
An Object-Oriented Programming Model for

Processing-in-Memory Computing in Java

Language

Wanhong Huang, Tomoharu Ugawa
Processing-in-memory (PIM) emerges to alleviate performance and power efficiency bottlenecks caused by

data movement between CPU and memory. UPMEM, which is a publicly available PIM implementation,the

problems in its development are (1) no object-oriented support for PIM device code writing, (2) algorithms

cannot be written in a single program, and (3) PIM devices are not transparent in algorithm writing.

Consequently, PIM development is error-prone and low-productive, and PIM applications suffer from low

maintainability, flexibility, and scalability. The main goals of our research are (1) to write algorithms in

one program in a single object-oriented language and (2) to make the PIM device transparent in algorithm

writing. To this end, we propose a programming model in which the objects in different PIM memory spaces

are transparent to algorithms’ writing. This model is based on the distributed object model. We designed

a lightweight Java Virtual Machine (JVM) for the UPMEM processor and a Java library to implement

this model. After that, we conducted a preliminary experiment on a PIM-compliant in-memory database

application.

1 Introduction

In recent years, Processing-in-memory (PIM) has

emerged as an innovative computer architecture to

tackle the performance and energy efficiency bottle-

necks caused by data movement in traditional com-

puter architectures. Traditional processor-centered

architectures necessitate data movement between

memory and the processor’s cache for computation,

incurring performance and energy overhead. To

mitigate this overhead, PIM places in-memory pro-

cessors inside the memory. Each in-memory proces-

sor is coupled with a part of the physical memory.

For the CPU, by delegating parts of computations

to in-memory processors, data movements can be

reduced.

A search tree is one of the applications that

can benefit from PIM architectures [4]. In Fig-

ures 1 and 2, we illustrate the process of searching

Wanhong Huang, 東京大学情報理工学系研究科, Dept.

of Information Science and Technology, The Univer-

sity of Tokyo.

Tomoharu ugawa, 東京大学情報理工学系研究科, Dept.

of Information Science and Technology, The Univer-

sity of Tokyo.

CPU MemoryLoad
node(key=35)

node(key=35)

node(key=32)
...

node(key=25)

Cache

45

56

23

25

68

48

...

...

35
32

Load
node(key=32)

Load
node(key=25)

Fig. 1 Binary Search Tree Searching in

Traditional Computer Architecture

CPU
Cache

Memory

45

56

23

query key=25

node(key=25)

25

68

48

...

...

35
32

Fig. 2 Binary Search Tree Searching in PIM

Architecture

for a tree node with a key of 25 under a traditional

computer architecture and a PIM architecture, re-

spectively. In traditional architectures, searching

in a large tree can cause numerous memory load

requests triggered by cache misses, resulting in ex-

class TreeNode{

TreeNode left;

TreeNode right;

int leftDpuID;

int rightDpuID;

int searchInDpu(int key, int dpuId){

if(dpuId == 0) return -1;

copyToDpu(dpuId, ’request_key’, key);

getDPU(dpuId).execute();

int result =

copyFromDpu(dpuId, ’result’);

return result;

}

public int search(int key){

/* Algorithm Logic */

if(key == getKey()) return getValue();

if(key < getValue()){

if(getLeft() == null)

return getLeft().search(key);

return searchInDpu

(key, leftDpuID);

}

if(key > getValue()){

if(getRight() == null)

return getRight().search(key);

return searchInDpu

(key, rightDpuID);

}

}

}

Fig. 3 BST search in PIM (CPU side).

pensive time and energy consumption due to data

movement. In the PIM architecture, by placing the

root and a small number of nodes near it into the

CPU’s cache while placing other nodes in memory

coupled with processors, the CPU can send a single

query request and retrieve the result from memory,

shifting much of the tree search operations involv-

ing numerous memory accesses to the memory side.

This transition presents an opportunity to alleviate

the performance and energy efficiency bottlenecks

caused by data movement.

The development of software for the PIM, how-

ever, remains complex, low-productivity, and error-

prone due to the absence of a suitable programming

model. Presently, PIM software development re-

quires separate programming for the CPU and the

in-memory processors, with explicit communication

between the CPU and the in-memory processors.

int request_key;

int result;

struct tree_node* root;

int main(){

search(root, request_key);

}

void search(struct tree_node* node, int

key){

if(!node) return -1;

if(node->key == key)

return node->value;

if(node->left)

return search(node->left, key);

return search(node->right, key);

}

Fig. 4 BST search in PIM (in-memory

processor side).

Furthermore, the CPU side program must manage

where the data stay.

Figures 3 and 4 shows the search algorithm of a

binary search tree (BST) in a PIM architecture (for

more details, see Section 2. 2). In this search algo-

rithm, the CPU is initially responsible for search-

ing over a small number of tree nodes. Once it

reaches a node whose left or right child is null,

it continues the search for the key inside an in-

memory processor that possibly has the node with

the key. Such an in-memory processor is identi-

fied by the leftDpuID or rightDpuID. Ｔｈｅ
function searchInDpu is the helper function that

sends the key to the in-memory processor, launches

the search program shown in Figure 4 in the in-

memory processor, and retrieves the search result.

As shown above, the program must explicitly com-

municate with the separately developed program

for the in-memory processors, and it must also

maintain the ID of the in-memory processor that

may have desired data.

To address these problems, we present a pro-

gramming model for Java that enables the de-

velopment of PIM in a single program without

explicit communication logic, leveraging object-

oriented features to handle the complexities of PIM

development. In our proposed programming model,

Java objects are stored in both the CPU and in-

memory processors. The in-memory processor’s ob-

jects are structured in a way that is compatible with

class TreeNode{

TreeNode left;

TreeNode right;

public int search(int key){

if(key == getKey()) return getVal();

if(key < getKey()){

if(getLeft() != null)

return getLeft().search(key);

}else{

if(getRight() != null)

return getRight().search(key);

}

return -1;

}

}

Fig. 5 BST search under the proposed

programming model.

the CPU objects. Figure 5 presents the search al-

gorithm in the proposed model. In Figure 5, a child

of a TreeNode can be an object of either the CPU

or an in-memory processor. The search algorithm

is written in the same way as it is in traditional

architectures.

2 Background

2. 1 UPMEM

In our work, we use a real-world PIM computer,

UPMEM [3]. Figure 6 shows the structure of

UPMEM. The UPMEM places multiple general-

purpose processing units within a memory. These

processors are referred to as DRAM Processing

Units (DPUs). Each DPU is associated a DRAM

chip, comprising the main memory of the computer.

A program running on the CPU can access the

memory of a specific DPU by using a dedicated

API, copyToDpu in Figure 3, provided by the ven-

dor†1. The vendor also provides APIs to install a

binary program to DPU and to execute it, which is

the execute method in Figure 3.

2. 2 A PIM Application and Its Program-

ming Challenges

We explain the PIM-compliant BST program in

Figures 3 and 4 that we have shown in Section 1.

This application distributes the nodes of a BST

to the CPU and DPUs. The cache memory of

the CPU stores the root and a small number of

†1 https://sdk.upmem.com/2023.2.0/

UPMEM PIM-enabled Memory

MEM

DPU

MEM

DPU

MEM

DPU

MEM

DPU

......

MEM

DPU

MEM

DPU

MEM

DPU

MEM

DPU

......

MEM

DPU

MEM

DPU

MEM

DPU

MEM

DPU

......

......

PIM Chip PIM Chip PIM Chip

CPU

Fig. 6 UPMEM architecture

tree nodes near it, while a larger number of tree

nodes are stored in PIM chips, with each of which

DPUs are associated. This approach offers the ad-

vantages of reducing data movement for the search

algorithm, as most search operations can be per-

formed inside the DPU. The search algorithm finds

the node with the given key either inside the CPU

cache or within one of the DPU. In the former sit-

uation, the CPU does not need to access memory.

In the latter situation, the CPU accesses memory

twice; for sending a query and receiving the result.

In Figure 3, the searchInDpumethod receives a

query key and launches the search program in the

specified DPU using the execute method. The

copyToDpu method is responsible for copying the

data to a specified global variable in a DPU, and

the copyFromDpu method is responsible for copy-

ing the data back from a specified global variable

in a DPU.

In typical PIM development, developers are re-

sponsible for writing both algorithm logic and com-

munication logic on the CPU side. Developers must

also write algorithm logic for the DPUs in C lan-

guage separately. Additionally, as shown in Fig-

ure 3, when the search method reaches a CPU

node without left or right nodes, developers face

the challenge of continuing the key search in a DPU.

More specifically, the developer needs to keep track

of which DPU might hold the query key. This infor-

mation is stored in the variables leftDpuID and

rightDpuID.

3 Programming Model

3. 1 Overview

The proposed programming model for PIM is

based on a CPU-enteric distributed object model.

Figure 7 shows an overview of the proposed model.

In this model, each processor holds its objects. We

call an object inside a DPU a remote object. This

CPU

...

Cache

DPU#1's MRAM

DPU#n's MRAM

CPU Object

DPU Object
Remote Object

Access

Fig. 7 model overview

model allows the CPU to invoke the methods of

remote objects. On the contrary, a DPU accesses

only the objects in its own memory space. In this

model, any Java method can be executed on either

the CPU or a DPU. A method will be executed

on the processor where its holder object is located.

When the method creates an object, the new object

is created in the same memory space as the method

holder object. For the first object in a DPU, we

take a pragmatic approach: we explicitly create it

with specifying the ID of the DPU.

3. 2 Proxy

We introduce a special kind of objects on the

CPU side, called a proxy to enable the CPU to in-

voke the methods of objects in the same manner as

local objects. A proxy is an object that contains

the DPU ID and the address of the remote object

in the memory space where the remote object is lo-

cated. A proxy also contains all the methods of the

remote object. However, these methods are over-

written to delegate their execution to the DPU that

holds the remote object.

3. 3 Processor-Dependent Behaviors

In some cases, the programmer wants some meth-

ods to behave differently in the CPU and DPUs.

We refer to such methods as processor-dependent

methods.

An example is the method that creates a new

node in the BST application, createNode. Figure 8

class DPUTreeNode extends TreeNode{

@Override

public TreeNode createNode

(int key, int val)

{return new DPUTreeNode(key, val);}

}

class CPUTreeNode extends TreeNode{

int height;

public CPUTreeNode(int key, int val,

int height){

super(key, val);

this.height = height;

}

@Override

public TreeNode createNode(int key, int

val){

if(height > 20)

return UPMEM.createObject

(allocateDPU(),

DPUTreeNode.class, new

Object[]{key, val});

TreeNode.nodeAmount++;

return new CPUTreeNode

(key, val, height + 1);

}

}

Fig. 8 createNode for CPU and DPU.

shows the different behaviors in CPU and DPUs.

In a DPU, we want the createNode method to cre-

ate a new node in its memory. In the CPU, we want

it to create a new node in the appropriate location,

in the CPU or in memory of a DPU, depending on

the depth of the new node.

A processor-dependent method is implemented

by using subclass mechanism. Figure 10 shows the

class hierarchy of the tree node-related classes. For

a class that has a processor-dependent method, we

first define an abstract class (TreeNode) that has

all methods but processor-dependent methods. By

extending it, we define the classes with processor-

dependent methods for the CPU (CPUTreeNode)

and DPUs (DPUTreeNode). Note that the proxy

class should be a subclass of the DPU class.

3. 4 Example

In Figure 5, as shown earlier, the search method

of the BST for PIM can be implemented in the same

way as in a traditional architecture. Figures 8 and 9

class TreeNode{

/* ... */

public abstract TreeNode createNode(int

key, int val);

public void insert(){

if(k < getKey()){

if (getLeft() == null)

setLeft(createNode(k, v));

else

getLeft().insert(k, v);

}else{

if (getRight() == null)

setRight(createNode(k, v));

else

getRight().insert(k, v);

}

}

}

Fig. 9 insert method of BST in the proposed

model.

CPUTreeNode

+ height : int

+ createObject(key : int, value : int) : TreeNode

DPUTreeNode

+ createObject(key : int, value : int) : TreeNode

<<Interface>>
IProxyObject

+ getDPUID(): int
+ getAddress(): int

<<abstract>>
TreeNode

+ key : int
+ value: int
+ left : TreeNode
+ right : TreeNode

+ createNode(key : int, value : int) : TreeNode
+ search(key : int): int
+ insert(key : int, value : int) : void

DPUTreeNodeProxy

+ createNode(key : int, value : int) : TreeNode
+ search(key : int): int
+ insert(key : int, value : int) : void

Fig. 10 Classes in the proposed model.

show the createNode and insertmethods of the

BST in the proposed programming model. In the

insert method, it uses the createNode method

to create a new node in the CPU or a DPU. Be-

cause this class has a processor-dependent method,

createNode, we define it as an abstract method

within the class. In addition, we define two classes,

namely CPUTreeNode and DPUTreeNode, to pro-

vide implementations for it. The remaining meth-

ods, insert and search are implemented in the

abstract class.

When the createNode method of a CPU ob-

ject is invoked and the depth exceeds 20, the al-

gorithm create a new DPU tree node by using

the createObject API, which we introduce in

Seciton 4. Otherwise, it creates a new CPU tree

node. This allows most of the tree nodes to be

stored inside the DPU. The allocateDPU method

is a method that chooses a proper DPU to create

a new tree node at the programmer’s discretion.

When the createNode of a DPU object is invoked,

it creates an object inside the DPU where the ob-

ject is located.

4 System Implementation

We implemented a prototype system to support

the proposed programming model. The system

comprises two main components: a Java virtual

machine (JVM) for DPUs and a library for the Java

VM running on the CPU.

This section demonstrates the implementation of

two main components in this system: a JVM for

DPUs and a library for the Java program running

in the CPU.

4. 1 In-Memory JVM

This system runs a lightweight JVM on the

DPUs. We refer to it as in-memory JVM.

After launching an in-memory JVM, it identi-

fies the method to be executed and its class by

using the method and class addresses provided by

the CPU through global variables. It also retrieves

the arguments through global variables and creates

a function frame for the method in the execution

stack. Subsequently, a pure interpreter executes

the method’s bytecodes. On the return from this

method, i.e., execution of a returning bytecode like

IRETURN, the return value is stored in a dedicated

global variable return value and finishes execu-

tion of the PIM side program. The global variable

return value is read by the CPU.

The current JVM implementation is a subset of

JVM, with an interpreter-based execution engine

that is enough to execute the BST application.

4. 2 Java Library

We implemented a Java library for the CPU to

cooperate with the programming model. The li-

brary has the following three functions.

public class RPCHelper{

/* ... */

public int getClassAddress(int dpuID,

String className){

loadedClassesTable.get(dpuID,

className);

}

public int getMethodAddress(int dpuID,

String className, String signature){

dpuMethodsTable.

get(dpuID,className,signature);

}

public void invokeNonstaticMethod

(int dpuID, String className, String

signature, Object... args){

int classAddress =

getClassAddress(dpuID, className);

int methodAddress = getMethodAddress

(dpuID, className, signature);

copyToDpu(dpuID, ’class_address’,

classAddress);

copyToDpu(dpuID, ’method_address’,

methodAddress);

sendArguments(dpuID, args);

getDPU(dpuID).execute();

}

public int getIntReturnValue(){

return copyFromDpu(’return_value’);

}

}

public class DPUTreeNodeProxy extends

DPUTreeNode{

@Override

public int search(int key){

RPCHelper.invokeNonstaticMethod

(getDpuID(), "TreeNode",

"search(I):I", key);

return RPCHelper.getIntReturnValue();

}

}

Fig. 11 Remote procedure call in proxy Class.

4.2.1 Remote Procedure Call

A remote procedure call (RPC) may occur when

a proxy object’s method is invoked. Figure 11

presents the pseudo-code for the remote procedure

call to the search method in the TreeNode class.

Every time the CPU makes a remote procedure

call of the search method, the proxy uses a class

name and a method descriptor to locate the specific

method and class’s addresses under the in-memory

processor, along with the arguments that need for

the method execution. The RPCHelper then ob-

tains the class and the method’s addresses under

the DPU that contains this object. The CPU holds

tables for each DPU: a loaded class table to look

up the address of a given class, and a method ta-

ble to look up the address from a pair of a method

signature and a class.

The RPCHelper then transfer the class ad-

dress and method addresses to the DPU global

variables class address and method address

by using copyToDpu method, and lunch the

DPU for execution. As the search method

has a return value with type int, it invokes

RPCHelper.getIntReturnValue() method to

copy the return value back from the DPU, and re-

turn this value.

4.2.2 Remote Object Creation

The createObject API allows us to create an

object of a specified class in a given DPU. First, it

sends the class of the object if the class is not yet

present in the DPU’s memory. Then the API gen-

erates an instance of the class in a byte array form

and sends it to the DPU’s memory. After writing

the instance data into the DPU’s memory, the li-

brary invokes the corresponding init method of

the sent instance to initialize it in the DPU. After

the object completes the initialization in the DPU,

the API generates a proxy object at the CPU.

4.2.3 Class Loading and In-Memory

Classes Management

The in-memory JVM needs to store Java class

structures for executing Java methods. The library

provides class loading utilities and loaded classes

management for the in-memory JVM. The library

is responsible for parsing Java class files, resolving

symbols, i.e., method and field names, and creating

their internal representation in memory of DPU.

All class loading processes are performed by the

CPU. The class and method addresses in DPUs are

kept in the tables per DPU in the CPU’s memory.

They are used for RPC as described above.

5 Experimentation

The objective of this experimentation is to evalu-

ate the impact of the proposed programming model

on reducing data movement in the BST application

under the PIM architecture.

In this experimentation, we used UPMEM, a

real-world PIM architecture computer. Its config-

uration is shown in Table 1. The JVM running on

the CPU was the HotSpot VM of OpenJDK 17.0.1,

configured with the following VM options.

-XX:+UnlockDiagnosticVMOptions

-XX:+PreserveFramePointer

-XX:+DumpPerfMapAtExit -Xmx131072m

5. 1 Methodology

In our experiment, we constructed two types of

BST. (1)CPU-BST: a BST that uses only the CPU,

and (2)PIM-BST: a BST using PIM in the proposed

programming model.

In the experiment, to construct a PIM-BST, we

split a BST into different parts. We placed the root

and the nodes close to it in addresses that are not

associated with a DPU, while storing other parts

in DPUs’ memories. In PIM-BST, the number of

nodes on the CPU side was set to 199, 159, to fit

within the CPU cache. The other nodes are dis-

tributed over DPUs so that each DPU can have

subtrees whose roots are leaves of the tree in the

CPU. We limited the number of nodes in a single

DPU to 2, 000, 000. The number of nodes in the

tree was 100, 000, 000. Under the limitation of the

node capacity in a single DPU, we used 66 out of

2560 DPUs. Both the CPU-BST and PIM-BST

we constructed were structurally identical and had

identical key-value pairs.

Since data movement occurs when an Last Level

Cache (LLC) miss occurs, we employed the LLC

miss counts as approximations of data movement.

We compared the pre-query LLC misses of the

search methods between CPU-BST and PIM-

BST. For each type of BST, we applied 500, 000

queries. Note that the queries applied to CPU-BST

and PIM-BST were identical.

5. 2 Results

Table 2 presents a comparison of LLC missed per-

query in the search method between CPU-BST

and PIM-BST. We obtained approximate LLC miss

counts using the perf utility in a sampling mode.

The result shows that, in terms of LLC load

misses per query in the search method, PIM-BST

outperformed CPU-BST by a factor of 0.13x, while

PIM-BST outperformed CPU-BST by a factor of

0.29x in terms of LLC total misses. In terms of LLC

store misses, PIM-BST exhibited 144x the count of

CPU-BST. We think the LLC store misses occurred

when the RPC mechanism prepared data to send to

the DPU, including serialization of the arguments.

This experiment demonstrated that the proposed

programming model reduced the LLC misses. Note

that we only compared LLC messes, which do not

include data movement for communications be-

tween CPU and DPU. Nevertheless, data move-

ment for it can be negligible for a large tree be-

cause it is a constant while LLC misses per query

increases as the height of the tree increases.

6 Discussion And Future Work

6. 1 Performance

Though the data movement can be reduced by

the proposed programming model under a PIM ar-

chitecture, the regrettable outcome is that the ex-

ecution time of Java methods inside the current

in-memory JVM is significantly higher than the

method execution time under the CPU. The per-

formance of the current in-memory JVM is a bot-

tleneck of the whole system. The low performance

of the in-memory JVM can be attributed to two

primary factors: (1) the DPU processor operates

at a low clock frequency and (2) the in-memory

JVM employs a pure interpreter to execute Java

methods.

Our future direction to improve the performance

of the in-memory JVM includes adopting a Just-In-

Time (JIT) compiler. This reduces time consump-

tion in the interpretation loop by compiling the

method bytecodes into the native code of the DPU.

In addition, enhancing the programming model and

in-memory JVM with multithreading to enable par-

allel computations could enhance the overall system

performance for certain applications. Furthermore,

strategies such as lazy dispatch and batch dispatch

have the potential to reduce the overall communi-

cation cost between the CPU and DPU.

6. 2 Binary Size Limitation

Each DPU has a limited capacity to store binary

programs. As the in-memory JVM’s functionality

increases, the size of binaries may exceed the DPU’s

storage capacity. To address this issue, strategies

such as splitting the binary into different modules

and loading them on demand could be employed.

Table 1 UPMEM configuration.

Configuration

CPU INTEL Xeon Silver 4215

PIM Memory 20 DDR4-2400 PIM modules and 160 GB PIM memory

DPU 2560 x @450 MHz

LLC Cache size 11 MB

Table 2 Comparison of Per-query LLC Misses in search method

Application LLC load misses LLC store misses LLC total misses

CPU-BST 17.7 0.02 17.9

PIM-BST 2.31 2.88 5.19

PIM-BST/CPU-BST Ratio 0.13x 144x 0.29x

6. 3 Static Method Dispatching

The prototype system for the proposed program-

ming model currently supports only invocations of

instance methods. An object instance allow us to

locate a specific DPU for executing the method.

However, invocation of a static method is a more

complicated situation. A static method invoca-

tion is not associated with an object reference, the

system needs a strategy to determine which DPU

should execute the method. One approach is to in-

fer the execution location from the object reference

inside the method arguments list. In our program-

ming model, we forced all the object reference in

the arguments list to be in the same space, because

this programming model does not allow DPUs to

access memory of other DPUs’. In the case where

there is an object reference in the arguments list,

the method must be executed in the processor that

holds the object. In the condition that there are no

object references in the arguments list, we must in-

troduce a strategy to decide an DPU for executing

the method.

7 Related Work

7. 1 Tornado VM

Tornado VM [2] is a virtual machine (VM) de-

signed for computations using different kinds of

processors (a.k.a., heterogeneous computing) in the

Java language. Tornado VM adopts an annotation-

based approach to specify which methods can be

delegated to a remote processor for execution. In-

side the VM, a compilation-based approach is used

to delegate computations to remote processors, uti-

lizing OpenCL as the execution backend for remote

processor execution. Using this approach, devel-

opers can write a single program to achieve high-

performance computation using different kinds of

processor.

Our work was inspired by the Tornado VM. How-

ever, ours has the following differences. (1) We use

the in-memory JVM as the execution backend to

provide object-oriented support for remote proces-

sors. (2) The remote call in our system is based on

the proxy.

7. 2 SYCL

SYCL [1] is a highly abstract specification for het-

erogeneous computing in the C++ language. Its

primary objective is to enable developers to write

a single C++ program that performs computa-

tions using different kinds of processor. The SYCL

specification provides an execution model, a mem-

ory model, and a programming model. The ex-

ecution model determines the execution order of

method calls and where a method should be exe-

cuted; the memory model describes how to access

the memories of different processors and how to

maintain data consistency during memory accesses;

the programming model outlines how to use SYCL

in C++ programming, including computation def-

inition and data parallelization, methods schedul-

ing, exception handling, and management of mem-

ory objects including buffers and images.

In our work, we adopt a concept similar to that

of writing a single program for heterogeneous com-

puting. However, our model is presently applica-

ble exclusively to the PIM architecture and lacks

parallelism and ordered organization of RPCs. On

the other hand, employing a JVM as the execution

backend enables our model to accommodate more

kinds of memory objects.

8 Conclusion

This paper addressed the challenges associated

with the development of PIM architectures. While

PIM architectures offer benefits in mitigating per-

formance and energy efficiency bottlenecks caused

by data movement in computer systems, PIM appli-

cation development is complex due to the absence

of a proper programming model.

We provide a programming model for the PIM

architecture. The model allows developers to write

PIM software within a single program and elim-

inates the communication logic in the algorithm

description. Through the implementation of a

system prototype and its application to a PIM-

compliant BST, we demonstrated that our pro-

gramming model can reduce data movement under

a real-world PIM architecture.

Our future work includes implementing the in-

memory JVM, optimizing its performance, and

minimizing communication costs to make our sys-

tem better exploit the PIM architecture’s perfor-

mance.

Acknowledgements

This work was supported by JSPS KAKENHI

Grant Numbers JP19K11904 and JP22H03566.

References

[1] Alpay, A. and Heuveline, V.: SYCL beyond

OpenCL: The Architecture, Current State and Fu-

ture Direction of HipSYCL, Proceedings of the In-

ternational Workshop on OpenCL, IWOCL ’20,

New York, NY, USA, Association for Computing

Machinery, 2020.

[2] Clarkson, J., Fumero, J., Papadimitriou, M., Za-

kkak, F. S., Xekalaki, M., Kotselidis, C., and Luján,

M.: Exploiting High-performance Heterogeneous

Hardware for Java Programs Using Graal, Proceed-

ings of the 15th International Conference on Man-

aged Languages & Runtimes, ManLang ’18, New

York, NY, USA, ACM, 2018, pp. 4:1–4:13.

[3] Gómez-Luna, J., Hajj, I. E., Fernandez, I., Gian-

noula, C., Oliveira, G. F., and Mutlu, O.: Bench-

marking a New Paradigm: Experimental Anal-

ysis and Characterization of a Real Processing-

in-Memory System, IEEE Access, Vol. 10(2022),

pp. 52565–52608.

[4] Kang, H., Zhao, Y., Blelloch, G. E., Dhulipala, L.,

Gu, Y., McGuffey, C., and Gibbons, P. B.: PIM-

Tree: A Skew-Resistant Index for Processing-in-
Memory, Proc. VLDB Endow., Vol. 16, No. 4(2022),

pp. 946–958.

