
Yet Another Generating Method of Fluent Interfaces
Supporting Flat- and Sub-chaining Styles

Tetsuro Yamazaki
The University of Tokyo

Graduate School of Information
Science and Technology

Japan
yamazaki@csg.ci.i.u-tokyo.ac.jp

Tomoki Nakamaru
The University of Tokyo

Graduate School of Arts and Sciences
Japan

nakamaru@graco.c.u-tokyo.ac.jp

Shigeru Chiba
The University of Tokyo

Graduate School of Information
Science and Technology

Japan
chiba@acm.org

Abstract
Researchers discovered methods to generate fluent interfaces
equipped with static checking to verify their calling conven-
tions. This static checking is done by carefully designing
classes and method signatures to make type checking to
perform a calculation equivalent to syntax checking. In this
paper, we propose a method to generate a fluent interface
with syntax checking, which accepts both styles of method
chaining; flat-chaining style and sub-chaining style. Support-
ing both styles is worthwhile because it allows programmers
to wrap out parts of their method chaining for readability.
Our method is based on grammar rewriting so that we could
inspect the acceptable grammar. In conclusion, our method
succeeds generation when the input grammar is LL(1) and
there is no non-terminal symbol that generates either only
an empty string or nothing.

CCS Concepts: • Software and its engineering → API
languages; • Theory of computation→ Grammars and
context-free languages.

Keywords: fluent interface generation, LL(1) parsing, gram-
mar rewriting

ACM Reference Format:
Tetsuro Yamazaki, Tomoki Nakamaru, and Shigeru Chiba. 2022. Yet
Another Generating Method of Fluent Interfaces Supporting Flat-
and Sub-chaining Styles. In Proceedings of the 15th ACM SIGPLAN
International Conference on Software Language Engineering (SLE ’22),
December 06–07, 2022, Auckland, New Zealand. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3567512.3567533

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’22, December 06–07, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9919-7/22/12. . . $15.00
https://doi.org/10.1145/3567512.3567533

1 Introduction
A fluent interface is a library interface designed with method
chaining. It has been getting popular [11] since expressions
written with it are easy to read from left to right. Several re-
searchers have been hacking existing type checkers to make
fluent interfaces safe. The resulting safe fluent interfaces
exploit type checkers so that they can statically determine
whether a given chain of method calls is valid for the inter-
face specification [2–4, 8–10, 12, 14, 15]. Since this validity
checking can be regarded as parsing, a fluent interface can
specify the grammar that defines its valid chains of method
calls. Several design techniques for safe fluent interfaces
have been studied to support a wider class of grammars and
check the validity in a shorter time.
Another stream of research is to enhance the style of

fluent interfaces. Although typical fluent interfaces allow
a single long chain of method calls, some interfaces allow
programmers to construct a long chain by combining several
short chains. The former style is called flat-chaining while
the latter is called sub-chaining. In the sub-chaining style, a
short chain is separately constructed and attached to its base
chain as an argument to a chainedmethod. Silverchain [10] is
a fluent-interface generator that supports both flat-chaining
and sub-chaining. From a given grammar, it generates an
interface where a program can mix both styles in the same
chain.

Although Silverchain generates a safe fluent interface, the
authors of Silverchain do not present which class of gram-
mars Silverchain can generate an interface for. Silverchain
translates every grammar rule into a finite state automaton,
transforms it into a push-down automaton, and finally com-
bines all the automata together. We argue that this rather
ad-hoc technique complicates the interface generation and
hence makes it difficult to understand the grammar class
that Silverchain supports.

This paper proposes another method for generating a safe
fluent interface. It supports both the flat-chaining style and
the sub-chaining style. Our method is based on grammar
rewriting. It first transforms a given grammar into another
grammar directly supporting both styles. It then generates
a safe fluent interface from the grammar. The latter step is
straightforward; we can use an existing generator, such as

249

https://orcid.org/0000-0002-2065-5608
https://orcid.org/0000-0002-9451-5595
https://orcid.org/0000-0002-1058-5941
https://doi.org/10.1145/3567512.3567533
https://doi.org/10.1145/3567512.3567533

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tetsuro Yamazaki, Tomoki Nakamaru, and Shigeru Chiba

EriLex [14], from the LL(1) grammar to a safe fluent inter-
face supporting the flat-chaining style only. The adoption
of grammar rewriting enables us to analyze our method by
existing techniques used when analyzing formal grammars.
This paper also discusses the grammar class that our method
can generate a safe fluent interface for.

Our contribution is twofold.
• We propose another method to generate a safe flu-
ent interface supporting both flat-chaining and sub-
chaining styles. The validity of a given method chain
is statically checked by exploiting an existing type
checker.

• We present the grammar class that our method can
generate a safe fluent interface for. We also show the
formal proof of this fact.

The rest of this paper is organized as following. We first
briefly outline safe fluent interfaces and two styles of method
chaining in Section 2. Then we propose our method in Sec-
tion 3 and formally discuss its grammar class in Section 4. We
show two exceptional cases where our method cannot gener-
ate a fluent interface in Section 5. Related work is presented
in Section 6. Section 7 concludes this paper.

2 Background
2.1 Safe fluent interface
A fluent interface is a library interface designed to be used
by chaining method calls. The following shows an example
of such a chain of method calls in Java:

SQL.select("*").from("sample.db")

.where("id = 1006").run();

Afluent interface is a promising design for embedded domain-
specific languages (DSL). It enables programmers to mimic
a DSL sentence while it requires only method call syntax.
Many real-world libraries provide fluent interfaces; for ex-
ample, Stream API[13], jMock[6], jOOQ[7].

Consider another example with the SQL library:

SQL.select("*").where("id = 1")

.from("sample1.db").from("sample2.db").run()

This chain contains two consecutive from calls and mimics
an invalid SQL query. Therefore, a runtime error will be
thrown when we execute this chain.
An invalid chain can be detected at compile time by ap-

propriately setting the return type of each interface method.
Listing 1 shows such a safe design of our fluent interface.
Each method returns a type accepting only method calls
that can be chained right after that method. For instance,
the method select returns a type that offers only from be-
cause one can chain only a from call right after a select
call. When a fluent interface is designed in this safe manner,
the type checker rejects an invalid chain because it cannot
resolve a method call in that chain.

class SQL {
static SQL2 select(String columnSpec) {

SQL2 result = new SQL2();
...
return result;

}
}
class SQL2 {

SQL3 from(String tableSource) {
SQL3 result = new SQL3();
...
return result;

}
}
class SQL3 {

SQL4 where(String searchCondition) {
SQL4 result = new SQL4();
...
return result;

}
}
class SQL4 {

Result run() {
/ ∗ construct and invoke an SQL query ∗ /

}
}

Listing 1. Safe fluent interface of the SQL library

SQL SQL2

SQL3 SQL4

.select(String)

.from(String)

.where(String)
Ret

.run()

(a) Receiver type transition by method calls.

Q1 Q2

Q3 Q4

.select(String)

.from(String)

.where(String)

(b) A finite-state automaton.

Figure 1. Correspondence between receiver types and au-
tomaton states.

The design shown in Listing 1 can be viewed as a deter-
ministic finite automaton (DFA) on a type system. Figure 1
shows the correspondence between DFA states and type
definitions. A state of the DFA corresponds to a type defini-
tion in Listing 1, and a transition corresponds to a method
definition.

Given that a DFA is a machine for checking a regular gram-
mar, the correspondence in Figure 1 indicates the following:
The validation of a method chain can be regarded as parsing
with a type system. In general, parsing is a technique to

250

Yet Another Generating Method of Fluent Interfaces Supporting Flat- and Sub-chaining Styles SLE ’22, December 06–07, 2022, Auckland, New Zealand

analyze the structure of a symbol sequence. A symbol does
not have to be alphabetical. A symbol is a method call in the
context of fluent interfaces (or in the context of validating a
method chain).

Researchers have been applying more sophisticated pars-
ing techniques to make fluent interfaces safer: Xu presented
a technique to check an LL(1) grammar of method chains[14];
Gil and Levy presented a technique to check LR grammars
with the Java type checker[2]; Yamazaki et al. proposed a col-
lection of techniques to check LR grammars using the type
systems of C++, Scala, and Haskell[15]. Grigore showed that
the Java type checker can recognize any recursive language[4].
Xu’s technique for LL(1) is practical since it only consumes
a small amount of time and space at compile time. However,
the techniques for LR grammars are less practical due to a
large amount of time and space required at compile-time.

2.2 Flat-chaining and sub-chaining
To bring the techniques [2–4, 8, 10, 14, 15] into practice,
code generators are needed since a number of complicated
type definitions are required for safe fluent interfaces. In fact,
those studies offer code generators as their research artifacts.
A fluent interface generated by those generators allows

programmers to compose a DSL sentence only as a single flat
chain of method calls. However, in practice, programmers of-
ten want to wrap out parts of chains and combine them later.
The following shows a typical case where a programmer
often creates a sub-chain:

Where where;

if (negate) {

where = Where.column("id").notEquals(123).end();

} else {

where = Where.column("id").equals(123).end();

}

select("*").from("sample.db").where(where).run();

The where clause of an SQL query is wrapped out as a sub-
chain. The sub-chain is later combined with the base chain,
depending on the given condition.
If a fluent interface only supports the flat-chaining style

(i.e., allows only composing a single flat chain of method
calls), a programmer needs to write as follows, to change a
part of the chain dynamically:

SQL3 sql3 = select("*").from("sample.db");

SQL4 sql4;

if (negate) {

sql4 = sql3.where().column("id").notEquals(123);

} else {

sql4 = sql3.where().column("id").equals(123);

}

s4.run();

When sub-chaining is not supported by a fluent interface,
a programmer needs to introduce an intermediate variable

that groups a less meaningful part of a chain as shown above.
Note that sql3 and sql4 are typed differently since a safe
fluent interface switches the return type of each method
based on its state.
From the viewpoint of practical use, a fluent interface

should support both the flat-chaining style and the sub-
chaining style. As we discussed above, the sub-chaining style
works better when changing a part of a chain dynamically.
However, the flat-chaining style would be preferred when
composing a simple DSL sentence because the flat-chaining
style allows a programmer to compose a simple sentence
without nesting:

// flat-chaining style

select("*").from("sample.db")

.where().column("id").equals(123)

.run()

// sub-chaining style

select("*").from("sample.db")

.where(Where.column("id").equals(123).end())

.run()

Nakamaru et al. [10] discussed this chaining-style problem
of existing generators and proposed a technique to generate
a safe fluent interface with the sub-chaining support. In
their paper, the flat style described above is called the non-
subchaining style. In this paper, we refer to the flat style as
the flat-chaining style.

2.3 Motivation
Nakamaru et al. [10] present a technique to generate a safe
fluent interface with the sub-chaining support, but it only
describes a complicated procedure. Their method consists
of four steps. In the first step, they translate each right side
of production rules into deterministic finite-state automata
and generate class definitions that accept sub-chaining style
chains. Then, in the second step, they try to extend each
automaton by inlining transitions corresponding to non-
terminal symbols, but they may not inline transitions to
avoid infinite loops caused by their own recursive expan-
sion. In the third step, they collect transitions not inlined in
the previous step and generate RDPDA (realtime determin-
istic pushdown automata without 𝜖-transitions) from each
corresponding automaton. This translation from finite-state
automata to RDPDAs is also done by a similar method to
inlining. In the fourth step, they generate the entire fluent
interface from obtained RDPDAs.
Due to this complexity, Nakamaru et al. [10] have not

stated the limitation of their method clearly. The unclear
limitation may bother the users of a fluent interface gener-
ator. To see whether it generates a fluent interface or not,
the users need to actually give a grammar to the genera-
tor. Furthermore, they cannot know whether the generation
succeeds by rewriting their grammar appropriately.

251

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tetsuro Yamazaki, Tomoki Nakamaru, and Shigeru Chiba

A → X1 X2 ... Xn
| Y1 Y2 ... Ym
| ...

A → tA
| X1 X2 ... Xn
| Y1 Y2 ... Ym
| ...

Figure 2. Grammar rewriting by 𝑓 .

Our motivation is to develop a formal technique to gener-
ate a safe fluent interface with the sub-chaining support. If
a technique is formalized, we can analyze the limitation of
the technique such as the grammar class supported by the
generator. Investigation of the grammar class supported by
a fluent interface generator is an actively studied topic [2–
4, 8, 12, 15], and this paper shares the same motivation with
those studies. The development of a formal technique is also
beneficial when applying the language theory and other
parsing techniques to the generation of practical safe fluent
interfaces.

3 Proposal: Sub-Chain Embedding
We propose a new method to generate a safe fluent interface.
It is based on grammar rewriting. Like other fluent interface
generators, our method takes a grammar definition as its
input and generates class definitions for a fluent interface as
its output.

The generated fluent interface supports not only the flat-
chaining style but also the sub-chaining style. A programmer
can separately construct a part of a method-call chain as a
sub-chain if it corresponds to a non-terminal symbol in the
given grammar. Then the programmer can attach that sub-
chain to its base chain by giving it as an argument to the
method call in that base chain.

Our method generates a safe fluent interface in two steps:

1. It first rewrites the input grammar 𝐺 by applying a
rewriting function 𝑓 , and then

2. generates a fluent interface from the resulting gram-
mar. The generation can be performed by any existing
generator of the safe flat-chaining style from the LL(1)
grammar. The resulting interface allows a sub-chain
corresponding to any non-terminal symbol in 𝐺 .

The rewriting function 𝑓 plays a key role in our method.
Figure 2 illustrates how the function 𝑓 rewrites a given gram-
mar. The function 𝑓 adds a terminal symbol tA to the right-
hand side of the production rule for every non-terminal
symbol 𝐴. tA represents a method signature that a sub-chain
derived from 𝐴 can be given to as an argument. This simple
rewriting embeds sub-chaining style method chaining into
a grammar for flat-chaining style method chaining so that
we can simply generate a fluent interface supporting both
styles by applying an existing generation method that only
supports flat-chaining style.

The second step generates a fluent interface from the gram-
mar 𝑓 (𝐺), where tA is added for every non-terminal symbol
𝐴. To support both flat- and sub-chaining styles, our method
generates a base interface and sub-interfaces for base chains
and sub-chains, respectively. Let 𝑐𝑜𝑑𝑒𝑔𝑒𝑛(𝑔, 𝑛) be a function
that generates class definitions for a safe fluent interface
in the flat-chaining style. 𝑔 denotes a grammar and 𝑛 de-
notes a non-terminal symbol in 𝑔. We generate a top-most
fluent interface by 𝑐𝑜𝑑𝑒𝑔𝑒𝑛(𝑓 (𝐺), 𝐴𝑖𝑛𝑖𝑡) and sub-chain in-
terfaces by 𝑐𝑜𝑑𝑒𝑔𝑒𝑛(𝑓 (𝐺), 𝐴) for each non-terminal symbol
𝐴 ∈ 𝑁 . Programmers use a sub-chain interface generated
by 𝑐𝑜𝑑𝑒𝑔𝑒𝑛(𝑓 (𝐺), 𝐴) when they construct a sub-chain of
method calls corresponding to a sequence derived from 𝐴.
For example, if the production rule for 𝐴 is 𝐴 → tA | t0t1
(where tA, t0,t1 are terminal symbols), the generated in-
terface will accept a method-call chain like A.t0().t1().1
This sub-chain will be given to its base chain, for exam-
ple, as B.t2().tA(A.t0().t1()).t3(). Here, we assume
that t0 and t2 are static methods in class A and B, respec-
tively, and the interface for the base chain is generated by
𝑐𝑜𝑑𝑒𝑔𝑒𝑛(𝑓 (𝐺), 𝐵) such that 𝐵 → tB | t2 𝐴 t3.

Developers who implement ourmethod can select any safe
fluent interface generators for 𝑐𝑜𝑑𝑒𝑔𝑒𝑛 if it accepts any LL(1)
grammar as input, for example, EriLex [14]. In Section 3.3,
we will briefly describe an example of 𝑐𝑜𝑑𝑒𝑔𝑒𝑛 implemented
with the algorithm for EriLex.

Note that developers implementing our method may also
select a safe fluent interface generator that takes a grammar
class other than LL(1) (e.g. LR and regular). However, it is
out of the scope of this paper to discuss the grammar class
supported by our method in that case.

Although there are several possible ways to give semantics
to the generated fluent interfaces, we here assume that a
method-call chain finally returns an object containing a parse
tree representing the chain (or executes it at the last method
call). To do that, a sub-chain for a non-terminal symbol 𝐴
constructs a parse tree of that sub-chain for 𝐴 and returns
it. The method corresponding to tA appends the given parse
tree for 𝐴 under the tree node representing the terminal
symbol tA, which is a part of the parse tree of the chain
including that method.

3.1 Grammar to denote a set of method chaining
A language is a set of symbol sequences. For example, the C
language is a set of ASCII code sequences where ASCII code
is aligned in themanner defined in the language specification.
As we described earlier, a fluent interface can be safe by
exploiting parsing techniques. In this context, the alphabets
of a language are method signatures, and the sentences are
chains of method calls. Note that the alphabets are not a

1The generated interface will also accept a chian like A.tA(A.t0().t1()).
This is also a sub-chain for 𝐴.

252

Yet Another Generating Method of Fluent Interfaces Supporting Flat- and Sub-chaining Styles SLE ’22, December 06–07, 2022, Auckland, New Zealand

set of method calls since a method call is identified by its
signature when type checking.
Since a language is usually an infinite set with complex

internal structures, it is often difficult to describe a language
directly. A grammar is a tool to describe a language instead
of directly describing them. It is a set of formal rules that
produce a language. The Backus–Naur form (BNF) is a well-
known meta language to write such rules.

Since only context-free grammars will appear in this paper,
we will denote a grammar by 4-tuple ⟨Σ, 𝑁 , 𝛿, 𝐴𝑖𝑛𝑖𝑡 ⟩, where

• Σ is a finite set of terminal symbols,
• 𝑁 is a finite set of non-terminal symbols,
• 𝛿 : 𝑁 ↦→ 2(Σ∪𝑁)∗ is a production function, and
• 𝐴𝑖𝑛𝑖𝑡 ∈ 𝑁 is a start symbol.

Terminal symbols are alphabets constituting sentences. A
sentence 𝑡 is a sequence of terminal symbols. We will put
an overline on a variable if it represents a sequence. Non-
terminal symbols are intermediate states appearing in deriva-
tion process. (Σ ∪ 𝑁)∗ represents a set of symbol sequences,
and 2(Σ∪𝑁)∗ is the power set of that sequence set.

A grammar generates a language by repeatedly applying
the production function 𝛿 to the start symbol 𝐴𝑖𝑛𝑖𝑡 until
there remains no non-terminal symbol. Formally, the lan-
guage L (𝐺) generated from a grammar𝐺 can be described as
L (𝐺) = Σ∗ ∩ derivationG (𝐴𝑖𝑛𝑖𝑡) by using derivation, which
is defined as follows:

derivationG (𝑋) = {𝑋 } ∪
⋃

𝑌 ∈apply-ruleG (𝑋)

derivationG (𝑌),

where

apply-ruleG (𝑋) =
⋃

𝑌1 𝐴𝑌2=𝑋,𝐴∈𝑁

⋃
𝑍 ∈𝛿 (𝐴)

𝑌1 𝑍 𝑌2.

A derivation of a symbol sequence𝑋 ∈ (Σ∪𝑁)∗ is a reflexive
transitive closure of the function apply-rule . apply-rule first
chooses a non-terminal symbol 𝐴 from a given symbol se-
quence𝑋 . It then chooses 𝑍 from the set of 𝑑𝑒𝑙𝑡𝑎(𝐴). Finally,
it substitutes 𝑍 for the symbol 𝐴 chosen at the beginning. A
symbol sequence 𝑋 ∈ derivationG (𝐴𝑖𝑛𝑖𝑡) is a sentence of the
language L (𝐺) if it contains no non-terminal symbol. We
write LG (𝐴) to denote the set of sentences derived from a
non-terminal symbol 𝐴 of a grammar 𝐺 .
Figure 3 shows an example of grammar 𝑆𝑄𝐿, which de-

scribes the grammar of a fluent interface for a subset of SQL’s
select queries. L (𝑆𝑄𝐿) is a finite set of the following three
elements:

• .select(String selectList) .from(String tableSource)

• .select(String selectList) .from(String tableSource)

.where(String searchCondition)

• .select(String selectList) .from(String tableSource)

.where() .column(String columnSpec) .equals()

.value(String value)

𝑆𝑄𝐿 = ⟨Σ𝑆𝑄𝐿, 𝑁𝑆𝑄𝐿, 𝛿𝑆𝑄𝐿, SelectQuery⟩
where

Σ𝑆𝑄𝐿 = {
.select(String selectList),

.from(String tableSource),

.where(String searchCondition),

.where(),

.column(String columnSpec),

.equals(),

.value(String value)

}
𝑁𝑆𝑄𝐿 = {SelectQuery,WhereClause}
𝛿𝑆𝑄𝐿 (SelectQuery) = {

.select(String selectList)

.from(String tableSource)WhereClause

}
𝛿𝑆𝑄𝐿 (WhereClause) = {

𝜖,

.where(String searchCondition),

.where() .column(String columnSpec)

.equals() .value(String value)

}

Figure 3. A grammar for select queries, 𝑆𝑄𝐿.

For instance, the following method chain is valid since the se-
quence of method signatures is derivable from the grammar
𝑆𝑄𝐿:
SQL.select("*").from("sample.db")

.where("sample_id = 1001").end()

3.2 Grammar rewriting function 𝑓

We below formally define 𝑓 , the rewriting function that adds
a terminal symbol to the right-hand side of each rule:

𝑓 (𝐺) = ⟨Σ′, 𝑁 , 𝛿 ′, 𝐴𝑖𝑛𝑖𝑡 ⟩,
where

Σ′ = Σ ∪ {subchain(𝐴) | 𝐴 ∈ 𝑁 } and
𝛿 ′ (𝐴) = {subchain(𝐴)} ∪ 𝛿 (𝐴).

subchain(𝐴) is a special terminal symbol corresponding to a
non-terminal symbol𝐴. It denotes the method signature of a
method for receiving a sub-chain as an argument. The code
generating function 𝑐𝑜𝑑𝑒𝑔𝑒𝑛 generates a method named 𝐴
for 𝑠𝑢𝑏𝑐ℎ𝑎𝑖𝑛(𝐴).

253

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tetsuro Yamazaki, Tomoki Nakamaru, and Shigeru Chiba

𝑓 (𝑆𝑄𝐿) = ⟨Σ′
𝑆𝑄𝐿, 𝑁𝑆𝑄𝐿, 𝛿

′
𝑆𝑄𝐿, SelectQuery⟩

where
Σ′
𝑆𝑄𝐿 = {

.select(String selectList),

.from(String tableSource),

.where(String searchCondition),

.where(),

.column(String columnSpec),

.equals(),

.value(String value),

.selectQuery(SelectQuery subChain),

.whereClause(WhereClause subChain)

}
𝑁𝑆𝑄𝐿 = {SelectQuery, WhereClause}
𝛿 ′𝑆𝑄𝐿 (SelectQuery) = {

.selectQuery(SelectQuery subChain),

.select(String selectList)

.from(String tableSource)WhereClause

}
𝛿 ′𝑆𝑄𝐿 (WhereClause) = {

.whereClause(WhereClause subChain),

𝜖,

.where(String searchCondition),

.where() .column(String columnSpec)

.equals() .value(String value)

}

Figure 4. The grammar after rewriting, 𝑓 (𝑆𝑄𝐿).

We assume that subchain(𝐴) is a unique terminal sym-
bol. This is not an unrealistic assumption. The method for
𝑠𝑢𝑏𝑐ℎ𝑎𝑖𝑛(𝐴) does not conflict with the one for 𝑠𝑢𝑏𝑐ℎ𝑎𝑖𝑛(𝐵)
since their method name is not the same. The method for
𝑠𝑢𝑏𝑐ℎ𝑎𝑖𝑛(𝐴) does not conflict with the method for a terminal
symbol either in realistic cases since the names of terminal
symbols and non-terminal symbols are often different. Even
if a grammar contains both a terminal symbol named 𝐴 and
non-terminal symbol 𝐴, the method overloading mechanism
helps us avoid this naming conflict in most cases. The excep-
tion is a case where a grammar contains a terminal symbol
named 𝐴 that takes a sub-chain as its argument. In this case,
the method for 𝑠𝑢𝑏𝑐ℎ𝑎𝑖𝑛(𝐴) does conflict with the method
for that terminal. However, we do not think that such a case
appears in a realistic situation.

Paren = ⟨ΣParen, 𝑁Paren, 𝛿Paren, 𝑆⟩
where

ΣParen = {.a(), .b(), .c()}
𝑁Paren = {𝑆}
𝛿Paren (𝑆) = {

.a() 𝑆 .c(),

.b()

}

Figure 5. An LL(1) grammar for .a()𝑛 .b() .c()𝑛 .

Figure 4 shows 𝑓 (𝑆𝑄𝐿), the grammar obtained after rewrit-
ing 𝑆𝑄𝐿 by 𝑓 . Both .selectQuery(SelectQuery subChain)

and .whereClause(WhereClause subChain) are the terminal
symbols added when rewriting by 𝑓 , and they correspond
to subchain(SelectQuery) and subchain(WhereClause), respec-
tively. Here, we assume that subchain changes a given non-
terminal symbol to a lower camel case and use it as a method
name. The fluent interface generated by 𝑐𝑜𝑑𝑒𝑔𝑒𝑛 from the
grammar 𝑓 (𝑆𝑄𝐿) allowsmethod chaining in the sub-chaining
style. For example,
SQL.select("*").from("sample.db")

.whereClause(

WhereClause.column("sample_id")

.equals().value("1001")

).end();

3.3 Overview of safe fluent interface generator
We below outline how we implement a generator for safe
fluent interfaces so that it can accept any LL(1) grammar.
The generator takes an LL(1) grammar as its input and it first
converts the grammar to a single-state realtime deterministic
pushdown automaton. Since this automaton is equivalent to
an LL(1) parsing table, we can construct the automaton by
the same way as the LL(1) parsing algorithm, for example as
described in the literature [1, 5]. This automaton recognizes
the language derived from the grammar.
Suppose that the grammar shown in Figure 5 is given

to the generator as an input. The language derived from
this grammar contains sequences of method signatures such
that they start with zero or more iterations of.a(), followed
by .b(), and by as many .c() as .a(). Figure 6 shows a
single-state realtime deterministic pushdown automaton that
recognizes this language.

Once the automaton is obtained, the generator generates
a generic class for every stack symbol. It represents a stack.
For example, a class type S<Rest> generated for a stack
symbol 𝑆 represents the stack where the stack top symbol
is 𝑆 and the rest of the stack elements is represented by a
type parameter Rest. A transition rule is represented by a

254

Yet Another Generating Method of Fluent Interfaces Supporting Flat- and Sub-chaining Styles SLE ’22, December 06–07, 2022, Auckland, New Zealand

Q
.a(), S / S T
.b(), S / ϵ
.c(), T / ϵ

Figure 6. A single-state realtime deterministic pushdown
automaton that recognizes .a()𝑛 .b() .c()𝑛 .

class 𝑆<Rest> {
𝑆<𝑇<Rest>> a();
Rest b();

}
class 𝑇<Rest> {

Rest c();
}
class Bottom { Result end(); }
S<Bottom> begin(); / / entry point

Listing 2. Generated fluent interface skeleton.

method in that generic class. Since a single-state realtime
deterministic pushdown automaton has only a single trivial
state and performs no 𝜖-transition, a transition is modeled
as a function from an input symbol and a stack symbol into
stack symbols. Suppose that, when the next input symbol
is .a() and the stack top symbol is 𝑆 , the automaton pops
the stack top and pushes 𝑆𝑇 . For this transition, a method
.a() is declared in the class S<Rest> generated for the stack
symbol 𝑆 . The return type of themethod .a() is S<T<Rest>>.
Note that S<Rest> and S<T<Rest>> represent the current
and new stacks, respectively.
Listing 2 shows a code skeleton of the fluent interface

generated from the automaton shown in Figure 6. We omit
method bodies. If a call chain to the methods in Listing 2
is typable and hence valid, this sequence of method signa-
tures is also accepted by the automaton. A valid method
call is specified by a combination of method signatures and
receiver types. The receiver type of the next method call is
the return type of the current method call. Similarly, a valid
transition for the automaton is specified by a combination
of input symbols and stack top symbols. The next stack top
is pushed by the current transition. Our fluent-interface gen-
erator translates transitions into methods while preserving
the validity of the sequences and chains. Note that the au-
tomaton stops when the stack is empty. An empty stack is
represented by the Bottom class in Listing 2. Since this class
does not declare any methods except for a special method
.end(), no further method call is allowed when the receiver
type is Bottom as the automaton stops with an empty stack.
.end() is the special method that terminates the method
call chaining and return the result.

4 Grammar Class of Our Proposal
This section discusses the grammar class that our proposed
method can generate a safe fluent interface for. Since our
method assumes that 𝑐𝑜𝑑𝑒𝑔𝑒𝑛(𝑔, 𝑠) can generate a safe fluent
interface if the given grammar 𝑔 is LL(1), our method can
also generate a safe fluent interface from the given grammar
𝐺 if 𝑓 (𝐺) is an LL(1) grammar. In this section, we show that
𝑓 (𝐺) is LL(1) if and only if the following two conditions are
satisfied:

• 𝐺 is LL(1).
• 𝐺 does not include a non-terminal symbol 𝐴 such that

LG (𝐴) ⊆ {𝜖}.
As we defined in Section 3.1, LG (𝐴) is the set of symbol se-
quence derived from a non-terminal symbol 𝐴 of a grammar
𝐺 . One may think that the second condition is always satis-
fied when the first condition is satisfied, but there are a few
exceptional cases. Those cases are discussed in Section 5.
The rest of this section is organized as follows. In Sec-

tion 4.1, we formalize the LL(1) property of a grammar. Sec-
tion 4.2 proves that 𝑓 (𝐺) is an LL(1) grammar when 𝐺 is an
LL(1) grammar except for a few exceptional cases. Section 4.3
proves the reversed proposition:𝐺 is an LL(1) grammar when
𝑓 (𝐺) is an LL(1) grammar.

4.1 Formalization of LL(1)
LL(1) is a class of grammars such that for any combination
of a symbol sequence 𝑥 and a non-terminal symbol 𝐴, we
can uniquely identify the production rule that must be first
applied to 𝐴 to derive the sequence 𝑥 from only the first
letter of 𝑥 . For a grammar 𝐺 to be LL(1), it must satisfy the
following conditions:

∀𝐴 ∈ 𝑁, 𝑋,𝑌 ∈ 𝛿 (𝐴).
𝑋 ≠ 𝑌 =⇒ firstΣ

G (𝑋) ∩ firstΣ
G (𝑌) = 𝜙

(1)

∀𝐴 ∈ 𝑁 .

nullableG (𝐴) =⇒ firstΣ
G (𝐴) ∩ followΣ

G (𝐴) = 𝜙
(2)

∀𝐴 ∈ 𝑁, 𝑋,𝑌 ∈ 𝛿 (𝐴).
𝑋 ≠ 𝑌 =⇒ not (nullableG (𝑋) and nullableG (𝑌))

(3)

where nullable , first , follow are functions such that:

nullableG (𝑋) = 𝜖 ∈ derivationG (𝑋)
first*

G (𝑋) = {𝑌 | 𝑌𝑍 ∈ derivationG (𝑋)}
firstΣ

G (𝑋) = first*
G (𝑋) ∩ Σ

firstN
G (𝑋) = first*

G (𝑋) ∩ 𝑁

follow*
G (𝐴) = {𝑋 | ∃𝐵 ∈ 𝑁 .𝑌 𝐴𝑋 𝑍 ∈ derivationG (𝐵)}

followΣ
G (𝐴) = follow*

G (𝑋) ∩ Σ

followN
G (𝐴) = follow*

G (𝑋) ∩ 𝑁

nullableG (𝐴) is a boolean function that denotes whether the
given non-terminal symbol 𝐴 can derive an empty string

255

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tetsuro Yamazaki, Tomoki Nakamaru, and Shigeru Chiba

under the grammar 𝐺 . firstG (𝑋) denotes the first set; a set
of the first symbols 𝑌 of the symbol sequences 𝑌𝑍 derived
from 𝑋 under the grammar 𝐺 . Since we are interested in
not only the first terminal symbols but also the first non-
terminal symbols, we add a superscript (either of Σ, 𝑁 , ∗) to
denote what kind of symbols to be included in the first set
(terminal-symbols, non-terminal symbols, or both of them,
respectively). followG (𝐴) denotes the follow set; a set of the
symbols following the given symbol 𝐴 in some symbol se-
quence of the language 𝐿(𝐺). Superscripts denote the same
as on first .
We can describe nullablef (G) , firstf (G) , and followf (G) for

the grammar 𝑓 (𝐺) by using the corresponding sets for the
grammar 𝐺 .

nullablef (G) (𝑋) =
{
nullableG (𝑋) (𝑋 ∈ (Σ ∪ 𝑁)∗)
⊥ (otherwise)

(4)

first*
f (G) (𝑋) =



first*
G (𝑋)

∪ {subchain(𝐴) | 𝐴 ∈ firstN
G (𝑋)}

(𝑋 ∈ (Σ ∪ 𝑁)∗)
first*

f (G) (𝑌1) ∪ {subchain(𝐴)}

(𝑋 = 𝑌1 subchain(𝐴) 𝑌2

and nullablef (G) (𝑌1))
first*

f (G) (𝑌1)

(𝑋 = 𝑌1 subchain(𝐴) 𝑌2

and not nullablef (G) (𝑌1))

(5)

follow*
f (G) (𝐴) = follow*

G (𝐴)
∪ {subchain(𝐵) | 𝐵 ∈ followN

G (𝐴)} (6)

Since 𝑋 may include subchain(𝐴) for some non-terminal
symbol 𝐴, which is introduced by 𝑓 and is not a terminal
symbol in 𝐺 , the formulas above describe such a case sep-
arately. The nullability of a non-terminal symbol does not
change at all before or after applying 𝑓 . It is always false
when 𝑋 includes subchain(𝐴), since subchain(𝐴) is a termi-
nal symbol in 𝑓 (𝐺). Similarly, the first sets do not change
by 𝑓 except that a terminal symbol subchain(𝐴) is added.
The formula for first is divided into three cases. In the lat-
ter two cases, the parameter 𝑋 includes a terminal symbol
subchain(𝐴). In the first case, 𝑋 does not include it. We list
the three cases here to provide the complete definition offirst ,
but we use only the first case in our proof in Section 4.2.1
and Section 4.2.2. The first case describes that subchain(𝐴)
is added iff the non-terminal symbol 𝐴 is included in the
first set firstN

G (𝑋) under the grammar 𝐺 before rewriting.
The follow sets change in the same way. There is no case
separation for the follow sets since the parameter to follow
is a non-terminal symbol 𝐴 and it may not be subchain(𝐵).

4.2 Is 𝑓 (𝐺) LL(1) when 𝐺 is LL(1)?
We first discuss whether 𝑓 (𝐺) is LL(1) or not under an as-
sumption that𝐺 is LL(1). Again, the proposition “a grammar
𝐺 is LL(1)” means that all the three conditions (1), (2), and
(3) are satisfied. We found that if a grammar 𝐺 satisfies the
three conditions, the rewriting function 𝑓 keeps all these
conditions in most cases. We below will look at each case in
turn.

4.2.1 Derivation of (1). Assume𝐴 ∈ 𝑁 , 𝑋,𝑌 ∈ 𝛿 (𝐴) such
that 𝑋 ≠ 𝑌 . We first discuss the case where 𝑋 or 𝑌 includes
subchain(𝐵) for some 𝐵. In this case, by the definition of 𝑓 ,
either 𝑋 = subchain(𝐴) or 𝑌 = subchain(𝐴) holds although
𝑋 = 𝑌 = subchain(𝐴) never holds. In the case where 𝑋 =

subchain(𝐴) and 𝑌 ≠ subchain(𝐴), firstΣ
f (G) (subchain(𝐴)) =

{subchain(𝐴)}. Since𝑌 ∈ (Σ∪𝑁)∗ and firstΣ
G (𝑌) does not in-

clude subchain(𝐴), firstΣ
f (G) (𝑌) does not include subchain(𝐴)

unless𝐴 ∈ firstN
G (𝑌). In otherwords,first

Σ
f (G) (𝑋)∩firstΣ

f (G) (𝑌)
= 𝜙 unless 𝐺 is left recursive (recall 𝑌 ∈ 𝛿 (𝐴)). A left recur-
sive grammar is LL(1) only if the non-terminal symbol𝐴, the
cause of the left recursion, satisfies LG (𝐴) = 𝜙 . Therefore,
the condition (1) holds for 𝑓 (𝐺) except for this case. We will
show a concrete example of this case in Section 5.
We next discuss the remaining case. In this case, 𝑋,𝑌 ∈

(Σ ∪ 𝑁)∗. By the first case of formula (5), firstΣ
f (G) (𝑋) =

firstΣ
G (𝑋) ∪ {subchain(𝐴) | 𝐴 ∈ firstN

G (𝑋)}. This is the same
for 𝑌 . Thus, we can transform the given expression as fol-
lows:

firstΣ
f (G) (𝑋) ∩ firstΣ

f (G) (𝑌) =

(firstΣ
G (𝑋) ∩ firstΣ

G (𝑌)) (7)

∪ ({subchain(𝐴) | 𝐴 ∈ firstN
G (𝑋)}

∩ {subchain(𝐵) | 𝐵 ∈ firstN
G (𝑌)})

(8)

∪ (firstΣ
G (𝑋) ∩ {subchain(𝐵) | 𝐵 ∈ firstN

G (𝑌)}) (9)

∪ ({subchain(𝐴) | 𝐴 ∈ firstN
G (𝑋)} ∩ firstΣ

G (𝑌)) (10)

Since subchain(𝐴) ∉ Σ for any non-terminal symbol 𝐴, both
(9) and (10) are empty. (7) is also empty because of the as-
sumption that 𝐺 is LL(1), .

The remaining (8) is also empty in most cases, but there is
an exception. Assume that there is a terminal symbol 𝑡1 such
that 𝑡1 ∈ {subchain(𝐴) | 𝐴 ∈ firstN

G (𝑋)} ∩ {subchain(𝐵) |
𝐵 ∈ firstN

G (𝑌)}. 𝑡1 must be of the form subchain(𝐶) for a
non-terminal symbol 𝐶 , and 𝐶 satisfies both 𝐶 ∈ firstN

G (𝑋)
and𝐶 ∈ firstN

G (𝑌). A non-terminal symbol is an intermediate
state in the derivation process and it will be replaced later
with another symbol sequence. Thus, if there exists a termi-
nal symbol 𝑡2 such that 𝑡2 ∈ firstΣ

G (𝐶), 𝑡2 must be included in
both firstΣ

G (𝑋) and firstΣ
G (𝑌). Since this violates the assump-

tion that𝐺 is LL(1), no terminal symbol 𝑡2 ∈ firstΣ
G (𝐶) exists.

256

Yet Another Generating Method of Fluent Interfaces Supporting Flat- and Sub-chaining Styles SLE ’22, December 06–07, 2022, Auckland, New Zealand

Therefore, if 𝐶 exists, firstΣ
G (𝐶) = 𝜙 . This is equivalent to

LG (𝐶) ⊆ {𝜖}. (8) is empty unless 𝐺 includes such 𝐶 . We will
show an concrete example of the exception in Section 5.

4.2.2 Derivation of (2). If 𝐺 is LL(1) and there is no non-
terminal symbol𝐴 such that LG (𝐴) ⊆ {𝜖}, then the condition
(2) is satisfied for 𝑓 (𝐺). Let𝐴 be a non-terminal symbol such
that nullablef (G) (𝐴). Obviously, 𝐴 ∈ (Σ ∪ 𝑁)∗. By (5) and
(6), we can transform the given expression as follows:

firstΣ
f (G) (𝐴) ∩ followΣ

f (G) (𝐴) =
(firstΣ

G (𝐴) ∩ followΣ
G (𝐴)) (11)

∪({subchain(𝐵) | 𝐵 ∈ firstN
G (𝐴)}

∩ {subchain(𝐶) | 𝐶 ∈ followN
G (𝐴)})

(12)

∪ (firstΣ
G (𝐴)

∩ {subchain(𝐶) | 𝐶 ∈ followN
G (𝐴)}) (13)

∪ ({subchain(𝐵) | 𝐵 ∈ firstN
G (𝐴)}

∩ followΣ
G (𝐴)) (14)

By the same reasoning as in section 4.2.1, we can conclude
that (11), (13), and (14) are empty and (12) is empty unless
there exists a non-terminal symbol𝐶 such that LG (𝐶) ⊆ {𝜖}.

4.2.3 Derivation of (3). By the formula (4), a symbol se-
quence 𝑋 is nullable under 𝑓 (𝐺) if and only if 𝑋 ∈ (Σ ∪ 𝑁)
and nullableG (𝑋) under 𝐺 . Thus, equation (3) is true under
𝑓 (𝐺) as well as it is true under 𝐺 .

4.3 Is 𝐺 LL(1) when 𝑓 (𝐺) is LL(1)?
𝐺 is LL(1) when 𝑓 (𝐺) is LL(1). For simplicity, we below dis-
cuss the contraposition: 𝑓 (𝐺) is not LL(1) when 𝐺 is not
LL(1). Here, “a grammar is not LL(1)” means that at least
one of the three conditions (1), (2), or (3) is not satisfied. We
deduce 𝑓 (𝐺) is not LL(1) by showing that each condition is
false for 𝑓 (𝐺) under the assumption that it is false for 𝐺 .

4.3.1 Assume (1) to be false. For𝑋 and𝑌 such that𝑋,𝑌 ∈
𝛿 (𝐴), firstΣ

G (𝑋) ∩ firstΣ
G (𝑌) ≠ 𝜙 . 𝑋 and 𝑌 are symbol se-

quences in 𝐺 . So, both 𝑋 ∈ (Σ ∪ 𝑁)∗ and 𝑌 ∈ (Σ ∪ 𝑁)∗
hold. By the formula (5), both firstΣ

f (G) (𝑋) ⊇ firstΣ
G (𝑋) and

firstΣ
f (G) (𝑌) ⊇ firstΣ

G (𝑌) hold. Hence,firstΣ
f (G) (𝑋)∩firstΣ

f (G) (𝑌)
⊇ firstΣ

G (𝑋) ∩ firstΣ
G (𝑌) ≠ 𝜙 . 𝑓 (𝐺) is not LL(1) since it does

not satisfy the condition (1).

4.3.2 Assume (2) to be false. By the assumption, there
exists a non-terminal symbol 𝐴 such that nullableG (𝐴) and
firstΣ

G (𝐴) ∩ followΣ
G (𝐴) ≠ 𝜙 . By the formulas (4), (5), and

(6), we deduce nullablef (G) (𝐴), firstΣ
f (G) (𝐴) ⊇ firstΣ

G (𝐴), and
followΣ

f (G) (𝐴) ⊇ followΣ
G (𝐴). Thus, we conclude that 𝑓 (𝐺) is

not LL(1) by the same reasoning in Section 4.3.1.

4.3.3 Assume (3) to be false. By the assumption, there
exists a non-terminal symbol𝐴 and symbol sequences𝑋 and

𝑌 such that 𝑋,𝑌 ∈ 𝛿 (𝐴) and nullableG (𝑋) and nullableG (𝑌).
By the formula (4), nullablef (G) (𝑋) and nullablef (G) (𝑌) hold
whenever nullableG (𝑋) and nullableG (𝑌) hold. Thus, 𝑓 (𝐺)
is not LL(1).

5 Exceptional Cases
As we show in the previous section, 𝑓 (𝐺) is not LL(1) if
𝐺 is LL(1) but it includes a non-terminal symbol 𝐴 such
that LG (𝐴) ⊆ {𝜖}. This section shows three examples of
this exception. Each example represents a different type of
exception. In all the three examples, the grammar includes
at least one non-terminal symbol that does not derive any
symbol sequence except an empty sequence.

The first example is 𝐺1.

𝐺1 = ⟨𝜙, {𝑆}, 𝛿1, 𝑆⟩

where
{

𝛿1 (𝑆) = {𝑆}

𝐺1 is a grammar representing a left-recursive but LL(1) lan-
guage. Although this language includes no symbol sequences,
𝐺1 satisfies all the three conditions (1), (2), and (3), for LL(1).
However, 𝑓 (𝐺1) does not satisfy the condition (1). 𝑓 (𝐺1) is:

𝑓 (𝐺1) = ⟨{subchain(𝑆)}, {𝑆}, 𝛿 ′1, 𝑆⟩

where
{

𝛿 ′1 (𝑆) = {subchain(𝑆), 𝑆}

and hence firstΣ
f (G1) (subchain(𝑆)) = firstΣ

f (G1) (𝑆) = {
subchain(𝑆)}.

The second example is𝐺2. It is a finite language consisting
of only two terminal symbols 𝑎 and 𝑏.

𝐺2 = ⟨{𝑎, 𝑏}, {𝑆,𝐴}, 𝛿2, 𝑆⟩

where

{
𝛿2 (𝑆) = {𝐴𝑎,𝐴𝑏}
𝛿2 (𝐴) = {𝜖}

𝐺2 is an LL(1) grammar, for example, it satisfies the con-
dition (1). 𝛿2 (𝑆) includes only two derivations and their
first sets have no common element. 𝛿2 (𝐴) includes only
one derivation. Since there is only one first set for 𝛿2 (𝐴),
the condition (1) holds. Note that firstΣ

G2
(𝐴𝑎) = {𝑎} and

firstΣ
G2
(𝐴𝑏) = {𝑏}. However, 𝑓 (𝐺2) violates the condition (1)

since firstΣ
f (G2) (𝐴𝑎) and firstΣ

f (G2) (𝐴𝑏) share a terminal sym-
bol subchain(𝐴).

The third example is𝐺3. It represents an infinite language
𝑎𝑖 (𝑖 ≥ 0).

𝐺3 = ⟨{𝑎, 𝑏}, {𝑆,𝐴}, 𝛿3, 𝑆⟩

where

{
𝛿3 (𝑆) = {𝑎𝑆𝐴,𝐴}
𝛿3 (𝐴) = {𝜖}

𝐺3 is an LL(1) grammar and it satisfies the condition (2). Both
nullableG3 (𝑆) and nullableG3 (𝐴) hold. Since followΣ

G3
(𝑆) =

followΣ
G3
(𝐴) = 𝜙 , these follow sets do not share any elements

257

SLE ’22, December 06–07, 2022, Auckland, New Zealand Tetsuro Yamazaki, Tomoki Nakamaru, and Shigeru Chiba

with their first sets. However, 𝑓 (𝐺3) does not satisfy the con-
dition (2) since nullablef (G3) (𝑆) holds and firstΣ

f (G3) (𝑆) and
followΣ

f (G3) (𝑆) shares a common element subchain(𝐴). The
language L (𝑓 (𝐺3)) is {𝑎𝑖 subchain(𝑆) subchain(𝐴) 𝑗 (𝑖 ≥
𝑗)} ∪ {𝑎𝑖 subchain(𝐴) 𝑗 (𝑖 ≥ 𝑗 − 1)}. This is a variant of
well-known example of non-LL(1) (but LR) language.

6 Related Work
Nakamaru et al. [10] present a method to generate a fluent
interface supporting the two styles of chaining. However, as
we discussed in Section 2, they give only a complex procedure
for the generation, and it is difficult to reveal the ability
and limitation of their method. For a better generation of
fluent interfaces with the two-style support, we presented yet
another generating method that can be formally analyzed.
While the subchaining interface is useful in practice, its

support is not discussed in most papers about fluent inter-
face generation [2–4, 8, 12, 14, 15]. In this paper, we propose
the formally-defined function 𝑓 that embeds the subchaining
style into the framework for generating the flat-chaining
style interface. Although this paper focuses on LL(1) gram-
mars, the function 𝑓 would contribute to integrating the
subchaining support into the existing techniques for LR
grammars.
Nakamaru and Chiba [9] point out another problem on

safe fluent interface generation that methods constituting
method chaining cannot have type parameters and proposes
a countermeasure. We also find this problem interesting and
if we can find a solution based on grammar rewriting, as
our method does, it will be easier to combine with other
safe fluent interface generation methods. At the same time,
however, we have found that the grammars of fluent inter-
faces supporting type parameters cannot be expressed in
the context-free grammar used in this paper, because the
acceptable language changes depending on how the type pa-
rameters are filled. Thus, a more expressive fluent interface
generator may be needed as the latter step in our method to
develop such a fluent interface generator.

We have adopted an extended definition of first sets (first)
and follow sets (follow) from the well-known definitions
presented in [1, 5] for ease of use in section 4. Although we
do not consider this extension as our contribution since this
kind of extensions have been discussed ad nauseam, the idea
will be still promising when considering similar problems
dealing with grammatical rewriting.

7 Conclusion
We proposed a method to generate a safe fluent interface
that accepts both flat- and sub-chaining styles. Our method
is based on grammar rewriting. Our method first transforms
a given grammar by the rewriting function 𝑓 shown in Sec-
tion 3 and then generates a safe fluent interface from the
grammar. The key idea is to embed sub-chaining style calls

into the grammar which specifies a set of valid flat-chaining
style calls. Thus, the latter step can be done by an existing
method for generating a safe fluent interface supporting only
the flat-chaining style.

An important feature of our method is that the grammar
class it can generate a fluent interface for is proven. If there
is no non-terminal symbol such that it does not derive any
symbol sequences other than an empty one, our method
can generate a fluent interface for any LL(1) grammars. Our
proof is shown in Section 4.
There are few LL(1) grammars our method cannot gen-

erate a fluent interface for. Such exceptional grammars are
shown in Section 5. All such grammars include at least one
non-terminal symbol such that no sequence is derived from
it, or if a sequence is derived, it is an empty one. The presence
or absence of such a non-terminal symbol does not change
the language derived. It would not be a problem for library
developers to remove them.
Since we considered it important to reveal the grammar

class acceptable to our method, the generated interfaces may
be redundant. For example, [10] shows that it is possible
to improve generated interfaces by merging a method that
receives a sub-chain with its previous method if the previous
method takes no argument. We would be able to incorporate
such interface improvements into our method by considering
them as grammar rewriting. However, the discussion in Sec-
tion 4 does not consider such rewriting. We must revisit the
grammar class acceptable to the method when incorporating
such additional functionality into our method.

Acknowledgments
This work was supported by JSPS KAKENHI Grant Number
JP20H00578.

References
[1] Alfred Aho, Jeffrey Ullman, Ravi Sethi, and Monica Lam. 2006. Com-

pilers: Principles, Techniques, and Tools (2 ed.). Addison Wesley.
[2] Yossi Gil and Tomer Levy. 2016. Formal Language Recognition with

the Java Type Checker. In Proceedings of 30th European Conference on
Object-Oriented Programming. https://doi.org/10.4230/LIPIcs.ECOOP.
2016.10

[3] Yossi Gil and Ori Roth. 2019. Fling - A Fluent API Generator. In 33rd
European Conference on Object-Oriented Programming (ECOOP 2019).
https://doi.org/10.4230/LIPIcs.ECOOP.2019.13

[4] Radu Grigore. 2017. Java Generics Are Turing Complete. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. https://doi.org/10.1145/3009837.3009871

[5] Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J.H. Jacobs, and
Koen Langendoen. 2012. Modern Compiler Design (2 ed.). Springer
New York, NY. https://doi.org/10.1007/978-1-4614-4699-6

[6] jMock 2000. jMock - An Expressive Mock Object Library for Java.
http://jmock.org/.

[7] jOOQ 2009. jOOQ: The easiest way to write SQL in Java. https:
//www.jooq.org/.

[8] Tomer Levy. 2017. A Fluent API for Automatic Generation of Fluent
APIs in Java. Master’s thesis. Israel Institute of Technology.

258

https://doi.org/10.4230/LIPIcs.ECOOP.2016.10
https://doi.org/10.4230/LIPIcs.ECOOP.2016.10
https://doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://doi.org/10.1145/3009837.3009871
https://doi.org/10.1007/978-1-4614-4699-6
http://jmock.org/
https://www.jooq.org/
https://www.jooq.org/

Yet Another Generating Method of Fluent Interfaces Supporting Flat- and Sub-chaining Styles SLE ’22, December 06–07, 2022, Auckland, New Zealand

[9] Tomoki Nakamaru and Shigeru Chiba. 2020. Generating a Generic
Fluent API in Java. The Art, Science, and Engineering of Programming 4,
3 (2020), 9. https://doi.org/10.22152/programming-journal.org/2020/
4/9

[10] Tomoki Nakamaru, Kazuhiro Ichikawa, Tetsuro Yamazaki, and Shigeru
Chiba. 2017. Silverchain: a fluent API generator. In Proceedings of
the 16th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences. https://doi.org/10.1145/3136040.
3136041

[11] Tomoki Nakamaru, Tomomasa Matsunaga, Tetsuro Yamazaki, So-
ramichi Akiyama, and Shigeru Chiba. 2020. An Empirical Study
of Method Chaining in Java. In Proceedings of the 17th International
Conference on Mining Software Repositories (Seoul, Republic of Korea)
(MSR ’20). Association for Computing Machinery, New York, NY, USA,

93–102. https://doi.org/10.1145/3379597.3387441
[12] Ori Roth. 2021. Study of the Subtyping Machine of Nominal Subtyping

with Variance. Proc. ACM Program. Lang. 5, OOPSLA, Article 137 (oct
2021), 27 pages. https://doi.org/10.1145/3485514

[13] StreamAPI 2014. Java Platform Standard Edition 8 Documentation -
interface Stream<T>. https://docs.oracle.com/javase/jp/8/docs/api/
java/util/stream/Stream.html.

[14] Hao Xu. 2010. EriLex: An Embedded Domain Specific Language Gen-
erator. Springer-Verlag, 192–212. https://doi.org/10.1007/978-3-642-
13953-6_11

[15] Tetsuro Yamazaki, Tomoki Nakamaru, Kazuhiro Ichikawa, and Shigeru
Chiba. 2019. Generating a Fluent API with Syntax Checking from an
LR Grammar. Proc. ACM Program. Lang. 3, OOPSLA, Article 134 (oct
2019), 24 pages. https://doi.org/10.1145/3360560

259

https://doi.org/10.22152/programming-journal.org/2020/4/9
https://doi.org/10.22152/programming-journal.org/2020/4/9
https://doi.org/10.1145/3136040.3136041
https://doi.org/10.1145/3136040.3136041
https://doi.org/10.1145/3379597.3387441
https://doi.org/10.1145/3485514
https://docs.oracle.com/javase/jp/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/jp/8/docs/api/java/util/stream/Stream.html
https://doi.org/10.1007/978-3-642-13953-6_11
https://doi.org/10.1007/978-3-642-13953-6_11
https://doi.org/10.1145/3360560

	Abstract
	1 Introduction
	2 Background
	2.1 Safe fluent interface
	2.2 Flat-chaining and sub-chaining
	2.3 Motivation

	3 Proposal: Sub-Chain Embedding
	3.1 Grammar to denote a set of method chaining
	3.2 Grammar rewriting function f
	3.3 Overview of safe fluent interface generator

	4 Grammar Class of Our Proposal
	4.1 Formalization of LL(1)
	4.2 Is f(G) LL(1) when G is LL(1)?
	4.3 Is G LL(1) when f(G) is LL(1)?

	5 Exceptional Cases
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

