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Abstract—This paper presents a technique for detecting an
anomaly in method placements in Java packages. This anomaly
detection helps code reviewers discover a method belonging
to an inappropriate package in modularity when developers
commit changes in their software development projects. Moving
such a method to an appropriate package will contribute to
the maintenance of good modularity in their projects. This
is particularly beneficial in the later stage of development,
where modularity is often violated by adding new features not
anticipated in the initial plan. Our technique is based on few-
shot classification in machine learning. This paper empirically
reveals that our neural network model can detect an anomaly in
method placements and a significant portion of the anomalies is
considered as inappropriate method placements in modularity.
Our model can discover even a method placement that violates a
project-specific coding rule that its developers would choose for
some reason of maintainability or readability. Our technique is
useful for maintaining the consistency in such a project-specific
rule.

Keywords—code review; refactoring; packages; Java; few-shot
classification; nerual networks

I. INTRODUCTION

The importance of software modularity has been widely rec-
ognized both in academia and industry [1]. Several modularity
principles have been proposed, such as low-coupling and high-
cohesion [2] and information hiding [3], and developers are
recommended to follow these principles. It has been revealed
that the qualities of a program will be seriously damaged if
those principles are violated and program components such as
functions and methods are placed in inappropriate modules [4].
The violation of those principles might cause a more serious
problem such as architectural erosion [5].

A popular practice for maintaining modularity principles is
code reviewing. When a developer adds or modifies a feature
and commits code changes, the developer asks code reviewing
by fellow, or often senior developers. The code reviewer
must inspect the committed change and confirm that it does
not violate modularity principles. If it violates, the reviewer
recommends the developer to revise the change. However, this
code reviewing is labor intensive and time consuming.

This paper presents our technique for helping code review-
ers. It discovers an anomaly in method placements in Java
packages. If the modularity of a project is regularly maintained
by code reviewing, we can expect that a method that seems to
be placed in a strange package is violating some modularity
principles, or project-specific local coding rules for modularity,

with a high probability. If the discovered anomaly actually
gives a damage to modularity, the code reviewer can ask the
developer to move the method into a more appropriate package
so that the modularity level of the project will be preserved.

Suggesting an anomaly to code reviewers is particularly
beneficial in the later stage of development lifetime. It is
known that a software project is usually well modularized at
the early stage of its lifetime but, as features are added and
defects are repaired, the project increases in complexity and
the structure of the system can deviate substantially from the
original well-modularized one [6]. So we can assume that the
existing code base of a project is well modularized in the
early stage and an anomaly discovered in the later stage by
comparing newly changed code with the rest of the existing
code will be a flaw in modularity with a high probability.
Fixing this flaw by moving a method will effectively contribute
to keeping the modularity.

Our technique detects an anomaly in method placements in
Java by few-shot classification in machine learning. We use a
Java package as a module unit as in previous work [7], [8].
Our technique reports which package a method detected as
an anomaly should be moved into. For few-shot classification,
we adopt a neural network model known as a prototypical
network [9]. We train the model with the source code of a
large number of Java projects so that the model can learn
how to classify given methods into appropriate packages in
their project. Note that the total amount of source code of
each project is too small to directly train the model with only
that source code. This is why we need few-shot classification.
The model must learn a general rule for obtaining the project-
specific criteria for method classification from each given Java
project. Although we are a follower of the recent trend in
machine learning for software engineering tasks [10], [11],
[12], [13], the use of few-shot classification/learning is new in
this field as far as we know. The encoder of our prototypical
network is also our own modification of the code2vec encoder
[14].

This paper also empirically reveals that our technique can
detect anomalies in method placements in real-world Java
projects. It outperforms the existing neural-network model
proposed by Liu et al. [15] for a similar classification task of
method placements. The paper shows that a significant portion
of the detected anomalies is considered as the placements
of method in inappropriate packages in modularity. They



are violating some modularity principles or project-specific
modularity rules. The latter rules derive from an architecture
and/or a pattern adopted for the project. For example, when
a project adopts the Model-View-Controller architecture, the
methods for Model should belong to the model package. Note
that this rule is not applicable to other projects adopting
different architecture. Few-shot classification enables us to de-
tect such anomalies. Consistently enforcing a project-specific
rule to a project is desirable. Although it might not directly
improve modularity, it would improve readability and thereby
maintainability.

Our research contribution is to propose a new kind of
technique for detecting anomalies in modularity. This would
help developers consistently modularize their projects. More
specifically, our contribution is two-fold:

1) We present a neural network model for few-shot classifi-
cation of methods into packages in Java. It can be used
to detect anomalies in method placement.

2) We empirically reveal that a significant portion of anoma-
lies detected by the presented technique is caused by
inappropriate method placements in modularity. They are
violating modularity principles or project-specific coding
rules for modularity. We also show that our model out-
performs an existing model proposed for a similar task.

Our research artifacts including source code and trained
parameters of the model are available at Zenodo [16] (https:
//zenodo.org/record/6367730).

II. MAINTAINING MODULARITY

When a software development project is in the early stage
of its lifetime and the size of its source code is still small,
maintaining its modularity is relatively easy. Developers can
easily preserve the module structure as originally designed.
However, as the project grows, new features are added and
the original structure is gradually damaged [6]. Modularity
principles begin to be violated and project-specific modularity
rules, if any, begin to lose their consistency.

To avoid this problem occurring in the later stage of project
lifetime, before developers commit changes to the source code
of a project, code reviewers inspect the changes and prevent
the developers from lowering the modularity of that project in
its later stage. A drawback of this widely-adopted practice is
that manual inspection by code reviewers, who are often senior
developers, is labor-intensive. Although the reviewers may use
programming tools, such as JDeodorant [17], for measuring
various source code metrics and obtaining suggestions for
modularization, they must find which metrics should be used
to consistently maintain the modularity rules of their project.

For example, Listing 1 is a code excerpt in Java from an An-
droid application for photo editing available on GitHub.1 Sup-
pose that a developer is going to append the rotateImage
method to this project and this change is under review. The
Editor class is the main class of this project and its primary
concern is to handle user actions on the device and maintain

1https://github.com/ReneGuillen/Photo Editor Android

package com.software.ProfileFit;
public class Editor extends AppCompatActivity {
private static Bitmap rotateImage(

Bitmap img, int degree) {
Matrix matrix = new Matrix();
matrix.postRotate(degree);
Bitmap rotatedImg = Bitmap.createBitmap(

img, 0, 0, img.getWidth(),
img.getHeight(), matrix, true);

img.recycle();
return rotatedImg;

}
// more code here

}

Listing 1: A main class with very detailed implementation

package com.software.ProfileFit.Utils;
public class BitmapUtils {
public static Bitmap bitmapOverlayToCenter(

Bitmap bitmap1, Bitmap bitmap2,
Bitmap bitmap3) {...}

public static Bitmap applyOverlay(
Context context, Bitmap sourceImage,
int overlayDrawableResourceId) {...}

public static Bitmap blurRenderScript(
Editor context, Bitmap smallBitmap,
int radius) {...}

private static Bitmap RGB565toARGB888(Bitmap img)
throws Exception {...}

}

Listing 2: Most image processing methods are included in this
class

the view of the application. However, the rotateImage
method, which is under review, does image processing. The
place of this method seems inappropriate. Although the place
might be right for some modularity principles since it is a pri-
vate method invoked only within the Editor class, the image
processing is far from the primary concern of the Editor
class. It looks like an instance of code smell known as god
object [18]. The code reviewer should advise the developer
to move the rotateImage method into the BitmapUtils
class in a different package Utils. As shown in Listing 2, that
class includes several similar methods for image processing.

Programming tools can measure several source code metrics
such as low-coupling and high-cohesion [2], and a distance
proposed by Tsantalis et al [19]. Then they can suggest placing
the rotateImage method in either the Utils package
or the ProfileFit package, which contains the Editor
class, depending on what metrics are used. Nevertheless, both
packages could be a right place. The code reviewer must
decide which package is a right place by considering the fact
which modularity principle or rule has been applied to other
methods. This fact is known only by the developers and the
code reviewers of the project. To maintain good modularity
in the later stage of project lifetime, a key is consistency
in modularity principles or rules applied to a project. If the
other methods for image processing are placed in the Utils
package, instead of distinct packages where those methods are



package com.service;
public class AuthorService_mybatis {
public Author findAuthor(Long id) {
return this.authorMapperMybatis.findAuthor(id);

}
}

Listing 3: A concrete method in the service package

called, rotateImage should be also placed in Utils.
Listing 3 is another example. This is an excerpt from

a project for a web service available on GitHub2. It is a
tiny project for practicing the development using the Spring
framework3 in Java. Thus, the project is based on the Model-
View-Controller (MVC) architecture. It also uses the MyBatis
framework4 for database access. Suppose that we are re-
viewing the findAuthor method declared in the service
package, which is the module for the model of the MVC.
This looks fine because findAuthor obviously belongs to
the model of MVC, but other similar methods are in the
service.impl package. Only interfaces are included in
the service package. Hence, the whole declaration of the
AuthorService_mybatis class should be moved into the
service.impl package. It is a common practice to place
concrete classes and methods into an implementation package
and separate them from their abstract interfaces in another
package.

If we know that an interface and its implementations are
placed in separate packages in this project, it would be easy to
automate the detection of findAuthor as a method placed
in an inappropriate package. However, this project may not
adopt this modularity rule and the current service package
may be a right place to put findAuthor. To decide the right
package for findAuthor, we must investigate other methods
to see how a package is selected for placing a method. Again,
this depends on which modularity rules have been adopted for
the project.

III. DETECTING ANOMALIES IN METHOD PLACEMENT

We present a technique for detecting anomalies in method
placement in Java that will help code reviewers judging
whether a method belongs to an appropriate Java package.
Our technique would contribute modularity maintenance by
code reviewers. As mentioned in the previous section, which
package a given method should belong to depends on how
other methods have been placed in packages in their project,
particularly in the latter stage of project lifetime. If a method
under review is placed in an anomalous place, the probability
of modularity violation by this placement would be high.

Our technique uses a machine learning model that has been
trained to classify a method into the package to which it
belongs. In order to detect an anomaly, our technique first
tells the model to infer to which package a method belongs.

2https://github.com/zhuzhengping911/MySpringBoot
3https://spring.io
4https://mybatis.org

If the inferred package is not the package to which the method
actually belongs, our technique reports such method placement
as an anomaly.

The machine learning model we use is a prototypical
network [9]. A prototypical network consists of an encoder and
classifier. The encoder is a neural network that encodes source
code into a distributed (vector) representation. The classifier
is a component that outputs to which package a method is
likely to belong. The encoder (neural network) has learnable
parameters. The classifier, on the other hand, does not have
learnable parameters.

Figure 1 illustrates how we use a prototypical network in
our anomaly detection. A prototypical network takes two sets
of methods as its input: support set and query set. A support
set is a set of methods that is composed by sampling several
methods from all packages. A query set is a collection of
methods that the prototypical network infers packages for.
In the inference step, the encoder converts each method in
the support/query set into a distributed representation. The
classifier computes the probability of being classified into each
package. The probability is computed based on the distance
between distributed representations. When the representation
of the query method is closer to the cluster for a package, the
classifier outputs a higher probability for that package.

The prototypical network is trained with a large corpus of
Java projects. Specifically, we (1) build support/query sets for
each project in the corpus, (2) feed them to the prototypical
network, and (3) update learnable parameters of the encoder
so that the network shows a good classification performance.
Note that, in each iteration, the network performs the method
classification task in a situation where only a small number
of sample methods are given to the network. By updating the
parameters of the encoder, the network is optimized for such
a classification task.

The training process of a prototypical network is called
meta-learning since a prototypical network is not optimized
for a certain classification task with a fixed number of classes.
It is rather optimized to perform better in a classification task
where both class samples and query samples are given in the
inference step. The encoder acquires a metric space (or how
to vectorize) that the classifier achieves a better classification
performance.

In the rest of this section, we describe how we design the
encoder and classifier for our anomaly detection. We also
explain how we train the prototypical network.

A. Encoder

Our encoder is an extended version of the code2vec
model [14]. It takes the source text of a method body as its
input and outputs a vector representation of that method body.
The following describes the outline of our encoder’s process:

1) Build an abstract syntax tree (AST) of given source text.
For example, our encoder builds the tree on the left of
Figure 2 from the source text shown on the bottom of the
figure.
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public User getUser(String userId) {
return userRepository.findById(userId)

.orElseThrow(() -> new IllegalArgumentException("invalid user id"));
}

Figure 2: Code2vec encoder and example input

2) Randomly sample n pairs of leaf nodes in the AST and
find the connecting path between nodes for each pair.
The triplet of two leaf nodes and the path is called an
AST context. In the AST of Figure 2, three AST contexts
are illustrated with three colors. For instance, the nodes
and path colored with red are the AST context from the
User node to the userId node. We set n to 200 in our
experiment shown in Section IV.

3) Vectorize each AST context with a neural model known
as the context encoder [20]. Since the context encoder is
a complicated module, we explain this step in more detail
separately in the following paragraphs.

4) Combine the elements of each vector obtained in the
previous step using a fully-connected layer. This step is
formalized as follows:

zi = tanh(Win · yi),

where zi is an output vector of this step, Win is learnable
parameters, and yi is an output vector of the previous
step.

5) Compute the weighted average of the vectors obtained
in the previous step. The computation of the weighted
average v is formalized as follows:

v =

n∑
i=1

(
exp(zTi · a)

Σnj=1 exp(zTj · a)

)
· zi.

Here, a is learnable parameters, and zTi is the transpose
of zi. This technique is known as the soft attention
mechanism.

As we mentioned, the context encoder vectorizes an AST
context. Let us denote an AST context as (ws, wt, r1 . . . rl),
where ws and wt are the leaf nodes, and r1 . . . rl are in-
termediate nodes along the path. The context encoder (1)



vectorizes ws, wt, and r1 . . . rl, respectively, (2) concatenates
the obtained vectors into a single vector, and (3) outputs the
concatenated vector. To vectorize a node, the context encoder
first splits the names in a node w into lower-case words. For
example, if the target node is the userId node in Figure 2,
it splits userId into user and id. The context encoder
then vectorizes each word using an embedding matrix (a
collection of word vectors) and dumps the average of obtained
word vectors as the node vector. To vectorize a path, the
context encoder first vectorizes every node on the path and
put obtained vectors into a bi-directional LSTM [21], [22].
The output of the LSTM is the path vector. The vectorization
of the context vector is formalized as follows:

yi = [enc token(ws); enc path(r1 . . . rl); enc token(wt)],

where yi is the context encoder’s output, enc token is the
node vectorizer, and enc path is the path vectorizer. Here,
[v;w] represents the concatenation of two vectors v and w.

Our encoder extension is in the context encoder. When it
converts a leaf node into a set of words, we also add type
information into that set. When a leaf node is an identifier,
such as a variable name and a method name, the encoder
obtains its static type T . If T is a class or interface type, the
encoder also obtains its immediate superclass and interfaces.
The names of all the obtained classes and interfaces are split
into words as the variable and method names. Then these
words are added to the set of words for that leaf node.
Likewise, if a leaf node is a class or interface name, the
encoder splits the names of its immediate superclass and
interfaces into words and adds them to the set for the leaf
node. Figure 3 illustrates our extension and how the context
encoder works.

B. Classifier

Our classifier is the same as the classifier for the original
prototypical network. It is not a neural network unlike other
models for few-shot classification [23], [24]. This is an ad-
vantage of prototypical networks because the classifier can be
easily constructed again without a time-consuming gradient
descent algorithm when some methods are modified to or
removed from the project.

The classifier for a project u is constructed with the
support set for that project u. The support set is given as
D = {(x1, y1), ..., (xN , yN )}, where xi denotes the source
code of a method mi (i = 1, 2, . . . , N ) and yi ∈ K denotes
the label of the package that includes that method mi. Here,
K = {1, . . . ,K}. For a package k, Dk denotes a subset of
D where all the elements are the methods included in that
package k. Then, the representative (central) point ck for a
package k is given as follows:

ck =
1

|Dk|
∑

(xi,yi)∈Dk

fφ(xi) (1)

fφ(·) is a function representing the encoder. When construct-
ing the classifier, only ck has to be computed for every k.

The outputs of the classifier are probabilities of plausibility
for K packages. The probability for package k ∈ K can be
computed as

pφ(y = k | q) =
exp (−dist(fφ(q), ck))∑

k′∈K exp (−dist(fφ(q), ck′))
(2)

where q is the source code of a query method and dist(·) is
the Euclidean distance function.

The classifier pφ is used to determine whether a method m
in the query set should be moved or not. Our technique predicts
the package with the highest probability for that method m.
Let k̂ ∈ K be the predicted package for m and k ∈ K denotes
the current package of the method m. If both k 6= k̂ and
pφ(y = k̂) > θ are fulfilled, our technique detects that the
method m should be moved from k to k̂, where θ ∈ [0, 1] is a
threshold. We determine the value of θ in an empirical way. In
our case study conducted in Section IV-B, we set θ so that the
evaluation performance in section IV-A will be maximized.

C. Training encoder
We do meta-learning as the original proposal of prototypical

networks did. We give a number of pairs of a support set and
a query set so that the network will output more accurate
probabilities for the query set than before. Note that only
the encoder is a neural network and the classifier is not. The
classifier is constructed for every support set. When we use
the model after training it, we use the trained encoder as it is
but we must reconstruct the classifier to fit the support set we
give as an input with a query set.

To obtain the labels for supervised learning, we collected
a number of Java projects from GitHub. Some methods in
these projects might be placed in inappropriate packages. To
mitigate their effects, we carefully selected only projects with
many stars on GitHub. We assume that such projects should
show good modularity. More details will be mentioned in
Section IV.

Throughout the meta-learning, we train the learnable pa-
rameters φ for the encoder fφ so that the classifier pφ will
show good performance. A single cycle of mini-batch training
in the context of meta-learning is called an episode. For every
episode, one project is chosen among all the projects in the
training dataset. The probability of choosing a project u ∈ U
is |Du|∑

u′∈U |Du′ | , where Du denotes all the pairs of methods and
its package included in the project u. Then K packages are
randomly chosen in that chosen project and N methods are
also randomly chosen from every package. The chosen N×K
methods form a support set. Furthermore, some other methods
are chosen from the K packages and form a query set. The
support set and the query set are given to our model and the
gradient descent algorithm is run to minimize a loss function
J(φ) = − log pφ(y = k | q). After iterating an episode many
times, we obtain a well-trained encoder. This training is called
N -shot K-way meta-learning.

D. Use case scenarios
A simple usage of our technique is to examine a new

method committed to an existing project. After meta-learning,
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TABLE I: Dataset

training validation test user-projects
projects 9005 250 300 1000
packages 2-2364 17-94 17-86 1-89
packages (avg.) 23.7 28.2 29.3 19.9
packages (std-dev.) 75.0 12.9 13.2 14.4

the classifier of our technique is constructed again by using
all the existing methods in that project. Those methods are
regarded as a support set for that project. Then the new method
is examined by our technique to inspect whether the predicted
package is the same as the current package.

Another scenario is to discover a method placed in an
inappropriate package of an existing project. To do this, we
divide all the methods in the project into a support set and a
query set, for example, 80% for a support set and 20% for
a query set. After the classifier is constructed again by using
this support set, the query set is examined to find a misplaced
method in that set. We iterate this by changing the support set
and the query set so that all the methods will be included in
the query set at least once.

IV. EVALUATION

Our evaluation is three-fold and is described in the following
three subsections. They correspond to these three research
questions:
• RQ 1: How well can our technique detect anomalies in

method placements?
• RQ 2: Are the detected anomalies indeed method mis-

placements in real-world Java projects?
• RQ 3: Are the design choices we make appropriate?

Dataset We adopt the java-large dataset that was originally
for evaluating code2seq [20] and apply several modifications
to make it suitable for our purpose. It contains more than 9,500
Java projects. We expect that the consistency of modularization
in the projects included in this dataset is high because they are
selected in the order of their star counts from GitHub.

We modify the java-large dataset to create our own dataset
because some of the projects in the validation set and the test
set have very few packages. Such projects are not suitable
for evaluating whether our model can find anomalies. The
modifications we make are as follows. First, we bundle all
projects in the training, validation, and test set of java-large
into one. Second, we randomly select 250 projects as the new
validation set and 300 projects as the new test set among
ones whose numbers of packages are between 15 and 100.
Besides very small projects (less than 15 projects), we also
exclude significantly large projects (100+ packages) so that
the evaluation results are not blurred by exceptional cases.
We use the remaining 9,005 projects as the new training set.

Table I shows several metrics of our dataset. Besides the
projects adopted from the java-large dataset, our dataset also
includes another set called user-projects. It consists of projects
that we collect by ourselves from ones not in java-large. The
details of the user-projects set are described in Section IV-B.

Preprocessing We preprocess our dataset in the following
four ways. 1) Source code for automated testing are removed
as much as possible because they are meant to be separated
from other code in the same project regardless of the rules
on modularity. We remove them by filtering out classes that
have a subtoken Test in their names. 2) Abstract methods
are excluded because they do not have method bodies to be
input into our technique. 3) Boilerplate code are exclucuded
because they tend to be scattered across packages regardless of
the rules on modularity. We refer to getters, setters, overridden
methods of Object#equals, Object#hashcode, and
Object#toString as boilerplate. 4) All comments in the
source code are removed.

We create word dictionaries for the use of word embedding
in the neural network in the same way as Alon et al. [20].
We have two dictionaries: the collection of words that appear
in the text of the methods and the collection of words that
appear in the AST nodes. The word set from the method
text consists of 1) tokens that represent reserved words,



2) subtokens derived from identifiers, and 3) subtokens derived
from type information. We count occurrences of each word
in the whole dataset and replace less frequent words with a
special word <UNK>. This replacement is a typical way used in
NLP (Natural Language Processing) tasks, which contributes
to preventing neural-network-based models from overfitting.

Model Training For the meta-learning, we train our network
for approximately 70,000 episodes. The training took 27 hours
on an NVIDIA A6000 GPU. We set the learning rate to 0.001
and the meta-learning configuration to 10-shot 20-way. For
each episode in the meta-learning, we select 5 samples for
each package as the query set. Other hyperparameters can be
found in the source code included in our artifact [16]. After
the meta-learning, a classifier is constructed for each project
to detect method misplacement that is specific to it.

Only 955 projects out of 9005 collected are used in the
meta-learning due to a limitation of our training procedure.
Projects that do not contain enough number of methods for an
episode are skipped. For every episode, we need 200 methods
for the 10-shot 20-way learning and additional Q×20 methods
for the query set, where Q is a hyperparameter. We set Q to 5
as stated above, thus the total number of methods required for
an episode is 300. Although the projects that are used in the
meta-learning account only for 10.6% (= 955 / 9005) of the
overall projects, they cover 72.7% (= 5,682,782 / 7,821,121)
of the overall methods.

A. Anomaly Detection Performance

Evaluation Method To answer RQ 1, we examine the
anomaly detection performance of our technique. We also
compare the result to another tool that we create by adapting
an existing learning-based model to our purpose.

The detection performance is evaluated by their accuracy
and F1 score. They are calculated as follows:

precision = # of true positives
# of true positives+# of false negatives

recall = # of true positives
# of positive samples in the dataset

F1 score = 2·precision·recall
precision+recall

accuracy = # of correct recommendations for true positives
# of true positives

The precision measures how well our system can find anoma-
lies in method placements. For example, if a method is
misplaced and our system outputs a package other than the one
that it currently belongs to, that is a true positive. The accuracy
measures how well our system can recommend a package that
a method should be moved to. The correct recommendation for
true positives is the number of true positives whose destination
packages match the ground truth.

To know the ground truth of method placements, we in-
tentionally misplace methods in the test set by moving some
methods in a project to different packages. Our intentional
misplacements mimic ones that may appear in the wild. For
every method in a project, we decide if it is moved with 1%
probability. For method m, the move destination is selected
randomly from packages described below:

1) packages that include methods calling m,
2) packages that include methods called by m, and
3) packages that have a same import statement as one of the

import statements in the class file where m exists.
In addition to evaluating our technique alone, we compare it

to another tool that we create by adapting an existing learning-
based method to our purpose. The goal of this comparison is to
show that straight-forward modification of existing methods is
not enough to achieve high detection performance. To this end,
we use the model by Liu et al. [15] that is the state-of-the-art as
of writing in detecting feature envy [18] and outperforms well-
known JDeodrant. Feature envy is a method that references
variables and methods in other classes more often than ones
included in its own class. We say that this method envies other
classes rather than its own. We modify Liu’s method so that it
detects methods that envy other packages (not methods) rather
than their own.

Liu’s model is modified in the following four ways:
1) The input is changed from class-wise metrics to package-

wise metrics. While the original method receives the
name of a class and the distance between the class and
a method, our modified version receives the name of a
package and the distance between the package and a
method. A distance is calculated in the same way as
in [15] except that a class is replaced by a package.

2) Liu’s model with the input changed takes a method m,
the package k1 that m belongs to, and another package
k2 as the input and outputs the probability that m should
be moved from k1 to k2. On the other hand, our model
directly outputs a package k that m should be moved to
and its probability. Thus, we input all candidate packages
for m to modified version of Liu’s model and regard the
package with the highest probability as the one that m
should be moved to.

3) A probability threshold is introduced. If the highest
probability that Liu’s model outputs for a given method is
smaller than the threshold, we regard the model predicts
that the method should not be moved.

4) The model is trained on our own dataset to enable fair
comparison.

Result The F1 score and the accuracy with different threshold
values are shown in Figure 4 (a) and Figure 4 (b), respectively.
The following paragraphs describe key takeaways we draw
from the result.

Takeaway 1: Our technique achieved very high accuracy
in any threshold value. The highest accuracy was as high as
0.941 with the threshold value of 0.95. This means that the
packages that our technique predicted as the move destination
matched the ground truth in 94.1% of the cases. The result
shows the effectiveness of our model design and the use of
few-show learning for anomaly detection in method place-
ments. To clarify how our design choices affect the results,
we conduct an ablation study in Section IV-C.

Takeaway 2: Our technique achieved significantly higher
performance than the modified version of Liu’s model. The
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Figure 4: Evaluation result of detection performance

highest accuracy that Liu’s model achieved was 0.566 with
the threshold value of 0.95, which is almost 40 points lower
than ours. Note that this result is different from the detection
accuracy of feature envy shown in [15] because our evaluation
(1) requires to find broader range of anomalies in method
placements than feature envy, and (2) includes more move
candidates (all packages in a project) to choose from than the
experiments done in [15] (ones detected as move-refactoring-
capable by Eclipse JDT [25]). The result shows that straight-
forward modification of an existing learning-based method is
not enough to detect anomalies in method placements.

In terms of the F1 score, it is less than 0.115 for our model
even in the best case, although it is slightly higher than Liu’s
model. To understand this deeply, we show the PR (Precision-
Recall) curve in Figure 4 (c). The precision is low everywhere
while the recall is high at certain threshold values. This means
that our technique mistakenly suggests that a method should
be moved in many cases even if it should not be moved indeed.
Among these false positives, ones that move methods between
two distinct projects can be filtered out when our technique
is used in actual software development. These suggestions
happen in our evaluation because a GitHub repository can
include more than one project, but we do not distinguish
them when creating the ground truth. For example, application
code and library code that are independently developed are
two distinct projects, but they may be bundled together in
one repository. Our technique often suggests that a method
be moved between them because they implement similar
functionalities. However, developers can choose not to feed
distinct projects at once to our technique in actual software
development.

B. Case Study

Evaluation Method To answer RQ 2, we conduct a case
study that applies our technique to real-world Java projects.
We categorize valid anomalies among detected ones either
to actual method misplacements or not by manual investi-
gation. Valid anomalies are ones that are neither suspended
nor excluded. Suspended and excluded anomalies are ones
that we cannot confirm as method misplacements or not due
to our lack of project-specific knowledge, and that suggest
methods be moved between two distinct projects, respectively.

As discussed in Section IV-A, excluded anomalies can be
avoided in real software development by not feeding distinct
projects together to our technique.

A valid anomaly is regarded as a method misplacement if
it satisfies either of the following conditions:

1) it violates general modularity principles (e.g., low-
coupling and high-cohesion [2], information hiding [3]),

2) it violates modularization rules of the adopted framework
(e.g., Model-View-Controller architecture), or

3) it violates project-specific rules on modularity, which are
extracted from each project by manually reviewing the
source code.

We create a new set of projects called user-project for this
study. Unlike the java-large dataset, this set only contains
projects owned by personal accounts5 on GitHub. We collect
projects of personal accounts because they tend to be devel-
oped by a small number of people and thus may have more
anomalies in method placements than ones of organization
accounts. This way we mimic a situation where a certain
number of anomalies exist but have not yet been fixed. Among
the most-starred projects owned by personal accounts, we
collect ones that are created within the last 10 years and not
included in the java-large dataset. We collect more than 7,000
projects and randomly pick 1,000 projects from them to be
used in the case study.

Result Figure 5 shows the breakdown of the valid anomalies.
We detected 319 anomalies in total, out of which 171 were
valid, 40 were suspended, and 108 were excluded. The detec-
tion threshold of the model was set to 0.95, which achieved
the highest F1 score in Section IV-A. We draw two takeaways
from the result.

Takeaway 3: 51 valid anomalies out of 171 (30 %) were
actual misplacements. This shows that our idea of detecting
anomalies in method misplacements is beneficial for finding
modularity rule volations. The reason why the result is better
than the precision in Section IV-A (see Figure 4 (c)) can be
because we excluded cross-project suggestions in this section
as developers would do in actual software development.

Takeaway 4: The suggested move destination was correct

5https://docs.github.com/en/get-started/learning-about-github/types-of-gith
ub-accounts#personal-accounts



Figure 5: Breakdown of all valid anomalies

in 49 true positives out of 51 (96 %). This confirms that our
model design and the use of few-shot learning are effective
for actual method misplacements, and our technique can be
leveraged in real-world sotftware development.

Analysis of True Positives We analyze the true positives to
clarify that our technique indeed detects actual misplacements
that stem from modularization rule violations. Listing 1, 2,
Listing 3, Listing 4, and Listing 5 are example true positives.
The following paragraphs explain why they are regarded as
modularization rule violations that may damage the code
quality and maintanability of the project. An advantage of
our technique is that it detects all of the below examples
without explicit knowledge on which modularization principle
is used in each project. On the otherhand, using existing tech-
niques such as measuring code quality metrics and applying a
learning-based model for a specific type of misplacement (e.g.,
feature envy) to find them requires human involvement on
which metric to measure and which model to apply. These are
not always easy tasks especially in the later stage of software
development.

Listing 1 contains a method that implements a different
concern than the one of its containing class and should be
moved to the class in Listing 2, and Listing 3 violates the
principle of separation of interfaces and their implementation.
Detailed descriptions of these code are in Section II.

Listing 4 is an example of brain controller [26] and violates
the modularization rules of the underlying framework. Our
technique suggested that this method should be moved from
the controller package to the service package. It is
a part of a web application6 that adopts SpringMVC as its
framework and violates the rule that a controller should not
contain business logic. This method contains a business logic
that checks the validity of a user’s password and saves it,
which should be done in the service package according to
the standard modularization rule of SpringMVC.

6https://github.com/6324/xxl-job-admin-postgre

package controller;
public class UserController {
@RequestMapping("/update")
@ResponseBody
@PermissionLimit(adminuser = true)
public ReturnT<String> update(

HttpServletRequest request,
XxlJobUser xxlJobUser) {

XxlJobUser loginUser = (XxlJobUser) request
.getAttribute(LoginService.LOGIN_IDENTITY_KEY);

if (loginUser.getUsername()
.equals(xxlJobUser.getUsername())) {
return new ReturnT<String>(

ReturnT.FAIL.getCode(),
I18nUtil.getString(

"user_update_loginuser_limit"));
}

if (StringUtils.hasText(
xxlJobUser.getPassword())) {
xxlJobUser.setPassword(xxlJobUser
.getPassword().trim());

if (!(xxlJobUser.getPassword().length()>=4 &&
xxlJobUser.getPassword().length()<=20)) {
return new ReturnT<String>(

ReturnT.FAIL_CODE,
I18nUtil.getString(

"system_lengh_limit")+"[4-20]");
}
xxlJobUser.setPassword(

DigestUtils.md5DigestAsHex(
xxlJobUser.getPassword().getBytes()));

} else {
xxlJobUser.setPassword(null);

}

xxlJobUserDao.update(xxlJobUser);
return ReturnT.SUCCESS;

}
}

Listing 4: Controller contains business logic in its method

package minimalpoem;
public class MainApp {
private DaoSession initGreenDao() {

DaoMaster.DevOpenHelper helper = new DaoMaster
.DevOpenHelper(this, config.getDBName());

SQLiteDatabase sqLiteDatabase = helper
.getWritableDatabase();

DaoMaster daoMaster =
new DaoMaster(sqLiteDatabase);

return daoMaster.newSession();
}

}

Listing 5: A method that envies another package than its own

Listing 5 is an example of methods that envy other packages
than their own. It is a method placed in the entrypoint of
an Android application7 and our technique suggested that this
method should be moved to the minimalpoem.db package.
The purpose of this method is to perform the initialization
process to use a database. This method obviously envies the
minimalpoem.db package because it repeatedly references

7https://github.com/Deali-Axy/MinimalPoem



package rcvadapter;
public class RcvMultiAdapter<T> {
public void addItemView(int viewType,

RcvBaseItemView<T> itemView) {
mItemViewManager.addItemView(viewType,

itemView);
}

}

Listing 6: False positive: Delegation pattern

the DaoMaster class included in minimalpoem.db but
does not reference any other classes.

Note that a method in a true positive cannot necessarily be
cut-and-pasted to the suggested package even if the suggestion
is correct. This is because a method that implements two
functionalities is suggested to be moved based on either of
them. For example, the method in Listing 4 includes the
controller’s responsibility (validating and storing a pass-
word) and the service’s one (returning the validation result).
Therefore, refactoring this method requires decoupling the two
responsibilities and moving lines of code corresponding to
each of them to different packages. Among the 49 cases whose
move destinations are correctly suggested, 24 cases (49%) fall
into this category. Modifying our model so that it handles code
with a finer granularity (e.g., a basic-block level) may enable
it to suggest a smaller portion of code to be moved, but we
leave it for future work.

Analysis of False Positives We also analyse the false positives
to find some typical cases on which our technique does not
work well.

The most common case is the delegation pattern [27].
Out of 120 false positives, 15 of them fall into this cate-
gory. Listing 6 is an example. This is an excerpt from an
Android application8. The addItemView method has no
functionalities other than merely dispatching the parameters to
a method of mItemViewManager that has the same name.
Our technique mistakenly suggests that this method should
be moved to the rcvadapter.manager package despite
this method appropriately employs the delegation pattern.
This wrong prediction comes from two characteristics of the
delegation pattern. 1) A method body is often very short and
has little information about its functionality. 2) The destination
method of a delegation usually has the same signature as the
origin method of the delegation.

The second most common case is where dependency injec-
tion is used under Spring Framework and 9 false positives fall
into this category. Listing 7 is an example. This is an excerpt
from a web backend application9. In Spring Framework, it is a
common practice 1) to separate an instantiation of a class and
its usage for utilizing the dependency inejection mechanism
of the framework, and 2) to put the instantiation in a package
called config as in this example. Our technique mistakenly

8https://github.com/vanish136/recyclerviewadapter
9https://github.com/huo785/springboot2.0-shiro-jwt-layui-thymeleaf-swag

ger-mybatis

package config;
public class RedisConfig {
@Bean
public RedisTemplate redisTemplate(

RedisConnectionFactory connectionFactory) {
RedisTemplate<String, Object> template =

new RedisTemplate();
...
return template;

}
}

package service;
public class RedisService {
@Autowired
private RedisTemplate redisTemplate;

public Boolean persist(String key) {
if (null == key){
return false;

}
return redisTemplate.persist(key);

}
}

Listing 7: False positive: Separation of instance creation and
its usage in Spring Framework

suggests that the redisTemplate method should be moved
to the service package because the usage of the object cre-
ated by redisTemplate is concentrated in the service
package and also a config package tends to include mis-
cellaneous methods in the projectts included in our dataset.
Learning this pattern as an appropriate method placement is
difficult for our technique because whether this pattern is
applied or not relies only on a small annotation (@Bean in
the code) and SpringFramework applies dependency injection
behind the scenes.

C. Ablation Study

Evaluation Method We conduct an ablation study on our
technique to answer RQ 3. This ablation study includes two
perspectives. We verify 1) that the subtokenization and type
utilization contribute to the anamaly detection performance
and 2) that our encoder is the most suitable for our task among
other possible neural-network-based methods.

For perspective (1), we implement two variants of our tech-
nique: ours w/o types and ours w/o subtokenization. They use
the same encoder but do not use type information or subtoken
information, respectively. Ours w/o types is constructed by not
adding type information into a set of subtokens when encoding
them. Ours w/o subtokenization is constructed by not dividing
source code tokens into subtokens. The word dictionary is also
created by not dividing tokens into subtokens.

For perspective (2), we use three encoders that are based
on different neural network models. They embed the same
method into different vectors as they utilize different kind of
information extracted from the input method. The first one is
the plain code2vec [14] model that takes an AST as its input.
The second one is Bi-directional LSTM with soft attention [12]
that takes a sequence of tokens as its input. The last one is



TABLE II: The result of the ablation study

Variants Top-1 accuracy
Ours 0.652
w/o types 0.629
w/o subtokenization 0.605
Code2vec 0.594
GGNN 0.585
Bi-LSTM 0.314

GGNN [10] that takes a graph representing the method body
as its input. To use GGNN with our technique, we attach a
readout module adopted from [28] because the vanilla GGNN
converts a single graph node into a vector but we need to
convert a whole graph (i.e. a whole method body).

We evaluate each variant by their top-1 accuracy of method-
to-package classification. This is because the anomaly detec-
tion performance of the whole implementation is dominated
by this metric. The top-1 accuracy is the proportion of exact
matches against all cases, where an exact match means when
the actual package the query method belongs to is predicted
with the highest probability by the classifier. Note that this
terminology is different from the accuracy in Section IV-A.
In this evaluation, we divide each project into five portions
so that methods used for few-shot learning do not appear in
the queries. The top-1 accuracy for a project is calculated by
taking the average over the five portions.

Result Table II shows the top-1 accuracy of each variant. We
draw two takeaways from the result.

Takeaway 5: The top-1 accuracy of “Ours” is higher
than that of other encoders. This means that the design
choices we make in Section III significantly improve the
anomaly detection performance than using an existing encoder
as-is. Compared to the best result besides “our”, the difference
is more than 8.8 % ( 0.652−0.5940.652 = 0.0889...).

Takeaway 6: The top-1 accuracy of “Ours” is higher
than that of “w/o types” and “w/o subtokenization”. This
shows that combining type information and subtokenization
togather largely contributes to improving the anomaly detec-
tion performance. Using only one of them does not rival the
top-1 accuracy of “ours”.

We expect that type information has the potential to improve
the classification accuracy more than we observe in this study.
This is because the type information we exploit is incom-
plete. Recent software projects often use various dependency
management tools and it is sometimes time-consuming to
understand how to download libraries and build projects. Due
to this issue, we only make use of type information that
can be extracted from the project source code itself, but not
from libraries that it depends on. Feeding more complete type
information to the model may result in better classification
accuracy, but we leave it for future work.

V. THREATS TO VALIDITY

Internal Validity The validity of our results in Section IV-B
heavily depends on our manual inspection of the model
outputs. We made guidelines to judge if the detected cases are

truly misplaced methods or not, but the judgment we made
can be still subjective. Furthermore, we are not aware of all
the coding rules (especially undocumented ones) in the target
projects since we are not the lead developers of those projects.
To make our results publicly validatable, we published them as
part of the artifact at Zenodo [16]. Specifically, we uploaded
the spreadsheet file that contains the target code fragments,
our system’s suggestion and its probability, and our (manual)
categorization.

External Validity The performance of our model depends on
the quality of the dataset for model training. The performance
may improve or deteriorate significantly if our model is
trained with another dataset. As described at the beginning of
Section IV, we carefully chose the dataset for our model based
on the common assumption that most-starred repositories tend
to be well-reviewed and thus well-modularized. Our model
may achieve better performance if we train it with a collection
of Java projects verified to be well-modularized.

VI. RELATED WORK

Researchers have been developing techniques to detect
misplaced code fragments. JDeodrant [17] and JMove [29]
are well-known research artifacts for detecting code smells
related to method misplacement (e.g., feature envy methods).
Liu et al. presented a detection model for feature envy methods
and reported that their model outperformed JDeodrant and
JMove [15]. Palomba et al. proposed a technique to suggest the
move class refactoring based on class cohesion metrics [30].
Hayashi et al. proposed an inference-based technique for a
project in the MVC2 design [31]. The key difference between
our technique and those existing techniques is that ours does
not assume certain code smells (e.g., feature envy), project
architecture (e.g., MVC2), or properties of misplacement (e.g.,
cohesion). Our model makes a judgment of whether a method
is misplaced or not based on what it learned from ASTs and
type information.

The study of misplacement detection is not confined to
the detection of named misplacement patterns. Huynh et al.
proposed a detection technique that uses design structure
matrices [32]. Wong et al. presented a detection technique that
uses co-change patterns among files in version history as well
as dependencies among modules [33]. Some of architectural
smells [4] are about code misplacement. Cunha et al. pre-
sented a technique to detect two architectural smells known
as unstable dependency and god Component using machine
learning [34]. Dı́az-Pace et al. proposed a machine-learning
technique to find cyclic dependencies and hub-like dependen-
cies [35]. The study of architectural smell detection is not
limited to the learning-based approach. Mo et al. formalized of
several architectural smells and developed the detector of those
smells. However, since these techniques use architecture-level
features to detect misplacements, they cannot suggest exactly
which method causes modularity violations. Our technique,
on the other hand, can suggest to which package a misplaced
method should be moved.



The application of few-shot classification techniques in the
software engineering field is not well discovered, whereas the
techniques are widely used in the field of image classification
and natural language processing tasks [36], [37]. The pa-
per [38] mentions the use of few-shot learning techniques for
the program synthesis and presents a dataset for it. However,
it does not propose an actual use of the dataset. To the best of
our knowledge, this study is the first application of a few-shot
classification technique for a code-related task.

VII. CONCLUSION

In this paper, we presented a technique to detect anomalies
in method placement in a Java project. Our technique can find
project-specific anomalies, not only generic or project-agnostic
anomalies, thanks to the few-shot classification technique. Our
empirical evaluation revealed that our technique outperformed
an existing feature-envy detection model. It also revealed that
30% of detected anomalies were misplaced methods and that
suggested move destination was correct in 96% cases. We
also conducted a case study and ablation study to validate
the output and design of our neural network model.
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