctly handled as an empty string.
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app
1) should support empty string path

0 passing (714ms)
1 failing

1) app should support empty string path:
TypeError: Router.use() requires callback function but got a [

object String]
at Bugfox_Original_94426d5 (/home/icefox99/BugJS/express -

result/Bug -8/ project/express_run/lib/router/index.js
:389:17)

at /home/icefox99/BugJS/express -result/Bug -8/ project/
express_run/lib/router/index.js :405:113

at Array.forEach (<anonymous >)
....

at /home/icefox99/BugJS/express -result/Bug -8/ project/
express_run/node_modules/mocha/lib/runner.js :308:7

at next (/home/icefox99/BugJS/express -result/Bug -8/ project/
express_run/node_modules/mocha/lib/runner.js :246:23)

at Immediate.<anonymous > (/home/icefox99/BugJS/express -result
/Bug -8/ project/express_run/node_modules/mocha/lib/runner.
js :275:5)

at process.processImmediate (node:internal/timers :478:21)

Fig. 4.6: Output of regression bug in Express Bug-8.

Figure 4.6 shows the shell output of the test code above in the Express Bug-8 regression
commit. The test fails because the Router.use() method incorrectly treats the empty string
path as invalid, resulting in a TypeError. This indicates a regression in the middleware
path handling within the Express framework.
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[TEST 137 & 137] test/app.use.js#AnonFunc@52ae34c/
AnonFunc@1bfdd54 ,1 bfdd54

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/utils.js#FuncExpr@exports.
flatten ,f7a6daa ~~~~~~~~~~~~~~~~~~~~

[CODE]
function (arr , ret) {

ret = ret || [];
var len = arr.length;
for (var i = 0; i < len; ++i) {

if (Array.isArray(arr[i])) {
exports.flatten(arr[i], ret);

} else {
ret.push(arr[i]);

}
}
return ret;

}

[DETAILS]
index: [137 ,1 ,0]
caller: lib/application.js#FuncExpr@app.use ,c2a6b41
isCodeChanged: false
isBeforeThisChanged: false
isBeforeArgsChanged: true
isAfterThisChanged: false
isAfterArgsChanged: true
isRetChanged: true

[ANALYSIS]
Probably caused by the different arguments , please check its

CALLER "lib/application.js#FuncExpr@app.use ,c2a6b41" and the
different arguments that passed to this function.

...

[COMPARISON]
BASE ->beforeThis: null
NEW -->beforeThis: null
----------------------------------
BASE ->beforeArgs: [[{"length":2,"name":"","arguments":null ,"

caller":null ,"prototype":{"constructor":"[Circular]"}}]]
NEW -->beforeArgs: [["" ,{"length":2,"name":"","arguments":null ,"

caller":null ,"prototype":{"constructor":"[Circular]"}}]]
DIFF:
@@ -1,5 +1,6 @@
[

[
+ "",

{
"length": 2,
"name": "",

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/utils.js#FuncExpr@exports.

flatten ,f7a6daa ~~~~~~~~~~~~~~~~~~~~

Fig. 4.7: Report of First Deepest Function strategy in Express Bug-8.

Figure 4.7 presents the report generated by the First Deepest Function (FDF) strategy
for identifying the root cause of the regression. It reports the ‘app.use’ function in ‘lib/ap-
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plication.js’ as the root cause of the regression. The analysis indicates that the regression
is probably caused by different arguments passed to from ‘app.use’ to anonymous function
‘1bfdd54’. FDF strategy successfully identifies the root cause of regression in this case.

Function (Counts)
-----------------------------------
lib/utils.js#FuncExpr@exports.flatten (2)
lib/application.js#FuncExpr@app.use (1)
lib/application.js#FuncExpr@app.use/AnonFunc@497a64c (1)
lib/router/index.js#FuncExpr@proto.use (1)

Fig. 4.8: Report of Top-n strategy in Express Bug-8.

Figure 4.8 shows the output of the Top-n strategy in Express Bug-8 case, listing the
functions most frequently appearing in the execution trace differences between the base
and buggy versions. Similar to the FDF strategy, the root cause of regression ‘app.use’ is
also included in the four candidates of Top-n strategy.

4.2.3 Express Bug-9

1 var assert = require(’assert ’)

2 var express = require(’..’)

3 var request = require(’supertest ’)

4

5 describe(’app.mountpath ’, function (){

6 it(’should return the mounted path’, function (){

7 var admin = express ();

8 var app = express ();

9 var blog = express ();

10 var fallback = express ();

11

12 app.use(’/blog’, blog);

13 app.use(fallback);

14 blog.use(’/admin ’, admin);

15 fallback.use(’/admin’, admin);

16 blog.use(fallback);

17

18 admin.mountpath.should.equal(’/admin’);

19 app.mountpath.should.equal(’/’);

20 blog.mountpath.should.equal(’/blog’);

21 fallback.mountpath.should.equal(’/’);

22 })

23 })

Fig. 4.9: Test code to be executed in Express Bug-9.

Figure 4.9 is the test code being executed in the Express Bug-9 case. This test is
designed to verify the behavior of the Express application when using the mountpath
property to retrieve the mounted path of different Express instances. The test sets up
multiple Express apps and mounts them in various configurations. It then checks if the
mountpath property correctly reflects the paths at which the apps are mounted.
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0 passing (4s)
1 failing

1) app.mountpath should return the mounted path:
AssertionError [ERR_ASSERTION ]: expected { [Function: app]
init: [Function],
defaultConfiguration: [Function],
lazyrouter: [Function],
handle: [Function],
...
at prop.<computed > (/home/icefox99/BugJS/express -result/Bug

-9/ project/express_run/node_modules/should/lib/should.js
:61:14)

at context.Bugfox_Original_f859fc4 (/home/icefox99/BugJS/
express -result/Bug -9/ project/express_run/test/app.js
:21:35)

at context.<anonymous > (/home/icefox99/BugJS/express -result/
Bug -9/ project/express_run/test/app.js :28:113)

at callFn (/home/icefox99/BugJS/express -result/Bug -9/ project/
express_run/node_modules/mocha/lib/runnable.js :223:21)

at Runnable.run (/home/icefox99/BugJS/express -result/Bug -9/
project/express_run/node_modules/mocha/lib/runnable.js
:216:7)

at Runner.runTest (/home/icefox99/BugJS/express -result/Bug -9/
project/express_run/node_modules/mocha/lib/runner.js
:373:10)

at /home/icefox99/BugJS/express -result/Bug -9/ project/
express_run/node_modules/mocha/lib/runner.js :451:12

at next (/home/icefox99/BugJS/express -result/Bug -9/ project/
express_run/node_modules/mocha/lib/runner.js :298:14)

at /home/icefox99/BugJS/express -result/Bug -9/ project/
express_run/node_modules/mocha/lib/runner.js :308:7

at next (/home/icefox99/BugJS/express -result/Bug -9/ project/
express_run/node_modules/mocha/lib/runner.js :246:23)

at Immediate._onImmediate (/home/icefox99/BugJS/express -
result/Bug -9/ project/express_run/node_modules/mocha/lib/
runner.js :275:5)

at process.processImmediate (node:internal/timers :478:21)

Fig. 4.10: Output of regression bug in Express Bug-9.

Figure 4.10 shows the shell output of the test code above in the Express Bug-9 regression
commit. The test fails because the mountpath property does not correctly return the
expected mounted paths. This failure indicates a regression in how the Express framework
handles the mountpath property for mounted applications.
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[TEST 137 & 137] test/app.js#AnonFunc@6a055ca/AnonFunc@f859fc4 ,
f859fc4

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set
,c7befa3 ~~~~~~~~~~~~~~~~~~~~

[CODE]
function (setting , val) {

if (arguments.length === 1) {
return this.settings[setting ];

}
this.settings[setting] = val;
switch (setting) {

case ’etag’:
debug(’compile etag %s’, val);
this.set(’etag fn’, compileETag(val));
break;

case ’trust proxy ’:
debug(’compile trust proxy %s’, val);
this.set(’trust proxy fn’, compileTrust(val));
break;

}
return this;

}

[DETAILS]
index: [137,0,0,0,0,0]
caller: lib/application.js#FuncExpr@app.enable ,a98a97d
isCodeChanged: false
isBeforeThisChanged: true
isBeforeArgsChanged: false
isAfterThisChanged: true
isAfterArgsChanged: false
isRetChanged: true

[ANALYSIS]
Probably caused by the different arguments , please check its

CALLER "lib/application.js#FuncExpr@app.enable ,a98a97d" and
the different arguments that passed to this function.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set

,c7befa3 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.11: Report of First Deepest Function strategy in Express Bug-9.

Figure 4.11 presents the report generated by the First Deepest Function (FDF) strategy
for identifying the root cause of the regression. It reports the ‘app.enable’ function in
‘lib/application.js’ as the root cause of the regression. FDF strategy fails on Express
Bug-9 case. After inspecting the call graphs and extracted differences, we find that there
are many noisy functions affected the matching of two call graphs, which lead to the
unexpected behaviour not being matched up between two version and extracted into the
differences.
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Function (Counts)
-----------------------------------
lib/application.js#FuncExpr@app.set (46)
lib/application.js#FuncExpr@app.enabled (6)
lib/application.js#FuncExpr@app.use (5)
lib/application.js#FuncExpr@app.lazyrouter (5)

Fig. 4.12: Report of Top-n strategy in Express Bug-9.

Figure 4.12 shows the output of the Top-n strategy in Express Bug-9 case, listing
the functions most frequently appearing in the execution trace differences between the
base and buggy versions. Unlike FDF strategy, the root cause of regression ‘app.use’ is
included in the four candidates of Top-n strategy. This frequency-based heuristic strategy
has the chance to overcome the influence of noisy functions and bad matching, which is
the disadvantage of FDF strategy.

4.2.4 Express Bug-13

1 var express = require(’../’)

2 , request = require(’supertest ’);

3

4 describe(’app’, function (){

5 describe(’.param(name , fn)’, function (){

6 it(’should support altering req.params across routes ’,

function(done) {

7 var app = express ();

8

9 app.param(’user’, function(req , res , next , user) {

10 req.params.user = ’loki’;

11 next();

12 });

13

14 app.get(’/:user’, function(req , res , next) {

15 next(’route ’);

16 });

17 app.get(’/:user’, function(req , res , next) {

18 res.send(req.params.user);

19 });

20

21 request(app)

22 .get(’/bob’)

23 .expect(’loki’, done);

24 })

25 })

26 })

Fig. 4.13: Test code to be executed in Express Bug-13.

Figure 4.13 is the test code being executed in the Express Bug-13 case. This test is
designed to verify the behavior of the Express application when using the param method
to alter request parameters across different routes. The test sets up an Express app and
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defines a parameter middleware that changes the value of the user parameter. It then
defines two routes that both use the altered parameter.

0 passing (11s)
1 failing

1) app .param(name , fn) should support altering req.params across
routes:

Error: expected ’loki’ response body , got ’Cannot GET /bob\n’
at error (/home/icefox99/BugJS/express -result/Bug -13/ project/

express_run/node_modules/supertest/lib/test.js :227:13)
at Test.assert (/home/icefox99/BugJS/express -result/Bug -13/

project/express_run/node_modules/supertest/lib/test.js
:172:21)

at /home/icefox99/BugJS/express -result/Bug -13/ project/
express_run/node_modules/supertest/lib/test.js :125:10

at Request.callback (/home/icefox99/BugJS/express -result/Bug
-13/ project/express_run/node_modules/superagent/lib/node/
index.js :728:30)

at Test.<anonymous > (/home/icefox99/BugJS/express -result/Bug
-13/ project/express_run/node_modules/superagent/lib/node/
index.js :135:10)

at Test.emit (node:events :520:28)
at IncomingMessage.<anonymous > (/home/icefox99/BugJS/express -

result/Bug -13/ project/express_run/node_modules/superagent
/lib/node/index.js :886:12)

at IncomingMessage.emit (node:events :532:35)
at endReadableNT (node:internal/streams/readable :1696:12)
at process.processTicksAndRejections (node:internal/process/

task_queues :82:21)

Fig. 4.14: Output of regression bug in Express Bug-13.

Figure 4.14 shows the shell output of the test code above in the Express Bug-13 re-
gression commit. The test fails because the parameter alteration middleware does not
correctly modify the user parameter as expected. Instead of returning the expected ’loki’,
it results in a ’Cannot GET /bob’ error, indicating a regression in how the Express frame-
work handles parameter alteration.



Chapter 4 Experiments 39

[TEST 131 & 131] test/app.param.js#AnonFunc@a2a917c/
AnonFunc@2a6bfeb/AnonFunc@434b76a ,434 b76a

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set
,a1fe05f ~~~~~~~~~~~~~~~~~~~~

[CODE]
function (setting , val) {

if (1 == arguments.length) {
return this.settings[setting ];

} else {
this.settings[setting] = val;
return this;

}
}

[DETAILS]
index: [131,0,0,0,0,0]
caller: lib/application.js#FuncExpr@app.enable ,a98a97d
isCodeChanged: false
isBeforeThisChanged: true
isBeforeArgsChanged: false
isAfterThisChanged: true
isAfterArgsChanged: false
isRetChanged: true

[ANALYSIS]
Probably caused by the different arguments , please check its

CALLER "lib/application.js#FuncExpr@app.enable ,a98a97d" and
the different arguments that passed to this function.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set

,a1fe05f ~~~~~~~~~~~~~~~~~~~~

Fig. 4.15: Report of First Deepest Function strategy in Express Bug-13.

Figure 4.15 presents the report generated by the First Deepest Function (FDF) strategy
for identifying the root cause of the regression. It reports the app.enable function in
lib/application.js as the root cause of the regression. Similar to Express Bug-9, the FDF
strategy fails in the Express Bug-13 case due to the influence of noisy functions and bad
matching. The differences in the call graphs between the base and buggy versions lead to
an incorrect identification of the root cause.

Function (Counts)
-----------------------------------
lib/application.js#FuncExpr@app.set (11)
lib/application.js#FuncExpr@app.enabled (3)
lib/application.js#AnonFunc@4c5011c/FuncExpr@app[method] (3)
lib/router/index.js#FuncExpr@proto.process_params (3)

Fig. 4.16: Report of Top-n strategy in Express Bug-13.

Figure 4.16 shows the output of the Top-n strategy in the Express Bug-13 case, listing
the functions most frequently appearing in the execution trace differences between the base
and buggy versions. Unlike the FDF strategy, the Top-n strategy successfully includes
the root cause of the regression, ‘proto.process params’, in its list of candidates.
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4.2.5 Express Bug-16

1 var express = require(’../’)

2 , request = require(’supertest ’);

3

4 describe(’res’, function (){

5 describe(’when accepting text’, function (){

6 it(’should include the redirect type’, function(done){

7 var app = express ();

8

9 app.use(function(req , res){

10 res.redirect (301, ’http :// google.com’);

11 });

12

13 request(app)

14 .get(’/’)

15 .set(’Accept ’, ’text/plain , */*’)

16 .expect(’Content -Type’, /plain/)

17 .expect(’Location ’, ’http :// google.com’)

18 .expect (301, ’Moved Permanently. Redirecting to http ://

google.com’, done);

19 })

20 })

21 })

Fig. 4.17: Test code to be executed in Express Bug-16.

Figure 4.17 is the test code being executed in the Express Bug-16 case. This test
is designed to verify the behavior of the Express application when handling redirects
while accepting text. The test sets up an Express app that issues a 301 redirect to
’http://google.com’. It then checks if the response includes the correct redirect type in
the response body.
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0 passing (26s)
1 failing

1) res when accepting text should include the redirect type:
Error: expected ’Moved Permanently. Redirecting to http ://

google.com’ response body , got ’Moved Permanently.
Redirecting to 301’

at error (/home/icefox99/BugJS/express -result/Bug -16/ project/
express_run/node_modules/supertest/lib/test.js :235:13)

at Test.assert (/home/icefox99/BugJS/express -result/Bug -16/
project/express_run/node_modules/supertest/lib/test.js
:180:21)

at Server.assert (/home/icefox99/BugJS/express -result/Bug -16/
project/express_run/node_modules/supertest/lib/test.js
:132:12)

at Object.onceWrapper (node:events :634:28)
at Server.emit (node:events :520:28)
at emitCloseNT (node:net :2321:8)
at process.processTicksAndRejections (node:internal/process/

task_queues :81:21)

Fig. 4.18: Output of regression bug in Express Bug-16.

Figure 4.18 shows the shell output of the test code above in the Express Bug-16 regres-
sion commit. The test fails because the response body does not include the expected redi-
rect type. Instead of returning ’Moved Permanently. Redirecting to http://google.com’,
it returns ’Moved Permanently. Redirecting to 301’, indicating a regression in how the
Express framework handles redirects when the client accepts text. It could be seen that
the status code is wrongly passed to result instead of expected url.
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[TEST 137 & 137] test/res.redirect.js#AnonFunc@4a6a13e/
AnonFunc@44dad68/AnonFunc@5bb7f9a ,5 bb7f9a

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set
,c7befa3 ~~~~~~~~~~~~~~~~~~~~

[CODE]
function (setting , val) {

if (arguments.length === 1) {
return this.settings[setting ];

}
this.settings[setting] = val;
switch (setting) {

case ’etag’:
debug(’compile etag %s’, val);
this.set(’etag fn’, compileETag(val));
break;

case ’trust proxy ’:
debug(’compile trust proxy %s’, val);
this.set(’trust proxy fn’, compileTrust(val));
break;

}
return this;

}

[DETAILS]
index: [137,0,0,0,0,0]
caller: lib/application.js#FuncExpr@app.enable ,a98a97d
isCodeChanged: false
isBeforeThisChanged: true
isBeforeArgsChanged: false
isAfterThisChanged: true
isAfterArgsChanged: false
isRetChanged: true

[ANALYSIS]
Probably caused by the different arguments , please check its

CALLER "lib/application.js#FuncExpr@app.enable ,a98a97d" and
the different arguments that passed to this function.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set

,c7befa3 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.19: Report of First Deepest Function strategy in Express Bug-16.

Figure 4.19 presents the report generated by the First Deepest Function (FDF) strategy
for identifying the root cause of the regression. It reports the ‘app.enable’ function in
‘lib/application.js’ as the root cause of the regression. As with previous cases, the FDF
strategy fails in the Express Bug-16 case due to noisy functions and bad matching, leading
to an incorrect identification of the root cause.

Function (Counts)
-----------------------------------
lib/application.js#FuncExpr@app.set (12)
lib/router/index.js#FuncExpr@proto.match_layer (3)
lib/router/index.js#FuncExpr@proto.process_params (3)
lib/router/layer.js#FuncExpr@Layer.prototype.handle_request (3)

Fig. 4.20: Report of Top-n strategy in Express Bug-16.
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Figure 4.20 shows the output of the Top-n strategy in the Express Bug-16 case, listing
the functions most frequently appearing in the execution trace differences between the
base and buggy versions. Similar to Express Bug-1 case, the Top-n strategy also fails
to identify the real cause due to the big refactoring where function which introduces the
regression has not even executed in the base version.

4.2.6 Express Bug-18

1 var express = require(’../’)

2 , request = require(’supertest ’);

3

4 describe(’app’, function (){

5 describe(’.param(name , fn)’, function (){

6 it(’should call when values differ when using "next"’,

function(done) {

7 var app = express ();

8 var called = 0;

9 var count = 0;

10

11 app.param(’user’, function(req , res , next , user) {

12 called ++;

13 if (user === ’foo’) return next(’route ’);

14 req.user = user;

15 next();

16 });

17

18 app.get(’/:user/bob’, function(req , res , next) {

19 count ++;

20 next();

21 });

22 app.get(’/foo/:user’, function(req , res , next) {

23 count ++;

24 next();

25 });

26 app.use(function(req , res) {

27 res.end([count , called , req.user].join(’ ’));

28 });

29

30 request(app)

31 .get(’/foo/bob’)

32 .expect(’1 2 bob’, done);

33 })

34 })

35 })

Fig. 4.21: Test code to be executed in Express Bug-18.

Figure 4.21 shows the test code executed for Express Bug-18. This test is intended
to check the behavior of the Express app’s param function when parameter values differ,
using the next callback. The test sets up an Express app that defines a param middleware
for the user parameter, and routes to handle requests involving this parameter.
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0 passing (7s)
1 failing

1) app .param(name , fn) should call when values differ when using
"next":

Error: expected ’1 2 bob’ response body , got ’0 1 ’
at error (/home/icefox99/BugJS/express -result/Bug -18/ project/

express_run/node_modules/supertest/lib/test.js :227:13)
at Test.assert (/home/icefox99/BugJS/express -result/Bug -18/

project/express_run/node_modules/supertest/lib/test.js
:172:21)

at /home/icefox99/BugJS/express -result/Bug -18/ project/
express_run/node_modules/supertest/lib/test.js :125:10

at Request.callback (/home/icefox99/BugJS/express -result/Bug
-18/ project/express_run/node_modules/superagent/lib/node/
index.js :728:30)

at Test.<anonymous > (/home/icefox99/BugJS/express -result/Bug
-18/ project/express_run/node_modules/superagent/lib/node/
index.js :135:10)

at Test.emit (node:events :520:28)
at IncomingMessage.<anonymous > (/home/icefox99/BugJS/express -

result/Bug -18/ project/express_run/node_modules/superagent
/lib/node/index.js :886:12)

at IncomingMessage.emit (node:events :532:35)
at endReadableNT (node:internal/streams/readable :1696:12)
at process.processTicksAndRejections (node:internal/process/

task_queues :82:21)

Fig. 4.22: Output of regression bug in Express Bug-18.

Figure 4.22 displays the shell output of the test code above in the Express Bug-18
regression commit. The test fails because the response body does not match the expected
’1 2 bob’. Instead, it returns ’0 1 ’, indicating that the param middleware and subsequent
route handling did not function as expected.
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[TEST 132 & 132] lib/express.js#Func@createApplication/
FuncVar@app ,33 a3a6c

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set
,0 df81d5 ~~~~~~~~~~~~~~~~~~~~

[CODE]
function (setting , val) {

if (1 == arguments.length) {
return this.settings[setting ];

} else {
this.settings[setting] = val;
if (setting === ’trust proxy ’) {

debug(’compile trust proxy %j’, val);
this.set(’trust proxy fn’, compileTrust(val));

}
return this;

}
}

[DETAILS]
index: [132,0,0,0]
caller: lib/application.js#AnonFunc@4c5011c/FuncExpr@app[method],

d2e1ded
isCodeChanged: false
isBeforeThisChanged: true
isBeforeArgsChanged: false
isAfterThisChanged: true
isAfterArgsChanged: false
isRetChanged: false

[ANALYSIS]
Probably caused by the different arguments , please check its

CALLER "lib/application.js#AnonFunc@4c5011c/FuncExpr@app[
method],d2e1ded" and the different arguments that passed to
this function.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set

,0 df81d5 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.23: Report of First Deepest Function strategy in Express Bug-18.

Figure 4.23 presents the report generated by the First Deepest Function (FDF) strategy
for identifying the root cause of the regression. It reports the ‘FuncExpr@app[method]’
function in ‘lib/application.js’ as the root cause of the regression. As with previous cases,
the FDF strategy fails in the Express Bug-18 case due to noisy functions and bad matching,
leading to an incorrect identification of the root cause.

Function (Counts)
-----------------------------------
lib/router/index.js#FuncExpr@proto.process_params (4)
lib/application.js#FuncExpr@app.set (2)
lib/express.js#Func@createApplication/FuncVar@app (1)
lib/application.js#FuncExpr@app.handle (1)

Fig. 4.24: Report of Top-n strategy in Express Bug-18.

Figure 4.24 shows the output of the Top-n strategy in the Express Bug-18 case, listing
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the functions most frequently appearing in the execution trace differences between the base
and buggy versions. Unlike the FDF strategy, the Top-n strategy successfully includes the
root cause ‘proto.process params’ function in its list of candidates, again demonstrating
its effectiveness in this case.

4.2.7 Express Bug-27

1 var express = require(’../’)

2 , request = require(’supertest ’);

3

4 describe(’app’, function (){

5 describe(’.param(name , fn)’, function (){

6 it(’should defer all the param routes ’, function(done){

7 var app = express ();

8

9 app.param(’id’, function(req , res , next , val){

10 if (val === ’new’) return next(’route ’);

11 return next();

12 });

13

14 app.all(’/user/:id’, function(req , res){

15 res.send(’all.id’);

16 });

17

18 app.get(’/user/:id’, function(req , res){

19 res.send(’get.id’);

20 });

21

22 app.get(’/user/new’, function(req , res){

23 res.send(’get.new’);

24 });

25

26 request(app)

27 .get(’/user/new’)

28 .expect(’get.new’, done);

29 })

30 })

31 })

Fig. 4.25: Test code to be executed in Express Bug-27.

Figure 4.25 shows the test code executed for Express Bug-27 case. This test aims
to check the behavior of the Express app’s param function, ensuring it defers all the
parameterized routes when a specific condition is met.
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0 passing (15s)
1 failing

1) app .param(name , fn) should defer all the param routes:
Error: expected ’get.new’ response body , got ’get.id’
at error (/home/icefox99/BugJS/express -result/Bug -27/ project/

express_run/node_modules/supertest/lib/test.js :227:13)
at Test.assert (/home/icefox99/BugJS/express -result/Bug -27/

project/express_run/node_modules/supertest/lib/test.js
:172:21)

at /home/icefox99/BugJS/express -result/Bug -27/ project/
express_run/node_modules/supertest/lib/test.js :125:10

at Request.callback (/home/icefox99/BugJS/express -result/Bug
-27/ project/express_run/node_modules/superagent/lib/node/
index.js :728:30)

at Test.<anonymous > (/home/icefox99/BugJS/express -result/Bug
-27/ project/express_run/node_modules/superagent/lib/node/
index.js :135:10)

at Test.emit (node:events :520:28)
at IncomingMessage.<anonymous > (/home/icefox99/BugJS/express -

result/Bug -27/ project/express_run/node_modules/superagent
/lib/node/index.js :886:12)

at IncomingMessage.emit (node:events :532:35)
at endReadableNT (node:internal/streams/readable :1696:12)
at process.processTicksAndRejections (node:internal/process/

task_queues :82:21)

Fig. 4.26: Output of regression bug in Express Bug-27.

Figure 4.26 displays the shell output of the test code above in the Express Bug-27
regression commit. The test fails because the response body does not match the ex-
pected ’get.new’. Instead, it returns ’get.id’, indicating that the param middleware and
subsequent route handling did not function as expected.
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[TEST 131 & 131] test/app.param.js#AnonFunc@f1dc271/
AnonFunc@18393e7/AnonFunc@4239e69 ,4239 e69

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set
,0 df81d5 ~~~~~~~~~~~~~~~~~~~~

[CODE]
function (setting , val) {

if (1 == arguments.length) {
return this.settings[setting ];

} else {
this.settings[setting] = val;
if (setting === ’trust proxy ’) {

debug(’compile trust proxy %j’, val);
this.set(’trust proxy fn’, compileTrust(val));

}
return this;

}
}

[DETAILS]
index: [131,0,0,0,0,0]
caller: lib/application.js#FuncExpr@app.enable ,a98a97d
isCodeChanged: false
isBeforeThisChanged: true
isBeforeArgsChanged: false
isAfterThisChanged: true
isAfterArgsChanged: false
isRetChanged: true

[ANALYSIS]
Probably caused by the different arguments , please check its

CALLER "lib/application.js#FuncExpr@app.enable ,a98a97d" and
the different arguments that passed to this function.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/application.js#FuncExpr@app.set

,0 df81d5 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.27: Report of First Deepest Function strategy in Express Bug-27.

Figure 4.27 presents the report generated by the First Deepest Function (FDF) strategy
for identifying the root cause of the regression. It reports the ‘app.enable’ function in
‘lib/application.js’ as the root cause of the regression. Similar to previous cases, the FDF
strategy fails in the Express Bug-27 case due to noisy functions and bad matching, leading
to an incorrect identification of the root cause.

Function (Counts)
-----------------------------------
lib/application.js#FuncExpr@app.all/AnonFunc@68e1170 (34)
lib/router/route.js#AnonFunc@cea325e/FuncExpr@Route.prototype[

method] (34)
lib/application.js#FuncExpr@app.set (13)
lib/router/index.js#FuncExpr@proto.process_params (4)

Fig. 4.28: Report of Top-n strategy in Express Bug-27.

Figure 4.28 shows the output of the Top-n strategy in the Express Bug-27 case, listing
the functions most frequently appearing in the execution trace differences between the base
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and buggy versions. Unlike the FDF strategy, the Top-n strategy successfully includes
root cause ‘proto.process params’ function in its list of candidates.

4.2.8 ESLint Bug-10

1 ...

2

3 describe("Config", () => {

4 ...

5 describe("new Config ()", () => {

6 it("should create config object when using baseConfig with

extends", () => {

7 const customBaseConfig = {

8 extends: path.resolve(__dirname , "..", "fixtures", "

config -extends", "array", ".eslintrc")

9 };

10 const configHelper = new Config ({ baseConfig:

customBaseConfig }, linter);

11

12 assert.deepEqual(configHelper.baseConfig.env , {

13 browser: false ,

14 es6: true ,

15 node: true

16 });

17 assert.deepEqual(configHelper.baseConfig.rules , {

18 "no-empty": 1,

19 "comma -dangle": 2,

20 "no-console": 2

21 });

22 });

23 });

24 });

Fig. 4.29: Test code to be executed in ESLint Bug-10.

Figure 4.29 shows the test code executed for ESLint Bug-10. This test is designed to
validate the creation of a configuration object when using baseConfig with extends in
ESLint.
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Config
new Config ()

1) should create config object when using baseConfig with
extends

0 passing (13ms)
1 failing

1) Config new Config () should create config object when using
baseConfig with extends:
TypeError: Cannot read properties of undefined (reading ’

getConfig ’)
Referenced from: undefined
at Bugfox_Original_load (lib/config/config -file.js :535:52)
at load (lib/config/config -file.js :552:49)
at Bugfox_Original_7fe8e43 (lib/config/config -file.js :387:34)
at lib/config/config -file.js :398:113
at Array.reduceRight (<anonymous >)
at Bugfox_Original_applyExtends (lib/config/config -file.js

:378:28)
at applyExtends (lib/config/config -file.js :411:57)
at Object.Bugfox_Original_loadObject (lib/config/config -file.

js :519:35)
at Object.loadObject (lib/config/config -file.js :526:55)
at new Config (lib/config.js :36:75)
at Object.Bugfox_Original_e0b53fd (tests/lib/config.js

:179:34)
at Context.<anonymous > (tests/lib/config.js :198:117)
at process.processImmediate (node:internal/timers :478:21)

Fig. 4.30: Output of regression bug in ESLint Bug-10.

Figure 4.30 shows the output of the test run for ESLint Bug-10. The test fails because
of a TypeError, indicating an issue with reading ‘getConfig’ properties from an undefined
value. This suggests that there may be a problem with the Config class’s handling of its
internal configuration loading and creation.
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[TEST 63 & 63] tests/lib/config.js#AnonFunc@654adbe/
AnonFunc@3ce9193/AnonFunc@e0b53fd ,e0b53fd

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/config.js#Class@Config/
Method@constructor ,3 bee095 ~~~~~~~~~~~~~~~~~~~~

[CODE_DIFF]
@@ -2,24 +2,42 @@
...
+ this.cliConfig = {};
+ Object.keys(cliConfigOptions).forEach(configKey => {
+ const value = cliConfigOptions[configKey ];
+ if (value) {
+ this.cliConfig[configKey] = value;
+ }
+ });
}

[DETAILS]
index: [63 ,0]
caller: tests/lib/config.js#AnonFunc@654adbe/AnonFunc@3ce9193/

AnonFunc@e0b53fd ,e0b53fd
isCodeChanged: true
isBeforeThisChanged: false
isBeforeArgsChanged: false
isAfterThisChanged: true
isAfterArgsChanged: true
isRetChanged: true

[ANALYSIS]
Probably caused by the update of this function , please check this

function ’s modification and its callee.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/config.js#Class@Config/

Method@constructor ,3 bee095 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.31: Report of First Deepest Function strategy in ESLint Bug-10.

Figure 4.31 shows the results from the First Deepest Function (FDF) strategy applied to
ESLint Bug-10. It precisely identifies the update of constructor method of the Config class
in ‘lib/config.js’ as the root cause of the regression, successfully analyzing and resolving
this regression.

Function (Counts)
-----------------------------------
lib/config.js#Class@Config/Method@constructor (1)
lib/config/plugins.js#Class@Plugins/Method@constructor (1)

Fig. 4.32: Report of Top-n strategy in ESLint Bug-10.

Figure 4.32 displays the output of the Top-n strategy for ESLint Bug-10. This strategy
also identifies relevant functions, including the ‘constructor’ method of the ‘Config’ class.
Both the FDF and Top-n strategies successfully pinpoint the root cause of the regression
in this case, demonstrating their effectiveness in identifying issues. We notice that both
strategies work well when two versions of call graph of one program execution is concise
and easy to match.
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4.2.9 ESLint Bug-134

1 "use strict";

2

3 const rule = require("../../../ lib/rules/no -useless -escape"),

4 RuleTester = require("../../../ lib/testers/rule -tester");

5

6 const ruleTester = new RuleTester ();

7

8 ruleTester.run("no -useless -escape", rule , {

9 valid :[

10 {code: "var foo = String.raw ‘\\.‘", parserOptions: {

ecmaVersion: 6}},

11 {code: "var foo = myFunc ‘\\.‘", parserOptions: {ecmaVersion:

6}}

12 ],

13 invalid: []

14 });

Fig. 4.33: Test code to be executed in ESLint Bug-134.

Figure 4.33 shows the test code executed for ESLint Bug-134. This test aims to check
the rule no-useless-escape in ESLint, ensuring it correctly identifies unnecessary escape
sequences in template literals.
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no -useless -escape
valid

1) var foo = String.raw ‘\.‘
2) var foo = myFunc ‘\.‘

0 passing (2s)
2 failing

1) no-useless -escape valid var foo = String.raw ‘\.‘:

AssertionError [ERR_ASSERTION ]: Should have no errors but had
1: [

...
]

+ expected - actual

-1
+0

at Bugfox_Original_testValidTemplate (lib/testers/rule -tester
.js :415:18)

at testValidTemplate (lib/testers/rule -tester.js :423:68)
at Context.Bugfox_Original_848fa9a (lib/testers/rule -tester.

js :492:23)
at Context.<anonymous > (lib/testers/rule -tester.js :499:127)
at process.processImmediate (node:internal/timers :478:21)

2) no-useless -escape valid var foo = myFunc ‘\.‘:

AssertionError [ERR_ASSERTION ]: Should have no errors but had
1: [

...
]

+ expected - actual

-1
+0

at Bugfox_Original_testValidTemplate (lib/testers/rule -tester
.js :415:18)

at testValidTemplate (lib/testers/rule -tester.js :423:68)
at Context.Bugfox_Original_848fa9a (lib/testers/rule -tester.

js :492:23)
at Context.<anonymous > (lib/testers/rule -tester.js :499:127)
at process.processImmediate (node:internal/timers :478:21)

Fig. 4.34: Output of regression bug in ESLint Bug-134.

Figure 4.34 shows the output of the test run for ESLint Bug-134. The test fails because
of AssertionError, indicating that the rule no-useless-escape incorrectly flags valid escape
sequences in template literals as errors. This suggests an issue with the rule’s logic for
handling template literals.
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[TEST 31 & 31] lib/testers/rule -tester.js#PropFunc@run/
AnonFunc@fbe9ceb/AnonFunc@860ed11/AnonFunc@4cd2192/
AnonFunc@848fa9a ,848 fa9a

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/rules/no-useless -escape.js#
PropFunc@create ,0204 c84 ~~~~~~~~~~~~~~~~~~~~

[CODE_DIFF]
@@ -1,25 +1,39 @@
function (context) {

- function validate(escapes , node , elm) {
- const escapeNotFound = escapes.indexOf(elm [0][1]) === -1;
- const isQuoteEscape = elm [0][1] === node.raw [0];
- if (escapeNotFound && !isQuoteEscape) {
+ function validate(escapes , node , match) {
+ const isTemplateElement = node.type === "TemplateElement";
+ const escapedChar = match [0][1];
+ let isUnnecessaryEscape = escapes.indexOf(escapedChar) ===

-1;
+ let isQuoteEscape;

...

return {
- Literal: check
+ Literal: check ,
+ TemplateElement: check

};
}

[DETAILS]
index: [31,0,0,4,8,4,3]
caller: lib/testers/rule -tester.js#PropFunc@run/

Func@runRuleForItem/FuncExpr@rules.get/PropFunc@create ,14667
c0

isCodeChanged: true
isBeforeThisChanged: false
isBeforeArgsChanged: false
isAfterThisChanged: false
isAfterArgsChanged: false
isRetChanged: true

[ANALYSIS]
Probably caused by the update of this function , please check this

function ’s modification and its callee.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/rules/no-useless -escape.js#

PropFunc@create ,0204 c84 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.35: Report of First Deepest Function strategy in ESLint Bug-134.

Figure 4.35 shows the results from the First Deepest Function (FDF) strategy applied to
ESLint Bug-134. In the analysis section, it reports the modification of ‘create’ method in
‘lib/rules/no-useless-escape.js’ as the root cause of the regression, which meet the expected
result.
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Function (Counts)
-----------------------------------
lib/util/comment -event -generator.js#Func@emitComments (40)
lib/util/comment -event -generator.js#Func@emitCommentsExit (20)
lib/util/comment -event -generator.js#Func@emitCommentsEnter (20)
lib/code -path -analysis/code -path -analyzer.js#

Func@forwardCurrentToHead (18)

Fig. 4.36: Report of Top-n strategy in ESLint Bug-134.

Figure 4.36 displays the output of the Top-n strategy for ESLint Bug-134. This strategy
is also affected by plentiful noisy function calls in this case, which override the ground
truth.

4.2.10 ESLint Bug-307

1 "use strict";

2

3 const rule = require("../../../ lib/rules/no -multi -spaces"),

4 RuleTester = require("../../../ lib/testers/rule -tester");

5

6 const ruleTester = new RuleTester ();

7

8 ruleTester.run("no -multi -spaces", rule , {

9 valid: [

10 "foo\t\t+bar"

11 ],

12

13 invalid: []

14 });

Fig. 4.37: Test code to be executed in ESLint Bug-307.

Figure 4.37 shows the test code executed for ESLint Bug-307. This test checks the rule
no-multi-spaces in ESLint, ensuring it correctly identifies and handles multiple spaces in
the code.
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no -multi -spaces
valid

1) foo +bar

0 passing (52ms)
1 failing

1) no-multi -spaces valid foo +bar:
ReferenceError: Cannot access ’result ’ before initialization
at Traverser.Bugfox_Original_enter (lib/util/source -code.js

:229:20)
at Traverser.enter (lib/util/source -code.js :240:56)
at Traverser.__execute (node_modules/estraverse/estraverse.js

:330:31)
at Traverser.traverse (node_modules/estraverse/estraverse.js

:434:28)
...
at runRuleForItem (lib/testers/rule -tester.js :297:63)
at Bugfox_Original_testValidTemplate (lib/testers/rule -tester

.js :322:24)
at testValidTemplate (lib/testers/rule -tester.js :332:66)
at RuleTester.Bugfox_Original_41dd692 (lib/testers/rule -

tester.js :450:21)
at Context.<anonymous > (lib/testers/rule -tester.js :457:125)
at process.processImmediate (node:internal/timers :478:21)

Fig. 4.38: Output of regression bug in ESLint Bug-307.

Figure 4.38 shows the output of the test run for ESLint Bug-307. The test fails due to a
ReferenceError, indicating that the variable result is being accessed before it is initialized.
This suggests a problem within the no-multi-spaces rule logic.
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[TEST 61 & 61] lib/testers/rule -tester.js#Class@RuleTester/
Method@run/AnonFunc@51b6cbc/AnonFunc@c25a022/AnonFunc@dd0e62e
/AnonFunc@41dd692 ,41 dd692

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/rules/no-multi -spaces.js#
PropFunc@create/PropFunc@Program ,91 f0088 ~~~~~~~~~~~~~~~~~~~~

[CODE_DIFF]
@@ -1,39 +1,37 @@
function () {

- const source = sourceCode.getText (), allComments = sourceCode.
getAllComments (), pattern = /[^\s].*? {2,}/g;

- let parent;
- while (pattern.test(source)) {
- if (! isIndexInComment(pattern.lastIndex , allComments)) {
- const token = sourceCode.getTokenByRangeStart(pattern.

lastIndex , {
- includeComments: true
- });

...

+ sourceCode.tokensAndComments.forEach ((leftToken , leftIndex ,
tokensAndComments) => {

+ if (leftIndex === tokensAndComments.length - 1) {
+ return;
+ }
+ const rightToken = tokensAndComments[leftIndex + 1];
+ if (leftToken.range [1] + 2 > rightToken.range [0] ||

leftToken.loc.end.line < rightToken.loc.start.line) {
+ return;
+ }

...

+ });
}

[DETAILS]
index: [61,1,0,5,12,0,0,1,0,0,1]
caller: lib/util/node -event -generator.js#Class@NodeEventGenerator

/Method@applySelector ,04754 ee
isCodeChanged: true
isBeforeThisChanged: false
isBeforeArgsChanged: false
isAfterThisChanged: true
isAfterArgsChanged: true
isRetChanged: false

[ANALYSIS]
Probably caused by the update of this function , please check this

function ’s modification and its callee.

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/rules/no-multi -spaces.js#

PropFunc@create/PropFunc@Program ,91 f0088 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.39: Report of First Deepest Function strategy in ESLint Bug-307.

Figure 4.39 shows the results from the First Deepest Function (FDF) strategy applied
to ESLint Bug-307. It precisely reports the ‘Program’ method in ‘lib/rules/no-multi-
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spaces.js’ as the root cause of the regression, which meets the ground truth.

Function (Counts)
-----------------------------------
lib/testers/rule -tester.js#Class@RuleTester/Method@run/

Func@testValidTemplate (1)
lib/testers/rule -tester.js#Class@RuleTester/Method@run/

Func@runRuleForItem (1)
lib/linter.js#Class@Linter/Method@verify (1)
lib/util/traverser.js#Class@Traverser/Method@traverse (1)

Fig. 4.40: Report of Top-n strategy in ESLint Bug-307.

Figure 4.40 displays the output of the Top-n strategy for ESLint Bug-307. Due to noisy
function calls and few samples in the extracted differences, the expected result is not
reported by Top-n strategy.

4.2.11 Hessian.js Bug-2

1 "use strict";

2

3 var should = require(’should ’);

4 var hessian = require(’../’);

5 var utils = require(’./utils ’);

6

7 describe(’map.test.js’, function () {

8 it(’should decode successful when key is null’, function () {

9 var data = new Buffer ([77, 116, 0, 0, 78, 83, 0, 4, 110, 117,

108, 108, 122]);

10 var rv = hessian.decode(data);

11 rv.should.eql({null: ’null’});

12 });

13 });

Fig. 4.41: Test code to be executed in Hessian.js Bug-2.

Figure 4.41 shows the test code executed for Hessian.js Bug-2. This test aims to decode
a buffer when the key is null and check if the output matches the expected result.
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map.test.js
1) should decode successful when key is null

0 passing (5ms)
1 failing

1) map.test.js
should decode successful when key is null:

AssertionError: expected Object {} to equal Object { null: ’
null’ }

+ expected - actual

-{}
+{
+ "null": "null"
+}

at Assertion.fail (node_modules/should/cjs/should.js :326:17)
at Assertion.value (node_modules/should/cjs/should.js :398:19)
at Context.Bugfox_Original_4ec982c (test/map.test.js :12:19)
at Context.<anonymous > (test/map.test.js :21:113)
at process.processImmediate (node:internal/timers :478:21)

Fig. 4.42: Output of regression bug in Hessian.js Bug-2.

Figure 4.42 shows the output of the test run for Hessian.js Bug-2. The test fails with an
AssertionError, indicating that the decoded object does not match the expected result.
The expected object has a key null with the value ’null’, but the actual object is empty.
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[TEST 51 & 51] test/map.test.js#AnonFunc@2147632/AnonFunc@4ec982c
,4 ec982c

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/v1/decoder.js#FuncExpr@proto.
_addRef ,f212d01 ~~~~~~~~~~~~~~~~~~~~

[CODE]
function (obj) {

this.refMap[this.refId ++] = obj;
}

[DETAILS]
index: [51,0,1,0,2]
caller: lib/v1/decoder.js#FuncExpr@proto.readObject ,025 a099
isCodeChanged: false
isBeforeThisChanged: false
isBeforeArgsChanged: true
isAfterThisChanged: true
isAfterArgsChanged: true
isRetChanged: false

[ANALYSIS]
Probably caused by the different arguments , please check its

CALLER "lib/v1/decoder.js#FuncExpr@proto.readObject ,025 a099"
and the different arguments that passed to this function.

...

[COMPARISON]
...
BASE ->beforeArgs: [{"$class":"java.util.HashMap","$":{}}]
NEW -->beforeArgs: [{"$class":"java.util.HashMap","$":{"$map"

:{}}}]
DIFF:
@@ -1,6 +1,8 @@
[

{
"$class": "java.util.HashMap",

- "$": {}
+ "$": {
+ "$map": {}
+ }

}
]

...
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/v1/decoder.js#FuncExpr@proto.

_addRef ,f212d01 ~~~~~~~~~~~~~~~~~~~~

Fig. 4.43: Report of First Deepest Function strategy in Hessian.js Bug-2.

Figure 4.43 shows the results from the First Deepest Function (FDF) strategy applied
to Hessian.js Bug-2. The strategy successfully identifies the function ‘proto.readObject’
in ‘lib/v1/decoder.js’ as root cause of the issue. The analysis suggests that the different
arguments passed to function ‘proto. addRef’ in ‘lib/v1/decoder.js’ might be causing the
problem. The differences of function arguments between two version explicitly pointed out
the issue might be caused by the update of code dealing with hash map in that commit.
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Function (Counts)
-----------------------------------
lib/v1/decoder.js#FuncExpr@proto.read (3)
index.js#FuncExpr@exports.decode (1)
lib/v1/decoder.js#FuncExpr@proto.read (1)
lib/v1/decoder.js#FuncExpr@proto.readObject (1)

Fig. 4.44: Report of Top-n strategy in Hessian.js Bug-2.

Figure 4.44 displays the output of the Top-n strategy for Hessian.js Bug-2. This strategy
identifies functions based on their invocation counts. Both the FDF and Top-n strategies
successfully point to the ‘proto.readObject‘ function in ‘lib/v1/decoder.js‘ as the source
of the regression.

4.2.12 Hessian.js Bug-8

1 ’use strict ’;

2 ...

3

4 describe(’hessian v1’, function () {

5 afterEach(function () {

6 encoder.clean ();

7 decoder.clean ();

8 });

9

10 describe(’long’, function () {

11 it(’should write and read long ok’, function () {

12 var tests = [

13 ...

14 [’9007199254740992 ’, ’<Buffer 4c 00 20 00 00 00 00 00 00>

’],

15 [’9007199254740993 ’, ’<Buffer 4c 00 20 00 00 00 00 00 01>

’],

16 [’9223372036854775807 ’, ’<Buffer 4c 7f ff ff ff ff ff ff

ff>’],

17 ];

18

19 tests.forEach(function (t) {

20 var buf = encoder.writeLong(t[0]).get();

21 buf.inspect ().should.equal(t[1]);

22 decoder.init(buf).readLong ().should.eql(t[0]);

23 encoder.clean ();

24 decoder.clean ();

25 });

26 });

27 });

28 });

Fig. 4.45: Test code to be executed in Hessian.js Bug-8.

Figure 4.45 shows the test code executed for Hessian.js Bug-8. This test aims to write
and read various long integer values and check if the output matches the expected buffer
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representation.

hessian v1
long

1) should write and read long ok

0 passing (30ms)
1 failing

1) hessian v1
long

should write and read long ok:
AssertionError: expected 9007199254740992 to equal ’

9007199254740992 ’
at Assertion.fail (node_modules/should/lib/assertion.js

:196:17)
at prop.<computed > (node_modules/should/lib/assertion.js

:81:17)
at Bugfox_Original_efe399a (test/v1.test.js :41:53)
at /home/icefox99/BugJS/hessian -result/Bug -8/ project/

hessian_run/test/v1.test.js :50:121
at Array.forEach (<anonymous >)
at Context.Bugfox_Original_fa86bb7 (test/v1.test.js :37:19)
at Context.<anonymous > (test/v1.test.js :62:117)
at process.processImmediate (node:internal/timers :478:21)

Fig. 4.46: Output of regression bug in Hessian.js Bug-8.

Figure 4.46 shows the output of the test run for Hessian.js Bug-8. The test fails with
an AssertionError, indicating that the decoded value does not match the expected result.
The expected value is a string ‘9007199254740992’, but the actual value is a number
9007199254740992. It is clearly a type error when handling long data type in JavaScript.
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[TEST 53 & 53] test/v1.test.js#AnonFunc@52d7217/AnonFunc@3df64bc/
AnonFunc@fa86bb7 ,fa86bb7

~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/utils.js#FuncExpr@exports.
handleLong ,bc708aa ~~~~~~~~~~~~~~~~~~~~

[CODE_DIFF]
@@ -1,8 +1,8 @@
function (val) {

- if (val.greaterThan(MAX_SAFE_INT) || val.lessThan(MIN_SAFE_INT
)) {

- val = val.toString ();
- debug(’[hessian.js Warning] Read a not safe long(%s),

translate it to string ’, val);
- return val;
+ var notSafeInt = val.high > MAX_INT_HIGH || val.high ===

MAX_INT_HIGH && val.low > 0 || val.high < -1 * MAX_INT_HIGH
|| val.high === -1 * MAX_INT_HIGH && val.low < 0;

+ if (notSafeInt) {
+ debug(’[hessian.js Warning] Read a not safe long , translate

it to string ’);
+ return val.toString ();

}
return val.toNumber ();

}

[DETAILS]
index: [53,6,3,1]
caller: lib/v1/decoder.js#FuncExpr@proto.readLong ,29 bd6be
isCodeChanged: true
isBeforeThisChanged: false
isBeforeArgsChanged: false
isAfterThisChanged: false
isAfterArgsChanged: false
isRetChanged: true

[ANALYSIS]
Probably caused by the update of this function , please check this

function ’s modification and its callee.

...

[COMPARISON]
...
BASE ->returnVal: "9007199254740992"
NEW -->returnVal: 9007199254740992
DIFF:
@@ -1 +1 @@
-"9007199254740992"
+9007199254740992
~~~~~~~~~~~~~~~~~~~~ FUNCTION: lib/utils.js#FuncExpr@exports.

handleLong ,bc708aa ~~~~~~~~~~~~~~~~~~~~

Fig. 4.47: Report of First Deepest Function strategy in Hessian.js Bug-8.

Figure 4.47 shows the results from the First Deepest Function (FDF) strategy applied
to Hessian.js Bug-8. The strategy successfully identifies the function ‘exports.handleLong’
in ‘lib/utils.js’ as the root cause of the issue. The analysis suggests that the update of this
function might be causing the problem due to changes in how it handles the long integer
values.
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Function (Counts)
-----------------------------------
test/v1.test.js#AnonFunc@52d7217/AnonFunc@3df64bc/

AnonFunc@fa86bb7/AnonFunc@efe399a (1)
lib/v1/decoder.js#FuncExpr@proto.readLong (1)
lib/utils.js#FuncExpr@exports.handleLong (1)
lib/v1/decoder.js#FuncExpr@proto.handleType (1)

Fig. 4.48: Report of Top-n strategy in Hessian.js Bug-8.

Figure 4.48 displays the output of the Top-n strategy for Hessian.js Bug-8. This strategy
identifies functions based on their invocation counts. Both the FDF and Top-n strategies
successfully point to the ‘exports.handleLong’ function in ‘lib/utils.js’ as the source of the
regression.

4.3 RQ2: Can Bugfox meet the performance demands in

real-world development?
To evaluate the performance of our system, we record the running time of different stages
in Bugfox, the lines of code (LOC) of each test project, and the size of tracing log of entire
program. The size of tracing log is used as the approximation of memory overhead.

In terms of code transformation, Table 4.3 demonstrates the lines of code (LoC) of
each regression and their corresponding transformation time. It can be seen that the
regressions from ESLint project spend more time that other regressions. This is because
that ESLint, as a static code analysis tool for identifying problematic patterns find in
JavaScript code, contains a huge numbers of unit tests, resulting in thousands of functions
being transformed in runtime. However, since code transformation is a one-time task in
our workflow and all such transformations spend only a few seconds, we argue that the
time of code transformation is acceptable in real usage of this system.

Project Bug-ID Lines of code
Code transformation

runtime

Express 1 7211 1.145 s

Express 8 10189 1.426 s

Express 9 9631 1.393 s

Express 13 7630 1.153 s

Express 16 9653 1.403 s

Express 18 8309 1.231 s

Express 27 8306 1.206 s

ESLint 10 222470 7.331 s

ESLint 134 169489 6.422 s

ESLint 307 225086 7.335 s

hessian.js 2 4805 1.016 s

hessian.js 8 4339 950.017 ms

Table 4.3: Lines of code and code transformation runtime.
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Table 4.4 demonstrates the overall performance of Bugfox on memory and runtime,
aiming to evaluate the overhead of applying tracing in our system. The 3rd column and
4th column show the runtime of the original program and instrumented program. The
comparison of these two columns illustrates the runtime overhead of tracing. It can be seen
that the overhead varies widely in our experiment. For example, in Bug-2 of hessian.js, the
runtime of the instrumented program is only 1.3 times larger than the original program,
while in Bug-8 of Express, the ratio increases to 2400 times. After inspecting the detail
of traces, we speculate that this discrepancy is caused by different amount of data being
traced and time spent on their object serialization. However, the maximum runtime
of instrumented program in our experiment takes less than 26 seconds, which could be
considered acceptable in real-world development process. The 5th column shows the time
spent on analyzing differences between traces, and in all cases, the maximum analysis
time is less than 10 seconds. The last column demonstrates the size of traces stored in the
disk, as an indicator to evaluate the memory overhead of tracing, it varies from 7MB to
132MB. In our experiment, our system spends less than 1 minute for solving a regression
with memory overhead less than 200MB for all cases. Compared with manual debugging,
Bugfox observably saves time for our users and meet our expected performance demands.

Project Bug-ID
Original
runtime

Runtime of
instrumented program

Analysis time
of differences

Size of
trace

Express 1 12 ms 3 s 527.086 ms 28 MB

Express 8 12 ms 18s 277.583 ms 125MB

Express 9 2 ms 3 s 1.807 s 41 MB

Express 13 12 ms 18 s 4.591 s 93 MB

Express 16 11 ms 26 s 6.457 s 132 MB

Express 18 10 ms 15 s 1.633 s 80 MB

Express 27 13 ms 23 s 8.085 s 99 MB

ESLint 10 24 ms 35 ms 162.41 ms 24 MB

ESLint 134 15 ms 2 s 1.136s 7 MB

ESLint 307 18 ms 236 ms 265.122 ms 8 MB

hessian.js 2 3 ms 4 ms 197.577 ms 39 MB

hessian.js 8 5 ms 33 ms 165.294 ms 41 MB

Table 4.4: Overall performance of Bugfox on memory and runtime.

4.4 Threats to validity
There are several threats to internal validity of our evaluation. The number of regression
cases used in our experiment is very limited, which may lead to bias of experimental re-
sults. Further benchmarking with different test frameworks is needed to comprehensively
evaluate our system. Moreover, the use of heuristic strategies in localizing the suspicious
functions also reduces the generalizability of Bugfox. In particular, the selection of value
n (number of candidates) in Top-n strategy is highly ad-hoc. Further research is required
to analyze the setting of this parameter.

As explained in the failures of Bug-1 and Bug-16 in Express, our current approach
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has limitations on dealing with regressions with large scale refactoring or noisy functions,
as they are lead to great difficulty on matching two call graphs and extracting usable
differences for later analysis. Furthermore, as shown in Table 4.4, the overhead of tracing
varies a lot across different regression cases. Although Bugfox can work smoothly on tested
modules with small granularity, the overhead of complete tracing would be enormous on
middle-level tested modules or integration testing.
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Chapter 5

Conclusion

5.1 Summary
Addressing software regression heavily relies on manual debugging in software develop-
ment, and there is a clear need for automated tools to enhance the efficiency of regression
testing. In this thesis, we propose Bugfox as a tool aimed at improving this process. Bug-
fox operates by inserting instrumentation into programs to trace their complete execution,
allowing for the localization of regression causes by comparing the execution traces of both
the clean and faulty versions of a program.

In our evaluation, Bugfox was tested on 12 real-world regression cases. The FDF strat-
egy successfully resolved 6 regressions, while the Top-n strategy identified an additional
4 regressions, leading to an overall accuracy of 83%. Remarkably, Bugfox achieves this
level of accuracy while maintaining performance, processing each regression in under one
minute and using less than 200 megabytes of memory. These results indicate that Bugfox
can effectively assist developers in diagnosing and resolving regressions within real-world
development environments.

Bugfox represents a practical approach to automating the localization of regression
causes, addressing a significant challenge in software maintenance. By utilizing execution
traces and heuristic analysis, Bugfox aids developers in identifying the root causes of re-
gressions more efficiently compared to traditional manual debugging methods. Its minimal
resource requirements make it feasible for integration into existing development workflows
with little additional overhead. Although Bugfox may not be a groundbreaking tool, it
demonstrates potential for enhancing the regression testing of JavaScript applications by
offering timely and actionable insights into regression bugs.

The tool’s ability to automate and streamline the regression debugging process marks
a step forward in improving software quality assurance. By reducing the time and effort
required for regression localization, Bugfox helps developers maintain the stability and
performance of their applications as they evolve.

5.2 Future Work
Our future work is to investigate how to automatically identify and collect the regressions
in open-source projects and retest our tool on a more comprehensive benchmark. Another
future work is reducing overheads due to obtaining execution trace in JavaScript.

Additionally, we aim to refine the heuristic strategies used by Bugfox to enhance its
accuracy and robustness further. Exploring machine learning techniques could be a po-
tential direction for improving regression localization. We also plan to investigate the
integration of Bugfox with other automated testing and debugging tools to create a more
comprehensive solution for software quality assurance. Finally, extending the application
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of Bugfox to other programming languages and environments could broaden its utility
and impact, making it a versatile tool for regression testing across different software
ecosystems. Through these efforts, we aim to improve Bugfox continuously and ensure its
relevance and effectiveness in the evolving landscape of software development.
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(1) Yuefeng Hu, Tetsuro Yamazaki, Shigeru Chiba. Pinpoint the Cause of Software
Regression in JavaScript. PPL 2024, March, 2024. (Poster)
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A

Experimental Details

Table A.1 shows the detailed experimental results of Bugfox on 12 regression test cases.
The 3rd column shows the ground truth of the root cause of regression. The 4th column
shows the function reported from FDF strategy and indicates which case it fits in Table
3.1. The 5th column shows top four candidates reported from Top-n strategy with n=4 in
descending order of frequency, where the number in parentheses indicates the frequency of
each candidate. Reported function in green color indicates that it matches the expected
result.

Project Bug-ID Expected result FDF strategy Top-n strategy with n=4

Express 1 lib/router/index.js#
FuncExpr@proto.handle

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.set (4)
lib/application.js#AnonFunc@d7d4b9c/FuncExpr@app[method] (4)

lib/application.js#FuncExpr@app.enable (2)
lib/express.js#Func@createApplication (1)

Express 8 lib/application.js#
FuncExpr@app.use

lib/application.js#
FuncExpr@app.use

(Case 5)

lib/utils.js#FuncExpr@exports.flatten (2)
lib/application.js#FuncExpr@app.use (1)

lib/application.js#FuncExpr@app.use/AnonFunc@497a64c (1)
lib/router/index.js#FuncExpr@proto.use (1)

Express 9 lib/application.js#
FuncExpr@app.use

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.set (46)
lib/application.js#FuncExpr@app.enabled (6)
lib/application.js#FuncExpr@app.use (5)

lib/application.js#FuncExpr@app.lazyrouter (5)

Express 13 lib/router/index.js#
FuncExpr@proto.process params

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.set (11)
lib/application.js#FuncExpr@app.enabled (3)

lib/application.js#AnonFunc@4c5011c/FuncExpr@app[method] (3)
lib/router/index.js#FuncExpr@proto.process params (3)

Express 16 lib/response.js#
FuncExpr@res.redirect

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.set (12)
lib/router/index.js#FuncExpr@proto.match layer (3)

lib/router/index.js#FuncExpr@proto.process params (3)
lib/router/layer.js#FuncExpr@Layer.prototype.handle request (3)

Express 18 lib/router/index.js#
FuncExpr@proto.process params

lib/application.js#
AnonFunc@4c5011c/FuncExpr@app[method]

(Case 5)

lib/router/index.js#FuncExpr@proto.process params (4)
lib/application.js#FuncExpr@app.set (2)

lib/express.js#Func@createApplication/FuncVar@app (1)
lib/application.js#FuncExpr@app.handle (1)

Express 27 lib/router/index.js#
FuncExpr@proto.process params

lib/application.js#
FuncExpr@app.enable

(Case 5)

lib/application.js#FuncExpr@app.all/AnonFunc@68e1170 (34)
lib/router/route.js#AnonFunc@cea325e/FuncExpr@Route.prototype[method] (34)

lib/application.js#FuncExpr@app.set (13)
lib/router/index.js#FuncExpr@proto.process params (4)

ESLint 10 lib/config.js#
Class@Config/Method@constructor

lib/config.js#
Class@Config/Method@constructor

(Case 2)

lib/config.js#Class@Config/Method@constructor (1)
lib/config/plugins.js#Class@Plugins/Method@constructor (1)

ESLint 134 lib/rules/no-useless-escape.js#
PropFunc@create

lib/rules/no-useless-escape.js#
PropFunc@create

(Case 2)

lib/util/comment-event-generator.js#Func@emitComments (40)
lib/util/comment-event-generator.js#Func@emitCommentsExit (20)
lib/util/comment-event-generator.js#Func@emitCommentsEnter (20)

lib/code-path-analysis/code-path-analyzer.js#Func@forwardCurrentToHead (18)

ESLint 307 lib/rules/no-multi-spaces.js#
PropFunc@create/PropFunc@Program

lib/rules/no-multi-spaces.js#
PropFunc@create/PropFunc@Program

(Case 2)

lib/testers/rule-tester.js#Class@RuleTester/Method@run/Func@testValidTemplate (1)
lib/testers/rule-tester.js#Class@RuleTester/Method@run/Func@runRuleForItem (1)

lib/linter.js#Class@Linter/Method@verify (1)
lib/util/traverser.js#Class@Traverser/Method@traverse (1)

hessian.js 2 lib/v1/decoder.js#
FuncExpr@proto.readObject

lib/v1/decoder.js#
FuncExpr@proto.readObject

(Case 1)

lib/v1/decoder.js#FuncExpr@proto.read (3)
index.js#FuncExpr@exports.decode (1)

lib/v1/decoder.js#FuncExpr@proto.read (1)
lib/v1/decoder.js#FuncExpr@proto.readObject (1)

hessian.js 8 lib/utils.js#
FuncExpr@exports.handleLong

lib/utils.js#
FuncExpr@exports.handleLong

(Case 2)

test/v1.test.js#AnonFunc@52d7217/AnonFunc@3df64bc/AnonFunc@fa86bb7/AnonFunc@efe399a (1)
lib/v1/decoder.js#FuncExpr@proto.readLong (1)
lib/utils.js#FuncExpr@exports.handleLong (1)

lib/v1/decoder.js#FuncExpr@proto.handleType (1)

Table A.1: Detailed experimental results of Bugfox on 12 regression test cases.


