
日本ソフトウェア科学会第 39 回大会 (2022 年度) 講演論文集

Attempts on Finding Cross-Language Code

Clones based on Text and AST Information

DAI Feng, Shigeru CHIBA

Currently, there are no concrete definitions of what is a code clone. It could refer to a pair of code pieces that

have similar structures, or it could also refer to a pair of code pieces that implement similar functionality.

Such ambiguity is especially significant under cross-language scenario, as different programming languages

have different syntax and grammar. However, most existing works do not recognize the ambiguity, and

evaluate their approaches on inappropriate datasets, making their approaches for cross-language code clone

detection unreliable. In this paper, we develop several evaluation procedures and provide better datasets

for robust evaluation of cross-language code clone detection task. To be specific, we focus on detecting

method-level code clones instead of entire code files. We also develop our model based on two similarity

measurements, and use non-dominated ranking system to select optimal code clone pairs. Our approach

can provide better performance under our new evaluation procedures.

1 Introduction

Code clone detection is a valuable research topic,

as it can help to refactor and improve the main-

tainability of large code bases. Duplicated code

fragments can be difficult to maintain if there is an

error in such code fragments. Nowadays, the num-

ber of programming languages is increasing, and a

system can be implemented in multiple program-

ming languages. Under such scenario, repetitions

of source code functionality in different program-

ming languages are unavoidable. Therefore, an ef-

fective cross-language code clone detection tool is

desirable.

When we say code clones, we are normally talking

about two fragments of source code, either in same

language or different languages, that are syntacti-

cally or semantically similar to each other. How-

ever, there is no consensus about what is the con-

戴峰、千葉滋, 東京大学情報理工学系研究科, Graduate

School of Information Science and Technology, The

University of Tokyo.

crete definition of a code clone in academia so far.

[6] gives an explanation of four types of code clones.

But they are more like an induction instead of a

definition. This leads to a disadvantage of current

literature tackling this problem.

However, when researchers try to expand the re-

search to cross-language scenario, the disadvantage

becomes more significant. As different program-

ming languages have different syntax and grammar,

it is difficult to say what is similar across two code

pieces. Is a pair of code pieces sharing same struc-

ture a code clone? Or do they have to share same

functionality to be called a code clone? It can be

seen that there is not a clear objective about what

to detect when it comes to detecting cross-language

code clones. Unfortunately, most existing works do

not recognize the problem, making their detection

models unreliable.

There are two main reasons for the unreliability.

First, existing approaches, whether machine learn-

ing based or non-machine learning based, base their

evaluation on competitive programming datasets,



such as Leetcode or AtCoder. This kind of datasets

usually contains solutions to many individual algo-

rithm problems. The solutions are implemented

by different programmers, and do not necessarily

share similar structures or even functionality. How-

ever, existing approaches treat such pairs of solu-

tions as clones. This is inappropriate and unreli-

able. Second, most approaches calculate similarity

score based on single similarity measurement such

as text-similarity or AST-similarity. They either

treat source code as simple natural language text

and symbols, or do not consider different abstract

syntax grammar for different languages. Further-

more, they naively apply machine learning models

for the calculation.

In this paper, we present two main contribu-

tions for this topic. First, we come up with new

evaluation procedures and develop new datasets

to avoid the drawbacks of competitive program-

ming datasets. Current competitive programming

dataset uses entire code files, but we focus on

method-level code pieces. Our datasets are more

appropriate for code clone detection evaluation.

Second, we design a new multi-modal model. We

consider both text-based similarity and AST-based

similarity, and train each machine learning model

individually. The models have clear objectives

about what is similar across two code pieces. Af-

ter getting similarity scores, we use non-dominated

ranking system to select optimal code clone pairs,

so that each similarity measurement is equally con-

sidered. We believe our model works better under

new evaluation procedures.

The rest of the paper is organized as follow. In

section 2, we will introduce the motivation of our

research. In section 3, we will introduce the overall

structure of our model and each component of our

model. In section 4, we will introduce the evalua-

tion procedures and how we organize the datasets.

In section 5, we will show some existing literature

図 1 Java code of groupRecordsByUsers()

in the field.

2 Motivation

One of the most common scenarios that code

clones happen is that programmers use multi-

ple programming languages in a single applica-

tion project. For example, programmers may use

JavaScript for Web client and switch to Java for

mobile client. We present a simple case which is

often encountered in real development. In the de-

velopment of a shopping record management sys-

tem, we want to add a feature to group shopping

records by users’ id, and sort the groups by the

time of most recent record in each group. More-

over, in each group, all the records are sorted by

the time of each record. That is, we want a list

of groups as a result. All the records in the same

group are from the same user. Both the groups and

the records in each group are sorted by time. Since

this feature is not part of the initial design, we only

have an API that returns a list of unsorted records

from different users in the form of an HTTP GET

endpoint. As the API is restricted, we need to im-

plement the feature from the front end side. We

show the implementation in JavaScript and Java in

Fig.2 and Fig.1. JavaScript code is for Web clients

and Java code is for Android clients. In the code,

the logic is exactly the same even there are some



図 2 JavaScript code of

groupRecordsByUsers()

semantic differences. We first sort all the records

by time in the list of records. Then we initialize a

list of groups and assign each record to its corre-

sponding group. Finally we sort the groups by each

group’s most recent record time. This is almost an

ideal example for a cross-language code clone. The

structure is similar and the functionality is same.

In practice, there might be some slight changes in

both structure and functionality, but a valid clone

must consider both structural similarity and func-

tionality. Currently, existing evaluation datasets

contain a lot of invalid pairs of code according to

this criteria.

In Fig.3 and Fig.4, we give an example of clone in

existing competitive programming dataset. We be-

lieve this pair of code is inappropriate to be called

a clone for following reasons. First, they both con-

tain multiple methods, and each of them implement

different functionality. Second, they are different

in structure judged by human expert. Existing

dataset contains a lot of such pairs.

3 Model Detail

Existing models are not capable of finding clones

mentioned in Sec.2. This is because they have a

unclear definition of code clone and consider sin-

gle similarity measurement. To solve this problem,

we propose our model with multiple similarity mea-

surements. To be specific, we use text-based simi-

図 3 Java code of a clone in existing dataset

図 4 Python code of a clone in existing dataset

larity and AST path-based similarity. In this sec-

tion, we will introduce the structure of our model.

We currently divide our model into two sub-parts,

each of which is related to one similarity measure-

ment. We use a non-dominated ranking system to

choose the code pair with the highest similarity

score. Since non-dominated ranking system sup-

ports multiple objectives, our model can be ex-

tendable for more similarity measurements. The

overview of our model is illustrated in Fig.5. Some

important parts are introduced as follow.



図 5 Model structure overview

図 6 How to get sub-tokens of source code

3. 1 Text-based similarity

Text-based similarity is most frequently used. It

basically works as what a lexical analyzer does.

It treats source code as a sequence of sub-tokens.

The sub-tokens are achieved by adopting byte-pair

encoding algorithm. The advantage of BPE algo-

rithms is that it can avoid rare tokens, and reduce

the size of vocabulary significantly. We use Trans-

former as base model and train the model in an un-

supervised way. The common tokens such as key-

words and symbols can serve as anchor points in

vector space. Therefore, the higher similarity that

final representation of source code pieces share, the

more they are similar in text manner. Fig.6 gives

an example to get sub-tokens of source code. Af-

terwards, we use Transformer as base to train a

masked language model of source code and get vec-

tor representation of code pieces. The similarity

score of two code pieces is calculated by cosine sim-

ilarity equation.

3. 2 Generic AST design

Different programming languages have different

abstract syntax grammars. The node definition of

different syntax trees is different. This will lead

to fewer anchor points, and cause lower efficiency

for training. The solution we propose is to de-

sign a generic abstract grammar for multiple lan-

guages. While designing, we make a trade-off be-

tween the level of adaption for different languages,

and the simplicity of grammar size. The design-

ing logic here is we preserve common node for both

languages, and preserve some key language-specific

nodes. The common nodes include control struc-

tures, operators, variables and class and function

definition. For some examples of key nodes, we in-

clude Switch, Do-While node for Java, and List

Comprehension node for Python. There are more

such kind of language-specific key nodes for both

languages. Therefore, generic ASTs obtained from

two languages are not exactly same. To emphasize,

we keep key language-specific nodes so that impor-

tant information would not be lost when transfer-

ring an AST to a generic AST.

3. 3 AST path-based similarity

AST-based similarity gives more consideration to

code structure. Given the AST of a code snippet,

instead of using depth-first search or Breadth-first

search algorithm to represent a tree, we consider

all pairwise paths between terminals, and represent

them as sequences of terminal and non-terminal

nodes. This idea is originally proposed by an exist-

ing work called code2vec [1]. The idea is shown

in Fig.7. In an abstract syntax tree, leaves are

identifiers in source code. Consider the three Java

methods in Fig.8. These methods share a similar

syntactic structure: they all have a single param-

eter named target, iterate over a field named el-

ements, and have an if condition inside the loop

body. Therefore, if we extract such a path from



the AST, this path can capture the main function-

ality of the method. The method iterates over a

field called elements, and for each of its values it

checks an if condition; if the condition is true, the

method returns something. From this example, we

can see that AST paths are very representative to

indicate the syntactic structure of a piece of source

code.

In detail, we represent each of the path nodes

and leaf values of a path context as real-valued vec-

tor representation, or known as embeddings. Then,

the leaf value vectors and node vectors of each con-

text are concatenated to a single vector that repre-

sents that path-context. The base model here we

use is bi-directional LSTM. Since there are mul-

tiple paths in an AST, after getting path context

representation, we uniformly sample K paths from

all the paths where K is a hyper parameter, and

calculate the representation of K paths. Then we

average K representations as the final representa-

tion of the code piece. Still, the higher similarity

that code representation share, the more they are

similar in AST manner.

3. 4 Non-dominated ranking

Non-dominated ranking is an algorithm that or-

ders results with multiple objectives without ag-

gregation. In this algorithm, a result s is said to

dominate another result t, if s is no worse than t

in any objective and is better than t in at least one

objective. Otherwise, there is a tie. In case of a tie,

we select the result that has the dominant objec-

tive closest to the optimal value, which is this case,

the one more closer to the highest cosine similar-

ity score 1. The detail of non-dominated ranking is

displayed in Fig.9.

4 Evaluation Procedure

In this section, we will introduce our new evalua-

tion procedures. As mentioned before, a valid clone

must consider both structural similarity and func-

tionality. Therefore, we work on method-level code

clone detection and organize our datasets based on

this criteria. We design two evaluation procedures

for a complete and robust evaluation and we or-

ganize datasets for each evaluation procedure in-

dividually. Our evaluation procedures are better

in evaluating performance of cross-language code

clone detectors.

4. 1 Competitive programming evaluation

Most current works are using competitive pro-

gramming code for evaluation. They recognize so-

lutions to a same problem as clones. The drawback

is that these solutions are implemented by different

programmers, and do not necessarily contain sim-

ilar structures. Furthermore, different implemen-

tations may vary a lot. Some implements are long

and include many functions, while others tend to be

short and well-encapsulated in one single function.

Thus methods in the dataset may not implement

similar functionality. Therefore, evaluations based

on current competitive programming dataset are

not reliable.

We make our own dataset based on current com-

petitive programming dataset manually. We only

keep implementations that have similar lengths and

have only one function. In this way we can at least

make sure that these source code implements same

functionality. We also manually select the imple-

mentations that share similar structure, such as

common for loops and conditional statements.

Using implementations to same problems as

ground truth, we can evaluate how our model

can perform when trying to recognize whether two

pieces of source code are clones or not. The cleaning

procedures help to avoid the ambiguity mentioned

before.



図 7 Paths in AST

図 8 How paths are representative in source code

図 9 Non dominated ranking

4. 2 Auto translation evaluation

In this procedure, we use auto-translated source

code for evaluation. Auto translation tools can

translate source code from one programming lan-

guage to another. Current translation tools are

mainly using pre-defined rules. When encounter-

ing some patterns in source language, tools gener-

ate target source code following certain templates.

These tools cannot generate perfect target code

since there is no correspondence between all fea-

tures in two programming languages, but the gen-

erated code is structurally similar and implements

same functionally.

We utilize such kind of tools to generate a trans-

lated version of original source code. Afterwards,

we mix the translated version with a pool of source

code pieces to let our model calculates the similar-

ity score between original source code and all pieces

in the pool. We then select the piece with highest

score to see if it is the translated version, which is

ground truth.

We only use auto-translated code for evaluating

the model and do not use such code for training.

This is important because this evaluation is use-

ful in that it selects the optimal candidate without

knowing any knowledge about the candidates. It’s

closer to real scenarios where we try to find code



clones among a large pool of source code pieces.

5 Related Work

Code clone detection is a popular research topic,

especially single language code clone detection. For

example, CCFinder in [3] and SourcererCC in [7]

are token-based, and Deckard in [2] is AST-based.

Recently, machine learning has also been adopted

in this topic, as shown in [9] and [8].

Compared with single language code clone de-

tection, cross-language code clone detection is less

popular, but there are still some existing works. For

example, [5] proposes to use tree-based skip-gram

algorithm and LSTM-based neural network to de-

tect clones in competitive programming dataset.

One of the most recent works is [4], which uti-

lizes static and dynamic analysis instead of machine

learning, and achieves the state-of-the-art perfor-

mance. They also evaluate their approach on com-

petitive programming dataset.

6 Conclusion and Future Work

In this paper, we show that current works in the

field of cross-language code clone detection do not

have a clear definition of code clones, and they eval-

uate their approaches on inappropriate datasets.

To solve, we propose new procedures and datasets

for better evaluation of detection tools. Moreover,

we develop our own model and perform better un-

der the circumstance of new evaluation procedures.

Currently, there are still some experiments un-

dergoing, and results are not complete yet. We

plan to finish the comparison between our model

and state-of-the-art model to see final results. In

future, we plan to have a deeper discussion about

what is code clone and how to measure similarity

between two pieces of source code in different lan-

guages.

Acknowledgements Senxi Li, Tetsuro Ya-

mazaki and Soramichi Akiyama provide a lot of

valuable suggestions in the discussion of this pa-

per. We greatly appreciate their help.

参 考 文 献
[1] Alon, U., Zilberstein, M., Levy, O., and Yahav,

E.: Code2Vec: Learning Distributed Representa-

tions of Code, Proc. ACM Program. Lang., Vol. 3,

No. POPL(2019), pp. 40:1–40:29.

[2] Jiang, L., Misherghi, G., Su, Z., and Glondu, S.:

Deckard: Scalable and accurate tree-based detec-

tion of code clones, 29th International Conference

on Software Engineering (ICSE’07), IEEE, 2007,

pp. 96–105.

[3] Kamiya, T., Kusumoto, S., and Inoue, K.:

CCFinder: a multilinguistic token-based code clone

detection system for large scale source code, IEEE

Transactions on Software Engineering, Vol. 28,

No. 7(2002), pp. 654–670.

[4] Mathew, G. and Stolee, K. T.: Cross-Language

Code Search Using Static and Dynamic Analyses,

Proceedings of the 29th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Sym-

posium on the Foundations of Software Engineer-

ing, ESEC/FSE 2021, Association for Computing

Machinery, 2021, pp. 205–217.

[5] Perez, D. and Chiba, S.: Cross-language clone

detection by learning over abstract syntax trees,

2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR), IEEE, 2019,

pp. 518–528.

[6] Roy, C. K. and Cordy, J. R.: A survey on soft-

ware clone detection research, Queen ’s School of

Computing TR, Vol. 541, No. 115(2007), pp. 64–68.

[7] Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K.,

and Lopes, C. V.: Sourcerercc: Scaling code clone

detection to big-code, Proceedings of the 38th Inter-

national Conference on Software Engineering, 2016,

pp. 1157–1168.

[8] Wei, H. and Li, M.: Supervised Deep Features

for Software Functional Clone Detection by Exploit-

ing Lexical and Syntactical Information in Source

Code., IJCAI, 2017, pp. 3034–3040.

[9] White, M., Tufano, M., Vendome, C., and Poshy-

vanyk, D.: Deep learning code fragments for code

clone detection, 2016 31st IEEE/ACM Interna-

tional Conference on Automated Software Engi-

neering (ASE), IEEE, 2016, pp. 87–98.


