
日本ソフトウェア科学会第 39 回大会 (2022 年度) 講演論文集

An Ongoing Design of Dictating Programming

That Accepts Noisy Input

Wennong Cai, Shigeru Chiba

We propose a “predict before parsing” architecture to let the dictating programming system be able to

handle noisy input. We think the user experience of existing dictating programming designs is restricted by

the quality of speech recognition systems, and the carefulness of users speaking. The eventual goal of the

proposed architecture is to parse a dictating programming statement into its Abstract Syntax Tree, even if

the statement contains noises.

The current progress of building this architecture and several novel points in the implementation are

introduced in this paper. We conducted experiments on the “Statement Predictor”, which is a component

part of the architecture. The results show that an appropriately trained machine learning model can predict

the type of noisy statement with high accuracy.

1 Introduction

Programming is essential nowadays, and there

are lots of engineers making their products by typ-

ing the programming code on the keyboard. How-

ever, as electrical devices become more and more

portable, the way to do the programming still re-

quires a large keyboard to achieve the best effi-

ciency. Portable devices such as tablets or smart-

phones are seldom used to type programming, as

the tiny-size touch-screen keyboard is hard to type

punctuation symbols or indents.

Dictating Programming is an approach to im-

prove feasibility of programming on small devices.

As it is common nowadays that a phone is equipped

with a speech recognition system, being able to use

the voice to support the programming improves ef-

∗ ノイズ入力を受け入れる口述プログラミングの設計
This is an unrefereed paper. Copyrights belong to

the Author(s).

蔡 文農, 千葉 滋, 東京大学大学院情報理工学系研究科,

Graduate School of Information Science and Tech-

nology, The University of Tokyo.

ficiency of doing programming on portable devices.

In this paper, we first introduce the background

of dictating programming and the issue of noises.

Then we present our proposal of a flexible parser

with the statement predictor as the solution to

the issue. Ongoing experiment results are shown

after that. Finally, we also introduce some re-

lated works on dictating programming, and com-

pare their works with this paper.

2 Background of Dictating Program-

ming

The idea of dictating programming is to use

speaking instead of typing to enter the program-

ming code. A dictating programming system gen-

erally has two sub-system parts. The first part is

the speech recognition part, which is responsible

for converting human speaking voice into text. The

second part is an algorithm that translates the rec-

ognized spoken text into an existing programming

language, or executes it directly. However, one un-

certain point in such a system is that the recognized



spoken text is hardly as perfect as the algorithm in-

put, because it often contains noises. We consider

a dictating programming should allow a certain ex-

tent of noises.

Human Speaking and Speech Recognition are two

primary noise sources considered in this research.

We came to this decision by reading some sim-

ple Python code to the existing speech recogni-

tion system, in a format of dictating programming

grammar we designed. The recognition results are

collected and compared with the intended spoken

statement, and the differences between them are

concluded as the following two categories.

2. 1 Noises from Human Speaking

Speaking a sentence strictly following the valid

grammar is exhausting, especially for foreign peo-

ple. People tend to speak a sentence in the most

natural way they feel. Therefore, it is reasonable

to assume dictating programming users can hardly

speak the absolute correct grammar for the most

input. Some of the most common examples are

adding additional article words such as “the” or

“a”, using different tenses for verbs, and using sin-

gular or plural forms for nouns.

2. 2 Noises from Speech Recognition

The existing Speech Recognition systems are not

good enough. They have the possibility of mak-

ing mistakes on recognizing words. Learning from

large natural language datasets is also a key to high

recognition accuracy for most speech recognition

systems. However, such highly accurate recogni-

tion does not apply to this research, since there is

no large available corpus of dictating programming

speaking.

3 Proposal: Flexible Parser with

Statement Predictor

To address the issue of parsing noisy dictating

programming, we propose an architecture that con-

tains a flexible parser with statement predictor, as

shown in Figure 1. Details of overview design and

the statement predictor are introduced in this sec-

tion, while the parser component is still ongoing

research.

3. 1 “Predict before Parsing” Architec-

ture

We made a hypothesis that for a noisy spoken

statement, knowing its intended statement type in

advance improves the accuracy of parsing it into its

intended version. To examine this idea, the “Pre-

dict before Parsing” architecture is proposed.

The “Predict before Parsing” architecture is

made of a Statement Predictor and a customized

parser. The statement predictor is a trained ma-

chine learning model that predicts the statement

type given the noisy input statement. The cus-

tomized parser behaves like a normal parser when

parsing a valid statement, but also attempts to

parse the noisy statement by taking guess action

based on the predicted type, instead of just throw-

ing the exception. The system takes one input

statement at a time, and outputs the Abstract Syn-

tax Tree for this statement.

3. 2 Input Pre-Processing

We propose input preprocessing steps for our pro-

posed architecture. Proper input processing in-

creases the accuracy of the Statement Predictor,

and also improves dictating programming users ex-

perience.



Figure 1 The “Predict before Parsing” Architecture

3. 2. 1 Programming Language for Dictat-

ing

A domain-specific language for dictating pro-

gramming is designed in this research. Traditional

typing programming language is hard to dictate,

because there are many punctuation symbols in

use. Therefore, we made our own language with

grammar that does not use punctuation symbols.

As an example, the following Python code:

1 if x > y:

2 print(x)

3 else:

4 print(y)

can be translated into the following equivalent

dictating programming statement:

if x is greater than y then invoke print with x else

invoke print with y

3. 2. 2 Phonetic-based Encoding

A novel encoding approach based on phonetics is

proposed in this research. The traditional token-

based encoding approach in natural language field

is not suitable in the task of dealing noisy sentences,

because it treats two similar tokens as completely

independent. The normal character-based encod-

ing captures the similarity if a token is mis-spelled,

but the most common noises in dictating program-

ming are mis-pronunciation. Therefore, instead of

directly using character-based encoding, we turn

every token into its phonetic-based format first,

then map each phonetic character to a numeric

value. The Oxford Dictionary API [1] is used to

retrieve the phonetic format automatically.

3. 2. 3 Flatten Grammar Structure

We decide to divide any statement type contain-

ing nested structure into several independent types

in order to flatten the nested structure. For in-

stance, a normal FOR-LOOP statement usually

contains the keyword“ for”, the condition expres-

sion, the nested body statements, and the optional

keyword“ else”with its nested body statements.

In our dataset, we treat the FOR-LOOP statement

as 3 separate parts: The FOR-LOOP header, which

contains the keyword“for”as well as condition ex-

pression; The body statements, which are no longer

part of the FOR-LOOP type but parallel indepen-

dent statements; The FOR-LOOP ender, which is

just a static value“ end for”.
Mismatching errors between header and ender

are then handled during the program execution

phase. The flatten strategy makes the parser out-

put not directly contain any nested statement such

as FOR-LOOP or IF. As the drawback of this strat-

egy, syntax errors such as providing an ELSE state-



ment without an IF-header statement, cannot be

captured during the parsing phase. We consider

that this is acceptable since they can still be de-

tected when executing the program.

Flattening nested statements is a key to reduc-

ing the difficulty of Statement Predictor training.

The nested statement usually has a longer length

than non-nested statement, and longer input makes

the model harder to find useful information. Also,

the existence of inner statements interferes with the

prediction on the outer statement.

Rejecting all nested statements as input is also

not feasible. Nested statement examples such as

the definition of function or class, or the if-else

statement, they are widely used in most existing

programming languages. Rejecting the usage of

those statement types makes a programming lan-

guage not practical.

4 Experiments

We built a Statement Predictor and conducted

experiments by training it in different approaches.

The Statement Predictor is evaluated by the ac-

curacy of predicting the statement type of a

potentially-noisy input statement.

Also, a large-scale dataset is required to train

a Statement Predictor. Due to the lack of exist-

ing popularly used dictating programming systems,

there is no publicly available dataset of dictating

programming corpus. The approach of making a

dictating programming dataset based on existing

programming corpus is introduced in this section.

4. 1 Model Used

The Long Short-Term Memory Model [7] is used

as the Statement Predictor model in this paper.

The LSTM model is a practical model to deal with

sequential input data, but we found the LSTM in

our task tends to focus on the last few tokens more

than the beginning tokens. Therefore, we also ap-

ply the bidirectional LSTM model [6] to let the

model focus on both ends of the sequential input.

4. 2 Dataset Generation

The dataset is generated from existing program-

ming corpus into the format of our specific pro-

gramming language for dictating as mentioned in

section 3. 2. 1. The abstract syntax tree is con-

structed from the raw python code, then converted

into dictating programming statements by travers-

ing from each statement-level node. Each converted

statement will be stored along with its statement

type.

The python corpus made by the BIFI team is

used in this research. BIFI [8] is research on the au-

tomatic correction of programming syntax errors.

They collect 3 million Python 3 snippets which in-

clude valid code and syntax error code. We consider

the syntax errors in typing programming, such as

missing punctuation symbols, do not represent the

situation in dictating programming. Therefore, we

only make use of the valid code dataset as the in-

put source of the dataset generation process in our

research.

There are 18 labels in the original nested gram-

mar structure, and 24 labels in the flattened gram-

mar structure. To prevent extreme imbalance in

the label distribution, each label can have at most

1 million entries.

The nested structure dataset contains 6520568

statements, and contains 19964626 statements af-

ter the grammar has been flattened. The reason

for the size increment in the flattened dataset is

because many statements type such as FOR LOOP

statement have been divided into multiple indepen-

dent statement types.

We have also made a smaller version of the flat-

tened structure dataset by setting a smaller maxi-

mum cap on each label, since it contains much more

data entries than nested dataset. The light version



Model Using Noisy Identifiers Grammar Structure Dataset size Accuracy

LSTM No Nested 6520568 97.2%

LSTM Yes Nested 6520568 26.5%

Bi-LSTM Yes Nested 6520568 33.9%

Bi-LSTM Yes Flattened 3587531 92.3%

Bi-LSTM Yes Flattened 19964626 97.6%

Table 1 Experiment Results.

of the flattened structure dataset contains 3587531

statements.

4. 3 Noise Simulation

Introducing noises to the training dataset is vital

to increase the generality of the Statement Predic-

tor. While there is no publicly available dictating

programming corpus, noises have to be generated

in an imitation approach as well.

For reserved keywords, several pre-defined noisy

tokens have been selected that have similar pronun-

ciations. The keywords are replaced by those noisy

tokens based on a random probability.

For identifier names, the original identifiers used

in Python code are already random noises, but

most of them are hard to dictate or impossible to

be converted into the phonetic format. We pre-

pare a dataset with no identifier noises by replac-

ing all identifiers with the same token. To simulate

noises from identifiers, we use a collection of 10000

random nouns [5], and pick 9012 of them which

have phonetic values in Oxford Dictionary API [1],

then replaced identifier names with one of them

randomly to make another dataset. The “Using

Noisy Identifiers” field in Table 1 indicates which

dataset is used.

4. 4 Results

All experiments are conducted in 4 epochs.

Dataset is shuffled and divided into training, vali-

dation, and testing dataset in the portion of 8:1:1.

As Table 1 shows, the accuracy is high when ev-

ery identifier is treated as the same, with only some

keywords been modified to similar pronunciation

words. It shows that under a relatively low noises

environment, the LSTM can recognize the state-

ment type based on a sequence of phonetic charac-

ters input.

However, when introducing the noises on iden-

tifiers by using the 9012 nouns mentioned in sec-

tion 4. 3, the accuracy has a great fall. The model

almost cannot recognize any labels but just gives

random guesses on the most popular labels. Using

a bidirectional LSTM slightly improves accuracy,

but still remains at an impractical level.

We think the reason for low accuracy is that iden-

tifiers in programming do not make any contribu-

tion to determining the statement type. Also, re-

served keywords in the nested inner statements do

not help to predict the outer statement type as well.

Having too much noisy information in the input

makes the model hard to learn useful information.

In the flattened dataset, the number of identifiers

decreases since there are no more inner statements.

All keywords left in the input are useful to predict

the statement type as well. Accuracy gets a large

increment as the results show.

4. 5 Limitations

We considered 2 possible drawbacks in the cur-

rent design that can be further improved in future

research. The first drawback is the mapping from



phonetic characters to numeric values is intuitively

designed in Phonetic-based Encoding. The similar-

ity in numeric values does not accurately represent

the similarity in pronunciation. The second draw-

back is the grammar of dictating programming used

in this research is simply designed. The primary

goal of designing this grammar is just to remove

the necessity of using punctuation symbols, so all

tokens used are normal words that do have phonetic

form. A more delicate design of the grammar may

reduce the difficulty of handling noises, and further

improve the feasibility of dictating programming.

5 Related Works

There are existing attempts at designing the dic-

tating programming system. VoiceGrip [3] designs

a domain-specific language that is easy-to-dictate,

and can be translated into the C language. It also

designs an algorithm to recognize consecutive to-

kens as one single camel case identifier, which en-

hances the ability to name identifiers in dictating

programming. In 2021, our previous dictating pro-

gramming design, Natural Programming Language

[2], introduced the usage of context-dependent pro-

nouns. Using pronouns in dictating programming

reduces repetitions of long expressions, which gen-

erally appear in typing programming.

However, dictating programming is still far from

feasible to be used efficiently. We think one of the

difficult points that cause this is the noise in the

input. The existing designs of dictating program-

ming are focusing on making the grammar easier

to dictate, or implementing simple voice macros to

achieve more complicated actions by speaking less

words. They assume the input text is the already-

recognized perfect text without any error.

Some existing works such as VoiceCode [4] do

consider the incorrect recognition by providing the

voice macro to retreat the user’s last speaking,

which indirectly solves the problem by increasing

the user’s burden. We aim to enable the dictat-

ing programming system to accept the spoken text

even if it contains some noisy tokens.

6 Conclusion

In this paper, we introduced the issue of noises

that keeps the dictating programming not feasible

enough. The architecture design of a flexible parser

with the statement predictor is presented. As on-

going research, we presented the current progress of

some promising experimental results for the State-

ment Predictor implementation. Limitations of the

Statement Predictor, such as phonetic encoding

and grammar design, have also been presented as

potential future research. For our next step, we will

attempt to design the customized parser in our pro-

posed architecture, which parses noisy statements

given the predicted statement type.

参 考 文 献
[1] Oxford Dictionaries API. Retrieved from:

https://developer.oxforddictionaries.com.

[2] Cai, W., Akiyama, S., and Chiba, S.: A Prelim-

inary Design of an Easy-to-Dictate Programming

Language with Pronouns, Proceedings of the 38th

JSSST Annual Conference, 2021.

[3] Desilets, A.: VoiceGrip: a tool for programming-

by-voice, International Journal of Speech Technol-

ogy, Vol. 4, No. 2(2001), pp. 103–116.

[4] Desilets, A., Fox, D., and Norton, S.: Voicecode:

An innovative speech interface for programming-

by-voice, In CHI’06 Extended Abstracts on Hu-

man Factors in Computing Systems, (2006 Apirl),

pp. 239–242.

[5] Eric Price, MIT: 10000 Word List. Re-

trieved from: https://www.mit.edu/ ecprice/-

wordlist.10000.

[6] Graves, A., Fernández, S., and Schmidhuber, J.:

Framewise phoneme classification with bidirectional

LSTM and other neural network architectures, Neu-

ral networks, Vol. 18, No. 5-6(2005), pp. 602–610.

[7] Hochreiter, S. and Schmidhuber, J.: Long

Short-Term Memory, Neural Computation, Vol. 9,

No. 8(1997), pp. 1735–1780.

[8] Yasunaga, M. and Liang, P.: Break-it-fix-it: Un-

supervised learning for program repair, Proceedings

of the 38th International Conference on Machine

Learning, PMLR, Vol. 139, 2021 July, pp. 11941–

11952.


