
Incorporate Program Analysis into Persistence

by Reachability Model

Zhang Yilin Omkar Dhawal Shigeru Chiba

V. Krishna Nandivada Tomoharu Ugawa
The Persistence by Reachability (PBR) model, an effective abstraction for object persistence, instantly

persists objects upon their becoming reachable from predefined durable roots. The PBR model provides

a promising approach towards realizing persistent memory for programs with large interconnected data.

Despite the various implementations proposed in prior studies, a recurring inefficiency is related to the costs

arising out of the presence of a large number of expensive write barriers. In this paper, we present a scheme

that reduces the cost due to these write-barriers to a significant extent.

The large number of these write-barriers arises from the naive assumption that all objects are considered

shared among threads. Under this assumption, while a thread is writing to an object, another thread may

make it reachable from the durable roots. Therefore, every write to an object must check (say, by invoking a

write-barrier) if the object is made persistent during the write. However, if it can be established that the ob-

ject being written to can only be accessible from a single thread (a.k.a. thread-local), then the corresponding

write-barrier could be elided. We first found, through a runtime reference analysis on various benchmarks,

that 2 – 66% of write operations were writing to thread-local objects. To automatically identify and elimi-

nate these redundant write-barriers, we incorporated a multi-stage program analysis/transformation scheme

into the PBR model. We perform a static flow-sensitive, context-insensitive points-to and escape analysis

using an on the fly call-graph to annotate each write operation, whether the written object is thread-local at

that point. Consequently, for those thread-local object writes, the JIT compiler generates code without any

write-barriers. We have implemented the optimization in a replication-based PBR implementation. Our

evaluation across various benchmarks demonstrated that our optimization reduced most of the redundant

barriers, thus enhancing overall performance.

1 Introduction

The Persistence-by-Reachability (PBR) model

serves as a feasible object persistence model, au-

tomatically guaranteeing the integrity of persistent

data [5] [6]). It shifts the burden of specifying each

object to be persistent or non-persistent from pro-

grammers to the runtime. As a consequence, pro-

grammers only annotate some variables as durable

roots, and the PBR model instantaneously per-

sists objects as they become reachable from those

durable roots.

However, prior implementations of the PBR

Yilin Zhang, Shigeru Chiba, Tomoharu Ugawa, Dept.

of Information Science and Technology, The Univer-

sity of Tokyo.

Omkar Dhawal, V. Krishna Nandivada, Dept. of CSE,

Indian Institute of Technology Madras.

model suffer from significant overhead, even when

the program has no persistence requirements. To

illustrate this fact, we compared the execution time

between CCJava [5], a replication-based implemen-

tation of the PBR model, and the original Java

virtual machine (JVM) for programs without per-

sistent objects. We used benchmarks from the Da-

Capo suite [2] for this comparison. As shown in

Figure 1, CCJava was on average 2.34 times slower

than the original JVM, reaching up to 4.44 times

slower for the luindex benchmark (Section 2).

The overhead arises from the inherent require-

ment of the PBR model: the write barrier must

handle persistent objects and non-persistent differ-

ently, while a non-persistent object may be made

persistent asynchronously. This requires the write

barrier to perform a costly memory barrier instruc-

tion in its hot path.

To reduce write-barrier overhead, we propose

av
ro
ra fo

p h2

jy
th
on

lu
in
de
x

lu
se
ar
ch

lu
se
ar
ch
-fi
x
pm

d

su
nfl
ow
xa
la
n

0

0.5

1

1.5

¨104

E
x
ec
u
ti
o
n
T
im

e
(m

se
c)

CCJava Original JVM

Fig. 1 Elapsed times for unpersistent

executions.

to distinguish unnecessary write barriers by static

analysis. Prior implementations assume that all ob-

jects are candidates for persistence, thereby invok-

ing the write barrier for each write. Consequently,

the performance decreases dramatically. However,

if the object being written to, or the target object, is

always thread local at a write operation, the write

barrier for the write is unnecessary as a thread local

object can never be persistent. We propose to use

a static analysis to find such write operations (Sec-

tion 4) and elide the corresponding write barriers

during JIT compilation.

We implemented a JIT compiler pass in the C1

compiler of OpenJDK to eliminate write barriers

based on the results of the static analysis (Sec-

tion 3). Our performance evaluation revealed that

11.7% of the write barriers were eliminated for the

luindex benchmark in the DaCapo benchmarks,

translating to an 10% speed increase (Section 5).

2 Write barriers in CCJava

This section provides an overview of the role of

the write barrier and potential optimization scenar-

ios within CCJava. CCJava achieves object per-

sistence by duplicating the object from DRAM to

persistent storage in non-volatile memory (NVM)

and consistently updating the two copies in every

subsequent write operation. As the original copy

Algorithm 1: Write Operation

1 Function write(object o, field f , value v)

2 o.f Ð v;

/* write barrier start */

3 store fence;

4 if o has replica then

5 replica.f Ð v;

/* write barrier end */

is reserved in DRAM, facilitating direct reads, CC-

Java requires only write barriers (unlike the prior

work [6] that needed both read and write barriers).

2. 1 Functions of Write Barriers

The write barrier within CCJava fulfills two crit-

ical functions:

1. to replicate the object from DRAM to NVM

instantly when making the object reachable

from a predefined variable,

2. to write to the replica if the target object has

a replica.

More precisely, as shown in Algorithm 1, the

write operation in CCJava comprises the normal

update in DRAM (Line 2) and a write barrier

(Lines 3 – 5). First, an expensive memory fence,

which prevents memory operations from being re-

ordered, must be placed between the write to the

original object and the check for the replica’s ex-

istence. This ordering is vital for target objects

being made persistent asynchronously by another

thread, as any write that may happen after the ob-

ject is made persistent must update the replica as

well. Then, Line 4 checks if object o has a replica.

If replica exists, the write barrier updates the same

field in the replica to the same value.

2. 2 Redundant Write-Barrier

The write barrier is superfluous if the target

object could be identified as a non-persistent ob-

ject at that point. Further, in CCJava, an ob-

ject that is only reachable from local variables of

a single thread, or a thread-local object, cannot

become persistent, as persistent objects must be

reachable from the durable roots, which are static

fields. Therefore, the write barrier can be elimi-

nated when the target objects are always thread-

1 // a global variable

2 AddressBook book;

3 addRecord(String name, String

address) {

4 record = new Record();

5 // record is thread-local

6 record.name = name;

7 record.address = address;

8 // record escapes

9 book.add(record);

10 record.inBook = true;

11 }

Fig. 2 Motivating example.

local at the time of writing. Conversely, the write

barrier must be maintained if any target object can-

not be guaranteed to be thread-local.

Writing to thread-local objects is common a phe-

nomenon. For example, in the code snippet in

Figure 2, Lines 6 and 7 initialize the object cre-

ated on Line 4, bound to record. This object is

thread-local on these lines, and thus write barri-

ers are not necessary for them. However, at line 9,

the record object may become non-thread-local

because book.add may assign its reference to a

static variable or a non-local thread object. Con-

sequently, any subsequent writes to fields of the

record object must be accompanied by a write

barrier. Specifically, on Line 10, a write bar-

rier is necessary to ensure that the update to the

record.inBook field is properly replicated.

2. 3 Approximate Amount of Unneces-

sary Write-Barrier

To approximate how many write barriers could

be eliminated, we first developed a naive dynamic

escape analysis. We emphasize that the purpose of

this analysis is not an optimization, but an investi-

gation of the feasibility of the optimization. There-

fore, we do not care about runtime overhead of this

analysis.

This analysis tracks objects that have never been

pointed to from any object or static variable. Such

objects are a subset of thread-local objects, and

the writes to them do not need a write barrier. We

counted the number of such writes. More precisely,

av
ro
ra fo

p h2

jy
th
on

lu
in
de
x

lu
se
ar
ch

lu
se
ar
ch
-fi
x
pm

d

su
nfl
ow
xa
la
n

0%

20%

40%

60%

ra
ti
o
o
f
w
ri
te
s
to

th
re
a
d
-l
o
ca
l
o
b
je
ct
s

ov
er

to
ta
l
w
ri
te
s

Fig. 3 Ratio of writes to thread-local objects

over total writes.

we introduced a new field, is referenced, to the

object header, managing it with atomic operations

as follows.

‚ The is referenced flag is set whenever the

object is assigned to any field of any object.

‚ The is referenced flag is checked at ev-

ery write to any object. If false, the write is

counted as not requiring a write barrier.

Note that a write instruction at a single code

point may be executed multiple times. Some of its

execution may write to thread-local objects, while

the others may write to objects that are not thread-

local. In this analysis, we counted the number of

writes to thread-local objects for such write instruc-

tions, while the static analysis-base optimization

cannot eliminate barriers for such writes.

Figure 3 shows the fraction of writes to thread-

local objects for selected DaCapo benchmarks. We

selected these benchmarks because they were previ-

ously evaluated in CCJava, providing a meaningful

basis for further comparison and optimization. The

results revealed that an average of 33.5% of write

barriers at runtime was unnecessary, reaching up to

66% for the sunflow benchmark.

3 System Design

3. 1 Overview

Our approach to identify and eliminate unnec-

essary write barriers consists of two components:

static analysis and the JIT compiler.

3. 2 Static Analysis

The goal of static analysis is to annotate whether

each writing bytecode in a class file always writes

to thread-local objects or not. In Java, writing

bytecodes are those that write to objects, that is,

putfield, and array writing bytecodes such as

aastore. This analysis is performed offline.

3. 3 JIT Compilation

Our JIT compiler accepts the annotated byte-

code and generates the corresponding machine

code. If a writing bytecode is annotated as always

writing to thread-local objects, the compiler does

not generate a write barrier for it.

We extend the C1 compiler within OpenJDK to

eliminate the write barrier. The C1 compiler com-

piles bytecodes into machine code through the high-

level representation called HIR and the low-level

representation called LIR. When the HIR is com-

piled to LIR, a write barrier generator function is

invoked to compile the writing bytecodes. We de-

velop a new write barrier function that emits the

CCJava’s write barrier code†1. The barrier func-

tion chooses to emit the write barrier or a single

move instruction of x86 without the write barrier

by referring to the annotation.

It is important to note that only methods on

the hot path are compiled by the JIT compiler,

meaning that not all statically analyzed methods

undergo compilation. Consequently, if a write is

identified as not requiring a write barrier, but is not

JIT-compiled, the unnecessary write barrier is still

executed in the interpreter. However, our optimiza-

tion on the JIT compiler suffices, as our preliminary

evaluation showed that, for benchmark programs

without durable roots, the removal of all write bar-

riers in the interpreter leads to negligible perfor-

mance improvement.

†1 CCJava [5] provided only an interpreter im-

plemetation

4 Static analysis

In this section, we describe the static analy-

sis component that we have designed to identify

the relevant object thread-escape information and

propagate the same to the JVM.

4. 1 Abstract Objects

In this manuscript, for the ease of exposition, we

identify each abstract object allocated at Line x, by

the symbol Ox (for example, the variable record

in Figure 2 points to O4). Thus, Ox represents all

the objects that may allocated at that line, dur-

ing program execution. In our implementation, to

maintain the correspondence between the analysis

results computed during static analysis and JVM,

we use the byte-code-index (instead of source code

line number) to distinguish the abstract objects al-

located in each method. Thus, for an object allo-

cated at the byte-code-index (BCI) i is represented

by Oi. In addition to these abstract objects, we

have additional special abstract objects to include:

(i) a single abstract object called Eobj to denote

thread-escaping objects. (ii) different dummy ob-

jects representing the objects that may be created

within the un-analyzed library methods. An in-

teresting property of these special objects is that

dereferencing any field of such objects, returns a

similar (Eobj or dummy) object.

4. 2 Points-to and Escape Analysis

Considering the very high costs [8] involved in

performing context-sensitive analysis, we use a

context-insensitive escape/points-to analysis. Sim-

ilarly, to handle cases that an object may be thread-

local for a part of the program, before it escapes

and hence the fences are only required for the lat-

ter part of the lifetime of the object, we perform a

flow-sensitive escape/points-to analysis [3] [9]. In

the analysis, at each program-point, we main-

tain points-to information using the maps abstract-

stack (ρ) and abstract-heap (σ) as shown in Fig-

ure 4. If a variable may point to Eobj , then any

field dereference via that variable will return Eobj .

The static analysis computes a map FenceRequired,

such that given a putfield or array-write instruc-

tion at BCI x in a method m, FenceRequired(m,x)

returns true, if the variable dereferenced at BCI x

Vars = Set of variables.

AObjs = Set of abstract objects.

ρ : Vars Ñ P pAObjs q

σ : AObjs ˆ Fields Ñ P pAObjs q

Fig. 4 Sets and maps used to maintain

points-to + escape information at each

program location. We use P pXq to denote the

power set of X.

of method m may point to a thread-escaping ob-

ject (Eobj). The static-analysis component shares

this information with the JVM. For efficiency,

we only emit those (m,x) pairs, for which the

FenceRequired map returns true.

4. 3 Implementation

We now describe some heuristics in our imple-

mentation to make our analysis more precise, espe-

cially when we cannot analyze certain parts of the

code (for example, library calls), or when we can-

not track the precise points-to graph (for example,

arrays and collection classes).

4. 3. 1 Modelling arrays and Collection

objects

Modelling objects stored in an array is challeng-

ing as statically it is difficult to precisely model the

array index. A similar issue occurs in collection

classes, where different objects are stored inside the

objects of collection classes; this issue compounds,

with collection classes like HashMaps, where the

HashMap objects store objects corresponding to

both keys and values.

To address this complexity, we associate a type-

less abstract field summaryF with each array and

collection object; this field may point to any ob-

ject that may be stored in the array/collection-

class-object. Note that since some collection-class

objects store different types of objects (for exam-

ple, HashMap objects described above), the cor-

responding summaryF field may point to objects

of different types. To ensure correctness, we use

the available type-information when dereferencing

from the abstract field. For example, say we create

a HashMap object with key type A and value type

B, then we add both keys and values to the same

abstract field summaryF . If we try to iterate over

the keySet of the HashMap, then the iterator must

be of type A. In such cases, we use the available

type information, and only consider that subset of

objects pointed-to by the summaryF field of type

A, to improve the precision of our analysis while

maintaining soundness.

4. 3. 2 Handling Library method calls

Analyzing Java library classes during static anal-

ysis has one main issues: the available library dur-

ing static analysis may not match that available

during the program execution (as the program may

be running on an entirely different system than that

used by the static analyser). This difference in im-

plementations restricts us from statically analyz-

ing library methods precisely. To keep the analysis

sound, we could mark all the objects reachable from

arguments of library method calls and the object

returned by library methods as escaping. Though

this approach makes our analysis sound, it is very

conservative, causing a drastic drop in precision.

We employ a heuristic-based approach to reduce

the conservativeness of our analysis. We manu-

ally analyzed the library method calls and derived

general rules to update the points-to information

without being overly conservative. Table 1 shows

the heuristics used to conservatively analyze library

method calls.

Case 1 covers library methods where fields of the

objects pointed by arguments can point to objects

created inside. We assign a special dummy object

which will inherit the same type as the object’s

field whose points-to-set was found empty. If the

dummy object is dereferenced, we create another

whose type will be the same as the accessed field.

Case 2 deals with methods like arrayCopy, where

we pass two arrays as arguments, and the contents

of one array are copied to the second array. Case

3 handles receiver fields when the receiver is a col-

lection class object. This case addresses methods

that deal with accessing the elements of the collec-

tion clasess; for example, for the collection, such

as add, insert, put, etc. Case 4 handles the

case where the receiver is not a collection. Case

5 provides steps to assign objects reachable from

the receiver and arguments to the return variable

conservatively. If the return variable points to an

empty set despite conservative assumptions, it im-

plies that the library method creates and returns

a new object. We handle such cases by creating

a dummy object that shares the same type as the

return variable.

4. 3. 3 Callgraph construction

A call graph is a data structure used to resolve

the targets for a call site statically. A call site can

have more than one possible target statically due

to polymorphism. Various techniques, like Class

Hierarchy Analysis (CHA) [4], Rapid type Anal-

ysis (RTA) [1], are used to construct call graphs

with varying levels of precision and efficiency. We

construct a call graph on-the-fly using the points-

to information available during the Points-to anal-

ysis. We iterate over all the objects the receiver

may point to and, based on their type, select all

possible target methods. This on-the-fly call graph

construction technique is very precise and yields

better results than CHA and RTA. If the receiver

points to Eobj , then we fall back to CHA.

5 Evaluation

We conduct two evaluations. Initially, we assess

the extent to which the static analysis reduces the

number of write barriers. Next, we evaluate the

resultant performance improvements.

5. 1 Evaluation Settings

We use the luindex benchmark of the DaCapo

benchmark suite, version dacapo-9.12-MR1-bach
†2. The default benchmark scale configuration is

employed.

During the evaluations, no durable root is set and

thus no object is made persistent. The configura-

tions used in our experiments are presented in Ta-

ble 2.

For all Java versions, we consistently applied

the following JVM parameters, reflecting the con-

straints of our current implementation that only

supports normal pointers and utilizes the inter-

preter along with the C1 compiler:

‚ -XX:-UseCompressedOops – Disable the

use of compressed ordinary object pointers

‚ -XX:-UseCompressedClassPointers – Dis-

able the use of compressed class pointers

‚ -XX:+UseSerialGC – Enable the use of the

Serial Garbage Collector

‚ -XX:+TieredCompilation – Enable the

†2 https://sourceforge.net/projects/

dacapobench/files/9.12-bach-MR1/

use of tiered compilation

‚ -XX:TieredStopAtLevel=1 – Set the tiered

compilation to stop at level 1, i.e., C1 compiler

5. 2 Write-barrier Reduction

We discovered that 11.7% of writes in JIT-

generated code at runtime correspond to write

bytecodes which always write to thread-local ob-

jects. This translates to that 11.7% write-barriers

can be eliminated in the JIT-generated code.

The percentage 11.7% is higher than the esti-

mated 3% for luindex in Section 2. 3. The static

analysis’s better result over our dynamic analy-

sis for the luindex benchmark is expected, as the

static analysis considers thread-local objects while

dynamic analysis only considers non-referenced ob-

jects, which represent just a small subset of thread-

local objects.

5. 3 Execution Time Improvement

Figure 5 shows the execution time for luindex

benchmark of original CCJava with C1 compiler en-

abled, our proposal and original Java. Eliminating

11.7% write barriers leads to a 10% speed increase.

However, this enhancement is restricted and still

falls short of the performance of original Java with-

out additional work. The primary reason is the

limited number of eliminated write barriers. Other

factors include the time required to handle an-

notated bytecodes and the remaining unnecessary

write barriers in write bytecodes on the slow path.

Although these latter two reasons have a minor

impact, they still contribute to the overall effect.

Further investigation and measurements to address

these issues are left for future work.

6 Related Work

Many atomic and semi-automatic persistence

models have emerged since the advent of NVM,

thanks to the close-to-DRAM performance and per-

sistence characteristics of NVM.

Espresso [10] is a dedicated persistence model

for managed runtime like Java, creating a persis-

tent heap on NVM to store the persistent objects.

Despite its innovation, it introduces new keywords

(such as pnew to allocate persistent objects) into

Java. This not only alters the language but also

requires programmers to specify all persistent ob-

jects explicitly, which is error-prone and increases

Case Rule

1. for all arguments For all reachable objects from the arguments, if field of

any object points to an empty set, then add a dummy

object with same type as the field’s type to the points-

to set.

2. argument is array type If there is any other argument that points to an array

object then unify the points-to sets of the summaryF

fields of both the arrays.

3. receiver is collection object

a) Add all arguments to the summaryF field of the

receiver.

b) If any argument is a collection object or array

object then add all the objects pointed by the field

summaryF of that argument to the abstract field

summaryF of the receiver.

4. receiver is NOT a collection Objects reachable from all the arguments should be

assigned to the fields of receiver after type-checking.

5. return type is non-void and non-primitive

a) If call statement invokes non-static method then

add all reachable objects from receiver’s points-to set

to the points-to set of return variable after type-

checking.

b) Add all reachable objects from the argument to the

points-to set of return variable after type-checking.

c) After step a) and b), if return variable still points

to an empty set then create a new dummy object with

same type as the return variable.
Table 1 Handling of library functions.

Component Specification

Memory Modules Two 256 GB second-generation Intel Optane DC persistent memory

DRAM 96 GB DDR4

CPU Sockets Two, with an Intel Xeon Gold 6354 processor (18 cores per socket)

Operating System Linux 5.1.0 Ubuntu 20.04.3 LTS

Compiler GCC version 9.3.0 for HotSpot VM

HotSpot VM Build ”Server” configuration
Table 2 Server configurations used in our experiments.

the complexity of development.

AutoPersist [6] marked a significant step by in-

troducing PBR model into Java. Unlike earlier ap-

proaches, programmers do not have to designate

each object’s memory type, i.e., NVM or DRAM,

but only identify the durable roots. The runtime

system moves an object from DRAM to NVM if it

becomes reachable from these roots, thereby guar-

anteeing the integrity of persistent data. The draw-

back to this approach lies in the substantial runtime

overhead, as discussed in Section 2.1. Write opera-

tions must be meticulously designed to ensure con-

sistency and thread safety, while read operations

necessitate persistence checks due to the forward-

ing pointer left after an object has been moved.

CCJava [5], on which our work is based, is a

replication-based implementation of PBR model.

In contrast of AutoPersist, it copies the persistent

objects from DRAM to NVM and maintains both,

allowing for direct reading in DRAM, leading to

luindex
0

2,000

4,000

4,403
4,006

992E
x
ec
u
ti
o
n
T
im

e

Original CCJava Proposal Original Java

Fig. 5 Execution time improvement evaluation

elimination of the persistence check in read opera-

tions.

quickCheck [7] previously identified the over-

head associated with persistence checks in the PBR

model. Their method collected persistence check

profile information (tracking if the target object

was persistent or not at each check) to generate

code with optimizations, such as aligning likely

branches with the main execution path. The signif-

icant difference between quickCheck and our work

is that quickCheck does not eliminate write bar-

rier, which we do, but just rearranges the generated

code.

Escape analysis has long been instrumental in de-

termining whether synchronization operations on

an object can be eliminated or not [3]. To the best

of our knowledge, our work is the first to apply es-

cape analysis to optimize write barriers in the PBR

model.

7 Conclusion

In this work, we uncovered the write-barrier over-

head in prior implementations of the PBR model,

and evaluated it particularly in CCJava.

Our solution, rooted in the annotation of byte-

codes and optimization of JIT-generated code, has

yielded promising improvements.

A primary area of interest lies in also integrating

dynamic analysis into the PBR model, along with

current static analysis, to eliminate more write-

barriers. Though we have developed a dynamic es-

cape analysis capable of eliminating write-barriers

when objects are not referenced, the current cost is

unrealistic for production use. Future efforts may

aim to optimize this process, making it a practical

option for improving performance.

Another potential avenue for research is to estab-

lish an upper bound for the number of unnecessary

write barriers as a performance metric. Currently,

our evaluation focuses on the reduction of write

barriers in runtime and the consequent improve-

ment in performance. However, assessing the effec-

tiveness of our static analysis remains a challenge.

This goal might be accomplished by monitoring the

target objects of each write bytecode during run-

time, thereby providing a clearer understanding of

our static analysis’s accuracy and potential.

In conclusion, this research contributes both a

practical tool to improve PBR model performance

and a theoretical understanding to guide future

investigations. The observed correlation between

write barrier elimination and execution speed em-

phasizes the value of pursuing this line of inquiry,

pointing toward exciting possibilities for advancing

both technology and methodology in the field.

Acknowledgements This work was supported

by JSPS KAKENHI Grant Number JP22H03566.

References

[1] Bacon, D. F. and Sweeney, P. F.: Fast Static

Analysis of C++ Virtual Function Calls, Pro-

ceedings of the 11th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA ’96, New York,

NY, USA, Association for Computing Machinery,

1996, pp. 324–341.

[2] Blackburn, S. M. et al.: The DaCapo Bench-

marks: Java Benchmarking Development and Anal-

ysis, Proceedings of the 21st Annual ACM SIG-

PLAN Conference on Object-Oriented Program-

ming Systems, Languages, and Applications, OOP-

SLA ’06, New York, NY, USA, Association for Com-

puting Machinery, 2006, pp. 169–190.

[3] Choi, J.-D., Gupta, M., Serrano, M., Sreedhar,

V. C., and Midkiff, S.: Escape Analysis for Java,

Proceedings of the 14th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA ’99, New York,

NY, USA, Association for Computing Machinery,

1999, pp. 1–19.

[4] Dean, J., Grove, D., and Chambers, C.: Opti-

mization of Object-Oriented Programs Using Static

Class Hierarchy Analysis, ECOOP’95 — Object-

Oriented Programming, 9th European Conference,

Åarhus, Denmark, August 7–11, 1995, Tokoro, M.

and Pareschi, R.(eds.), Berlin, Heidelberg, Springer

Berlin Heidelberg, 1995, pp. 77–101.

[5] Matsumoto, K., Ugawa, T., and Iwasaki, H.:

Replication-Based Object Persistence by Reachabil-

ity, Proceedings of the 2022 ACM SIGPLAN In-

ternational Symposium on Memory Management,

ISMM 2022, New York, NY, USA, Association for

Computing Machinery, 2022, pp. 43–56.

[6] Shull, T., Huang, J., and Torrellas, J.: AutoPer-

sist: An Easy-to-Use Java NVM Framework Based

on Reachability, Proceedings of the 40th ACM SIG-

PLAN Conference on Programming Language De-

sign and Implementation, PLDI 2019, New York,

NY, USA, Association for Computing Machinery,

2019, pp. 316–332.

[7] Shull, T., Huang, J., and Torrellas, J.:

QuickCheck: Using Speculation to Reduce the

Overhead of Checks in NVM Frameworks, Proceed-

ings of the 15th ACM SIGPLAN/SIGOPS Inter-

national Conference on Virtual Execution Environ-

ments, VEE 2019, New York, NY, USA, Association

for Computing Machinery, 2019, pp. 137–151.

[8] Smaragdakis, Y., Bravenboer, M., and Lhoták,

O.: Pick Your Contexts Well: Understanding

Object-Sensitivity, Proceedings of the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL ’11, New

York, NY, USA, Association for Computing Ma-

chinery, 2011, pp. 17–30.

[9] Whaley, J. and Rinard, M.: Compositional

Pointer and Escape Analysis for Java Programs,

Proceedings of the 14th ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA ’99, New York,

NY, USA, Association for Computing Machinery,

1999, pp. 187–206.

[10] Wu, M., Zhao, Z., Li, H., Li, H., Chen, H.,

Zang, B., and Guan, H.: Espresso: Brewing Java

For More Non-Volatility with Non-Volatile Memory,

SIGPLAN Not., Vol. 53, No. 2(2018), pp. 70–83.

