
The University of Tokyo
Graduate School of Information Science and Technology

Department of Creative Informatics

博士論文

A Study of
Protocol-Checking and Memory-Management Techniques

for Assisting Library Development
(ライブラリ開発を支援するためのプロトコル検査およびメモリ管理技術の研究)

Doctoral Dissertation of:

Tetsuro Yamazaki
山崎 徹郎

Academic Advisor:

Shigeru Chiba
千葉 滋

Abstract

Information technology has contributed to our lives a lot, and the limits are not visible
yet. There still be an uncountably large number of applications that can improve our lives.
Furthermore, the number of applications will increase because technological advances will
discover new problem domains to apply information technology. Not only developing spe-
cific applications is important when we are trying to develop a large number of applications,
but also it is important to reduce the costs to develop each application. Code reuse is one
basic idea to reduce the cost of application developments. By sharing common program
pieces in applications, we can avoid re-implementing duplicate parts. A set of programs
organized for reuse is called a library. Today, we can access various kinds of libraries. By
using an appropriate library, we can implement a complex application with a little effort.
However, there is no library suitable for all applications. Applications in different problem
domains need different libraries since not many program pieces are shared between them.
Developing a specific library can assist only in limited application developments. To assist
in a wider range of application developments, we aim to reduce the cost of library develop-
ments. Basically, developing a library is not a simple task. The main difficulty in library
development comes from the abstract nature of libraries. Unfortunately, this complexity is
inevitable. We aim to reduce the library development cost by assisting developers in extra
tasks accompanied by library developments. There already exists many research and tools
which assist in library development. In this thesis, we focus on two approaches to assist
in library developments and propose we propose three additional techniques. The first
approach is about library protocol checking. Libraries often provide many usages to adopt
various kinds of applications. However, from a viewpoint of a library developer, the larger
number of usages a library provides, the more difficult it is to control all the behavior. To
prevent an overlooked unexpected behavior from introducing bugs, library developers can
check the usages and prevent illegal usages from execution. A set of rules about how a
library can be used is called a library protocol. We propose an embedding technique that
makes type checkers emulate LR parsers. This technique can be used to check protocols of
libraries that provide fluent interfaces. We experimented on how long our method took to
check protocols and revealed that the time complexity is quadratic, although it is expected
to be linear. The second approach is about Foreign Function Interfaces (FFIs). An FFI
can reduce the library development cost since it enables engineers to use foreign libraries

iii

iv

without translating their programs. However, an FFI can cause memory leaks when both
programming languages support garbage collection. When a cyclic reference goes through
both languages, the cycle will not be collected since neither collector can determine whether
the cycle is garbage or not. Note that our interest is in reusing foreign libraries. Thus we
do not want to modify the language that the foreign library is written in. We propose a
backup garbage collection algorithm that can collect cross-language cyclic references with-
out customizing both of the collectors. Our algorithm copies reachability between objects
from a language to the other language and reproduces it as references between objects.
Once the copy finishes, the collector in the other language can detect all garbage objects
correctly, and the cross-language garbage cycle will be broken. We experimented on how
long our algorithm takes to collect cyclic garbage. We also propose a garbage collection
algorithm for self-reflective garbage collectors. Experimenting with a garbage collection
algorithm is time-consuming. Existing collectors are complex to customize, and it often
saves our efforts to develop a whole new programming language. Customizing a garbage
collector could be easier if the customization was self-reflective. However, it is not easy
to design a self-reflective feature. We design a simple self-reflective interface to customize
a copying garbage collector (named copy-time callback) to discuss what problem will
occur in self-reflective collector customization. Copy-time callback allows registering a
callback function which is called each time the collector copies an object. We discovered
a problem that the callback function creates objects during garbage collection, and it can
consume a huge amount of memory. Our garbage collection algorithm places objects cre-
ated during collection in a special region and invokes minor garbage collection to compress
them. And our algorithm will move the objects managed in the special region into the
normal region in which other objects are managed when the collection finishes. We exper-
iment on how small a memory region our algorithm can execute our microbenchmark and
confirmed that our algorithm could save the memory.

Acknowledgements

I would like to take this opportunity to express my gratitude for people who helped to
complete my doctoral course. First of all, I feel great gratitude to my supervisor Professor
Shigeru Chiba. Although I was a capricious student, he led me to complete my doctoral
course without preventing me from having my own way. I would not finish this thesis
without his accurate guidance.

I would also like to express my gratitude to my colleagues in Computing Software
Group. Especially, Kazuhiro Ichikawa gave me beneficial and patient advice on my studies
even if the topic was not related to his research theme. Tomoki Nakamaru is a person who
gave me a chance to begin my work on fluent interfaces. He gave me great inspiration, and
I could not finish my work without that.

Finally, I would like to thank my parents for supporting me for a long time. Their long
and patient support enables me to reach this place without getting into serious trouble.

v

Contents

1 Introduction 1

1.1 Approach . 2

1.2 Contributions . 5

1.3 Structure of This Thesis . 6

2 Background 9

2.1 Assistance Methods for Library Development 9

2.1.1 Methods to Reduce the Cost of Using Libraries 9

2.1.2 Methods to Check How Libraries are Used 11

2.1.3 Methods to Reduce the Cost of Preparing Documentation 11

2.1.4 Methods to Reuse Libraries in Other Languages 12

2.1.5 Methods to Extend Library API . 14

2.2 Our Motivation . 16

3 Check Complex Protocols of Fluent APIs 21

3.1 Introduction . 21

3.2 Syntax Checking of Fluent Style Code . 23

3.3 Our Fluent API Generator . 26

3.3.1 LR Automaton . 27

3.3.2 The Fluent Language . 29

3.3.3 Translate LR Automata to Fluent 30

3.3.4 Translate Fluent to Scala . 31

3.3.5 Literals . 33

3.4 Translation to Haskell and C++ . 33

3.4.1 Haskell . 34

3.4.2 C++ . 35

3.5 Experiment . 36

3.5.1 Fluent API Generator . 37

3.5.2 Compilation Time of DOT-Like DSL 38

3.5.3 Compilation Time of Randomly Generated Chain 40

vii

viii CONTENTS

3.5.4 Error Messages . 43
3.6 Related Work . 46
3.7 Concluding Remarks . 48

4 Collecting Cross-Language Cyclic Garbage References 49
4.1 Introduction . 49
4.2 Foreign Function Interface and Distributed Garbage Collection 50
4.3 Our Object Graph Cloning Method . 54

4.3.1 Detailed algorithm . 55
4.3.2 Data representation of mark sets . 57

4.4 Experiment . 58
4.4.1 Garbage Collection Time . 59
4.4.2 Effect of False-Positives . 62

4.5 Concluding Remarks . 63

5 Self-Reflective Garbage Collection for Customizing Garbage Collectors 65
5.1 Introduction . 65
5.2 Self-reflective customization of Garbage Collector 67
5.3 Buffered Garbage Collection . 70

5.3.1 The colors of objects . 70
5.3.2 The algorithm . 71

5.4 Comparison . 73
5.4.1 Dynamically linked library . 73
5.4.2 Single language . 74
5.4.3 Other garbage collectors . 75

5.5 Experiment . 76
5.6 Concluding Remarks . 77

6 Conclusion 81

Chapter 1

Introduction

In recent years, information technology spreads to our society, and computers have become
important tools for our lives. At the same time, we have not discovered the limits of infor-
mation technology; we do not know how much we can help ourselves by using computers.
In other words, there are so many applications we should develop in the future. Not only
developing each application is important but also reducing development costs is important.

One common approach to reducing the cost of developing applications is code reuse. By
sharing common program pieces in applications, we can avoid reimplementing duplicated
programs. Although we must pay an additional cost to reuse a code piece, code reuse can
reduce the total cost.

For example, a series of program pieces organized for code reuse is called a library.
Today, we can access many libraries to implement our applications. Each library provides
each feature, and we can avoid writing a complex program by using an appropriate library.
However, using a library is not free. It is time-consuming to find an appropriate library
and installing a library may fail. You also have to learn the usage before using that library,
and if a bug in a library disturbed your application, you had to look for a workaround. Of
course, we should use a library only if it can reduce the total cost.

We aim to assist in developing libraries to indirectly reduce the cost of developing
various applications. Developing a library can reduce the costs of developing applications.
However, a specific library can reduce only the costs of a limited range of application
developments. To cover a wide range of applications, we have to develop various libraries
as problem domains. Moreover, the number of problem domains must increase in the
future. Thus, not only developing each library is important, but also reducing the cost of
developing libraries is important.

Here, how can we assist in library developments? We could reduce the library develop-
ment cost if we discovered a general method to generate a library automatically. However,
we suppose that this approach is not realistic. A library program is very different when
the problem domain is different since requirements for a library vary depending on the

1

2 CHAPTER 1. INTRODUCTION

problem domain. Thus, the way to generate a library must change in a different problem
domain. We suppose a library generator can reduce only the costs of a limited range of
library developments since it can generate only a limited range of libraries.

Instead, we aim to reduce the costs to prevent problems that occur when you use a
library. There are costs that engineers have to pay to use a library. Moreover, the costs
could be huge if the library was not prepared for reuse. It is considered library developers’
responsibility to prepare their library so that engineers do not need to pay a huge amount
of effort. The preparation required for library developers is often the same regardless of
the problem domain. We can save library developers’ efforts by discovering an easier way
to prepare libraries for reuse.

There are many existing pieces of research and tools which assist library developments.
For example, to use a library, engineers must understand both the feature it provides and
its usage. Organizing such information into documentation is one important task in library
developments. Javadoc is a well-known tool that assists Java developers in documenting
their library. Figure 2.1 shows an example document generated using Javadoc. Even with
Javadoc, the amount of texts required to generate documents is not small. Moreover,
library developers have to study how they can use Javadoc. However, Javadoc is used
widely; since documentation takes a lot of time and effort, Javadoc can reduce the total
cost.

1.1 Approach

We researched two approaches to reduce the cost of developing libraries. One approach is
protocol checking which detects illegal uses of libraries so that library developers can easily
prevent exceptional use cases. The other is foreign function interfaces which enable us to
reuse libraries written in another programming language. Since the variety of programming
languages is increasing, research on problems with a foreign function interface between
recent languages is especially important today. This section shows the details and our
motivation for these two approaches.

The first approach we researched is protocol checking. Libraries usually aim to provide
a flexible interface to fit many applications. The more usages a library provides, the more
application can use it. However, from a library developer’s viewpoint, the large number of
usages a library provides makes it difficult to control that library’s behavior. If the library
behaves unexpectedly to an engineer, it can cause bugs. Engineers will consider that it is
the library developer’s responsibility to prevent such unexpected behaviors.

By checking library protocols, library developers can detect illegal uses and prevent such
applications from executing. A library protocol is a set of rules about what usage is legal for
a library. Protocol checking examines a program whether it contains protocol violations or
not. Thus, a library developer can avoid checking all the usages of his/her library to behave
expectedly by applying a protocol checking. One typical format of protocol checking is type

1.1. APPROACH 3

checking. With type checking, library developers specify what kind of value their library
receives and returns as types. Library users must also select types for their arguments
passing to that library. By checking the consistency between the parameter types and the
argument types, type checkers can detect illegal applications.

For example, in Java, even in a simple HTTP server, there appear ten or more classes
and dozens of methods. Java standard HTTP libraries (i.e. java.net.http) provide more
classes as other options for engineers. Engineers can use them in any combinations they
like. A combination of library calls may work as an HTTP server, another combination
may work as an HTTP client, and there are many other combinations work as other
applications. Since Java is a statically typed programming language, no engineer can pass
illegal arguments to the library. Type checking in Java reduces the variety of library calls.
Thus library developers in Java need less effort to prevent unexpected behaviors.

A method is known that checks a protocol of fluent interface by making a type checker
emulate parsing. A fluent interface is a library interface that is called via method chains.
Since a method chain is a sequence of method calls, we can specify which method chain is
legal in the form of grammar. This protocol checking method makes a type checker emulate
a parsing corresponding to the given grammar. Library developers can prevent executing
applications containing an illegal method chain by detecting as a type error.

However, no method can make a type checker emulate an LR parsing in non-exponential
time, as far as we know. How complex protocol these methods can check changes by which
parsing algorithm they make a type checker emulate. LR parsing is a standard pars-
ing algorithm that can parse all deterministic context-free grammars. For example, Java
grammar is designed to be analyzable by an LR parsing. We can specify any deterministic
context-free grammar as a protocol for our fluent interface to make a type checker emulate
an LR parsing. However, known methods that embed an LR parsing to a type checker
need exponential time for a method chain length to verify it as far as we know. Originally,
an LR parsing takes an only linear time for the input length. We can get one step closer
to practical use if we can discover a faster method.

The second approach we researched is about foreign function interfaces (FFI). A mech-
anism is called an FFI when it enables us to call functions written in another programming
language. We can use a library via an FFI, even if it is written in another language. Thus,
we can reduce the cost to reimplement a library written in another language by using an
FFI, as long as that library is not used very frequently. An FFI is especially important to
young programming languages since they do not have enough libraries.

Cooperation between garbage collectors is important when an FFI connects two pro-
gramming languages, and both languages support garbage collection. Garbage collection
automatically detects unused memory regions and collects them for other data. When an
FFI connects two programming languages, and both languages support garbage collection,
it is difficult to detect a garbage object which is a part of cyclic reference going through
both languages. Without communications between collectors, neither collector can deter-
mine whether a cyclic reference is garbage or not. From either collector’s viewpoint, only

4 CHAPTER 1. INTRODUCTION

a part of the cycle is visible and cannot access the rest. Neither collector can determine
whether an invisible part is garbage or not. Thus neither can determine a visible part as
garbage because it is reachable from the invisible part.

It is desirable to avoid customizing both collectors connected by an FFI to cooperate.
Usually, a source code of a garbage collector is large-scale and complex. Since customizing
a garbage collector is difficult, it is desirable to avoid customizing collectors. It is especially
desirable to avoid customizing the collector of the language that libraries are written in
because our target is reusing libraries from a new language. A new language collector
must be more simple to customize than a collector of an elder language. Although a
similar problem is discussed in distributed garbage collection, no method can make garbage
collectors cooperating without customizing both collectors, as far as we know.

We also researched a language feature that enables programmers to customize a garbage
collector with a little effort. We could make garbage collectors cooperative by using existing
methods to customize garbage collectors with a little effort. Thus, designing a language
feature for collector customization can be another approach to prevent problems of FFI in
the future.

One reason that makes garbage collector customization complex is that a programmer
must consider two programming languages simultaniously to customize a collector. Most
language processors are implemented in a lower-level language than the language processed
by that language processor itself. Garbage collectors are also implemented in the lower-level
language since they are a part of language processors. To customize a garbage collector,
a programmer must consider not only the language the collector is written in but also the
language managed by that collector to keep the semantics without changing.

By providing a self-reflective language feature, we can make garbage collector cus-
tomization easier. A computation is self-reflective when it operates the language proces-
sor, which executes that computation itself. Via self-reflective computation, programs can
modify the behavior of the language processor. By customizing a garbage collector in
a self-reflective way, programmers no longer need to consider the programming language
implementing that collector.

However, designing a self-reflective feature is not simple. First, no self-reflective feature
allows customizing any part of the language processor, unfortunately. If a mechanism allows
programmers to customize any part of the language processor, that mechanism also allows
programmers to embed any kind of bugs. Such an interface must be more complicated
than customizing the language processor directly in the lower-level language. We have to
carefully consider what customization to accept before designing a self-reflective feature.

Infinite regression can be another designing issue of a self-reflective feature. Customiz-
ing a language processor can also change how the self-reflective feature works. A self-
reflective feature has to behave as if the behaviors before and after the customization are
consistent to avoid inconsistency. Naive implementation often causes infinite regression,
an endless loop to find a fixpoint the behaviors become consistent. We have to design a
self-reflective feature to avoid infinite regressions carefully.

1.2. CONTRIBUTIONS 5

1.2 Contributions

As shown in section 1.1, we researched two approaches. The former approach was about
protocol checking, and the latter approach was about FFIs. Later in this thesis, we will
present a proposed method for the former approach and two proposed methods for the
latter approach. Our contributions for the first approach are summarized as follows:

• We present an algorithm to translate LR automata into the Fluent language, which
we designed to express single-state non-realtime deterministic push-down automata.
These automata are not jump-stack automata [9] , but they can pop multiple elements
at once.

• We also present an implementation scheme of the automata described in Fluent.
The implementing languages are Scala, Haskell, or C++. Our scheme uses func-
tion/method overloading that considers type arguments. It is not available in Java.

• We developed a code-skeleton generator of fluent API based on our approach. It
generates code skeletons in Scala, Haskell, or C++. According to our experiments,
the compilation time of the client code that accesses the generated fluent API was
linear or quadratic.

Also, our contributions for the second approach are summarized as follows:

• We present a garbage collection algorithm to collect cyclic garbage, which goes
through two programming languages connected via an FFI. This algorithm does
not require customizing both garbage collectors of both languages. This algorithm is
probabilistic; it possibly fails to collect garbage objects.

• We implemented our algorithm by customizing YARV, a virtual machine for Ruby,
and developing an FFI library between Ruby and JavaScript. According to our
experiments, the number of garbage objects in each cyclic garbage has a substantial
impact on how long our algorithm takes to collect them. Our experiments also show
that not many objects escape from garbage collection when there are no more than
a hundred remote references.

• We present a simple self-reflective interface to customize a garbage collector to dis-
cover a problem in a self-reflective customization of a garbage collector. We also
present a problem that a callback function can create a huge number of objects and
turn them into garbage during a garbage collection.

• We present a garbage collection algorithm to manage objects created during garbage
collection within a small amount of additional memory consumption. Our algorithm
reserves a specific buffer region to allocate objects during collection. Our algorithm
moves survival objects in buffer region into the same region to other objects to prevent
inconsistent behavior.

6 CHAPTER 1. INTRODUCTION

• We developed an interpreter for a Scheme-like language implementing the self-reflective
garbage collector customization interface and our garbage collection algorithm. 2KB
is sufficient for the buffer region to reduce memory consumption for running our
microbenchmark compared to a naive copying garbage collection according to our
experiment.

1.3 Structure of This Thesis

From the next chapter, we present our research on reducing the costs of developing libraries.
The rest of this thesis is organized as follows:

Chapter 2: Background

In this chapter, we show the background of our research. In this chapter, we first show
existing techniques that we can use to reduce the cost to develop libraries to clarify what
we can do to reduce the library development costs. Then, we show our motivation again
in detail with examples.

Chapter 3: Check Complex Protocols of Fluent APIs

In this chapter, we present a technique to check a fluent interface protocol. We can generate
a library-skeleton with this technique providing a fluent interface from a protocol expressed
as an LR grammar. Since a fluent interface accepts a chain of method calls as its input,
a grammar can describe a boundary of what method chaining is legal as a call to a fluent
interface. Our technique encodes a protocol into types that each method call receives and
returns. Thus a type checker will verify the client code to access the generated library by
an LR parsing corresponding to the input grammar. Type checkers will report protocol
violations as type errors.

In this chapter, we present our algorithm in two steps. Since our algorithm can generate
a library-skeleton written in not only a specific programming language but also program-
ming languages providing a particular kind of features, we introduce a pseudo-language
named Fluent to explain the shared part in translations separately. Thus, we present a
translation from an LR automaton to a Fluent program as the first translation, and then
we present a translation from a Fluent program to a Scala program as the second trans-
lation in section 3.3.4. We also present translations from a Fluent program to a Haskell
program and a C++ program in section 3.4.

Chapter 4: Collecting Cross-Language Cyclic Garbage References

In this chapter, we present a technique to manage cross-language garbage cycles that
can occur when reusing a library written in another programming language via an FFI.

1.3. STRUCTURE OF THIS THESIS 7

We first present a naive implementation of an FFI library and then present an example
uncollectible cyclic reference created using the given naive FFI library. We then present
a garbage collection algorithm that can collect such cross-language garbage cycles. Since
this algorithm can cause long pauses, it could be better to use it as a backup garbage
collection, a separate collection from a regular collection focusing on collecting specific
garbage objects.

Our algorithm presented in section 4.3 is probabilistic, and it possibly fails to collect a
part of garbage objects. We designed our algorithm to ensure that no object is mistakenly
collected so that no memory error occurs and all garbage objects have at least a chance
of being collected. We discuss how this probabilistic behavior affects our algorithm in
section 4.3.2.

Chapter 5: Self-Reflective Garbage Collection for Customizing Garbage
Collectors

In this chapter, we present a technique to implement a language feature to customize a
garbage collector in a self-reflective way. Customizing a garbage collector requires a pro-
grammer to control two programming languages simultaneously, the language that collector
is written in and the language that collector manages. Thus, the self-reflective approach
is promising to make garbage collector customization easier. Making garbage collector
customization easy can be another approach to prevent problems that an FFI between
recent languages can cause since one reason why it is difficult to collect cross-language
cyclic references is that it is difficult to customize a garbage collector. Since self-reflective
garbage collector customization has not been researched well, we start by designing a simple
self-reflective interface to discover what problem the interface can cause.

Chapter 6: Conclusion

This chapter concludes this thesis. In this chapter, we also discuss future works.

Chapter 2

Background

A series of programs organized for reusing them is called a library. Each library reduces
software development costs for each specific problem domain. We aim to assist library
development in reducing software development costs.

There are various approaches to assist in developing libraries. Originally, libraries
can be any program since they are just programs focusing on reuse. However, reusing a
program is not free. Engineers have to understand what feature the program piece to reuse
provides. Engineers also incorporate the program piece into their application carefully to
prevent them from behaving unexpectedly. It is considered a duty of library developers
to reduce reuse costs. Thus, there is not a small amount of extra effort formed in library
developments. We do not aim to reduce the complexity of library developments, but we
aim to reduce the extra work’s cost.

The rest of this chapter is composed as follows. In section 2.1, we clarify how we can
assist in library developments by showing existing methods. In section 2.2, we focus on
some approaches and look into the details to discuss possible improvements.

2.1 Assistance Methods for Library Development

This section shows several approaches to assist in library developments. Since there are so
many existing methods, it is not easy to comprehensively cover them. In this section, we
will present several existing methods in the order of what we think is important.

2.1.1 Methods to Reduce the Cost of Using Libraries

Originally, using a library was not a simple task. To reuse a program, engineers must adjust
their program to avoid inconsistency between their application and libraries. For example,
if a program shares its memory region with a library program and uses it inconsistently,
unexpected behavior can occur. Not only memories but also other computational resources
can cause unexpected behavior when used in a conflicted way. Engineers have to avoid

9

10 CHAPTER 2. BACKGROUND

such resource conflict to prevent their application from unexpected behavior. To enable
engineers to avoid resource conflicts, library developers have to design their libraries in
advance to provide a way to prevent them.

Module system is one of the most essential assistance methods for developing a library.
A module system enables engineers to keep their source program separated into multi-
ple program pieces. A language processor with a module system receives such separated
program pieces, composes them, and executes them. A piece of the separated source pro-
gram is called a module. Usually, a module system automatically assigns computational
resources to each module to prevent resource conflicts. Thus, with a module system, li-
brary developers can avoid preparing to enable engineers to prevent resource conflicts by
implementing their library as a module.

For example, C language allocates local variables into stack frames and access them
based on base pointers so that local variables used in different modules are allocated into
different memory regions. C language also adjust global variables’ addresses at link time to
allocate them to independent memory regions. C language also provides both malloc and
free to enable programmers to allocate their dynamic variables independently. Thus, li-
brary developers in C language can avoid worrying about memory conflicts. In other words,
C language’s memory management strategy reduces the development cost of libraries.

For another example, recent programming languages often provide programmers with
features that enable them to control namespaces. The names of functions or variables
can also conflict, and that is one of the common causes of unexpected behavior. Some
programming languages provide a mechanism called namespace to ease the name conflict
problem. By considering names belonging to each namespace, functions and variables with
the same name do not cause the name conflict as long as each name belongs to a different
namespace. Library developers can reduce the name conflict risk by making each library to
use each namespace. Namespaces release library developers from devising unique function
names and variable names to prevent the name conflict problem.

For example, packages in Java, namespaces or classes in C++, module in Ruby, and
object statements in Scala are language features that also have an aspect of the namespace.
The following Scala program defines two aFunctions into different namespaces.

object namespace1 {

def aFunction () = /* do something */

}

object namespace2 {

def aFunction () = /* do another thing */

}

Programmers can specify which aFunction they refer to by writing its namespace explic-
itly as namespace1.aFunction or namespace2.aFunction. Programmers can also import

a namespace to omit writing the namespace. In these languages, programmers specify
namespaces with absolute paths. Thus, there remains some risk that namespace paths can
conflict. In Python, there are namespaces, but no module can declare their namespace

2.1. ASSISTANCE METHODS FOR LIBRARY DEVELOPMENT 11

by themselves. Python processors automatically assign independent namespaces to each
module when a program imports that module. Although module paths can conflict, there
are no namespace conflicts in Python as long as a program succeeds in importing modules.

2.1.2 Methods to Check How Libraries are Used

A library is a collection of reusable program pieces. Libraries often provide various kinds of
usages to support a broader range of applications. Such a library is useful since engineers
can use the library repeatedly without relearning how to use it.

From the viewpoint of a library developer, the larger number of usages a library pro-
vides, the more challenging it to control its behavior. Library developers cannot control
how engineers use their libraries. Thus, if developers overlooked illegal usage that causes
unexpected behavior, engineers could unfortunately embed bugs into their application. It
is still better if the bug interrupts the execution, but it can be more annoying if it continues
with an incorrect value.

Protocol checking is an approach that prevents such unexpected behavior by detecting
illegal uses of a library and prevent programs from incorrect execution. A typical protocol
checking for libraries is type checking. With type checking, libraries specify conditions
that each input should follow as types, and a type checker checks application programs
whether they observe the conditions or not. For example, object-oriented programming
languages usually regard interfaces as types. In object-oriented languages, an interface is
a set of valid manipulation an object accepts. A function call will be safe as long as it
observes input objects’ interfaces. From a library developer viewpoint, type checking is
viewed as ensuring that nothing will input an illegal value. Thus, type checking releases
library developers from handling edge cases, reducing the library development cost.

For example, assume an addition operator + which requires that both operands are
numbers. If a program is interpreted to add a character string to a number, the execution
can cause unexpected behavior. Type checking can detect such absurd programs.

2.1.3 Methods to Reduce the Cost of Preparing Documentation

Engineers have to know what feature a library provides and how they can use it before
using that library. Libraries are required to summarize such information as documentation.
Writing documents is one essential and time-consuming task in library development.

Javadoc is a tool that assists library developers in writing documents. Figure 2.1
shows an example input to Javadoc and figure 2.1 shows the output. Javadoc generates
documentation from a smaller amount of description, although it fixes the documents’
format. The fixed format is also desirable for library users since they can read it without
worrying about what format it is written in. Recent programming language often provides
documentation tools like Javadoc. For example, pydoc for Python, Dokka for Kotlin,
RustDoc for Rust, and other tools are public.

12 CHAPTER 2. BACKGROUND

Listing 2.1: An example input for Javadoc

1 /**

2 * {@literal Ref <T>} is a class which contains just

3 * one reference to a T object.

4 * @version 0.1

5 * @author Tetsuro Yamazaki

6 */

7 public class Ref <T> {

8 private T referent;

9 /**

10 * construct a Ref instance.

11 * @param referent the initial object

12 * this Ref instance refers to

13 */

14 public Ref(T referent) {

15 this.referent = referent;

16 }

17 /**

18 * dereference and take the referent out.

19 * @return the referent

20 */

21 public T deref () {

22 return referent;

23 }

24 /**

25 * replace the object this Ref is referring to.

26 * @param newReferent replace the reference to this object

27 */

28 public void assign(T newReferent) {

29 referent = newReferent;

30 }

31 }

2.1.4 Methods to Reuse Libraries in Other Languages

Libraries are written in a specific programming language, and they are usually used in the
same language. In other words, usually, an application cannot use a library when it is
written in a different programming language. To use such a foreign library, programmers
have to translate the library program.

A mechanism is called a Foreign Function Interface (FFI) when it enables program-
mers to call functions written in another programming language without translating it.
Programmers can use foreign libraries via an FFI since most libraries are used via function
calls. By using an FFI, library developers can easily import foreign libraries.

Programming languages often provide an FFI between C language. There are two

2.1. ASSISTANCE METHODS FOR LIBRARY DEVELOPMENT 13

PACKAGE CLASS TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class Ref<T>

java.lang.Object
Ref<T>

public class Ref<T>
extends java.lang.Object

Ref<T> is a class which contains just one reference to a T object.

Constructor Summary

Constructor and Description

Ref(T referent)

construct a Ref instance.

Method Summary

Modifier and Type Method and Description

void assign(T newReferent)

replace the object this Ref is referring to.

T deref()

dereference and take the referent out.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Constructor Detail

Ref

public Ref(T referent)

Constructors

All Methods Instance Methods Concrete Methods

Figure 2.1: an example documentation generated by Javadoc

14 CHAPTER 2. BACKGROUND

1 using PyCall

2 plt = pyimport (" matplotlib.pyplot ")

3 x = range (0; stop =2*pi ,length =100)

4 y = sin.(x)

5 plt.plot(x, y)

6 plt.show()

Figure 2.2: An example program using PyCall

1 // A matrix library with function call foramt

2 Matrix m = mat_mul(mat_add(matrix1 , matrix2), matrix3);

3 // A matrix library with method call format

4 Matrix m = matrix1.add(matrix2).mult(matrix3);

5 // A matrix library with mathematical operation format

6 Matrix m = (matrix1 + matrix2) * matrix3;

Figure 2.3: Example interfaces of a matrix library

possible reasons for this. First, it is easy to support since most language processors are
implemented in C language. Second, programs worth reuse are concentrated in C language.

In recent years, FFIs between script languages (i.e. Python, JavaScript, and so on)
also attract attention. For example, PyCall is an FFI library in Julia which calls Python
functions. Programmers can call Python functions from Julia via PyCall. Figure 2.2 shows
an example program using PyCall.

2.1.5 Methods to Extend Library API

All libraries have their host language in which they are written. Thus, a developer cannot
implement a library interface that is not interpretable in the host language. For example,
matrix libraries can provide better readability and maintainability if engineers can use
them in mathematical expressions. Figure 2.3 shows example interfaces of matrix libraries.
However, it is challenging to implement a matrix library that provides such a mathematical
interface without a host language feature that enables modifying mathematical operators’
behavior.

Developing a preprocessor is a way to develop a library with an interface that is not
interpretable in the host language. A preprocessor works as follows: it receives a source
program before the host language processor receives it, converts it, and then returns it to
the original processor. Thus, developers can design any format for a preprocessor’s input
as long as it can convert it to the original language.

However, developing a preprocessor introduces some problems, and it seems not popular
to develop a preprocessor when a developer wants to extend a library API. The first problem

2.1. ASSISTANCE METHODS FOR LIBRARY DEVELOPMENT 15

1 (defclass Range ()

2 ((start :accessor start :initarg :start)

3 (stop :accessor stop :initarg :stop)

4 (diff :accessor diff :initarg :diff)))

5 (defmethod next ((this Range))

6 (if (>= (start this) (stop this)) nil

7 (let ((result (start this)))

8 (setf (start this) (+ (start this) (diff this)))

9 result)))

Figure 2.4: An class declaration using CLOS.

is the development cost of preprocessors. Each preprocessor extending a language has its
own parser as a component since its inputs are in its own language. However, a parser is
one of the most complex components of a language processor to implement. It is difficult
just implementing a parser that can analyze source programs correctly, but it is useless
unless it can report appropriate error messages for illegal inputs. The second problem is
the maintenance cost of preprocessors. When the language developers update the original
language, preprocessors must follow the updates since they should not touch other programs
from library calls. Especially when the language introduces new syntax, preprocessors must
update their parsers, although it is a very complex component. The third problem is the
lack of composability. When two libraries provide different preprocessors, no engineer can
use them together because neither input is the same as the other output. This limitation
is extreme.

We consider macro systems a better method for language extension than developing
a preprocessor. A macro system allows programmers to transform the source program
before executing it by registering functions that manipulate program pieces as data. With
a macro system, library developers cannot design their library interfaces freely, unlike pre-
processors. However they can design an interface that interprets each syntactic element
of the host language differently. For example, Common Lisp Object System (CLOS) is
an object system implemented just as a library. Figure 2.4 shows an example program
that declares a class Range and a method next using CLOS. Since Common Lisp does not
support object-oriented programming, there is no syntax for class declarations, method
declarations, and member access. However, the library interface of CLOS looks as if Com-
mon Lisp is supporting object-oriented programming. The CLOS interface interprets some
specific function calls as class declarations, member accesses, and so on.

One typical macro system is syntactic macro in lisp-family programming languages.
Today, some programming languages provide similar macro systems (i.e. macro in Elixir,
Scala macros in Scala, Template Haskell in Haskell). Although macrosystems seem to
improve all the three problems in preprocessors, it is still said complex, and programmers
must pay great care when they define a macro. Especially, error handling is a problem;

16 CHAPTER 2. BACKGROUND

errors caused by macros are difficult to identify the cause because the error messages are
usually complicated.

2.2 Our Motivation

As seen in section 2.1, various methods to assist in developing a library already exist.
However, we believe additional assistance still reduces the development cost for libraries.
We will develop a huge number of libraries since there will be countless applications for
our lives in the future. Thus, discovering an assistance method can significantly contribute
even if the improvement was still small.

For example, it is known that we can check a protocol of an interface that is used
in method chaining style by associating receiver types of each method call with internal
states of an automaton. How complex protocol this method can check depends on the
class of automata that receiver types are associated with its internal states. As seen in
section 2.1.2, protocol checking is one aspect in which we can assist library developments.
Fluent API is an attractive library interface design that enables engineers to write their
application program in similar word order to the natural language by providing a library
interface used via method chains. For example, an integer sequence decreasing from 10 to
0 is written as following in object-oriented style:

IntegerSequence seq = new IntegerSequence (10, 0, -1);

With a fluent API, we can write the same sequence as follows:

IntegerSequence seq = IntegerSequence.from (10).to(0).by(-1);

We can make it closer to natural language as follows:

IntegerSequence seq = IntegerSequence.decreasing (). from (10).to(0);

A simple way to implement a fluent interface is by defining a class that accumulates all
method calls. Figure 2.5 shows an example implementation of the IntegerSequence class.
Since each method returns the object itself, programmers can chain method calls. However,
this straightforward implementation lacks the ability to detect illegal uses. For example,
the IntegerSequence accepts broken sequences like IntegerSequence.from(0).to(10)

.to(20).to(30).

It is known that we can detect such illegal chains by making each method return an
object that has only methods legal as the next method call. For example, figure 2.6 shows
an example implementation of such protocol checking. We can consider this protocol
checking as emulating an automaton by using the type checker. From this viewpoint, each
method call corresponds to each input token, and each receiver type corresponds to each
state of an automaton. Since the number of classes is finite, the automaton emulated in
this protocol checking is a deterministic finite-state automaton. Thus, the complexity of
protocols that this method can check is limited to regular language.

2.2. OUR MOTIVATION 17

1 class IntegerSequence {

2 private int from;

3 private int to;

4 private int by;

5 public static IntegerSequence from(int from) {

6 IntegerSequence self = new IntegerSequence ();

7 self.from = from;

8 return self;

9 }

10 public IntegerSequence to(int to) {

11 this.to = to;

12 return this;

13 }

14 public IntegerSequence by(int by) {

15 this.by = by;

16 return this;

17 }

18 }

Figure 2.5: An example implementation of a fluent API

We can check more complex protocols by associating receiver types with internal states
of a more sophisticated automaton. For example, it is known we can associate receiver types
with the internal states of a deterministic pushdown automaton by representing a stack
by a nested type argument [57, 39, 45]. Deterministic pushdown automata can analyze
LL(1) languages. Thus, these methods can check fluent-style library APIs whenever you
can write down valid method chains by an LL(1) grammar.

LR is a language class that is a proper superset of LL(1) languages. We can check more
complex protocols by associating receiver types with internal states of an LR automaton [36,
9]. However, these methods consume exponential time for method chain length, although
analyzing an LR language can be finished in linear time. Since this protocol checking
method just emulates an automaton by using the type checker, analyzing an LR language
must be finished in linear time. There should be a faster method that can check a complex
protocol of fluent library interface.

As seen in section 2.1.4, FFIs can reduce the library development cost. It is known
that an FFI between managed languages can cause memory leaks without cooperation be-
tween garbage collectors. Recent programming language often supports garbage collection
which automatically detects and reuses memory regions that are no longer used. Such
programming languages are said to be managed.

In contrast to traditional FFIs between C language, we have to consider cooperation
between garbage collectors when an FFI connects two managed languages. For example,
figure 2.7 shows a program that registers a onclick callback function to a button ele-

18 CHAPTER 2. BACKGROUND

1 class IntegerInterval {

2 private int from;

3 private int to;

4 private int by;

5 public static AfterFrom from(int from) {

6 IntegerInterval acc = new IntegerInterval ();

7 acc.from = from;

8 return new AfterFrom(acc);

9 }

10 }

11 class AfterFrom {

12 private IntegerInterval acc;

13 public AfterFrom(IntegerInterval acc) {

14 this.acc = acc;

15 }

16 public AfterTo to(int to) {

17 acc.to = to;

18 return new AfterTo(acc);

19 }

20 }

21 class AfterTo {

22 private IntegerInterval acc;

23 public AfterTo(IntegerInterval acc) {

24 this.acc = acc;

25 }

26 public IntegerInterval by(int by) {

27 acc.by = by;

28 return acc;

29 }

30 }

Figure 2.6: A safer implementation of a fluent API

1 class Button < React:: Component

2 def render

3 @dom = React.createElement(’button ’)

4 @dom.onclick = proc do

5 @status = ’clicked ’

6 end

7 @dom

8 end

9 end

Figure 2.7: An example Ruby program using JavaScript features via an FFI

2.2. OUR MOTIVATION 19

Proc

@dom

<button>

Button

onclick
self

Ruby heap JavaScript heap

Figure 2.8: How objects are allocated by executing figure 2.7

ment using an FFI between Ruby and JavaScript. In line 1, the FFI library evaluates
’document’ as a JavaScript program, and it returns the document in JavaScript. Line
2 calls getElementById method in document to obtain the button object. And line 3-5
registers a callback function. Note that the substance of button is allocated in JavaScript
memory, and the variable button references it remotely. Also, note that a Proc is a func-
tion object in Ruby, thus line 3-5 registers a callback remotely. Figure 2.8 shows how
objects will be allocated. This simple program creates a cyclic reference between Proc and
<button>.

Both Ruby and JavaScript are managed languages. Without cooperation, no collector
can collect garbage if it is a part of a cross-language cyclic reference. For example, the Ruby
collector will delay collecting Proc since it is referred from <button> and Ruby collector
cannot determine whether <button> is garbage or not. The same thing happens to the
JavaScript collector. The JavaScript collector will also delay collecting <button> since it
is referred from Proc. This kind of memory leak seems to be a result of a compromise.
Therefore we call them “the last piece of cake.”

A similar problem is reported between the JavaScript engine V8 and the renderer Blink
in Google Chrome [10]. Thus, we can collect such cyclic garbage in a similar way to their
method. However, their approach requires both collectors to provide an additional interface
to cooperate. In the case that we apply it to an FFI, it is desirable to be able to use the
collector of the language in which libraries are written without customizing it. There can
be an improved garbage collection algorithm that can collect cross-language cyclic garbage,
reusing existing garbage collectors as it is.

When experimenting on a garbage collection algorithm, there is difficulty in customizing
garbage collectors. It would be easier to experiment on a collection algorithm if we could
easily customize an existing garbage collector in a common programming language. We
can test the collector by using existing test tools, and we can also use existing benchmark
applications to measure the performance.

However, a garbage collector is usually a large-scale complex program. Programmers
must consider both behaviors of the language the collector is written in and the language
the collector manages. This fact makes the customization of a collector more difficult. If

20 CHAPTER 2. BACKGROUND

we could customize a collector in the language managed by the collector itself, customizing
the collector would become more manageable.

A mechanism is said self-reflective when it modifies the behavior of a language proces-
sor from a program processed by the processor itself. One typical self-reflective feature is
the syntactic macro system in lisp-family languages. A syntactic macro modifies a pro-
gram by a function defined in the program itself. Thus, a self-reflective garbage collector
customization mechanism can make researches on garbage collection algorithms easier.
However, it is challenging to design a self-reflective language feature. Since self-reflective
features modify the language processor itself, inconsistency can frequently occur when it
allows free customization. Usually, self-reflective features avoid inconsistency by restricting
the range of customization. Thus, we need trial and error on restrictions to discover a good
self-reflective feature design to customize a collector.

Chapter 3

Check Complex Protocols of
Fluent APIs

3.1 Introduction

A Fluent API [17] is a promising design pattern for embedded domain-specific languages
(embedded DSLs, or EDSLs) [29]. An embedded DSL is a DSL embedded in a general-
purpose language, called the host language. It is usually implemented by a library for the
host language and hence it can be considered as a library with a language-like programming
interface. A naive technique for implementing such embedded DSLs is the string-embedding
style, where the whole DSL code is embedded as a string literal in the host language. It
is passed to the library function, parsed, and interpreted. Another technique adopted
more often is to construct a language-like interface, or the syntax of the DSL, by using
programming primitives such as method calls in the host language. A series of method or
function calls to the library in the host language is regarded as the DSL code.

The fluent style of API is a design pattern for the programming interfaces of EDSLs
when the interface consists of method calls to the library. A library with the fluent API is
used through a chain of method calls to the library. Suppose we have a library for sending
a SQL query to a database. The fluent API would enable the following method-call chain
for using the library:

Query.select (). from(BOOK). where(BOOK.eq (2019))

We designed the API to make the client code look like an SQL query. Each method call
can be regarded as a lexical token in the EDSL implemented by that library. Hence the
call chain above represents the following sequence of lexical tokens:

Query select from(BOOK) where(BOOK.eq (2019))

It is not easy work to implement an embedded DSL so that it will check the given method
chain, which is a sequence of lexical tokens in the DSL, is valid or not. They only report an

21

22 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

error at runtime although standalone (or external) DSLs statically check the validity and
report a syntax error when they find an invalid sequence of lexical tokens. The lack of static
checking is a drawback of embedded DSLs since DSLs can compel somewhat programmers
through the DSL syntax to follow semantically correct use of their functionalities. An
invalid chain of method calls to fluent API should be considered as semantically wrong
usage of the library. Note that detecting wrong usage of libraries is a significant topic and
thus a number of static analysis tools have been developed, for example, in the security
domain [38].

It is known that the validity of a method-call chain can be checked by using host-
language types. In the example of the SQL library above, if the return type of the from

method is a class providing only the where method, from is followed only by where. No
other methods can follow from. We can declare a number of classes as the return types
and thereby control valid chaining of method calls. To mitigate the costs of declaring a
number of classes as return types, code-skeleton generators for fluent API, such as EriLex
[57], have been already proposed.

This chapter presents a code-skeleton generator for fluent API that supports LR gram-
mars in a widely-used programming language. As far as we know, existing generators
support only grammars in classes smaller than LR. Although an algorithm has been pro-
posed to support LR grammars within the ability of Java’s type system [21], it requires
exponential time for compiling a method chain accessing a fluent API library. A difficulty
of supporting LR grammars is that LR parsing uses a push-down automaton; it does not
use a simple finite-state automaton, which can be used only for parsing regular grammars.
Since Java’s type system is known as being Turing-complete [25], a push-down automaton
can be encoded in principle in Java-like languages by using a type system if time and space
overheads are ignored. Our challenge was to discover the kind of push-down automata that
can be encoded in a widely-used language, which has a type system with limited capabil-
ity. Using an advanced type system such as Plaid’s [51] is an easy solution but we do not
take this approach because we aim at developing a programming tool for existing popular
languages.

Our contributions are summarized as follows:

• We present an algorithm to translate LR automata into the Fluent language, which
we designed to express single-state non-realtime deterministic push-down automata.
These automata are not jump-stack automata [9] but they can pop multiple elements
at once.

• We also present an implementation scheme of the automata described in Fluent.
The implementing languages are Scala, Haskell, or C++. Our scheme uses func-
tion/method overloading that considers type arguments. It is not available in Java.

• We developed a code-skeleton generator of fluent API based on our approach. It
generates code skeletons in Scala, Haskell, or C++. The client code to access the

3.2. SYNTAX CHECKING OF FLUENT STYLE CODE 23

A
B

C

Figure 3.1: The graph drawn by the DOT program in Listing 3.1

generated fluent API was compiled in linear or quadratic time according to our ex-
periments.

Since single-state deterministic push-down automata cannot perform LR parsing [23], our
automata have the ability to pop multiple elements at once. To give the automata non-
realtimeness, in other words, to allow ε-transitions, our implementation scheme needs func-
tion/method overloading (or type classes in Haskell). The ε-transitions are encoded by the
methods that recursively call themselves. These methods are overloaded on their receiver
types and return types with a type argument.

In the rest of this chapter, Section 3.2 mentions the background of this work. Section 3.3
proposes our technique to encode LR parsing in our Fluent language. It also presents our
implementation of Fluent in Scala. Section 3.4 presents the implementations in Haskell and
C++. Section 3.5 shows our experiments and section 3.6 compares our work to related
work. Section 3.7 concludes this chapter.

3.2 Syntax Checking of Fluent Style Code

Since each problem domain has its own natural notation, the use of a domain specific
language (DSL) is becoming widely accepted. For example, the DOT language [18] is a
DSL designed for drawing a graph. The graph in Figure 3.1 is drawn by the program
written in the DOT language shown in Listing 3.1. DOT provides simple and natural
notation for describing a graph. However, since DOT is not general-purpose, we often
want to write only part of the program in DOT and the rest of the program in a general-
purpose language. In this approach, data exchanges between the two parts of the program
tend to be awkward.

For better integration, we should use the DSL embedded in the general-purpose lan-
guage. If the embedded DSL version of DOT is a library with the fluent API in the
general-purpose language, it is straightforward to exchange data between the DSL and
the general-purpose language, which is now the host language, since they are the same
language. The DSL part of the program is constructed by chains of method calls to the
library. The appearance of the DSL program is not far different from the original. Suppose
the general-purpose language is Java. Listing 3.2 is the program written in the embedded

24 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

Listing 3.1: A DOT program

1 digraph small_graph {

2 A [shape = rectangle];

3 B;

4 C [shape = doublecircle];

5 A -> B [style = dotted];

6 {A B} -> C;

7 }

Listing 3.2: A fluent-style Java program

1 Graph fluentApiExample = beginDOT ()

2 .digraph("small_graph")

3 .node("A"). shape("rectangle")

4 .node("B")

5 .node("C"). shape("doublecircle")

6 .edge("A").to("B"). style("dotted")

7 .edge("A").and("B").to("C")

8 .endDOT ();

DSL, which is equivalent to Listing 3.1. In Listing 3.2, method names and arguments can
be regarded as lexical tokens in the DSL. We still see one-to-one correspondence between
Listing 3.1 and 3.2 although Listing 3.2 is more verbose.

As the original standalone-DSL version of DOT applies static checking, for example,
syntax checking to the source program, the embedded-DSL version of DOT can apply
syntax checking at the compilation time by the host-language processor. Here, syntax
checking is to check whether a chain of method calls is a valid sequence or not. Suppose
that we have made a mistake when writing line 6 in Listing 3.2. Instead of this:

.edge("A").to("B"). style(" dotted ")

we have wrongly written line 6 as follows:

.edge("A"). style(" dotted ")

This lacks a call to the to method. The library could throw an exception at runtime when
style is called without the call to to, but this is not convenient from the programmers’
viewpoint. Statically detecting this error is more convenient. Another example is the
confusion between style and shape. Line 6 might have been written as follows:

.edge("A").to("B"). shape(" dotted ")

In the DOT language, the decoration of a node is specified by shape but that of an edge
is by style. The library could also throw a runtime exception unless we change our upright

3.2. SYNTAX CHECKING OF FLUENT STYLE CODE 25

Listing 3.3: The return type of the edge method

1 public class AfterEdge {

2 private Graph acc;

3 private String srcNode;

4 public AfterEdge(Graph a, String s){acc=a; srcNode=s;}

5 public AfterTo to(String dstNode) {

6 return new AfterTo(acc , srcNode , dstNode);

7 }

8 public AfterAnd and(String andNode) {

9 List <String > srcNodes;

10 srcNodes.add(srcNode);

11 srcNodes.add(andNode);

12 return new AfterAnd(acc , srcNodes);

13 }

14 }

notation to make shape and style interchangeable, but again, throwing a runtime exception
is not convenient.

These invalid method chains can be detected by using the host-language type system.
An advanced type system such as session types [27] obviously can deal with this detection
but much simpler type systems such as Java’s can also do so to a certain degree. For
example, a fluent API generator based on this idea has been proposed for Java [45]. It
generates a skeleton of library methods from a grammar definition written in the Backus-
Naur form (BNF). The library methods report a type error when a chain of method calls
is not valid. It regards each method call as a lexical token and reports an error when a
sequence of the lexical tokens does not satisfy the given grammar. For example,

edges ::= "edge" "to" | "edge" more_edges

more_edges ::= "and" "to" | "and" more_edges

this grammar definition in BNF specifies that edge is followed by either to or and. So, the
following method chains are valid:

edge("A").to("B")

edge("A").and("B").to("C")

Note that the return type of the edge method is the receiver type of the following call to
method such as to and and. Therefore, if the return type of edge accepts only to and and,
the compiler can report a type error when the method call following edge("A") is neither
a call to to or and. For example, when a call chain is edge("A").style("dotted"), the
compiler will print an error message “cannot call style”.

The definition of the return type of edge would be as shown in Listing 3.3. Here, the
return type is the AfterEdge class and it has only two methods to and and. It also has

26 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

two fields acc and srcNode, which holds the accumulated results of the preceding method
calls in a call chain. These values are passed to the next receiver object returned by the
methods in AfterEdge.

Defining such classes as AfterEdge is tedious and error-prone without a skeleton-code
generator. Writing them all by hand is awkward since a large number of classes are neces-
sary when the grammar gets large. Note that a chained method such as edge may return
an instance of a different class when edge’s receiver class is different. Therefore, most prac-
tical fluent-API libraries do not perform static syntax checking based on the idea above.
In the case of our example, if the library were written by hand, all the methods edge, to,
style, and and would return an instance of the Edge class or the Graph class. Because the
instance would accept all those methods, an invalid chain of method calls would not cause
a type error.

Supporting a larger set of grammars without an advanced type system is a challenge
for the developers of fluent API generators. As far as we know, no fluent API generators
have been proposed to support LR grammars for widely-used programming languages.
Although Gil and Levy proposed an algorithm to encode LR parsing by Java’s types [21],
an API generator based on that algorithm has not been developed as far as we know. Their
paper [21] also reported that the compilation of a method chain based on their algorithm
was extremely slow. Exploiting an advanced type system, such as Plaid’s [51, 37] and
context-free session types [52], might be another option. We did not choose the approach
of extending these type systems either since we aimed at developing a programming tool
for existing popular languages. Modifying the languages or waiting until the language
supports our new type system was not acceptable.

LR grammars are typical grammars for programming languages. For example, it is
known that a grammar is not LL(1) if it includes an if statement where an else clause
is optional and the if statement may be nested in another statement. Therefore, the
existing fluent-API generators, which do not support a parsing algorithm such as LALR(1),
cannot generate a library skeleton for such a typical grammar. Otherwise, they generate a
library skeleton that does not cause a compilation error even when the library is used as in
Listing 3.4. Note that the last else_ in line 7 does not correspond to any if_. Hence the
method-call chain in Listing 3.4 is not syntactically valid. To detect this error, the library
needs to track a stack in order to balance if_, then_, and else_.

3.3 Our Fluent API Generator

This section proposes an algorithm that translates an LR automaton to the skeleton of a
fluent-style library in Scala. An LR automaton is an automaton expressing LR parsing.
The Scala compiler reports a type error when a chain of method calls to the generated
library is not accepted by the given LR automaton.

Our algorithm encodes an LR automaton by method overloading on the receiver type.

3.3. OUR FLUENT API GENERATOR 27

Listing 3.4: an invalid if-else statement

1 message = begin ()

2 .if_(n % 3 == 0)

3 .then_ (). if_(n % 5 == 0)

4 .then_ (). return_ (" fizzbuzz ")

5 .else_ (). return_ ("fizz")

6 .else_ (). return_ ("buzz")

7 .else_ (). return_ ("oops !") // no matching if_

8 .end()

The encoding is fairly straightforward except the return types. Our trick is to leave the
return type of the overloaded method unspecified and let the Scala compiler infer it de-
pending on the type argument given to the receiver type. For formally describing our
algorithm, we first translate the given LR automaton to a program written in our pseudo
language named Fluent. In Fluent, the return type of a method is not explicitly specified;
it is expected to be inferred. Then we translate the Fluent program into a Scala program.
Since the return type cannot be omitted in Scala, we present our technique for expressing
an unspecified return type in Scala. We also show the translation from Fluent to other
languages C++ and Haskell later in Section 3.4. This chapter does not show how to con-
struct an LR automaton from an LR grammar. We assume that the LR automaton has
been already constructed in the parsing algorithm mentioned in the literature such as [26].

3.3.1 LR Automaton

We use following symbols to express an LR automaton.

• Σ, to denote a set of input tokens used in the grammar.

• N , to denote a set of non-terminal symbols used in the grammar.

• R, to denote a grammar represented as a set of derivation rules.

• Q, to denote a set of stack elements.

• qinit ∈ Q, to denote an initial stack element.

• δaction, to denote an action table represented as a partial mapping:
Q× (Σ ∪ {$}) 7→ {shift , accept} ∪ ({reduce} ×R).

• δgoto, to denote a goto table, also represented as a partial mapping:
Q× (Σ ∪ {$} ∪N) 7→ Q.

28 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

Listing 3.5: The grammar of oops

1 oops ::= os "ps"

2 os ::= "o" os | ε

This automaton is a single-state deterministic push-down automaton. Each derivation
rule in R has the form of “nt → s1 s2 s3 . . . sn” where nt ∈ N and si ∈ Σ ∪ N (1 ≤
i ≤ n). For example, dot -> "digraph" stmt-list is a derivation rule. The right-
hand side must be a sequence of either input token or non-terminal symbol. Alternatives
are denoted as multiple rules sharing the left-hand side. For example, the pair of edge
-> "edge" to and edge -> "edge" more edges is equivalent to edge ::= "edge" to |

"edge" more edges in Backus-Naur form. We require a goto table to return different
stack elements when the second argument s is different. We can assume this without loss
of generality since it is preserved for the LR automata constructed by a practical parsing
algorithm such as SLR, LALR(1), and LR(1).

With this notation, we can write the semantics of an LR automaton by the relation ∗,
which is the reflective transitive closure of the following relation over (Q∗∪{accept})×
Σ∗:

⟨q qs, t ts⟩

⟨δgoto(q, t) q qs, ts⟩ (δaction(q, t) = shift)
⟨accept, ts⟩ (δaction(q, t) = accept)
⟨REDUCE(q qs, nt, ss), t ts⟩ (δaction(q, t) = ⟨reduce, nt→ ss⟩)

We use an overline to denote a sequence and write, for example, xs as short hand for
x1, x2, . . . , xn. We use ε to denote an empty sequence. REDUCE is the following function.

REDUCE(q qs, nt, s ss) = REDUCE(qs, nt, ss)
REDUCE(q qs, nt, ε) = δgoto(q, nt) q qs

An LR automaton MLR accepts a sequence of input tokens ts iff ⟨qinit, ts $⟩ ∗⟨accept, ε⟩.
$ is the end-of-input symbol.

For example, the oops language (its grammar is shown in Listing 3.5) is converted to
an LR automaton Moops = ⟨Σ, N,R,Q, qinit, δaction, δgoto⟩ such that:

Σ = {"o", "ps"},
N = {oops, os},
R = {oops→ os "ps", os→ "o" os, os→ ε},
Q = {q1, q2, q3, q4, q5, q6},
qinit = q1,
δaction = The action table shown in Table 3.1,
δgoto = The goto table shown in Table 3.2.

3.3. OUR FLUENT API GENERATOR 29

Table 3.1: The action table for oops

Stack top Input token
"o" "ps" $

q1 shift ⟨reduce, os -> eps⟩ —
q2 — — accept
q3 — shift —
q4 — — ⟨reduce, oops -> os "ps"⟩
q5 shift ⟨reduce, os -> eps⟩ —
q6 — ⟨reduce, os -> "o" os⟩ —

Table 3.2: The goto table for oops

Shift Reduce
Stack top "o" "ps" $ oops os

q1 q5 — — q2 q3
q2 — — — — —
q3 — q4 — — —
q4 — — — — —
q5 q5 — — — q6
q6 — — — — —

3.3.2 The Fluent Language

We designed a simple pseudo language Fluent to describe the skeleton of a fluent API with
type checking. In Fluent, we can define a method. Each method can make a new instance
and, if needed, call a method on it. The syntax of Fluent is given as follows:

M → def <X> T.m() = e method declarations
T → C | C[T] | X types
e → new T() | new T().m() expressions

C, X, m are metavariables; C ranges over class names; X ranges over type-parameter names;
and m ranges over method names. M is a method declaration, consisting of a type-parameter,
its receiver type, its method name, and a method body. C[T] is the type C with the type
argument T. For example, the following code declares a toString method in the Array

class with any type argument given by T.

def <T> Array[T]. toString () = new String ()

30 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

This method returns a new instance of String. In Fluent, a receiver class such as Array
is implicitly declared.

Note that the return type of a method is not explicitly specified; it is automatically
inferred from the method body. The inference is not always easy. For example,

def <T> Z[X[T]].m() = new X[T]()

def <T> Z[Y[T]].m() = new Y[T]()

def <T> Z[Z[T]].m() = new Z[T]().m()

Here, X, Y, and Z are concrete types and the method m is overloaded by the three decla-
rations. Since the last declaration of m causes a recursive call, the return type of the last
declaration Z[Z[T]].m() depends on the type parameter T. If T is X[Unit] or Y[Unit],
the return type is X[Unit] or Y[Unit], respectively. If T is Z[U], the return type depends
on the form of the type argument U. If U is Z[V], the return type further depends on the
form of V. This causes infinite regression. Therefore, explicitly specifying the return type
for each declaration is not feasible for this example.

This difficulty in the return-type inference appears in our encoding scheme of an LR
automaton. The aim of Fluent is to deal with this difficulty in a separate phase of the
translation. We will revisit this later in 3.3.4.

3.3.3 Translate LR Automata to Fluent

We first translate an LR automaton into Fluent by generating one or more method def-
initions for each pair of q ∈ Q and σ ∈ Σ ∪ {$} if δaction(q, σ) exists. We encode each
σ ∈ Σ ∪ {$} to a method name and each qs ∈ Q∗ to a type. We express a sequence
of stack elements by a nested type-argument. For example, q1[q2[. . .[qn[Bottom]]. . .]]
corresponds to q1 q2 . . . qn.

The action table δaction and the goto table δgoto are directly encoded into Fluent meth-
ods. Let q is the top element of the current stack and σ is an input token. When
δaction(q, σ) = shift , the LR automaton pushes a new stack element q′ = δgoto(q, σ) onto
the stack and consumes the input token σ. We encode this behavior to a method definition
such that:

def <T> q[T].σ() = new q′[q[T]]()

This code declares the σ method in q[T]. Calling this method returns an instance of
q′[q[T]]. q[T] corresponds to the stack containing q as its top element. q′[q[T]] corre-
sponds to the stack after q′ is pushed onto q[T]. Thus, we can call the σ method anywhere
the previous method call in the chain returns a stack containing q as its top element. The
method pushes q′ and returns the resulting stack.

Next, when δaction(q, σ) = accept, the LR automaton changes its state to accept. We
encode this into the following method declaration:

def <T> q[T].σ() = new Accept ()

3.3. OUR FLUENT API GENERATOR 31

This code also declares the σ method in q[T] but the declared method returns an instance
of Accept. Accept is the type denoting accept. No methods are declared in Accept. Hence
the call to this method has to be at the end of the chain. Otherwise, the chain causes a
type error.

When δaction(q, σ) = ⟨reduce, nt → s1s2 . . . sn⟩, the LR automaton performs a re-
duce action; it first pops n elements from the stack and then pushes a new element
q′ = δgoto(qn+1, nt) onto the stack. Here, n denotes the length of the derivation rule
nt→ s1s2 . . . sn and qn+1 denotes the (n+ 1)-th element from the top of the stack, which
will become the stack top element after popping the n elements. Note that the reduce
action does not consume the input token σ. The next action is thus selected by the com-
bination of q′ and σ. To encode this behavior, we declare several methods in the following
form:

def <T> q1[q2[. . .[qn[qn+1[T]]]. . .]].σ() = new q′[qn+1[T]]().σ()

This code declares the σ method in q1[q2[. . .[qn[qn+1[T]]]. . .]]. Note that q1 is the
stack top element and it is an alias of q. Its body makes a new instance of q′[qn+1[T]] and
recursively calls the σ method on this new instance. This recursive call to σ corresponds
to the fact that the reduce action does not consume the input token. Like the ungetc

function in the C language, the method pushes σ back to the input stream.
We declare multiple methods in the form above for every possible sequence of q1, q2, . . . , qn,

qn+1. We can enumerate all the possible sequences in finite time since the number of the
sequences is at most |Q|n+1. We can make the enumeration more efficient by attending
to the fact that ∀i (1 ≤ i ≤ n), δgoto(qi+1, sn−i+1) = qi. The number of valid sequences
can be exponential but we could not observe such a case in our experiment. Furthermore,
Chomsky normal form limits the upper bound to polynomial since the exponent (n) is the
length of the derivation rule.

3.3.4 Translate Fluent to Scala

We finally translate the generated Fluent program to a fluent-style Scala library. For
brevity, we below omit the semantic actions of each method, for example, constructing an
abstract syntax tree. The semantic action is implemented by a callback function attached
to the invoke method for the implicit value that we show below for performing a reduce
action.

An issue here is how to infer the return type of each method. Recall that the return
type is not explicitly specified in Fluent. We also mentioned that the return-type inference
may cause infinite regression. To address this problem in Scala, we use type classes. An
instance of a type class, which is in Scala the concrete implementation of a method for
particular type arguments, is generated on demand only when it is necessary for compiling
the given source code. We translate the program so that the compiler will generate only
the type-class instances that are necessary for compiling the given method-call chain. Only
the finite number of instances will be generated.

32 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

First, we declare the following trait in Scala, which is used as a type class:

trait MethodExists[Recv , Sigma , Ret] {

def invoke(receiver: Recv): Ret

}

This Scala code declares the MethodExists trait. MethodExists takes three type param-
eters Recv, Sigma, and Ret. They denote a receiver type, a method name, and a return
type, respectively. We will declare instances of the type class represented by MethodExists

later if and only if there exists a Fluent method that the receiver type is Recv and the
method name is Sigma. To treat a method name as a type, the type corresponding to each
σ in Σ is assumed to be declared.

Then we declare the following receiver class for each q in Q:

class q[T] {

def σ[To](implicit t: MethodExists[q[T],σ,To]): To =

t.invoke(this)

/* ... define the σ method for every σ in Fluent ... */

def $[To](implicit t: MethodExists[q[T],$,To]): To =

t.invoke(this)

}

This Scala code declares class q. Each q takes just one type parameter T, which denotes
the rest of the stack elements below q. The class q contains the methods corresponding to
all the σ methods in q in Fluent. It also contains the method for the end-of-input token
$. These methods take one implicit parameter of the type MethodExists[q[T],σ,To]. In
Scala, when a method is called but its implicit parameter is not given, the compiler finds
the implicit value of that parameter type and passes that value to the method. A type
error is reported when the compiler cannot find the value or it finds multiple values. Our
trick is to define an implicit value for MethodExists[q[T],σ,To] only when the program
in Fluent contains a method σ in q[T]. To is the return type of σ. The σ method calls
invoke on the implicit parameter with the receiver object this.

We finally declare implicit values for each Fluent method declaration generated. We
show two forms of declaration.

When a method in Fluent is the form of def <T> T1.σ() = new T2(), where T is a
type parameter referred to in T1 and T2, it expresses a shift action. We translate the
method in Fluent into the following declaration in Scala:

implicit def α[T]: MethodExists[T1,σ,T2] =

new MethodExists[T1,σ,T2] {

def invoke(receiver: T1): T2 = new T2()

}

This Scala code declares an implicit value α of type MethodExists[T1,σ,T2]. α is a
uniquely generated name for each implicit value declaration. The return type is obvious in
this case; thus the translation is straightforward.

3.4. TRANSLATION TO HASKELL AND C++ 33

When a method in Fluent is the form of def <T> T1.σ1() = new T2().σ2(), it ex-
presses a reduce action. We translate the method in Fluent into the following declaration
in Scala:

implicit def α[T, Ret](implicit t: MethodExists[T2, σ2, Ret])

: MethodExists[T1, σ1, Ret] =

new MethodExists[T1, σ1, Ret] {

def invoke(receiver: T1): Ret = t.invoke(new T2())

}

This Scala code also declares an implicit value α of type MethodExists[T1,σ1,Ret].
This α takes another implicit parameter t of type MethodExists[T2,σ2,Ret]. It re-
quires that there exists a Fluent method σ2 in T2 that returns an instance of Ret. Since
the implicit parameter ensures that the return type of the nested method call on t is
Ret, we know the return type of invoke taking T1 is also Ret. Hence the type of α is
MethodExists[T1,σ1,Ret].

We also need to declare the begin function, which starts a method chain. The return
type of begin is qinit[Unit], which corresponds to the initial stack. Here, Unit expresses
an empty stack. We declare begin as follows:

def begin (): qinit[Unit] = new qinit[Unit]()

3.3.5 Literals

Since every lexical token is encoded into a method name, our approach does not directly
support number literals or string literals. We express such literal values by passing a
runtime value as an argument to a method in a method-call chain. The examples are
found in Listing 3.4. The arguments passed to if_ and return_ are regarded as literal
values. For brevity, we do not present details of how we extend our translation to support
literal values. As we later show in Listing 3.8, the input grammar to the API generator
would specify some methods take a parameter. For example, digraph method takes a
String object as its parameter. The translation algorithm is not largely extended. The
σ method in Fluent is extended to take a parameter according to the input grammar and
the corresponding Scala methods are also extended.

3.4 Translation to Haskell and C++

In the previous section, we presented how we can translate LR automata to fluent-style
Scala libraries. We next present the translation to Haskell and C++. As in Scala, we
first translate LR automata to Fluent and then translate it to the library code in those
languages. We below present the translation from Fluent to Haskell and C++. For brevity,
we below omit the semantic actions of each library method as we did in Scala.

34 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

3.4.1 Haskell

In Scala, we used the programming idiom for type classes. Since Haskell natively supports
type classes, we take the same approach. Since we need multi-parameter type classes, we
use four GHC extensions: MultiParamTypeClasses, FunctionalDependencies, FlexibleIn-
stances, and UndecidableInstances.

Since Haskell is not an object-oriented language, we cannot directly write a method
chain in Haskell. We design a similar fluent API library by using a pipe operator |>.
The pipe operator is popular in several functional programming languages including F#,
Ocaml, and Elixir. The definition of the pipe operator |> is as follows:

infixl 1 |>

(|>) :: a -> (a -> b) -> b

x |> f = f x

The pipe operator is an infix operator that takes a value for the left operand and a function
for the right operand. It applies the function to the value and it is left-associative. This
operator allows us to write the following chain for the fluent style DSL for SQL queries in
Section 3.1.

begin |> query |> select |> from BOOK |> where_ (BOOK ‘eq ‘ 2019)

|> end

This is somewhat verbose but we can say it is sufficiently fluent. Here, begin, query,
select, from, where_, and end are functions.

As in Scala, a stack is expressed by a nested type-parameter. For example, q1(q2(q3()))
expresses the stack containing three elements q1, q2, and q3. The unit type expresses an
empty stack. Hence, we declare the following data types for each q in Q to express stacks:

data q t = q t

Here, t is a type parameter to q. A value of q is constructed by a constructor named q,
which takes a value of type t as an argument. The parameter expresses the stack excluding
the stack-top element.

We then translate each method in Fluent to a function in Haskell. The receiver object
and its type in Fluent is translated into the (first) function parameter and its type in
Haskell. So, the functions in Haskell are overloaded on the parameter type. In Haskell,
function overloading is implemented by type classes. For each method name σ in Fluent,
we define the following σ method in the type class MethodExists_σ in Haskell:

class MethodExists_σ recv ret | recv -> ret where

σ :: recv -> ret

σ ranges over the method names defined in Fluent. The type class MethodExists_σ takes
two type parameters recv and ret. The σ method takes a value of type recv as an
argument and returns a value of type ret. The functional dependency recv -> ret after
| specifies that ret is uniquely determined from recv.

3.4. TRANSLATION TO HASKELL AND C++ 35

Each implementation of the σ method in Fluent is translated into an instance of
MethodExists_σ. It is only available for a particular pair of recv and ret.

When a method in Fluent is the form of def <t> T1.σ() = new T2(), we define the
following instance of type class:

instance MethodExists_σ Hs(T1) Hs(T2) where

σ Hs(T1) = Hs(T2)

This instance of MethodExists_σ supplies the implementation of σ effective only when
the type of the parameter to σ is Hs(T1). It returns a value of type Hs(T2). Here, Hs
is a metafunction that converts a type in Fluent to the corresponding type in Haskell.
For example, Hs(q1[q2[T]]) =(q1 (q2 t)) although the outermost parenthesis may be
redundant. Hs replaces T with t since capitalized T is not considered as a type parameter
in Haskell. We also use Hs(T2) as a value in Haskell since it has the same notation as its
type.

When a method in Fluent is the form of def <T> T1.σ1() = new T2().σ2(), we define
the following instance of type class:

instance (MethodExists_σ2 Hs(T2) ret) =>

MethodExists_σ1 Hs(T1) ret where

σ1 Hs(T1) = σ2 Hs(T2)

This implementation of σ1 constructs a value of type Hs(T2) from the given argument and
then calls σ2 with that value. The left-hand side of => is a context. It requires that the
instance MethodExists_σ2 Hs(T2) ret exists and thus we can call the σ2 function taking
an argument of type Hs(T2).

Finally, we also define the begin function:

begin :: qinit ()

begin = qinit ()

The begin function returns a value of type qinit (), which corresponds to an initial stack.

3.4.2 C++

Although C++ has not supported type classes yet, we can take a similar approach by
using function templates. We below omit the code for memory management although the
implementation used for the experiment in Section 3.5 exploits reference-counting garbage
collection.

First, we declare the q class for each q in Q, which expresses a stack containing q as
the top element.

template <typename T>

class q {

public:

auto σ() { return invoke_σ(this); }

// ... declare a function for every σ method in q in Fluent

36 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

};

As in Scala, the template parameter T expresses the stack excluding the top element. The
class q contains the member functions corresponding to every σ method in q in Fluent.
They call the global function invoke_σ. Their return types are automatically inferred
by auto. We assume that the prototypes of the invoke_σ functions have been already
declared.

As we did in Scala, we overload the invoke_σ functions; each implementation of these
functions corresponds to a method declaration in Fluent. We use function templates for
overloading the functions. When a method in Fluent is the form of def <T> T1.σ() =

new T2(), we declare the following invoke_σ function:

template <typename T>

auto invoke_σ(T1* stack) {

return new T2();

}

This invoke_σ function receives a value of T1 and returns a value of T2. Note that invoke_σ
is not a member function but a global function. Hence it can be overloaded on the template
parameter T1.

When a method in Fluent is the form of def <T> T1.σ1() = new T2().σ2(), we de-
clare:

template <typename T>

auto invoke_σ1(T1* stack) {

return invoke_σ2(new T2());

}

This invoke_σ1 function constructs a value of type T2 from the given argument of type T1

and then calls invoke_σ2 function with that value.

Finally, we show the global function begin, which starts a method chain:

qinit<int >* begin () {

return new qinit<int >();
}

The begin function returns an instance of qinit<int> expressing to an initial stack, which
contains only qinit. Note that we here express an empty stack by int.

3.5 Experiment

We have developed a fluent API generator based on our approach. This section presents
this generator and the compilation time of the generated code.

3.5. EXPERIMENT 37

Listing 3.6: The grammar of the if/else language

1 syntax ifElse (Stmt) {

2 Return : Stmt -> "return_(String)"

3 Throw : Stmt -> "throw_(String)"

4 IfThen : Stmt -> "if_(Boolean)" Then

5 IfThenElse : Stmt -> "if_(Boolean)" Then Else

6 ThenClause : Then -> "then_" Stmt

7 ElseClause : Else -> "else_" Stmt

8 TryCatch : Stmt -> "try_" Stmt "catch_(String => Stmt)"

9 }

3.5.1 Fluent API Generator

We have developed a fluent API generator named TypelevelLR.1 Its design is based on our
approach described above. It reads the definition of an LR grammar and generates the
skeleton of a library with a fluent API with type checking.

TypelevelLR can generate a library in Scala, Haskell, and C++. The program in Haskell
uses the pipe operator. The generated library provides a fluent API for the deep embedding
style [19]. Thus, a chain of method calls to the library constructs a parse tree representing
the chain. Each method call in the chain incrementally constructs the parse tree. Giving
the semantics to the method-call chain is the responsibility of the library developer, or in
other words, the user of TypelevelLR. The developer could implement an interpreter that
executes the parse tree constructed by the generated library.

For example, TypelevelLR can generate a fluent-API library from the grammar shown
in Listing 3.6. TypelevelLR reads a source file containing Listing 3.6 and generates a library
that constructs a parse tree from a method-call chain if the chain is valid in the grammar.
The identifiers before the colons, such as Return and Throw, are used as the type names
of the parse-tree nodes constructed by the library.

In the grammar definition, a terminal symbol is denoted by an identifier enclosed in
double-quotations. It can take an argument list enclosed in parentheses. For example,
return_ takes an argument of type String. The argument value is stored in the parse-tree
node corresponding to that terminal symbol. TypelevelLR does not check the existence of
the argument type. If that type does not exist, the fact is reported as a compilation error
when the generated library is compiled by the host-language compiler.

As we mentioned in Section 3.2, the grammar in Listing 3.6 is an LR grammar. The
library generated by TypelevelLR from this grammar consists of 903 lines of Scala code

1The source code of TypelevelLR is publicly available from https://www.github.com/csg-tokyo/typelevelLR
and https://doi.org/10.5281/zenodo.3374835. We have also developed another generator for Scala. This
generator ScaLALR is also based on our approach but it provides more functionalities by exploiting language
features unique to Scala. It is available from https://github.com/csg-tokyo/scalalr.

38 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

Listing 3.7: A syntactically incorrect program using the if/else language in Listing 3.6

1 object ifElseTest {

2 import ifElse._

3 def main(args: Array[String]) = {

4 for (n <- 1 to 100) {

5 val message: String = begin ()

6 .if_(n % 3 == 0)

7 .then_ (). if_(n % 5 == 0)

8 .then_ (). return_("fizzbuzz")

9 .else_ (). return_("fizz")

10 .else_ (). return_("buzz")

11 .else_ (). return_("oops!") // unacceptable else_ ()

12 .end (). run()

13 println(message)

14 }

15 }

16 }

with 82 implicit functions. When compiling the user code shown in Listing 3.7, the Scala
compiler reports a compilation error in line 11; the call to else_ is not acceptable there
since that else_ does not match any if_.

3.5.2 Compilation Time of DOT-Like DSL

We next present the compilation time of the user code of the fluent-API library generated by
TypelevelLR. We show that the compilation time is significantly shorter than Gil’s approach
in 2016, which was reported as being impractically slow [21]. Gil’s paper [21] reported that
the compilation of a chain of 26 method calls took around 30 seconds in Java. It also
mentioned that the compilation time exponentially grows probably due to a design flaw of
the Java compiler. We also observed similar results of our own experiment with the newer
JVM.

For the experiment, we used the grammar similar to the DOT language shown in
Listing 3.8. In this grammar, the iteration is right-recursive. Since the form of recursion
may affect the compilation time, we also used the equivalent grammar except that the
iteration is left-recursive. The differences between the two grammars are line 3, 6, 10, and
12. The followings are the syntax rules for left-recursion:

StmtCons : Stmts -> Stmts Stmt

AndCons : Ands -> Ands "and(String)"

NodeAttrCons : NodeAttrs -> NodeAttrs NodeAttr

EdgeAttrCons : EdgeAttrs -> EdgeAttrs EdgeAttr

3.5. EXPERIMENT 39

Listing 3.8: The grammar of our DOT-like language

1 Directed : Graph -> "digraph(String)" Stmts

2 Undirected : Graph -> "graph(String)" Stmts

3 StmtsCons : Stmts -> Stmt Stmts

4 StmtsNull : Stmts -> eps

5 NodeStmt : Stmt -> "node(String)" Ands NodeAttrs

6 AndsCons : Ands -> "and(String)" Ands

7 AndsNull : Ands -> eps

8 EdgeStmt : Stmt -> "edge(String)" Ands "to(String)"

9 Ands EdgeAttrs

10 NodeAttrsCons : NodeAttrs -> NodeAttr NodeAttrs

11 NodeAttrsNull : NodeAttrs -> eps

12 EdgeAttrsCons : EdgeAttrs -> EdgeAttr EdgeAttrs

13 EdgeAttrsNull : EdgeAttrs -> eps

14 NodeAttrColor : NodeAttr -> "color(String)"

15 NodeAttrShape : NodeAttr -> "shape(String)"

16 EdgeAttrColor : EdgeAttr -> "color(String)"

17 EdgeAttrStyle : EdgeAttr -> "style(String)"

Then we ran TypelevelLR to generate libraries for each grammar and target language: Scala,
Haskell, or C++. The programs we compiled were like Listing 3.9. The graph drawn by
Listing 3.9 is shown in Figure 3.2. We wrote programs like Listing 3.9 for the three host
languages and for the different numbers of graph nodes from 1 to 100. The number of the
graph nodes changes the length of the method-call chain in the programs.

We measured the compilation time of these programs. We used the Scala compiler
scalac 2.11.6 with the option -J-Xss100m, the Glasgow Haskell compiler ghc 7.10.3 with
-O2 -fcontext-stack=5000, and the GNU C++ compiler g++ 5.4.0 20160609 with -O2

-std=c++17. The Scala compiler was run on the JVM 1.8.0 101. These compilers were
run on a machine with Intel® Core™ i7-4770S, 16 GB memory, and Ubuntu-16.04.5 LTS.
The compilation time was measured after 5 warm-up runs. We measured the means and
standard deviations of 20 runs of compilation.

Figures 3.3, 3.4, and 3.5 present the results. We observed that the compilation time
was not exponential; it looked linear or quadratic for the number of the method calls in the
chain in any host language. The grammar with left recursion showed shorter compilation
time. This would be because the stack does not grow deep under the left-recursive grammar
and hence a fewer types were generated. Even in C++, the user program with more than
200 method calls in the chain of the right-recursive grammar was compiled within 30
seconds. We believe that our approach can generate a library for an LR grammar so that
the user’s code can be compiled in polynomial time. Furthermore, our compilation speed
was significantly faster than Gil’s approach in 2016 [21]. On the other hand, our approach
is not applicable to Java since it exploits language features that are not available in Java
although Gil’s approach can be used in Java and maybe other languages.

40 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

Listing 3.9: A user program of our DOT library

1 object test {

2 import dot.rightRec._

3 def main(args: Array[String]) = {

4 val graph = begin ()

5 .digraph("test")

6 .node("A")

7 .node("B")

8 .node("C")

9 .node("D")

10 .node("E")

11 .edge("A").to("B")

12 .edge("B").to("C")

13 .edge("C").to("D")

14 .edge("D").to("E")

15 .edge("E").to("A")

16 .end()

17 println(graph)

18 }

19 }

A

B
C

D

E

Figure 3.2: The graph
drawn by Listing 3.9

3.5.3 Compilation Time of Randomly Generated Chain

Since our translation directly encodes an LR automaton into overloaded methods in the
target programming language, the compilation time of a chain of method calls to the
generated library is ideally linear with respect to the length of the chain as an LR automaton
accepts an input sequence in linear time. However, we observed a quadratic curve for the
compilation time during the experiment with the DOT-like language shown above. The
curve did not look like an exponential curve but we could not assess it as linear. This fact
would be due to the various implementation issues of the target compilers.

For further investigation, we did similar experiments for other DSLs. Since we needed
a large variety of method-call chains that are valid in the DSL grammars, we implemented
a random method-call chain generator based on the literature [43]. The generator takes a
context-free grammar and that length of a chain. Then it randomly generates a method-call
chain of that length so that it will be valid in that grammar.

The experiments used the following four DSLs2:

• expr : a small subset of arithmetic expressions. It consists of only two binary opera-
tors, addition and multiplication, and parentheses. Multiplication takes precedence
over addition.

2Their grammar definitions are available from https://github.com/csg-tokyo/typelevelLR. See the exam-
ples folder.

3.5. EXPERIMENT 41

0

1

2

3

4

5

6

7

8

9

10

5 14 23 32 41 50 59 68 77 86 95 10
4

11
3

12
2

13
1

14
0

14
9

15
8

16
7

17
6

18
5

19
4

20
3

21
2

22
1

23
0

23
9

24
8

25
7

26
6

27
5

28
4

29
3

30
2

co
m

pi
la

tio
n

tim
e

(s
ec

)

number of method calls

right-recusion left-recursion

Figure 3.3: Compilation time in Scala

0

0.5

1

1.5

2

2.5

3

3.5

4

5 17 29 41 53 65 77 89 10
1

11
3

12
5

13
7

14
9

16
1

17
3

18
5

19
7

20
9

22
1

23
3

24
5

25
7

26
9

28
1

29
3

co
m

pi
la

tio
n

tim
e

(s
ec

)

number of method calls

right-recursion left-recursion

Figure 3.4: Compilation time in Haskell

0
5

10
15
20
25
30
35
40
45
50

5 17 29 41 53 65 77 89 10
1

11
3

12
5

13
7

14
9

16
1

17
3

18
5

19
7

20
9

22
1

23
3

24
5

25
7

26
9

28
1

29
3

co
m

pi
la

tio
n

tim
e

(s
ec

)

number of method calls

right-recursion left-recursion

Figure 3.5: Compilation time in C++

42 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

Table 3.3: The DSL grammars

DSL expr syntax while-lang SQL

of lines 8 10 18 70
of non-terminal symbols 3 5 3 33
of terminal symbols 5 7 20 39

• syntax : the DSL we designed to express a grammar definition for TypelevelLR. A
program in this DSL consists of several derivation rules. Each derivation rule consists
of three parts: a name, a non-terminal symbol derived by the rule, and a sequence
of terminal or non-terminal symbols. Listing 3.8 is written in this DSL.

• while-lang : a DSL with a similar grammar to the while language described in the
literature [46]. It consists arithmetic expressions, boolean operations, variable as-
signments, if statements, and while statements. No operator precedence is given.
The operators are right-associative.

• SQL: a subset of the SQL language. We designed this DSL by referring to the SQL
grammar publicized by Apache Phoenix project [15]. This DSL supports only a
subset of the select statement.

The sizes of the grammars of these DSLs are summarized in Table 3.3.
We measured the compilation time of various lengths of method-call chains in those

DSLs embedded in Scala, Haskell, and C++. We used the Scala compiler scalac 2.11.6
with the option -J-Xss100m, the Glasgow Haskell compiler ghc 7.10.3 with
-O2 -fcontext-stack=5000, and the GNU C++ compiler g++ 5.4.0 20160609 with -O2

-std=c++17. The Scala compiler was run on the JVM 1.8.0 222. These compilers were run
on a machine with dual Intel® Xeon® E5-2637v3 Haswell 3.50GHz, 512 GB memory, and
Ubuntu-18.04.3 LTS.

Figures 3.6, 3.7, and 3.8 show the results of our measurements for expr, syntax, while-
lang, and SQL, respectively. The compilation time was the means of five runs after two
warm-up runs. During the experiment for each DSL, we randomly generated 10 different
instances of method-call chains for every chain-length from 1 to 200. For the SQL DSL,
the lengths of the generated chains were every 10 from 10 to 200. All the figures are scatter
plots. The horizontal axis represents the number of method calls in the chain. The vertical
axis represents the compilation time in seconds.

In all the figures, we do not observe the exponential growth of the compilation time.
They rather look linear. As in the experiment with the DOT-like language, the C++
compiler was slower than the other compilers. The compilation speed, however, still looks
linear. Although the Scala compiler showed steady performance in these experiments, it
slowed down by a factor of ten when it compiled short method-call chains in SQL on a
different machine with a similar processor but a smaller amount of memory. The slow-down

3.5. EXPERIMENT 43

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(a) expr

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(b) syntax

0

1

2

3

4

5

6

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(c) while-lang

0

2

4

6

8

10

12

14

16

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(d) SQL

Figure 3.6: Compilation time of random chains in Scala.

of the other compilers was a factor of two on this machine. This would be because the size
of the SQL grammar was large and hence a large library was generated from that grammar
and it caused frequent garbage collection. The size of the generated library was 1.8 MB
(37K lines).

3.5.4 Error Messages

The readability of the error messages is often raised as a drawback of the type-based
encoding that we adopted for TypelevelLR. An error message is printed when an invalid chain
of method calls is detected, but the content of the message depends on the implementation
of the host-language compiler. As far as we know, most compilers do not enable a source
program to customize an error message.

We below show example error messages printed when the library generated by Type-
levelLR detects an invalid chain of method calls. We showed the DOT-like language in
Section 3.2 and implemented a Scala library for this DSL in Section 3.5.2. When the pro-
grammer using this library wrongly calls the shape method instead of the style method as
follows:

.edge("A").to("B"). shape(" dotted ")

then this invalid call to shape is detected. the host Scala compiler scalac prints this error
message:

test.scala :10: error: value shape is not a member of dotDSL.Node6[

dotDSL.Node18[dotDSL.Node7[dotDSL.Node16[dotDSL.Node16[dotDSL.Node16[

44 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(a) expr

0

0.5

1

1.5

2

2.5

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(b) syntax

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(c) while-lang

0

0.5

1

1.5

2

2.5

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)
number of method calls

(d) SQL

Figure 3.7: Compilation time of random chains in Haskell

dotDSL.Node9[dotDSL.Node1[Unit]]]]]]]]

.edge("A").to("B"). shape(" dotted ")

^

one error found

Although the state of the LR automaton is exposed in the message, we can still read the
line number and the method name that causes an error. This line number and the method
name indicate the correct position of the error. Only the reason of the error is difficult
to read. The programmer has to know that this error message reports an invalid chain of
method calls. This is a limitation of our approach.

In Haskell, the example shown above is written as follows:

1 |> edge "A" |> to "B" |> shape "dotted"

This erroneous code causes the following error messages by the Haskell compiler ghc:

Test.hs :5:8:

No instance for (Show r0) arising from a use of ’print ’

The type variable ’r0’ is ambiguous

Note: there are several potential instances:

instance Show a => Show (Maybe a) -- Defined in ’GHC.Show ’

instance Show Ordering -- Defined in ’GHC.Show ’

instance Show Integer -- Defined in ’GHC.Show ’

... plus 30 others

In the expression: print

-- omit 28 lines --

Test.hs :9:34:

No instance for (ShapeTransition

(Node5 (Node9 (Node6 (Node10 (Node11 (Node1 ())))))) s0)

3.5. EXPERIMENT 45

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(a) expr

0

5

10

15

20

25

30

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(b) syntax

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(c) while-lang

0

5

10

15

20

25

30

35

40

0 50 100 150 200

co
m

pi
la

tio
n

tim
e

(s
ec

.)

number of method calls

(d) SQL

Figure 3.8: Compilation time of random chains in C++.

arising from a use of ’shape ’

In the second argument of ’(|>)’, namely ’shape "dotted"’

In the first argument of ’(|>)’, namely

’begin |> digraph "small_graph" |> node "A" |> shape "rectangle"

|> node "B"

|> node "C"

|> shape "doublecircle"

|> edge "A"

|> to "B"

|> shape "dotted"’

In the first argument of ’(|>)’, namely

-- omit 9 lines --

Test.hs :10:12:

No instance for (EdgeTransition s0 s1) arising from a use of ’edge ’

The type variables ’s0’, ’s1’ are ambiguous

-- omit the rest and three other errors --

In total, 209 lines are generated. Most lines are not useful to understand the error but only
the second message starting with “Test.hs:9:34:” indicates that the error occurs at the
call to shape in line 9.

For the same example, the C++ compiler g++ prints the following messages:

In file included from test.cpp:2:

In file included from ./ dotDSL.hpp :627:

./ dotDSL.hpp.impl :48:10: error: function ’shape_transition <dotDSL ::Node6 ,

dotDSL ::Node18 , dotDSL ::Node7 , dotDSL ::Node16 , dotDSL ::Node16 ,

dotDSL ::Node16 , dotDSL ::Node9 , dotDSL ::Node1 >’ with deduced return type

cannot be used before it is defined

return shape_transition(this_.lock(), arg1);

^

46 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

test.cpp :13:29: note: in instantiation of member function

’dotDSL ::State <dotDSL ::Node6 , dotDSL ::Node18 , dotDSL ::Node7 ,

dotDSL ::Node16 , dotDSL ::Node16 , dotDSL ::Node16 , dotDSL ::Node9 ,

dotDSL ::Node1 >::shape ’ requested here

->edge("A")->to("B")->shape(" dotted ")

^

./ dotDSL.hpp :607:6: note: ’shape_transition <dotDSL ::Node6 , dotDSL ::Node18 ,

dotDSL ::Node7 , dotDSL ::Node16 , dotDSL ::Node16 , dotDSL ::Node16 ,

dotDSL ::Node9 , dotDSL ::Node1 >’ declared here

auto shape_transition(std:: shared_ptr < State < Stack ... > > const& src , ...

^

1 error generated.

Although the error messages are verbose, the second message “test.cpp:13:29: note:

...” indicates the correct error position. It also mentions the error happens at the call
to shape. The other two messages refer to the implementation of the generated DSL
library dotDSL.hpp.impl. In Haskell and C++, the compilers we used print verbose error
messages although they correctly report the error position. Printing the verbose messages
is a drawback of our approach.

3.6 Related Work

The syntax checking in any grammar class (including the grammars that are not context-
free) is possible in principle if the type system of the host language is Turing-complete
such as Java [25] and C++ [53]. For instance, when a given grammar is context-free,
the syntax checking can be achieved by creating a CYK parser [7, 59, 34] using a Turing
machine emulated on a type system [25]. However, using a Turing machine in this way is
overly complicated for most DSLs and causes practical problems. The technique requires a
significant amount of memory and time to check even the syntax of a small chain [25]. Our
encoding technique does not cause such practical problems as shown in the experiment in
Section 3.5.

Gil and Levy proposed an algorithm to translate a grammar into a DSL embedded
in Java with syntax checking by the type checker [21]. It supports LR grammars. The
algorithm generates the type definitions for encoding a jump-stack single-state real-time
deterministic push-down automaton (JRPA), a variant of push-down automaton that can
recognize deterministic context-free languages [9]. However, the algorithm by Levy and
Gil suffers from the exponential growth of compilation time to the length of the chain in
the worst case. That exponential growth of compilation time is caused by the exponential
growth of the size of the types appearing in the chain, as Levy and Gil showed in their
experiment in [21]. Our technique does not suffer from that problem as we mentioned
above.

In parallel to our work, Gil and Roth proposed another algorithm to translate an LR
language into a DSL embedded in Java [22]. A main difference between their work and
ours is that the approaches are totally different. Their approach uses only Java generics

3.6. RELATED WORK 47

and generates a fluent API from a deterministic pushdown automaton by encoding a tree
into a type. The tree is a state of that automaton. On the other hand, ours uses function
overloading, which is implicit parameters in Scala, type classes in Haskell, and templates
in C++, and generates a fluent API from an LR automaton by encoding a stack into a
type. Another difference is that their generator Fling generates an API only from an LL(1)
grammar although their algorithm supports the deterministic context free languages, which
is known as being equivalent to LR languages. Our generator can generate an API from
an LALR(1) grammar. Their paper only claims that the compiler could compile in a few
seconds a chain of 30 method calls with signatures including parametric types used in their
approach. Their experiment did not use a tool-generated DSL or a hand-written DSL.

EriLex [57] and Fajita [39] are fluent API generators. These existing tools can take
only an LL(1) grammar as their input while our generator supports LR(1) grammars as
we described earlier. Silverchain [45] is a tool that generates an embedded DSL with sub-
chaining API support. Sub-chaining API improves the user experience in that the API
allows programmers to compose a chain by combining several sub-chains. The support
of subchaining API is our future work to make our generator more practically applicable.
However, Silverchain can take only an LL(1) grammar.

Several techniques for semantic checking have been also studied although our work
focuses only on the syntax correctness of DSL code. For example, AraRat [20] uses C++
template metaprogramming to check the syntax of SQL queries and the type-safety with
respect to the database schema. The integration of such semantic checking and our fluent
API generator is also future work. Other host language mechanisms such as operator
overloading can be used to emulate a DSL sentence in a program written in a general-
purpose language [5]. Although we focused on fluent APIs in our work, mixing those
mechanisms with our technique would be a possible direction for future research.

Checker Framework [12] is a framework to extend Java’s type system. A number of
static checking including syntax checking can be implemented by using Checker Framework.
Standalone static analyzers such as Android Lint [31] can statically check the syntactic cor-
rectness of method chains. However, since those external standalone checkers are separately
developed from the library, it might not be easy to maintain the checkers up-to-date to be
compatible to the latest version of the library. Our generator would not cause this problem
since the syntax checker is included in the library and they are developed together.

If we can freely extend the syntax of host languages, we can implement an embedded
DSL that provides a more natural API without using a chain of method calls. ProteaJ [30]
and Wyvern [47] are programming languages that natively support syntax extension. Since
their extensibility is achieved by their underlying language mechanism such as their new
type systems, this approach is not directly available to widely-used current programming
languages without modifying these languages. A fluent API using method-call chains is a
technique easily applicable to these languages.

48 CHAPTER 3. CHECK COMPLEX PROTOCOLS OF FLUENT APIS

3.7 Concluding Remarks

This chapter presented our fluent API generator for Scala, Haskell, and C++. It generates
the skeleton of a library with a fluent API, or a library accessed through a method-call
chain. The type safety by the host-language type checker ensures that all the chains of
method calls to the generated library satisfies the constraints on the order of method calls.
In this chapter, we called the constraints the syntax of the fluent API since each method call
in the chain is regarded as a lexical token and the constraints specify acceptable sequences
of the lexical tokens. Our generator supports LR grammars for specifying that syntax. We
proposed our algorithm for generating type declarations to enable that type safety. It first
translates the given LR grammar into an LR automaton, translates it into a program in
our Fluent language, and then translates it into the host-language program. The algorithm
assumes that the host language supports function overloading considering type arguments,
or type classes. The compilation time of the method-call chains to the generated library is
polynomial.

Chapter 4

Collecting Cross-Language Cyclic
Garbage References

4.1 Introduction

Today, we can use various kinds of programming languages. Each language has their own
libraries, and we sometimes develop an application which is written using multiple lan-
guages since there are different problem domains each library specializes in. For example,
in web applications, the server-side is often developed in Java or PHP, and the client-side
is usually developed in JavaScript. In machine learning, many developers use Python to
write a program, but its internal calculation is developed in C language. In graphical appli-
cations, developers may use C bindings because programming languages may not support
graphics libraries by the standard.

A mechanism that enables us to call a function written in another programming lan-
guage is called Foreign Function Interface (FFI). An FFI is especially important for a
new programming language since it does not have enough libraries yet. Previously, it was
enough if there exists an FFI between C language since most programs to reuse were con-
centrated in C language. However, today’s popularity of script languages like Python and
JavaScript has increased the importance of FFIs between them. For example, PyCall is
an FFI library in Julia, which enables us to call Python functions. PyCall also provides
Ruby implementation. There is also PyV8, an FFI library in Python, which enables us to
call JavaScript functions. Note that script languages are usually managed languages; they
have their own garbage collector, and objects are managed by them.

An FFI between managed languages raises a cooperation problem between garbage
collectors. Usually, a garbage collector is designed to manage the entire heap memory,
but an FFI between managed languages introduces per-language memory regions managed
by per-language collectors. That makes collectors unable to correctly determine whether
each object is garbage or not since collectors cannot access objects in other languages. A

49

50CHAPTER 4. COLLECTING CROSS-LANGUAGE CYCLIC GARBAGE REFERENCES

memory leak can occur when a collector mistakenly determines an object alive, even if it is
garbage. Also, a memory error can occur, and the error can crash the VM when a collector
mistakenly determines an object as garbage even if it is used later.

It is possible to customize garbage collectors to cooperate, but the customization should
be as small as possible. Since a garbage collector is a large-scale complicated program,
customizing it is not easy. Moreover, customizing a garbage collector makes the VM
customized. If you want to use a customized VM for a while, you have to apply updates
and security patches by yourself since applying an official patch may cause inconsistency
between your customization. Since we are considering a new programming language that
supports FFIs to enable programmers to reuse functions written in another language, we
aim to keep the existing language without customizing it.

We propose a garbage collection algorithm for FFI, which improves the accuracy of
garbage detection. Our method can be implemented without customizing both garbage
collectors cooperating with each other. Our method is based on the idea that a collector
can provide the missing information of another collector by cloning the object graph. Here,
we mean object graph, the graph of objects where the edges are reference relations. The
reason why collectors cannot correctly detect garbage objects was the inaccessibility of
objects in the opposite region. By cloning the object graph, a collector can supply the
missing information of reference relations to the other collector. Since cloning all objects is
memory-consuming, our method compresses the information before cloning. Our algorithm
depends on bloom filters [4] during the analysis of the object graph. Since a bloom filter
is a probabilistic data structure, the object graph constructed by our method possibly
contains some errors. The inaccuracy may leave garbage objects without collecting them
but never determines an object is garbage and collect it if it is not really a garbage object.
In section 4.3.2 we will discuss the effect of false-positives in bloom filters.

In the rest of this chapter, in section 4.2 we show what will happen when the cooperation
between garbage collectors has failed. In section 4.3 we show our algorithm. In section 4.4
we show our experiments. Finally, section 4.5 concludes this chapter.

4.2 Foreign Function Interface and Distributed Garbage Col-
lection

Mechanisms that enable us to call functions written in another programming language are
called Foreign Function Interface (FFI). FFIs are important, especially for new program-
ming languages, since an FFI enables them to reuse libraries written in other languages.
Previously, FFIs were enough if they could call C functions like Java Native Interface [48],
libffi [41], Python ctypes [16], and so on. Today, FFIs are also paid attention which can call
functions written in other languages from the C language like PyCall [32] and PyV8 [24].

For example, listing 4.1 shows a Ruby program which contains library calls to React.js,
a JavaScript library for interactive web pages. We can use React.js by defining a class

4.2. FOREIGN FUNCTION INTERFACE ANDDISTRIBUTEDGARBAGE COLLECTION51

Listing 4.1: An example Ruby program which calls a JavaScript library via an FFI

1 class Button < React:: Component

2 def render

3 @dom = React.createElement(’button ’)

4 @dom.onclick = proc do

5 @status = ’clicked ’

6 end

7 @dom

8 end

9 end

Proc

@dom

<button>

Button

onclick
self

Ruby heap JavaScript heap

Figure 4.1: Objects allocated by listing 4.1

which extends React::Component. Programmers specify what will be displayed on the
screen by what HTMLElement instance the render method returns. The render method in
Button defined in line 2-8 first creates a button element by calling React.createElement

and store it as @dom as shown in line 3. Then register an onclick callback function to
that button element. The callback function changes @status in the Button object to
’clicked’. Finally, it returns the button element as the result.

Figure 4.1 shows how objects are allocated in the memory. The button element cre-
ated by React.createElement is allocated in the JavaScript heap since an HTMLElement

instance is a JavaScript object. In contrast to the button element, the Button object and
the callback function are allocated in the Ruby heap. Thus, the reference @dom is a remote
since it crosses the border between languages. We say an object is public when at least one
remote reference points it.

Cooperation between garbage collectors can cause a problem when multiple program-
ming languages connected by FFIs perform distinct garbage collections. A garbage collector
is usually designed for single programming language thus their algorithm assume that all
objects are known and managed by the collector itself. An FFI between managed languages
breaks this assumption. There are several garbage collectors and each collector manage
each memory region, no collector knows there exists objects managed by other collectors,
and also cannot access them. As the result, the collectors’ determination of whether an
object is garbage or not become incorrect since no collector can follow a path which goes

52CHAPTER 4. COLLECTING CROSS-LANGUAGE CYCLIC GARBAGE REFERENCES

through another memory region. If an object is mistakenly determined that it will be used
later although it is unreachable, the object will not be collected and a memory leak can
occur. On the other hand, if an object is mistakenly determined as a garbage although it
will be used later, a memory error will occur and the VM may crush. We will show an
example in later section.

It is possible to customize garbage collectors to be cooperative, but the customization
is very difficult. Since an FFI calls functions written in an existing programming language,
there also already exists a garbage collector. Customizing garbage collectors is very hard
since usually it is a very complicated program. For example, the garbage collector of
YARV (a common Ruby VM) is very large; it consists of 12,000 lines of C program. Bugs
in a garbage collector is very difficult to fix. Usually bugs in a garbage collector writes a
broken value into somewhere on the memory, function invocation or variable assignment
or something else copies the broken value, and at some point, the VM notices that a
value is broken and reports a memory error. Here, there are nothing which indicates
where the broken value came from. It is desirable to keep collector customization as small
as possible. We are considering about new programming language and to call functions
written in existing programing language from the new language. Thus, our aim is to
discover a method which keeps the existing language from customizing.

Distributed garbage collection [49, 54] handles a similar problem. In distributed envi-
ronment, both memory space and computational resources are separated. In such environ-
ment, garbage objects are collected by per-machine local collectors. Since local collectors
also cannot access objects in another machine, local collectors communicate to each other
and try to detect garbage objects correctly. As far as we know, distributed garbage collec-
tions require distributed-specific garbage collection algorithm. That is, in other words, no
distributed collection algorithm can reuse existing garbage collector.

Naive FFI implementation and memory leaks

In an application that has multiple garbage collectors working cooperatively, a memory
leak or a memory error may occur when the cooperation fails. This section shows an
example of such memory leaks. First, we show a naive FFI design that provides only two
interfaces: eval function and remote references. Then, we show how remote references are
managed by naive garbage collection. Finally, we show how a memory leak occurs.

Eval is a function which evaluates an argument string as an expression in the opposite
language. Here, we say host to mean the language calling eval and guest to mean the
language it evaluates the argument string. The computation in the host language is blocked
until the requested evaluation in the guest language finishes.

Since data representation depends on the programming language, our library converts
arguments and return values. The conversion is bi-directional. We apply the same con-
version strategy for both directions. When a value is primitive (i.e. a numerical value,
a character string), the conversion just creates a copy in the opposite language. When a

4.2. FOREIGN FUNCTION INTERFACE ANDDISTRIBUTEDGARBAGE COLLECTION53

Proc

@dom
<button>

Button

onclick
self

Ruby heap JavaScript heap

0

1

2

0

1

public
table

2

proxy

proxy

Figure 4.2: An image of remote references implemented by using public tables

value is not primitive (i.e. an instance of a user defined class), the conversion creates a
reference pointing the non-primitive object remotely instead of converting it.

Our FFI library maintains a public table to implement remote references. References
cannot point an object in another programming language directly. Instead of creating
a true remote reference, our library registers the referent object to the public table and
creates a proxy to the referent. Since an object registered to the public table is referred from
another language, it is a public object. References pointing to proxy objects behave as they
are remote references, thus operations on a proxy object are transferred to the referent. A
proxy object identifies the referent by looking up the public table in the opposite language.
Figure 4.2 shows the same object graph to figure 4.1, but implementing remote references
by using a public table.

This FFI library can collect remote references by using finalizers. Basically, garbage
collectors never determine public objects as garbage since they are globally accessible via
public table. Since we cannot determine when a public object is accessed via a remote
reference, it is better to leave remote references from collecting. On the other hand,
collectors treat proxies in the same way to normal objects. By deleting proper entry from
public table when a proxy is collected, we can enable collectors to collect public objects
since there are no reference from public table.

We can consider this garbage collection on public table as a reference counting, thus
this approach cannot collect cyclic references. The basic idea was “if all remote references
pointing a public object is removed, the public object is no longer public.” In other words,
the collector is counting how many remote references are pointing each public object, and
make the object non-public when the count decreases to zero. Reference counting methods
cannot collect cyclic garbage objects. Reference counting collectors handle cyclic garbage
by techniques like backup tracing collection or trial deletion, however both approaches
does not fit our problem. We call this kind of cyclic garbage “the last piece of cake” since
collectors seem to be waiting for each other to start collecting them.

54CHAPTER 4. COLLECTING CROSS-LANGUAGE CYCLIC GARBAGE REFERENCES

Proc

@dom
<button>

Button

onclick
self

Ruby heap JavaScript heap

0

1

2

0

1

public
table

2

proxy

proxy

Figure 4.3: After reflecting reachability in Ruby heap to JavaScript heap
The reference from a proxy to <button> represents the path going through Ruby heap.

The dotted line represents a weak reference. Thus, the <button> is collectible.

4.3 Our Object Graph Cloning Method

We propose an object graph cloning method that can collect the last piece of cake without
customizing both of the two garbage collectors. Our method assumes an FFI library to
be implemented in a naive way shown in section 4.2. Our idea is that when we clone all
objects in a language to the other language, the collector in the other language can simply
collect all garbage cycles in the usual way. The reason why no collector could detect a
cross-language garbage cycle was due to a lack of information. We can make a collector
inform the other collector of its objects to make the other collector able to collect the last
piece of cake. Furthermore, we can inform a collector by objects managed by the collector
itself so that that collector needs no customization to trace informed reference relation.

Since it is memory consuming if we really clone the whole object graph, we compress
it before cloning. The minimum information the opposite collector requires to determine
correctly whether each object is garbage or not is reachability from root-set to proxies
and reachability from public objects to proxies. Thus our method collects reachability
by a similar technique to marking of tracing GC, and clone it to the opposite language
as references from proxies to public objects. Figure 4.3 shows an image of heap memory
after cloning object graph. Since the reference from public table to <button> is weak, the
collector can collect it if there are no path from root objects.

Our method stops the world during collection. This is for preventing user programs
from breaking invariants in our algorithm. Although there are parallel garbage collection
algorithms, it is not clear whether we can implement them without customizing the VM.
If it is stop-the-world, we can implement without customizing a VM if the VM has global
interpreter locks like Python or Ruby, or the concurrency model is an event loop like
JavaScript.

4.3. OUR OBJECT GRAPH CLONING METHOD 55

Listing 4.2: pseudo code of collection phase

1 stack := ϕ
2 for pid , p ← public_table do

3 mark(p) ← { pid }

4 push(stack , p)

5 end

6 for root ← rootset do

7 mark(root) ← Ω
8 push(stack , root)

9 end

10 while stack ̸= ϕ do

11 cur ← pop(stack)

12 for next ← pointers(cur) do

13 if mark(cur) ̸⊆ mark(next) then

14 mark(next) ← mark(cur) ∪ mark(next)

15 push(stack , next)

16 end

17 end

18 end

4.3.1 Detailed algorithm

Our algorithm consists of two phases; (1) reachability collection and (2) reflection. The
first phase traverses the object graph and collects the reachability from public objects
to proxies. Listing 4.2 shows a pseudo-code. The algorithm is similar to the marking
algorithm in tracing GC, but there are some differences. Our algorithm does not collect
binary information of whether each object is garbage or not, but the reachability from
public objects to proxies. Thus, the root set is a set of public objects, and the mark of
each object is not a bit but a set of publication ids. The difference between marks makes
the algorithm also different. Since there are more than two states for each mark value,
the collector must update them as many times until they converge. Our collection phase
also examines reachability from root to prevent collectors from collecting objects remotely
reachable from roots. If a public object is found as root-reachable, the algorithm no longer
needs to collect the information about which proxies the public object is reachable from.
Thus, in Listing 4.2 we show this idea by representing marks of root objects as Ω, the
set which contains all elements. Note that Ω contains not only publication ids but also a
special element “root.” This is because collectors should not collect root-reachable objects
even if no object references proxies.

The second phase of our algorithm is reachability reflection phase. This phase re-
flects collected reachability information in the opposite language and collect parts of cyclic
garbage. Listing 4.3 shows a pseudo code. The pseudo code is expected to run in the

56CHAPTER 4. COLLECTING CROSS-LANGUAGE CYCLIC GARBAGE REFERENCES

Listing 4.3: pseudo code of reflection phase

1 for p ← proxies do

2 refs(p) ← ϕ
3 end

4 for pid , mark ← collected_relation do

5 if mark ̸= Ω then

6 for p ← proxies do

7 if dest(p) ∈ mark then

8 push(refs(p), publib_table[pid])

9 end

10 end

11 end

12 end

13 for pid , pub ← public_table do

14 if mark ̸= Ω then

15 make_weak(public_table , pid)

16 end

17 end

18 local_gc ()

19 for pid in keys(public_table) do

20 make_strong(public_table , pid)

21 refs(p) ← ϕ
22 end

4.3. OUR OBJECT GRAPH CLONING METHOD 57

opposite language to the first phase. Be careful with the public objects and proxies be-
cause they are viewed as swapped in the opposite language. The algorithm consists of five
steps. First, initialize refs of each proxy to an empty set. Second, reflect the collected
information; create references from proxies to public objects. In this step, no reference
is created when the public object is reachable from the root since the object will not be
collected without any references. Third, replace references from public tables to public
objects by weak reference. Here, there become no global strong reference to public objects
is guaranteed, thus collectors have chance to collect public objects. Fourth, invoke the local
garbage collection. The collection is expected to collect parts of cyclic garbage. Finally,
restore references from public tables to public objects by strong reference.

4.3.2 Data representation of mark sets

As shown in section 4.3.1, our algorithm prepares a number of sets for marks of objects.
We chose bloom filter [4] as the data representation of them. Common data representations
of sets (i.e. hash tables, binary search trees, and so on) are complex, thus unacceptable
memory- and time-consumption are supposed. Using bitmaps is another memory-efficient
option, but changing their size will cause large time-consumption. Since it is not clear
how we can assume the maximum number of an application will create, we do not adopt
bitmaps.

A bloom filter is a memory efficient data representation of a set. The bit width of a
bloom filter does not depend on the number of elements – it is fixed. The union operation
is done by just one bitwise OR operation. The drawback of the memory efficiency is false-
positiveness. A bloom filter possibly answers an element is contained even if the element
is not inserted to it. However, a bloom filter has no false-negativeness; a bloom filter never
answers an element is not contained if the element was inserted to it.

In our algorithm, false-positives of bloom filters are viewed as false-reachability. Our
algorithm may determine reachable from a public object to a proxy even if they are not
really reachable, and may leave some garbage objects without collecting them. The prob-
ability of false-positives depends on how many bits a bloom filter contains and how many
public objects are created. Note that, the false-negatives which bloom filters never raises
may make it worse; false-negatives may cause wrong collection and may crush the VM. In
our algorithm, false-negatives are viewed as false-unreachability. Thus, an object can be
collected even if it is still accessible.

We can avoid false-positives from continuing over GC cycles by choosing hash functions
used in bloom filters randomly for each GC cycle. A bloom filter uses several hash functions
in it. If the hash functions are the same, false-positives appears with the same combination
of elements. Thus, the same false-positives are seen if the object graph has not been changed
and the hash functions are the same. We use a series of hash functions generated from a
single seed number randomly selected for each GC cycle. Our hash function is based on
xorshift [44]. Listing 4.4 shows a pseudo code of our hash function. The first hash value

58CHAPTER 4. COLLECTING CROSS-LANGUAGE CYCLIC GARBAGE REFERENCES

1 #define N /* the number of hash functions */

2 int seed;

3 void calc_N_hashes(int result[], int x) {

4 result [0] = seed ^ x;

5 for(int i = 1; i < N; i++) {

6 result[i] = xorshift(result[i - 1]);

7 }

8 }

Figure 4.4: A pseudo code of our hash function

Ruby VM customized
JavaScript Engine not customized

FFI library developed
microbenchmark application developed

Table 4.1: What we developed for our experiments

depends only on the seed value and the value to be hashed. The (n + 1)-th hash value
depends only on the n-th hash value. By updating the seed by applying another xorshift
function, we avoid the same false-positives from appearing over GC cycles.

We use a bloom filter where all bits are one to represent Ω, the mark which means
the object is reachable from the root-set. Such bloom filter is considered to contain any
element thus the corresponding remote references will not be collected anyway.

4.4 Experiment

We had an experiment to understand the performance of our algorithm. There are two
criteria we are interested in. The first criterion is how long our algorithm takes for each
collection. Since our method interrupts user programs during each collection, it is impor-
tant to understand how long the pause time is. The second criterion is how many objects
escape from the collection because of the false-positive errors. Since a bloom filter is a
probabilistic data structure, our algorithm possibly leaves garbage objects from collecting
them as discussed in section 4.3.2. The possibility increases as many remote references
exist at the same time. It is also important to understand how many garbage objects
will escape from the collection since the objective of our algorithm is to reduce memory
consumption.

Table 4.1 shows what we developed for this experiment. We customized the Ruby
interpreter and implemented our method as a backup garbage collection which is indepen-
dent from the normal garbage collection. Our backup garbage collection starts when a
user program calls a specific function and the collection interrupts the interpreter until it

4.4. EXPERIMENT 59

Listing 4.4: A pseudo code of our micro benchmark

1 T.times do

2 cycles = (1..N). collect { make_cycle }

3 cycles = []

4 collect_garbage_cycles

5 end

Figure 4.5: An image of cyclic reference

finishes. The version of the Ruby interpreter which we customized is ruby 2.8.0dev. The
bit width of bloom filters used in our algorithm is 64 and the number of hash functions
used in bloom filters is 5.

Also, we developed an FFI library which enables Ruby program to call function written
in JavaScript. We adopt the naive FFI design shown in section 4.2 to our library. All our
experiments use this FFI library.

In the rest of this section, section 4.4.1 shows an experiment on how long our garbage
collection algorithm takes to collect garbage cycles. Section 4.4.2 shows another experiment
on how our algorithm fails to collect garbage cycles due to the false-positiveness of bloom
filters. Both experiments run on a machine with Intel® Core™ i7-4770S, 16 GB memory,
and Ubuntu-18.04.5 LTS.

4.4.1 Garbage Collection Time

We experimented on how long our algorithm takes to collect garbage cycles. Usually, how
long a collection takes depends on how objects are connected in the heap. Thus, our
objective is to reveal the relation between the collection time and the shape of the object
graph in the heap. First, we experimented on the relation between the collection time and
the number of cyclic garbage.

We implemented a micro benchmark for this experiment. The benchmark repeats
following three steps: create cyclic references, throw them away, and then invoke the
object graph cloning collection. Figure 4.4 shows a pseudo code of this benchmark. First,
line 2 creates N cyclic references and store them as cycles. Each cyclic reference consists
of both one Ruby object and one JavaScript object which refer to each other. Figre 4.5

60CHAPTER 4. COLLECTING CROSS-LANGUAGE CYCLIC GARBAGE REFERENCES

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 10 100

co
lle

ct
io

n
tim

e
[s

ec
]

number of cycles (per iteration)

 JavaScript

Ruby

Figure 4.6: The relation between the collection time and the number of cycles

Figure 4.7: An image of a long cycle

shows an image of a cyclic reference. Next, line 3 throws all cyclic references away and
turns them into garbage. Then, line 4 invokes our algorithm and collect cyclic garbage. In
this experiment, we run the micro benchmark and measure how long the garbage collection
(in line 4) takes in average over eleven iterations.

Figure 4.6 shows the result. The horizontal axis represents N , how many cycles the
micro benchmark creates in each iteration. The vertical axis represents how long the
garbage collection takes. The orange region represents how long does it take in the Ruby
collector and the blue region is for the JavaScript collector.

Garbage collection time increases as the number of garbage cycles increases. However,
the increase of garbage collection time was less than ten times even though the number
of garbage cycles was increased ten times. In a more detailed result, more than 90% of
the computation time in the Ruby collector is reachability collection phase. Most of the
computation time in the JavaScript collector was garbage collection.

We also experimented on the relation between the collection time and the shape of
cyclic garbage. In this experiment, we run the same micro benchmark to the previous
experiment. Its pseudo code is shown in figure 4.4. However, we change the shape of cyclic

4.4. EXPERIMENT 61

Figure 4.8: An image of a coming-and-going cycle

0.01

0.1

1

10

100

1000

10 100 1000

co
lle

ct
io

n
tim

e
[s

ec
]

S (the size of each cycle)

 long

 coming-and-going

Figure 4.9: The relation between the collection time and the shape of cycles

references created by make cycle in line 2. We also measure how long garbage collection
takes which is invoked in line 4.

We experimented on three shapes of cyclic references for this experiment. The first
shape is simple shape shown in figure 4.5. The second shape is long which consists of both
S Ruby objects and S JavaScript objects where S denotes the size and the objects are
connected in order. Figure 4.7 shows an image of a long cycle. The third shape is coming-
and-going which also consists S Ruby and JavaScript objects, but connected alternately.
Figure 4.8 shows an image of a coming-and-going cycle. Note that, a coming-and-going
cycle contains S times more remote references than a long cycle.

Figure 4.9 shows the result. The horizontal axis represents the S which denotes how
many objects each cycle contains. The vertical axis represents how long garbage collection
takes. In this experiment, N is fixed to 10. The blue bar represents the result for long
cycles, and orange bar is for coming-and-going cycles. Note that, the vertical axis is
logarithmic. Thus, the leftmost blue bar (the result of long cycles when S = 10) is almost
0.04 seconds although the rightmost orange bar (the result of coming-and-going cycles

62CHAPTER 4. COLLECTING CROSS-LANGUAGE CYCLIC GARBAGE REFERENCES

Listing 4.5: A pseudo code of modified micro benchmark

1 cycles = []

2 T.times do

3 N.times do

4 cycles << make_cycle

5 end

6 cycles = cycles.sample(N)

7 collect_garbage_cycles

8 end

when S = 1000) is about 765 seconds.

Except the case when S = 10, the garbage collection for coming-and-going cycles takes
about ten times longer than it for long cycles when S is equal. This result suggests that
both the number of objects and the number of remote references has an impact on garbage
collection time, and the impact of number of objects is stronger. The result of long cycles
when S = 1000 is more than 1,000 times slower than the result of S = 100 although S is
only ten times larger. We suspect that this result is due to a secondary effects of heavy
memory consumption.

4.4.2 Effect of False-Positives

We also experimented on how our algorithm fails to collect garbage cycles due to the false-
positives caused by bloom filters. The effect of false-positives also depends on how objects
are connected in the heap. We use a similar microbenchmark to listing 4.4, but we modify
it. The difference is that in each iteration, we choose N cycles randomly and prevent them
from thrown away. Listing 4.5 shows a pseudo code. Line 3-5 creates N cycles and append
them into the end of cycles. Each call to make cycle produces a simple cycle shown
in figure 4.5, the same shape to the first experiment. Line 6 randomly selects N cycles
from cycles and throw other cycles away. Then line 7 invokes our garbage collection.
Since it is a specific scenario that all cycles are thrown away simultaneously, the modified
microbenchmark is expected to give a more realistic result.

In this experiment, we count how many remote references each garbage collection. Since
the possibility of false-positive errors increases as many remote references exist, we expect
that the number of remote references which survive each collection start to increase linearly
from a certain point. Note that, then number of remote references must not be less than
N since we keep N cycles over each iteration.

Figure 4.10 shows the result. The horizontal axis represents the number of iterations.
The vertical axis represents the number of cycles survived each iteration. The vertical axis
is normalized by dividing by N . Each line represents the results for each N of 1, 10, and
100.

4.5. CONCLUDING REMARKS 63

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11

nu
m

be
r o

f s
ur

vi
va

l c
yc

le
s

number of iterations

1

10

100

Figure 4.10: How many cycles survive for each iteration

The first garbage collection does not collect any cycle. Since the first iteration creates
N cycles and throw no cycle away, this is an expected result. The second garbage collection
also does not collect any cycle. This is unexpected result since the second iteration also
creates N cycles and throws N cycles away. We suspect that there are some references to
cycles remaining in somewhere like a stack frame or a register. In the remaining iterations,
the number of remote references increases and decreases and it is about between 2 and 3
times N . This result suggests that the possibility of false-positive errors is not large enough
to prevent garbage cycles from collected when N is not larger than 100.

4.5 Concluding Remarks

In this chapter, we discussed a memory leak problem which we call the last piece of cake
problem. This problem is caused by an FFI between programming languages when both
languages support garbage collection. Since script languages are getting more popular in
recent years, FFIs targeting programming languages that support garbage collection will
increase. Studying on the last piece of cake problem is important to prevent problems in
the future.

We proposed an object graph cloning algorithm that can collect cross-language cyclic
references without customizing both collectors connected via an FFI. Our algorithm copies
an object graph in a language to another language as a reduced object graph in that lan-
guage, thus the garbage collector in the other language can detect all cross-language cyclic
references without customization. To obtain an object graph within a smaller amount
of memory consumption, we adopt a bloom filter to represent a set of remote references.
Although the false-positiveness of bloom filters can remain garbage objects from the col-
lection, it never causes illegal collection.

We had two experiments to understand the performance of our algorithm. The first
experiment was on the relationship between how long our algorithm takes to collect garbage

64CHAPTER 4. COLLECTING CROSS-LANGUAGE CYCLIC GARBAGE REFERENCES

cycles and the number and the shape of garbage cycles. This experiment reveals that
collection time increases as the number of cycles increases and the number of objects a
cycle contains increases. Especially the number of objects a cycle contains is observed to
have a strong impact on the collection time. The second experiment was on the impact of
the false-positiveness of bloom filters on the collection rate. This experiment reveals that
false-positive errors do not have a fatal impact on collection rate when there are only a
hundred simple shape cycles.

It is a limitation of our method that our garbage collection algorithm is stop-the-world,
thus its pause time may be very long. Long pause time due to garbage collection is not
desirable. Reducing pause time is future work. There is room for improvement not only in
the implementation but also in the algorithm. We consider that techniques in incremental
or concurrent garbage collection may be applicable to our algorithm. There is also room for
improvement in false-positive error handling. Improving garbage collection rate is another
future work.

Chapter 5

Self-Reflective Garbage Collection
for Customizing Garbage
Collectors

5.1 Introduction

A garbage collector (GC) is a runtime component that is often customized for heap analysis
[33, 40] or runtime object evolution [56, 8]. For example, string deduplication [28] is typical
runtime object evolution. String deduplication is a technique to save memory by replacing
duplicated string objects with a representative string object when they are immutable.
The usual way to replace an object is to rewrite all references pointing to the object, but
it costs a lot of time to find all such references. Since a garbage collector often rewrites all
references to do compaction, customizing the garbage collector is a well-known technique
for implementing string deduplication without large overheads.

The customization is however not a simple task. A typical approach to customize a
collector is to rewrite the program that implements the collector. Since the collector is a
part of a programming language system, the customization does not goes like customizing
applications. Developers have to modify a low-level implementation of the GC compo-
nent, and most implementations do not provide clean programming interfaces for such
customization.

GC customization via computational self-reflection [50] is a promising approach, al-
though self-reflection has not been well investigated for garbage collection as far as we
know. Suppose that we run a program in a language Lbase supporting garbage collection.
A reflective programming interface for customizing the garbage collector allows developers
to modify the behavior of that collector via a program written in the base language Lbase

instead of the language the collector is implemented in. That program can intercept the
garbage collection during collection time and run as if it is part of the implementation of

65

66CHAPTER 5. SELF-REFLECTIVE GARBAGE COLLECTION FOR CUSTOMIZINGGARBAGE COLLECTORS

the garbage collector. For clarification, we call such a program a meta program from this
point on.

A design problem of such a reflection interface for garbage collectors is how to man-
age objects created by a meta program. Since a meta program is a normal program, it
may create objects and also turn them into garbage during runtime. The garbage collec-
tor customized by the meta program should also collect these garbage objects, but naive
implementation may cause infinite regression. Note that a meta program may create an
object that will substitute another live (base-level) object when it implements object evolu-
tion. Hence an object created by a meta program should not be distinguished from normal
(base-level) objects.

One possible approach is to allocate some special heap memory that only a meta pro-
gram can use. Then we can separately collect garbage in that heap memory by a dedi-
cated collector. However, this approach does not satisfy our motivating requirement. The
customized garbage collector never collects the objects created by the collector itself. A
different, uncustomized collector c2 collects them. We could customize that different collec-
tor just like the original one. However, the customization would introduce the third heap
space to place objects created by the second customized collector c2 and the third space
is managed by the third collector c3 that uses the fourth heap space. Thus, this approach
causes infinite regression.

Another approach would be to let a meta program allocate objects in the regular heap
memory where the garbage collector is concurrently collecting garbage. It seems promising
but its heap memory consumption would be a problem. If placing an object into the heap,
the collector has to traverse the whole heap later to test whether the object is alive or
dead. Thus, if a meta program allocates objects in the regular heap, these objects will
not be collected during the current GC cycle. Since a meta program may create a large
number of objects when a live object is found and copied, the meta program may create
more objects in total than the existing ones in the heap. Such huge memory consumption
is unacceptable.

This chapter proposes a novel algorithm for reflective garbage collection, buffered garbage
collection. This algorithm allows a meta program customizing a garbage collector to create
objects that are also collected by that customized collector while avoiding infinite regression
of garbage collection. Buffered garbage collection is based on copying garbage collection
[14, 6] but it manages the third space named buffer to buffer objects created by a meta
program. The buffer space is similar to the nursery space of the generational algorithm.
An advantage of this algorithm is that it will consume a smaller amount of heap memory
than other approaches. Through a reflection interface, a program can register a callback
function that is invoked whenever an object in the old heap is copied to the new heap
during GC time. This callback function can customize the collector as it is a meta pro-
gram in our algorithm. The objects created by the meta program are stored in the buffer
space and effectively collected by the customized collector. Since our algorithm introduces
staged collection, those objects are not collected until the garbage collection moves into a

5.2. SELF-REFLECTIVE CUSTOMIZATION OF GARBAGE COLLECTOR 67

stable state. We have implemented an interpreter for a subset of Scheme with the proposed
garbage collector.

The rest of this chapter is as following. In Section 2, we detail a problem that occurs
when we apply computational self-reflection to garbage collector; why infinite regression
and unacceptable memory consumption occurs. In Section 3, we propose Buffered Garbage
Collection; our novel garbage collection algorithm that avoids both infinite regression and
unacceptable memory consumption. In section 4, we compare our method to other pos-
sible approaches to clarify advantages of our method. In section 5, we show a result of
an experiment to confirm our method avoids unacceptable memory consumption in our
exprimental implementation. In section 6, we present related works and in section 7, we
concludes this chapter.

5.2 Self-reflective customization of Garbage Collector

Sometimes, garbage collectors are customized. One typical purpose is to make collector to
manage objects using application specific knowledge so that both memory efficiency and
calculation performance become better. For example, string deduplication [28] replaces
duplicated string objects with a representative string object when they are immutable.
Applying string deduplication for web server applications does not only save memory but
also speed up calculation because comparison between string objects become faster.

A typical approach to customize a garbage collector is to implement the customization
in the language that implements that collector. For example, we can customize the garbage
collector of the Java virtual machine in C++ since it is implemented in C++, but such a
customization has to consider a number of low-level implementation issues of Java. First,
the presentation of Java objects is more complicated from the perspective of the GC imple-
mentation in C++. The developers have to deal with C++ data structures implementing
Java objects; they have to be aware of the objects’ meta data, memory layout, and how
references are implemented.

Furthermore, various low-level invariants must be preserved in the virtual machine.
Since C++ code can access hidden data such as meta data and accidentally break a memory
layout, the developers have to carefully implement GC customization to satisfy the low-
level invariants. Note that it is not a problem that the implementation language is C++.
Even if the Java virtual machine is implemented in Java as the Jikes RVM [1] and the
Maxine VM [55] are, those problems will be observed.

Computational self-reflection is a promising approach to customize garbage collectors.
Sometimes a program controls something that is not a data structure in the programming
language: file, interprocess connection, or that program itself. Computational self-reflection
is a design pattern for interface of such out-of-language data. Computational self-reflection
allows to operate out-of-language target as if it was a normal data structure by reflecting
operations to the real target.

68CHAPTER 5. SELF-REFLECTIVE GARBAGE COLLECTION FOR CUSTOMIZINGGARBAGE COLLECTORS

1 (define intern-table

2 (make-hashtable string-hash

3 string =?))

4
5 (define (intern str)

6 (if (hashtable-contains?

7 intern-table str)

8 (hashtable-ref intern-table str)

9 (begin (hashtable-set! str str)

10 str)))

11
12 (define (callback-function obj)

13 (if (string? obj) (intern obj) obj))

14
15 (register-on-copy callback-function)

Figure 5.1: String deduplication implemented with reflection

For example, copy-time callback is a simple computational self-reflection. Copy-time
callback allows to register a callback function which is called each time the collector copies
a live object. Garbage collectors often copy a live object to move it during compaction
phase. In copy-time callback, live objects are passed to registered callback function before
it is copied. The callback function investigates the received object and returns either the
received object itself or another one. If the callback function returns the same object as
the received one, the garbage collector simply copies it for heap compaction. If it otherwise
returns a different object, the collector copies and uses that object as a substitute for the
object originally received. All the references to the original object are updated to refer to
the returned object. Since a callback function is a normal function, it receives a normal
object and can return another normal object. It never accesses the low-level C++ data
structure implementing those objects.

Although copy-time callback is simple, it is enough able to implement dynamic ob-
ject evolution [8, 56] or heap analysis. For example, Listing 5.1 shows an example im-
plementation of string deduplication by using copy-time callback in a Scheme-like lan-
guage. It is a normal program written in Scheme. In line 17-18, a callback function
string-deduplication-callback is registered by a special form register-on-copy.
string-deduplication-callback is a normal scheme function defined in line 12-15.
string-deduplication-callback just passes the argument to the intern function if the
argument is a string object. intern is also a scheme function defined in line 5-10 that
returns the representational string object memorized in a hashtable intern-table defined
in line 1-3. Since intern is a scheme function, intern-table is also a normal global
variable. The callback function is invoked when the garbage collector of the Scheme inter-

5.2. SELF-REFLECTIVE CUSTOMIZATION OF GARBAGE COLLECTOR 69

preter moves a Scheme object for compaction. Thus, when a string object is moved and
another object representing the same character string has been already moved, that object
is deleted and all the references to that object are modified to point to the equivalent object
that was already moved.

register-on-copy is a special form for reflection. To implement this special form, we
need to address garbage collection for the objects created by the copy-time callback function
registered through register-on-copy. Since the callback function is a normal Scheme
function, it will create objects during the execution. However, it concurrently runs as part
of the garbage collector while the garbage collector is running. Depending on the result of
the callback function, the collector needs to substitute a new object for the object being
currently moved, and appropriately update the references to that object. Furthermore, the
heap size that the callback function can use is limited since the garbage collector starts
running when the size of the remaining heap reaches below a certain threshold. We need
a sophisticated concurrent garbage collector that can run with a small amount of heap
memory.

One possible approach is to allocate some special heap memory that only a copy-
time callback function can use. Then we can separately collect garbage in that heap
memory by a dedicated collector. However, this approach does not satisfy our motivating
requirement. The garbage collector customized by the callback function never collects
the objects created by the callback function itself. A different, uncustomized collector
collects them. For example, when the callback function string-deduplication-callback

is modified to create string objects for returning, these string object are never inspected
for string deduplication. They are not passed to string-deduplication-callback when
they are later collected by a garbage collector c1. To avoid this, we might have to register
another callback function for the garbage collector c2 managing the heap memory where
string-deduplication-callback creates objects. That callback function, however, needs
a different special heap memory where it creates objects, which are not managed by c2 but
another collector c3. Thus, this approach causes infinite regression.

Another approach would be to let a copy-time callback function allocate objects in the
regular heap memory where the garbage collector is concurrently collecting the garbage.
It seems promising but its heap memory consumption would be a problem. Since our
string-deduplication-callback is invoked for every live object during garbage collec-
tion, it might rapidly consume the remaining heap memory and then require to collect the
objects that were created by string-deduplication-callback but are already dead. The
feasibility of collecting these dead objects, for example by an existing concurrent collec-
tor, is not clear since the collection recursively invokes string-deduplication-callback,
which will create objects.

70CHAPTER 5. SELF-REFLECTIVE GARBAGE COLLECTION FOR CUSTOMIZINGGARBAGE COLLECTORS

buffer

newold

white yellow

white yellow

red silver

grey black

Figure 5.2: The colors of objects and the three memory spaces

5.3 Buffered Garbage Collection

In this section we propose an algorithm for garbage collection, Buffered garbage collec-
tion, which enables computational self-reflection on garbage collection while keeping extra
memory consumption within a practical amount. Buffered garbage collection is based on
Cheney’s copying garbage collection [6] and it enables meta programs to create objects
while avoiding both infinite regression and unacceptable memory consumption.

The reflection mechanism of Buffered garbage collection is simple; it just supports the
copy-time callback. Once a callback function is registered, the collector invokes it each
time before copying a live object into new space to determine whether the object should
be replaced or not. The callback function can read/write to the given copied object and
the global environment. It can also create new objects.

In our algorithm, the objects created by the callback function are allocated in a ded-
icated small memory region, called buffer. The garbage in the buffer space is frequently
collected by minor copying collection between the buffer space and the new space. Those
objects in the buffer space are copied into the new space if they are alive when the garbage
collector reaches a certain safe point, for example, when each invocation of the callback
function finishes. Since all the live objects created by the callback function are moved into
the new space, they are processed by the callback function at the next major collection
between the new and old spaces. The next major collection will copy them as it copies
other normal objects if they are alive.

5.3.1 The colors of objects

Before presenting our algorithm, we introduce several states for objects. These states are
based on the tri-color marking abstraction [13], but we use more colors. The tri-color
marking abstraction categorizes objects into three groups: white, black, and grey, but for
Buffered garbage collection we add yellow, silver, and red (see Figure 5.2). Yellow denotes
that the object is already copied into the new region, it contains a forward pointer to the

5.3. BUFFERED GARBAGE COLLECTION 71

copy, and it may be destroyed. Silver denotes that the object may contain pointers to
the buffer region. Red is a special color to detect cyclic object replacements and prevent
infinite recursion during the GC.

Since our algorithm is an extension to copying collection, the memory space is divided
into three regions: old, new, and buffer. At the beginning, objects are in the old space.
They are white and their liveness is uncertain. When the garbage collector finds a live
white object, it makes a copy of that object in the new space. The copy is colored grey.
The grey objects become black if they do not contain any references to white or yellow
objects. After making the copy, the collector modifies the copied white object to contain a
forward pointer to the copy. We assign the color yellow to the object containing a forward
pointer.

Some objects are created by a copy-time callback function and allocated in the buffer
space. At first, these objects are white. Our algorithm performs copying collection from
the buffer space to the new space as well as one from old to new. Hence a copy made in
the new space may contain a reference to an object in the buffer space. Such an object is
colored silver. A silver object may contain a reference to the old space.

Finally, we assign the color red to an object in the old space while it is processed by a
callback function. This is for avoiding an infinite loop in our algorithm.

5.3.2 The algorithm

Buffered garbage collection splits memory space into three regions: old, new, and buffer.
An object newly created is allocated in the old space. When the garbage collection starts
running, the objects in the old space are moved to the new space if they are alive. The
collection continues until all live objects have been moved.

First, the collector colors all objects white in the old space. Then, it makes a copy of
every root object in the new space. The copy is colored grey. The references in the root
set are updated to point to the copies. The original object in the old space is changed into
yellow to contain a forward pointer to its copy. Before making a copy, the collector invokes
a callback function. Details of this procedure named callback-and-copy are described in
section 5.3.2.

The collector examines all grey objects to find a reference to a white or yellow object
in the old space. If the object is white, a copy of the object is created in the new space by
callback-and-copy. The resulting copy is (usually) a grey object. The reference is modified
to refer to this grey object. If the reference points to a yellow object, it is modified to
refer to the object that the forwarding pointer in the yellow object points to. After this
examination, the object is turned into black since it does not contain a reference to a white
or yellow object.

The garbage collection finishes when all the objects in the new space become black.
Then the old space is cleared and the roles of the old and new spaces are swapped. The
program execution is resumed.

72CHAPTER 5. SELF-REFLECTIVE GARBAGE COLLECTION FOR CUSTOMIZINGGARBAGE COLLECTORS

Procedure callback-and-copy

callback-and-copy makes a copy of a live white object in the old space. The copy is stored
in the new space. Then, the garbage collector invokes a callback function if it is registered.
The white object being copied is passed to the function as an argument. The callback
function can access any objects except yellow since yellow objects are already copied and
may be destroyed. To avoid accesses to yellow, the algorithm introduces read barriers.
When it creates a new object, the object is allocated in the buffer space and colored white.
callback-and-copy finishes by returning any object except yellow ones. The returned object
may be in either the old, new, or buffer space.

When the callback function finishes, the procedure named flush-buffer is executed (its
detailed are described in section 5.3.2). It performs copying collection from the buffer
space to the new space. After the execution of flush-buffer, there exist no references to an
object in the buffer space. If the callback function returns the given white object as is, the
collector makes a new copy of that white object. The copy is created in the new space and
colored grey. If the callback function returns a white object different from the given white
one, the collector recursively invokes callback-and-copy to make a copy of that different
white object. Otherwise, if the object returned by the callback function is grey or black,
the returned object is regarded as a new copy that this invocation of callback-and-copy is
supposed to make. In either case, the collector finally gives the yellow color to the white
object passed to the callback function. It modifies the white object to contain a forward
pointer to the copy of that object created by callback-and-copy.

As shown above, callback-and-copy may recursively invoke itself. To avoid infinite
regression, the white object being copied is changed into red before being passed to the
callback function. If callback-and-copy is invoked later to make a copy of a red object, the
collector throws an error.

Procedure flush-buffer

flush-buffer performs copying collection from the buffer space to the new space. We call this
minor collection. The buffer space contains the objects created by the callback function.
flush-buffer does not invoke the callback function when it copies a live object from the
buffer space to the new space.

Since flush-buffer is invoked after the callback function finishes, flush-buffer does not
consider stack frames as the root set. The root set for this copying collection is only the
remembered set constructed by the write barriers. The reference value returned by the
callback function is included in the root set. Hence, if it points to an object in the buffer
space, it will be updated to a reference to an object in the new space after the minor
collection.

During this minor collection, a copy of an object in the buffer space is made in the new
space. The copy is at first colored silver. The minor collector modifies a reference in the
silver object only if the reference points to an object in the buffer space. A copy of this

5.4. COMPARISON 73

object is made in the new space and the reference is updated to point to that copy. This
modification is repeated until all the references into the buffer space are updated. A silver
object containing no reference into the buffer space is changed into a grey object, which
may contain a reference into the old space.

5.4 Comparison

Although there are several approaches to customizable garbage collectors, we designed a
copy-time callback function and Buffered garbage collection to satisfy our requirements
presented in Section 5.2. The first requirement is the use of reflection because of its ease of
customization. The other is to avoid large memory overheads due to the customizability.
In this section, we compare Buffered garbage collection to other approaches, which include
ones we have briefly presented in Section 5.2.

5.4.1 Dynamically linked library

One of the simplest approaches to implementing a garbage collector with a copy-time
callback function is to have the interpreter dynamically link a callback function written in
C++ (for the clarity of the presentation, we assume that we are implementing a Scheme
interpreter in C++).

Most C++ execution environments support dynamically linked libraries. We can build
a library module containing a callback function and load it on demand to be linked with
the garbage collector of the interpreter. The callback function can flexibly customize the
garbage collector since both the callback function and the collector are written in C++.

A problem of this approach is that a callback function has to be written at the level
of abstraction of the C++ implementation of the garbage collector. Figure 5.3 shows an
example of the callback function implementing string deduplication in this approach. It is
equivalent to Figure 5.1, which our approach enables. SchemeObject (or SO in short) and
SchemeObjectRef (or SORef in short) are utility data types provided by the interpreter
implementation for the developers of callback functions. SO is a C++ object implementing
a Scheme object. SORef is also a C++ object but implementing a reference value in
Scheme. It is a smart pointer that points to an SO and encapsulates the maintenance
of the root set for garbage collection. Without these utility data types, implementing
a callback function would be extremely error-prone for developers who do not know the
detailed implementation of the interpreter. For example, developers need careful attention
for appropriately removing reference values from the root set when an exception is thrown.

The main part of the callback function is onCopy in lines 27–34. Note that it inspects
the meta data of obj to determine whether it is a string object or not. Although line 28
inspects the meta data of a given reference value, line 29 inspects the meta data of the
Scheme object that the reference value points to. The developers have to be aware of these
details.

74CHAPTER 5. SELF-REFLECTIVE GARBAGE COLLECTION FOR CUSTOMIZINGGARBAGE COLLECTORS

onCopy calls intern, which returns a canonical representation for the given string
object. It looks into the hash table intern table. This hash table is declared in lines
10–17. schemeHash and schemeEqual are provided by the interpreter implementation.
The former computes a hash value of the string object and the latter compares two string
objects. These string objects are not ones in C++ but the C++ objects implementing
Scheme’s string objects. This meta perception often causes errors.

5.4.2 Single language

Another approach is to implement an interpreter in the same language that the interpreter
interprets. If we are implementing a Scheme interpreter, the interpreter is implemented
in Scheme. Implementing such an interpreter is feasible; we can run a Scheme interpreter
written in Scheme on top of the Scheme interpreter written in C++.

Developers can now write a copy-time callback function in Scheme since the interpreter
is written in Scheme. Although Scheme provides a much higher-level programming ab-
straction than C++, they still encounter the problem of the low-level abstraction used by
the interpreter implementation. If the interpreter directly exposes the implementations of
the garbage collector to a callback function, the developers have to write a Scheme program
similar to the C++ program in the previous approach. A callback function would have to
process a given object from the perspective of the interpreter implementation. The pro-
gramming might be confusing and worse than the previous approach since the developers
have to distinguish Scheme objects processed by the garbage collector from Scheme objects
used in the callback function.

Figure 5.4 shows a callback function written in this approach for string deduplication.
We can observe a one-to-one similarity between Figure 5.3 and Figure 5.4 while Figure 5.4
has to deal with lower-level abstractions than Figure 5.1 that our approach enables. The
callback function on-copy in Figure 5.4 uses ref-type and type-of in lines 21 and 23 for
accessing the meta data of obj. The developers cannot use the standard function string?

to determine whether obj is a string object or not. If we call string? with an object
implementing a string object in the interpreted Scheme, string? will return false. A
similar problem is seen for the hash table.

This single-language approach was adopted by a more practical system, Jikes Research
Virtual Machine (Jikes RVM) [1]. It is an implementation of the Java virtual machine
written in Java. Jikes RVM provides the Memory Management Toolkit (MMTk) [3] for
implementing a new garbage collector as easily as our copy-time callback function. How-
ever, implementing a new garbage collector with MMTk for Jikes RVM causes the problem
mentioned above.

5.4. COMPARISON 75

5.4.3 Other garbage collectors

As we have shown in Section 5.2, a copy-time callback function will need a large amount
of extra memory space if the objects created by the callback function are allocated directly
in the new space, which live objects are being moved into. According to our requirement,
the callback function is invoked for every live object in the old space and thus the total
amount of objects created by the callback function is proportional to the number of the live
objects. In some interpreter implementations, a callback function may implicitly create an
object for its stack frame and so on. If so, collecting every small live object consumes a
bigger memory block than the object’s.

Our Buffered garbage collection first allocates those objects in the buffer space and
then moves only live objects to the new space. The move from the buffer space to the
new space is frequently performed every time when the callback function finishes. We can
expect that our collector consumes a smaller amount of memory.

A key idea of our approach is to reclaim garbage objects created by a callback function
while the garbage collector is still running. Hence, a concurrent garbage collector [2] might
seem to be able to reclaim the garbage objects created by the callback function if they
are allocated in the old space. An issue with this approach however is whether garbage is
reclaimed faster than it is produced. Recall that the callback function may create several
larger objects when it collects one live object. We will also need to study the execution of
the callback function during the second pause time (or the remark phase) of the concurrent
collection.

Buffered garbage collection can be regarded as a variant of the generational collection
[42]. Like the generational collection, the minor collection from the buffer space to the
new space exploits the fact that most objects created by the callback function are garbage
when the function finishes. Buffered garbage collection uses the buffer space to identify
such short-lived objects. On the other hand, the generational collection exploits the fact
that most of the recently created objects are short-lived. It does not provide multiple
regions where objects are initially allocated. All objects are initially allocated in the young
space and they are equally treated.

We see a similarity to the regional garbage collection [11, 35] in the fact that objects
are initially allocated in two regions, the old space or the buffer space, and that they
are separately scavenged. Although our aim is not to reduce the pause time related to
garbage collection, it would be possible to emulate our algorithm by customizing a regional
collector. The customized collector would use one region as the buffer space and, at the
first time, scavenge that region without invoking a copy-time callback function. Then that
region would be changed into part of the normal space where the callback function does
not create objects. When that region is scavenged next time, the collector invokes the
callback function. The collector uses another fresh region as the buffer space where the
invoked callback creates objects.

76CHAPTER 5. SELF-REFLECTIVE GARBAGE COLLECTION FOR CUSTOMIZINGGARBAGE COLLECTORS

5.5 Experiment

To evaluate Buffered garbage collection, we implemented an interpreter for a simple Scheme-
like language in C++. The interpreter supports not only the Buffered garbage collector but
also the normal copying collector, where the objects created by a copy-time callback func-
tion are allocated directly in the new space. The garbage collection is initiated when the
memory consumption exceeds the preset threshold. In this Scheme-like language, a symbol
value is not unique (the same-looking symbols may not be identical), numeric values are
not unboxed, and every stack frame is allocated as an object in the heap memory.

We ran a micro benchmark program on this interpreter and examined whether the
Buffered garbage collector could run with a smaller amount of memory than the nor-
mal copying collector when a copy-time callback function was registered. The benchmark
program counted bi-gram frequencies in a long character string. This character string con-
tained 10240 letters randomly selected among four letters: a, b, c, and d. The copy-time
callback function implemented string deduplication and its code was shown in Figure 5.1.
The interpreter was run on a machine with the Intel® Core i7-4770S processor (eight 3.10
GHz cores) and 16 GB of memory. Its operating system was Ubuntu16.04 LTS. We used
GNU gcc 5.4.0 for compiling the interpreter.

Figure 5.5 shows the results of the experiments with the buffered garbage collector
and the normal copying collector, respectively. Each column represents the total heap
size excluding the buffer space. The rows in the upper chart of Figure 5.5 represents the
size of the buffer space in Bytes (not KBytes). The rows in the lower chart of Figure 5.5
represents the threshold when the garbage collection is initiated. Since the interpreter needs
an extra margin in the heap memory to run a copy-time callback function with the normal
collector, we examined different thresholds. For the buffered collector, we chose 100% for
the threshold. The color of each cell shows the result of executing our micro-benchmark
program. Black cells denote a heap memory shortage and the failure of execution. White
cells denote that no heap memory shortage or garbage collection happened. Gray cells
denote a successful execution with garbage collection and string deduplication.

The results of our experiments reveal that our collector could run the micro benchmark
with a smaller amount of heap memory than the normal copying collector. When more
than 2 KB was given to the buffer space, the Buffered garbage collector could run the
program with only 4 MB of heap memory (the total heap size including the buffer space
was 8194 KB). The normal copying collector could not run the program with this amount
of heap memory; it needed at least 12 MB. Note that the interpreter with this size of heap
memory did not have to perform garbage collection. The garbage collection was initiated
when the threshold was set from 20 to 40%. Under this configuration, however, the normal
copying collector required more than 16 MB of heap memory.

5.6. CONCLUDING REMARKS 77

5.6 Concluding Remarks

This chapter proposed Buffered garbage collection, which allows us to customize a garbage
collector via computational self-reflection. The experiment showed that the buffered garbage
collector could run our benchmark program without consuming unacceptable huge mem-
ory. A limitation is that our garbage collection is based on copying algorithm. Therefore,
the collector stops the world during garbage collection and only the half of an available
memory space is used. To avoid these problems, applying our idea to regional collectors is
a future work.

78CHAPTER 5. SELF-REFLECTIVE GARBAGE COLLECTION FOR CUSTOMIZINGGARBAGE COLLECTORS

1 #include <unordered_map >

2 #include <functional >

3 #include "SchemeObject.hpp"

4 #include "SchemeHash.hpp"

5 using namespace std;

6
7 typedef SchemeObject SO;

8 typedef SchemeObjectRef SORef;

9
10 unordered_map <

11 SORef ,

12 SORef ,

13 function <size_t(SORef)>,

14 function <bool(SORef , SORef)>

15 > intern_table (0,

16 schemeHash ,

17 schemeEquals);

18
19 SORef intern(SORef str){

20 if(! map_contains(intern_table , str)){

21 return intern_table[str] = str;

22 }else{

23 return intern_table[str];

24 }

25 }

26
27 SORef onCopy(SORef obj){

28 if(obj.ref_type == SORef :: OBJECT &&

29 obj ->type == SO:: STRING){

30 return intern(obj);

31 }else{

32 return obj;

33 }

34 }

Figure 5.3: String deduplication by a dynamically-linked callback function

5.6. CONCLUDING REMARKS 79

1 (#% module-begin

2 (library gc-customization

3 (export on-copy)

4 (import scheme-interpreter))

5
6 (define intern-table

7 (make-hashtable scheme-hash

8 scheme-equal ?))

9
10 (define intern

11 (lambda (str)

12 (if (hashtable-contains?

13 intern-table str)

14 (hashtable-ref intern-table str)

15 (begin (hashtable-set!

16 intern-table str str)

17 str))))

18
19 (define on-copy

20 (lambda (obj)

21 (if (and (eq? (ref-type obj)

22 'OBJECT)

23 (eq? (type-of obj)

24 'STRING))

25 (inetrn obj)

26 obj))))

Figure 5.4: String deduplication by a callback function written in Scheme

80CHAPTER 5. SELF-REFLECTIVE GARBAGE COLLECTION FOR CUSTOMIZINGGARBAGE COLLECTORS

�
%(
�)��
��	
�%�	
�
(�
��(
%�)�
%%�
%
	

��
��
%�
	�

�
(�
)�
�
��

)
)
)

�51!�#9(5� ���

08
"5

1#
8

�4
� �

�

� %��(

#B335##�&9$8 B$�71"2175�3 ��53$9 �
#B335##�&9$8�71"2175�3 ��53$9 �

�5� "'�5"" "

�51!�#9(5� ���

�9
(5

�
6�2

B6
65

"�#
!1

35
� �

'$
5�

� %��(

Figure 5.5: Bi-gram counting with the buffered garbage collector (top) and with the normal
copying garbage collector (bottom)

Chapter 6

Conclusion

In this thesis, we presented our researches to assist library developments. People will
develop countless applications for our lives in the future, and the number of problem
domains must increase. Developing libraries is a promising approach to reduce the cost of
developing applications. However a specific library can reduce only the cost of a limited
range of application developments. To reduce the cost of a wide range of application
developments, we have to develop libraries for each problem domain. We aim to reduce
the cost of a wide range of application developments by assisting library developments.

We focused on two approaches to assist in library developments and proposed three
methods. The first approach we focused on was protocol checking, and we proposed a
novel protocol checking method for fluent interfaces. Our method makes a type checker
emulate an LR parser to detect illegal method chains. We revealed that our method would
consume quadratic time to check a program by our experiment. The result suggests that it
is possible to improve a type checker for other uses from type checking since an LR parsing
can be done in linear time even if it is by emulation.

One limitation of our work is that our method can check a library protocol only if it is
a fluent interface. A method to check a protocol of another type of library interface is left
for future work. Also, we have not discovered how we can measure how much a method
reduces the cost to develop libraries. It is not easy to evaluate how much a method reduces
the cost of library developments since it is not enough to measure how much it costs to
develop a library, but it is also necessary to measure the quality of that library. Measuring
how much it costs to develop applications using that library possibly implies the library
quality. Considerations of how we can estimate the impact of a method on the cost to
develop libraries are also left for future work.

The second approach to assist library developments we focused on was FFIs which
enables us to reuse libraries written in another programming language, and we proposed two
methods. The first method was a garbage collection algorithm that can detect and collect
cross-language cyclic references when it is garbage. We experimented on its computation

81

82 CHAPTER 6. CONCLUSION

time overhead and revealed the relationship between shapes of cycles and computation
time. The second method was also a garbage collection algorithm, but for a garbage
collector, which allows self-reflective customization. Our experiment confirmed that our
algorithm could reduce memory consumption caused by self-reflective customization.

The first method can stop a user program for a long time since it is a stop-the-world
algorithm. Techniques in incremental or concurrent garbage collection might reduce the
pause time. It is also unclear how much preventing “the last piece of cake” problem reduces
the cost of library developments. Discovering a method to measure how a method reduces
the cost to develop libraries is left for future work. The self-reflective interface to customize
a garbage collector the second method focusing on is still simple and cannot implement the
first method. Researches on a more expressive interface and measures against problems
that interface can cause are left for future work.

Each of our proposals is still a small progress, and they cannot contribute our lives for
now. However, we have to do trial and error on methods to assist in library developments
since evaluating them takes years, and we cannot efficiently implement only the technologies
we needed. We believe that accumulating little progress will enrich our lives in the future.

Bibliography

[1] Bowen Alpern et al. “Implementing JalapeÑO in Java”. In: Proceedings of the 14th
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications. ACM, 1999, pp. 314–324.

[2] Henry G. Baker Jr. “List Processing in Real Time on a Serial Computer”. In: Com-
mun. ACM 21.4 (Apr. 1978), pp. 280–294. issn: 0001-0782. doi: 10.1145/359460.
359470. url: http://doi.acm.org/10.1145/359460.359470.

[3] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. “Oil and Water?
High Performance Garbage Collection in Java with MMTk”. In: Proceedings of the
26th International Conference on Software Engineering. ICSE ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 137–146. isbn: 0-7695-2163-0. url: http:
//dl.acm.org/citation.cfm?id=998675.999420.

[4] Burton H. Bloom. “Space/Time Trade-Offs in Hash Coding with Allowable Errors”.
In: Commun. ACM 13.7 (July 1970), pp. 422–426. issn: 0001-0782. doi: 10.1145/
362686.362692. url: %5Curl%7Bhttps://doi.org/10.1145/362686.362692%7D.

[5] Roland Bock. rbock/sqlpp11: A type safe SQL template library for C++. https:
//github.com/rbock/sqlpp11. 2016.

[6] C. J. Cheney. “A Nonrecursive List Compacting Algorithm”. In: Commun. ACM
13.11 (Nov. 1970), pp. 677–678. issn: 0001-0782. doi: 10.1145/362790.362798.
url: http://doi.acm.org/10.1145/362790.362798.

[7] John Cocke. Programming Languages and Their Compilers: Preliminary Notes. 1969.

[8] Tal Cohen and Joseph (Yossi) Gil. “Three Approaches to Object Evolution”. In:
Proceedings of the 7th International Conference on Principles and Practice of Pro-
gramming in Java. PPPJ ’09. Calgary, Alberta, Canada: ACM, 2009, pp. 57–66. isbn:
978-1-60558-598-7. doi: 10.1145/1596655.1596665. url: http://doi.acm.org/
10.1145/1596655.1596665.

[9] Bruno Courcelle. “On Jump-Deterministic Pushdown Automata”. In: Mathematical
systems theory (1977).

83

84 BIBLIOGRAPHY

[10] Ulan Degenbaev et al. “Cross-Component Garbage Collection”. In: Proc. ACM Pro-
gram. Lang. 2.OOPSLA (Oct. 2018). doi: 10.1145/3276521. url: %5Curl%7Bhttps:
//doi.org/10.1145/3276521%7D.

[11] David Detlefs et al. “Garbage-first Garbage Collection”. In: Proceedings of the 4th In-
ternational Symposium on Memory Management. ISMM ’04. Vancouver, BC, Canada:
ACM, 2004, pp. 37–48. isbn: 1-58113-945-4. doi: 10.1145/1029873.1029879. url:
http://doi.acm.org/10.1145/1029873.1029879.

[12] Werner Dietl et al. “Building and Using Pluggable Type-checkers”. In: Proceedings
of the 33rd International Conference on Software Engineering. ICSE ’11. Waikiki,
Honolulu, HI, USA: ACM, 2011, pp. 681–690. isbn: 978-1-4503-0445-0. doi: 10.
1145/1985793.1985889. url: %5Curl%7Bhttp://doi.acm.org/10.1145/1985793.
1985889%7D.

[13] Edsger W. Dijkstra et al. “On-the-fly Garbage Collection: An Exercise in Cooper-
ation”. In: Commun. ACM 21.11 (Nov. 1978), pp. 966–975. issn: 0001-0782. doi:
10.1145/359642.359655. url: http://doi.acm.org/10.1145/359642.359655.

[14] Robert R. Fenichel and Jerome C. Yochelson. “A LISP Garbage-collector for Virtual-
memory Computer Systems”. In: Commun. ACM 12.11 (Nov. 1969), pp. 611–612.
issn: 0001-0782. doi: 10.1145/363269.363280. url: http://doi.acm.org/10.
1145/363269.363280.

[15] Apache Software Foundation. Apache Phoenix. https://phoenix.apache.org/.
2014.

[16] Python Software Foundation. Python Documentation. https://docs.python.org/
ja/3/library/ctypes.html.

[17] Martin Fowler. FluentInterface. https://www.martinfowler.com/bliki/FluentInterface.
html. 2005.

[18] Emden R. Gansner and Stephen C. North. “An open graph visualization system
and its applications to software engineering”. In: SOFTWARE - PRACTICE AND
EXPERIENCE 30.11 (2000), pp. 1203–1233.

[19] Jeremy Gibbons and Nicolas Wu. “Folding domain-specific languages: Deep and shal-
low embeddings (functional Pearl)”. In: Proceedings of the ACM SIGPLAN Interna-
tional Conference on Functional Programming. 2014.

[20] Joseph (Yossi) Gil and Keren Lenz. “Simple and safe SQL queries with C++ tem-
plates”. In: Science of Computer Programming 75.7 (2010). Generative Programming
and Component Engineering (GPCE 2007), pp. 573–595.

[21] Yossi Gil and Tomer Levy. “Formal Language Recognition with the Java Type
Checker”. In: Proceedings of 30th European Conference on Object-Oriented Program-
ming. 2016.

BIBLIOGRAPHY 85

[22] Yossi Gil and Ori Roth. “Fling - A Fluent API Generator”. In: 33rd European Confer-
ence on Object-Oriented Programming (ECOOP 2019). 2019. doi: 10.4230/LIPIcs.
ECOOP.2019.13. url: %5Curl%7Bhttp://drops.dagstuhl.de/opus/volltexte/
2019/10805%7D.

[23] Jonathan Goldstine, John K. Price, and Detlef Wotschke. “On reducing the number
of states in a PDA”. In: Mathematical systems theory 15.1 (Dec. 1981), pp. 315–321.
issn: 1433-0490. doi: 10.1007/BF01786988. url: %5Curl%7B%22https://doi.org/
10.1007/BF01786988%22%7D.

[24] Google Code Archive - pyv8. https://code.google.com/archive/p/pyv8/.

[25] Radu Grigore. “Java Generics Are Turing Complete”. In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages. 2017.

[26] Stephan Heilbrunner. “A parsing automata approach to LR theory”. In: Theoret-
ical Computer Science 15.2 (1981), pp. 117–157. issn: 0304-3975. doi: https://
doi.org/10.1016/0304-3975(81)90067-0. url: %5Curl%7B%22http://www.
sciencedirect.com/science/article/pii/0304397581900670%22%7D.

[27] Kohei Honda. “Types for dyadic interaction”. In: CONCUR’93. Ed. by Eike Best.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 509–523. isbn: 978-3-540-
47968-0.

[28] Michihiro Horie et al. “String Deduplication for Java-based Middleware in Virtualized
Environments”. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments. VEE ’14. Salt Lake City, Utah, USA:
ACM, 2014, pp. 177–188. isbn: 978-1-4503-2764-0. doi: 10.1145/2576195.2576210.
url: http://doi.acm.org/10.1145/2576195.2576210.

[29] Paul Hudak. “Building Domain-Specific Embedded Languages”. In: ACM Computing
Surveys (1996).

[30] Kazuhiro Ichikawa and Shigeru Chiba. “User-Defined Operators Including Name
Binding for New Language Constructs”. In: The Art, Science, and Engineering of
Programming 1.2 (2017), 15:1–15:25.

[31] Google Inc. Improve your code with lint checks. https://developer.android.com/
studio/write/lint. 2011.

[32] Steven G. Johonson. Calling Python functions from the Julia language. https://
github.com/JuliaPy/PyCall.jl.

[33] Maria Jump and Kathryn S. McKinley. “Cork: Dynamic Memory Leak Detection for
Garbage-collected Languages”. In: Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’07. Nice,
France: ACM, 2007, pp. 31–38. isbn: 1-59593-575-4. doi: 10.1145/1190216.1190224.
url: http://doi.acm.org/10.1145/1190216.1190224.

86 BIBLIOGRAPHY

[34] Tadao Kasami. An Efficient Recognition and Syntax-Analysis Algorithm for Context-
Free Languages. Tech. rep. 1965.

[35] Felix S. Klock II and William D. Clinger. “Bounded-latency Regional Garbage Col-
lection”. In: Proceedings of the 7th Symposium on Dynamic Languages. DLS ’11.
Portland, Oregon, USA: ACM, 2011, pp. 73–84. isbn: 978-1-4503-0939-4. doi: 10.
1145/2047849.2047859. url: http://doi.acm.org/10.1145/2047849.2047859.

[36] Donald E. Knuth. “On the translation of languages from left to right”. In: Information
and Control 8.6 (1965), pp. 607–639. issn: 0019-9958. doi: https://doi.org/10.
1016/S0019-9958(65)90426-2. url: %5Curl%7B%22http://www.sciencedirect.
com/science/article/pii/S0019995865904262%22%7D.

[37] Dimitrios Kouzapas et al. “Typechecking protocols with Mungo and StMungo: A
session type toolchain for Java”. In: Science of Computer Programming 155 (2018),
pp. 52–75. doi: https://doi.org/10.1016/j.scico.2017.10.006. url: http:
//www.sciencedirect.com/science/article/pii/S0167642317302186.

[38] Stefan Krüger et al. “CrySL: An Extensible Approach to Validating the Correct Usage
of Cryptographic APIs”. In: European Conference on Object-Oriented Programming
(ECOOP). July 2018, 10:1–10:27.

[39] Tomer Levy. “A Fluent API for Automatic Generation of Fluent APIs in Java”. MA
thesis. Israel Institute of Technology, 2017.

[40] Du Li and Witawas Srisa-an. “Quarantine: A Framework to Mitigate Memory Errors
in JNI Applications”. In: Proceedings of the 9th International Conference on Prin-
ciples and Practice of Programming in Java. PPPJ ’11. Kongens Lyngby, Denmark:
ACM, 2011, pp. 1–10. isbn: 978-1-4503-0935-6. doi: 10.1145/2093157.2093159.
url: http://doi.acm.org/10.1145/2093157.2093159.

[41] libffi. https://sourceware.org/libffi/.

[42] Henry Lieberman and Carl Hewitt. “A Real-time Garbage Collector Based on the
Lifetimes of Objects”. In: Commun. ACM 26.6 (June 1983), pp. 419–429. issn: 0001-
0782. doi: 10.1145/358141.358147. url: http://doi.acm.org/10.1145/358141.
358147.

[43] Harry G. Mairson. “Generating Words in a Context-free Language Uniformly at
Random”. In: Inf. Process. Lett. (1994). doi: 10.1016/0020-0190(94)90033-7.
url: http://dx.doi.org/10.1016/0020-0190(94)90033-7.

[44] George Marsaglia. “Xorshift RNGs”. In: Journal of Statistical Software, Articles 8.14
(2003), pp. 1–6. issn: 1548-7660. doi: 10.18637/jss.v008.i14. url: %5Curl%
7Bhttps://www.jstatsoft.org/v008/i14%7D.

[45] Tomoki Nakamaru et al. “Silverchain: a fluent API generator”. In: Proceedings of the
16th ACM SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences. 2017.

BIBLIOGRAPHY 87

[46] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal
Introduction. 1992. isbn: 0-471-92980-8.

[47] Ligia Nistor et al. “Wyvern: A Simple, Typed, and Pure Object-oriented Language”.
In: Proceedings of the 5th Workshop on MechAnisms for SPEcialization, General-
ization and inHerItance. MASPEGHI ’13. Montpellier, France: ACM, 2013, pp. 9–
16.

[48] Oracle. Java Native Interface Specification⊢Contents. https://docs.oracle.com/
javase/7/docs/technotes/guides/jni/spec/jniTOC.html.

[49] David Plainfossé and Marc Shapiro. “A Survey of Distributed Garbage Collection
Techniques”. In: Proceedings of the International Workshop on Memory Management.
IWMM ’95. Berlin, Heidelberg: Springer-Verlag, 1995, pp. 211–249. isbn: 3540603689.

[50] Brian Cantwell Smith. “Reflection and Semantics in LISP”. In: Proceedings of the
11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
POPL ’84. Salt Lake City, Utah, USA: ACM, 1984, pp. 23–35. isbn: 0-89791-125-3.
doi: 10.1145/800017.800513. url: http://doi.acm.org/10.1145/800017.
800513.

[51] Joshua Sunshine et al. “First-class State Change in Plaid”. In: Proceedings of the 2011
ACM International Conference on Object Oriented Programming Systems Languages
and Applications. OOPSLA ’11. Portland, Oregon, USA: ACM, 2011, pp. 713–732.
isbn: 978-1-4503-0940-0. doi: 10.1145/2048066.2048122. url: http://doi.acm.
org/10.1145/2048066.2048122.

[52] Peter Thiemann and Vasco T. Vasconcelos. “Context-free Session Types”. In: Pro-
ceedings of the 21st ACM SIGPLAN International Conference on Functional Pro-
gramming. ICFP 2016. Nara, Japan: ACM, 2016, pp. 462–475. isbn: 978-1-4503-
4219-3. doi: 10.1145/2951913.2951926. url: %5Curl%7Bhttp://doi.acm.org/
10.1145/2951913.2951926%7D.

[53] Todd Veldhuizen. C++ Templates are Turing Complete. Tech. rep. Indiana University
Computer Science, 2003.

[54] S. C. Vestal. “Garbage Collection: An Exercise in Distributed, Fault-Tolerant Pro-
gramming”. PhD thesis. USA, 1987.

[55] Christian Wimmer et al. “Maxine: An Approachable Virtual Machine for, and in,
Java”. In: ACM Trans. Archit. Code Optim. 9.4 (2013), 30:1–30:24.

[56] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. “Dynamic Code Evo-
lution for Java”. In: Proceedings of the 8th International Conference on the Princi-
ples and Practice of Programming in Java. PPPJ ’10. Vienna, Austria: ACM, 2010,
pp. 10–19. isbn: 978-1-4503-0269-2. doi: 10.1145/1852761.1852764. url: http:
//doi.acm.org/10.1145/1852761.1852764.

88 BIBLIOGRAPHY

[57] Hao Xu. “EriLex: An Embedded Domain Specific Language Generator”. In: Objects,
Models, Components, Patterns. 2010.

[58] Tetsuro Yamazaki and Shigeru Chiba. “Buffered Garbage Collection for Self-reflective
Customization”. In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. SAC ’18. Pau, France: ACM, 2018, pp. 1256–1259. isbn: 978-1-4503-
5191-1. doi: 10.1145/3167132.3167416. url: http://doi.acm.org/10.1145/
3167132.3167416.

[59] Daniel Younger. “Recognition and parsing of context-free languages in time n3”. In:
Information and Control (1967).

