
A practical tool for detecting cross-language code pairs with
similar control structures

Feng DAI
The University of Tokyo

Tokyo, Japan
daifeng@csg.ci.i.u-tokyo.ac.jp

Shigeru Chiba
The University of Tokyo

Tokyo, Japan
chiba@acm.org

ABSTRACT
Detecting cross-language code pairs with similar control structures
is of practical importance in software maintenance. In this paper, we
present a novel tool for fast and accurate detection of structurally-
similar cross-language code pairs. We manage to obtain a much
faster speed compared with the state-of-the-art technique and keep
very close accuracy.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
cross-language code pairs, code representation, software engineer-
ing, similar code pairs
ACM Reference Format:
Feng DAI and Shigeru Chiba. 2024. A practical tool for detecting cross-
language code pairs with similar control structures. In The 39th ACM/SIGAPP
Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain.
ACM, NewYork, NY, USA, Article 4, 3 pages. https://doi.org/10.1145/3605098.
3636134

1 INTRODUCTION
Similar code pairs have been known as a source of software-maintenance
problem [8] for decades. Recently, detecting similar code pairs in
different programming languages is attracting more interests as
software development is getting polyglot. We are particularly inter-
ested in cross-language code pairs with similar control structures
as they are more practical.

We develop a novel tool for fast and accurate detecting cross-
language code pairs with similar control structures. Our tool ex-
ploits neural-network models to pre-determine a few most-possible
candidates, and further calculates tree-based editing-distances de-
terministically to select the most similar code fragment pair in
control structures. To promote accuracy, we develop a new code
representation technique called two-level generic AST represen-
tation for neural-network models. We discover that constructing
two different kinds of generic ASTs can significantly increase the
success rate of pre-determination, and thus improve final accuracy.

We also create a code-pair dataset for evaluating detection of
cross-language code pairs with similar control structures. To the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0243-3/24/04.
https://doi.org/10.1145/3605098.3636134

best of our knowledge, we are the first to create a dataset specially
targeting at structurally-similar code pairs.

2 MOTIVATION
Detecting cross-language code pairs with similar control structures
is crucial in code refactoring and software maintenance when soft-
ware development is polyglot. One scenario is modern web-service
development where different platforms require different languages.
When two platforms implement the same logic, structurally-similar
cross-language code pairs may appear and result in code duplication.
For example, in Fig. 1, two clients implement the grouping-posts
feature because the server only provides an API to return a list
of the user posts. It leads to code duplication. For maintenance
efficiency and system stability, this pair of code fragments should
be grouped into a common API and moved to the server side.

Our goal is to find such code pairs. It is similar to traditional
cross-language code clone detection, but we are more focused on
similar control structures while traditional cross-language clone
detection mainly considers the same functionality and ignores de-
tailed implementations. In fact, it would be dangerous to ignore
detailed structures in real-world development. For example, if two
functions use different algorithms, merging them into the server
side might be dangerous. On the contrary, if two functions have
similar structures, they would implement the same or similar func-
tionality with a high possibility. Therefore, we are more interested
in structural similarity.

Tools [1, 4, 10, 12, 13, 15, 16] for traditional cross-language code
clone detection are not satisfying for structural similarity detec-
tion. They are either not specialized for structurally-similar cross-
language code pairs, or not applicable for large structurally-similar
cross-language code pair detection. [11] notices the importance
of similar control structures and provides a successful technique
for detecting similar structures between different languages. The
technique transforms an AST in a source language into a generic
AST, which is a language-agnostic intermediate tree-representation
among multiple languages, and calculates tree-based editing dis-
tances to discover similar trees or similar control structures in
source code. It can encompass syntactic features from different
languages while ignoring syntactical differences. This work uses a
simple design and a straight-forward node-to-node mapping, and
proves to be accurate enough in finding cross-language code pairs
with similar control structures. But its detection speed is very slow
since computing editing distances between generic ASTs is heavily
compute-intensive. Therefore, it is unrealistic to be used in large-
scale detection.

https://orcid.org/0009-0006-0995-2536
https://doi.org/10.1145/3605098.3636134
https://doi.org/10.1145/3605098.3636134
https://doi.org/10.1145/3605098.3636134

SAC ’24, April 8–12, 2024, Avila, Spain DAI and Chiba

1 de f g roup_pos t s :
2 r e s = { }
3 f o r po s t in p o s t s :
4 bucke t = r e s . s e t d e f a u l t (po s t . owner , [])
5 bucke t . append (po s t)
6 r e t u r n r e s

(a) Python code

1 p u b l i c Map< S t r i ng , L i s t <Post >> groupPos t s (L i s t <Post > po s t s) {
2 Map< S t r i ng , L i s t <Post >> grouped = new HashMap < >() ;
3 f o r (Po s t po s t : p o s t s) {
4 i f (! grouped . con ta in sKey (po s t . getOwner ())) {
5 grouped . put (po s t . getOwner () , new Ar r ayL i s t <Post > ()) ;
6 }
7 grouped . g e t (po s t . getOwner ()) . add (po s t) ;
8 }
9 r e t u r n grouped ;
10 }

(b) Java code

Figure 1: A structurally-similar code pair in web-services Figure 2: System overview

3 SYSTEM DESIGN
To address the detection speed issue of [11] in Section 2, we adopt a
two-stage structure and use neural networkmodels to pre-determine
a fewmost-possible candidates, instead of calculating editing-distances
of all candidates directly. After obtaining a few most-possible can-
didates, we further calculate their tree-based editing distances with
the target to choose the most structurally-similar one deterministi-
cally. The system overview is shown in Fig. 2.

To further improve accuracy, we develop a new code represen-
tation technique called two-level generic AST to generate inputs
and improve encoding quality for models. We design two different
kinds of generic ASTs, and focus on different abstraction aspects of
syntactic features. We use Java and Python as an example. Coarse-
grained generic ASTs consider high-level structural features. It is
a rough intersection of syntactic features from two languages. It
ignores language-specific syntactic features, and keeps essential
nodes that refer to key control structures, such as an If statement.
In this paper, we borrow the design of coarse-grained generic ASTs
from [11] with a few changes based on our understanding. Fine-
grained generic ASTs consider low-level semantic features. It is a
rough union of syntactic features from two languages because it pre-
serves both common and language-specific features. For example,
type declaration is enforced in Java but not in Python. Therefore,
type declaration is a language-specific feature for Java and is kept
in fine-grained generic ASTs. We also keep node properties such as
identifier names to keep more semantics. The design of fine-grained
generic AST is original.

We use path-based encoding [3] to transform ASTs into model
inputs, and use an LSTM-based (Long short-term memory) [9]
encoder-decoder model [5] to vectorize the ASTs. The models are
trained to predict the method name of the given AST representing
the method body. Thus, the training involves no parallel labels.
After training, the vector representation from the encoder’s output
is used as the representation of the given AST to calculate similarity
whether it is coarse-grained or fine-grained. Twomodels are trained
separately for two kinds of generic ASTs, and two similarity scores
are calculated. We add them to calculate the final similarity score
between two code fragments.

4 EXPERIMENTS
We evaluate both accuracy and speed of our tool against other
baselines [6, 7, 11]. We use Java-small [2] and py150k [14] datasets
for training.

Table 1: Comparison between our tool and other approaches

Methods AR 25% Quan. 50% Quan. SR@1 SR@3 MRR Time
Token-based Jaccard similarity algorithm 67 1 15 0.34 0.41 0.391 0.36s
Tree-based editing distance algorithm 11 1 1 0.51 0.64 0.605 131s

CodeBert 95 27 73 0.03 0.06 0.068 0.018s
Unixcoder 63 5 31 0.16 0.21 0.223 0.022s

Two-level generic ASTs 29 2 9 0.22 0.36 0.321 0.048s
Our tool (Top-15) 27 1 1 0.50 0.56 0.545 6.55s

The evaluation metrics include average rank (AR), quantile rank,
SuccessRate@k, mean reciprocal rank (MRR) and average inferring
time. In experiment settings, there is one and only one ground truth
among the candidates in a single detection. The ground truth is
ranked by sorting all candidates according to their similarity scores
with the target. The inferring time of one detection is the time to
calculate the similarity scores between the target and all candidates.

Current dataset [11, 13] is aimed for traditional cross-language
code clone detection and is not suitable for evaluation of structurally-
similar code pair detection. One of the authors organized a new
dataset based on current dataset and manage to get 307 pairs of
code fragments written in Java and Python. All of them have the
same functionality with similar control structures. We make this
dataset available in public.1

The results are shown in Table 1. Our tool can successfully pick
up the most similar code fragment considering 50% quantile rank.
In all accuracy metrics, our tool leads a large advance over all
other approaches except editing-distance algorithm. Compared
with tree-based editing-distance algorithm, our tool keeps a very
close accuracy, but is 20 times faster in speed. The results show
that our tool improves the accuracy a lot and is useful in practise.

5 CONCLUSION
In this paper, we present a tool to detect structurally-similar cross-
language code pairs between Java and Python. Our tool can have
very close accuracy as the state-of-the-art approach, but a much
faster speed.

ACKNOWLEDGMENTS
This work is partly supported by JSPS KAKENHI JP20H00578.
Thanks to Dr. Tetsuro Yamazaki, Prof. Soramichi Akiyama, Senxi
Li and Yilin Zhang for all the help.

1https://zenodo.org/record/7824909

https://zenodo.org/record/7824909

A practical tool for detecting cross-language code pairs with similar control structures SAC ’24, April 8–12, 2024, Avila, Spain

REFERENCES
[1] Farouq Al-omari, Iman Keivanloo, Chanchal Roy, and Juergen Rilling. 2012.

Detecting Clones Across Microsoft .NET Programming Languages. Proceedings -
Working Conference on Reverse Engineering, WCRE, 405–414. https://doi.org/10.
1109/WCRE.2012.50

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A Convolutional
Attention Network for Extreme Summarization of Source Code. In International
Conference on Machine Learning. PMLR, 2091–2100.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. Code2vec: Learn-
ing Distributed Representations of Code. Proc. ACM Program. Lang. 3, POPL,
Article 40 (jan 2019), 29 pages. https://doi.org/10.1145/3290353

[4] Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun
Zhao. 2017. CLCMiner: Detecting Cross-Language Clones without Intermediates.
IEICE Transactions on Information and Systems E100.D (02 2017), 273–284. https:
//doi.org/10.1587/transinf.2016EDP7334

[5] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724–1734. https://doi.org/10.3115/v1/D14-1179

[6] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association for Computa-
tional Linguistics, Online, 1536–1547. https://doi.org/10.18653/v1/2020.findings-
emnlp.139

[7] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. 7212–
7225. https://doi.org/10.18653/v1/2022.acl-long.499

[8] Aakanshi Gupta and Bharti Suri. 2018. A Survey on Code Clone, Its Behavior and
Applications. 27–39. https://doi.org/10.1007/978-981-10-4600-1_3

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.

8.1735
[10] N.A. Kraft, B.W. Bonds, and R.K. Smith. 2008. Cross-Language Clone Detection.

In Proceedings of the 20th International Conference on Software Engineering and
Knowledge Engineering (SEKE’08) (San Francisco, CA, USA). 54–59.

[11] George Mathew and Kathryn T. Stolee. 2021. Cross-Language Code Search Using
Static and Dynamic Analyses. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Comput-
ing Machinery, New York, NY, USA, 205–217. https://doi.org/10.1145/3468264.
3468538

[12] Kawser Wazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K. Roy, and
Kevin A. Schneider. 2019. CLCDSA: Cross Language Code Clone Detection
using Syntactical Features and API Documentation. In 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering. 1026–1037. https:
//doi.org/10.1109/ASE.2019.00099

[13] Daniel Perez and Shigeru Chiba. 2019. Cross-language Clone Detection by
Learning over Abstract Syntax Trees. In Proceedings of the 16th International
Conference on Mining Software Repositories (Montreal, Quebec, Canada) (MSR ’19).
IEEE Press, Piscataway, NJ, USA, 518–528. https://doi.org/10.1109/MSR.2019.
00078

[14] Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016. Probabilistic Model for
Code with Decision Trees. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Amsterdam, Netherlands) (OOPSLA 2016). Association for ComputingMachinery,
New York, NY, USA, 731–747. https://doi.org/10.1145/2983990.2984041

[15] Chenning Tao, Qi Zhan, Xing Hu, and Xin Xia. 2022. C4: Contrastive Cross-
Language Code Clone Detection. In Proceedings of the 30th IEEE/ACM Inter-
national Conference on Program Comprehension (Virtual Event) (ICPC ’22). As-
sociation for Computing Machinery, New York, NY, USA, 413–424. https:
//doi.org/10.1145/3524610.3527911

[16] Tijana Vislavski, Gordana Rakić, Nicolás Cardozo, and Zoran Budimac. 2018.
LICCA: A tool for cross-language clone detection. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering. 512–516. https:
//doi.org/10.1109/SANER.2018.8330250

https://doi.org/10.1109/WCRE.2012.50
https://doi.org/10.1109/WCRE.2012.50
https://doi.org/10.1145/3290353
https://doi.org/10.1587/transinf.2016EDP7334
https://doi.org/10.1587/transinf.2016EDP7334
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.1007/978-981-10-4600-1_3
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3468264.3468538
https://doi.org/10.1145/3468264.3468538
https://doi.org/10.1109/ASE.2019.00099
https://doi.org/10.1109/ASE.2019.00099
https://doi.org/10.1109/MSR.2019.00078
https://doi.org/10.1109/MSR.2019.00078
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1145/3524610.3527911
https://doi.org/10.1145/3524610.3527911
https://doi.org/10.1109/SANER.2018.8330250
https://doi.org/10.1109/SANER.2018.8330250

	Abstract
	1 Introduction
	2 Motivation
	3 System design
	4 Experiments
	5 Conclusion
	Acknowledgments
	References

