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Abstract
Jonkers’s threaded compaction is attractive in the context
of memory-constrained embedded systems because of its
space efficiency. However, it cannot be applied to a heap
where ordinary objects and meta-objects are intermingled
for the following reason. It requires the object layout informa-
tion, which is often stored in meta-objects, to update pointer
fields inside objects correctly. Because Jonkers’s threaded
compaction reverses pointer directions during garbage col-
lection (GC), it cannot follow the pointers to obtain the ob-
ject layout. This paper proposes Fusuma, a double-ended
threaded compaction that allows ordinary objects and meta-
objects to be allocated in the same heap. Its key idea is to
segregate ordinary objects at one end of the monolithic heap
and meta-objects at the other to make it possible to sepa-
rate the phases of threading pointers in ordinary objects
and meta-objects. Much like Jonkers’s threaded compaction,
Fusuma does not require any additional space for each object.
We implemented it in eJSVM, a JavaScript virtual machine
for embedded systems, and compared its performance with
eJSVM using mark-sweep GC. As a result, compaction en-
abled an IoT-oriented benchmark program to run in a 28-KiB
heap, which is 20 KiB smaller than mark-sweep GC. We also
confirmed that the GC overhead of Fusuma was less than
2.50× that of mark-sweep GC.

Keywords: garbage collection, JavaScript, compaction, meta-
object, embedded systems

1 Introduction
eJS [19] is a JavaScript processing system for embedded sys-
tems such as IoT devices, where approximately 100 KB of
memory is available for the heap. It generates a customized
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JavaScript virtual machine (VM), eJSVM, for a specific appli-
cation based on a VM configuration given by the application
developer.

The standard eJSVM configuration uses mark-sweep gar-
bage collection (GC). Because mark-sweep GC does not move
objects, the VM may suffer from fragmentation; even if the
total free space in the heap is sufficient, the program may fail
to allocate a contiguous area for an object. One way to solve
this fragmentation problem is to use compaction. Jonkers’s
threaded compaction [12] is a memory-efficient compaction
algorithm. Unlike other sliding compaction methods, it does
not use extra words in the object header or in any side tables.
For example, Lisp2 [14] compaction uses one extra word for
a forwarding pointer, and the Compressor [13] uses a side
table. Because space overhead of a few kilobytes is serious
in a 100-KB heap, this attribute is attractive.
The current eJSVM records the layout information of

JavaScript first class objects, or ordinary objects, in meta-
objects called hidden classes [4] to execute JavaScript pro-
grams efficiently. Because a hidden class is made up of mul-
tiple meta-objects connected by pointers, the pointers inside
meta-objects must be followed to obtain the object layout.
Such meta-objects are allocated in the same heap as ordinary
objects and are subject to GC.

Jonkers’s threaded compaction scans the heap after mark-
ing live objects to thread all pointers in the object. The layout
of each object must be known during the threading pro-
cess. However, because the threading operation reverses the
pointer direction, threaded pointers cannot be followed until
they are unthreaded. Because of this, if ordinary objects and
meta-objects are allocated in the same heap, the object layout
cannot be obtained.
One possible way to cope with this problem is to use a

dedicated space for meta-objects that is separate from the
space for ordinary objects. However, separate spaces might
induce space-level fragmentation, where one space becomes
full while the other has an excess of free space. This might
be fatal in memory-constrained environments.

https://doi.org/10.1145/3459898.3463903
https://doi.org/10.1145/3459898.3463903
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This paper proposes double-ended threaded compaction
named Fusuma1 to resolve this problem. Fusuma distin-
guishes between ordinary objects and meta-objects when
allocating them: ordinary objects are allocated from one end
of the monolithic heap and the meta-objects that make up
the hidden classes from the other end. During compaction,
pointers in ordinary objects are threaded first, and then the
meta-objects, which have a statically determined layout, are
threaded. By threading in this order, GC can follow pointers
in meta-objects to obtain the layout of ordinary objects be-
cause the meta-objects have not yet been threaded during
ordinary object processing. Finally, live ordinary objects and
meta-objects are slid toward the left and the right respec-
tively. As in Jonkers’s algorithm, Fusuma does not require
any additional space.
We implemented Fusuma in eJSVM and evaluated its

performance using several benchmark programs. Compact-
ing the heap enabled an IoT-oriented benchmark program
to run in a 28-KiB heap, which is 20 KiB smaller than for
mark-sweep GC. We also confirmed that the GC overhead
of Fusuma was less than 2.50× that of mark-sweep GC.
The problem addressed in this paper is not specific to

eJSVM. For example, in the V8 JavaScript Engine2, the GC
needs to follow pointers in hidden classes to determine
whether each property is a pointer or an unboxed value
[7]. Implementing Jonkers’s compaction in such a system
involves the same problem as eJSVM, which can be solved by
Fusuma. Furthermore, other in-place sliding compactions [10,
14] share essentially the same problem addressed in this
paper. The central idea of Fusuma, sliding objects in two
directions, can be applied to them to solve the problem, as
discussed in Section 7.
This paper first describes eJS in Section 2, followed by

Jonkers’s compaction algorithm and its problems in Section
3. Next, Section 4 proposes Fusuma, a double-ended threaded
compaction algorithm, and Section 5 describes its implemen-
tation issues in eJSVM. Section 6 evaluates the performance
of Fusuma implemented in Section 5 by means of experi-
ments. Section 7 introduces related work, and finally, Section
8 concludes the paper.

2 eJS
2.1 Overview
eJS (embedded JavaScript) [19] is a JavaScript processing
system for embedded systems such as IoT devices, where
approximately 100 KB of memory is available for the heap. It
reduces the workload of program developers, improves appli-
cation development efficiency, and facilitates prototyping by
enabling development on embedded systems in JavaScript.

1Fusuma is a bi-part sliding partition in a traditional Japanese room.
2https://v8.dev/

(a) Immediate value.

(b) Pointer.

Figure 1. JSValue in eJSVM.

The eJS framework can automatically generate eJSVM,
which is a JavaScript VM customized for a specific appli-
cation program to run on a specific embedded system. For
example, the developer can specify datatypes to be distin-
guished with pointer tagging. eJS generates efficient type
dispatching code in eJSVM based on the developer’s specifi-
cation. The eJS framework supports both 32-bit and 64-bit
processors. Currently, eJSVM runs with an interpreter with-
out just-in-time (JIT) compilation.

2.2 Object Layout
In eJSVM, every first-class value in JavaScript is represented
by a single-word JSValue type. Its structure is presented in
Figure 1. A value of JSValue has type information called
a PTAG (pointer tag) and either an immediate value or an
object address in a single word. When a value of the JSValue
type is an integer, a boolean, or a special value such as
undefined, an immediate value is stored. When it repre-
sents an ordinary object such as an Object or an Array,
the address of the object is used. Because every object is
word-aligned in the heap area, the lower two or three bits
(depending on word size) of an object address are always
zero. These bits are used for PTAG. The developer can specify
a few datatypes that have separate PTAG values to examine
the types quickly. Other datatypes share the same PTAG val-
ues and can be distinguished by the type information called
the HTAG (header tag) in the object header described below.
An ordinary object consists of four elements: an object

header, a pointer to a hidden class, an internal property area,
and a pointer to an external property array, if any. The object
header is a single word containing the object’s size, type
(HTAG), and the mark bit used in GC. The hidden class
records the object layout. An object reference points to the
next word to the object header, as presented in Figure 1 (b).

Invisible properties from the JavaScript program that are
inherently possessed by an ordinary object when it is cre-
ated, such as the pointer to the code of a built-in function,
are called special properties. Associated values with special
properties are stored as non-JSValues at the beginning of
the internal property area, with some exceptions, which GC
takes care of in an ad-hoc way.

https://v8.dev/
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var A = {}; // Step 1
A.a = 100 // Step 2
A.b = "Hello" // Step 3
var B = {}; // Step 4
B.a = 200 // Step 5

(a) JavaScript code.
(b) Step 1.

(c) Step 2.

(d) Step 3. (e) Step 4. (f) Step 5.

Figure 2. Example of growing hidden classes.

As in other JavaScript VMs [6], properties that are likely
to be added to an ordinary object in the future are reserved
in advance as internal properties when the object is allocated.
They are determined based on the execution history of the
program up to the point where the object is allocated. Other
properties that are attached dynamically during program
execution are stored in the external property array.

2.3 Hidden Classes
JavaScript can dynamically add and remove the properties of
objects. A naive implementation for such dynamic addition
and deletion of properties uses an array or hash table of key-
value pairs, where the key is a property name, and the value
is its associated value. However, this naive implementation
is not efficient.

A common technique to deal efficiently with JavaScript’s
dynamic behavior is to use hidden classes [4]. When using
hidden classes, each object manages only its property values
in an array, which is called the property array. In addition to
this, each object has a pointer to its hidden class. A hidden
class essentially manages mappings from property names to
indices in the property array. Hidden classes are immutable;
they can be shared among multiple objects with the same
set of property names that have been attached in the same
order. When a new property is added to an object, a new
hidden class containing both the existing properties and the
new property is created. This new hidden class is linked by
a transition edge from the previously used hidden class. The
transition edge is followed to find the new hidden class when
the property of the same name is added to another object
that shares the previously used hidden class. Figure 2 shows
an example of hidden classes that grow as properties are
added to objects.

Hidden classes can improve space efficiency because the
information on where object properties are stored is shared
among multiple objects. In addition, access to properties
can be accelerated by using inline caching [9, 11], which
premises hidden classes.

2.4 Implementation of Hidden Classes in eJSVM
A hidden class in eJSVM consists of two kinds of meta-
objects: one is the Layout, and the other includes the Prop-
ertyMaps and their related objects. Each meta-object has a
similar header to that of an ordinary object.

Figure 3 shows the structure of these meta-objects. A Lay-
out represents the memory layout of ordinary objects that
hold it. More specifically, it represents the size of the inter-
nal property area and that of the external property array. A
PropertyMap is essentially a table representing the mappings
from property names to the locations of their associated val-
ues or transition edges. The second slot of the PropertyMap
in Figure 3 holds the pointer to the table, which is omitted
in the figure. A PropertyMap also contains the total number
of properties and the number of special properties.
Each ordinary object could have a Layout and a Proper-

tyMap. Instead, eJSVM saves space by putting the pointer
to the PropertyMap in the Layout. In Figure 3, Object1
and Object2 have different numbers of internal properties.
Therefore, their Layouts are different, but they share the
same PropertyMap.

The GC refers to these meta-objects to obtain the sizes of
the internal property area and the external property array
stored in the Layout and to obtain the number of special
properties, which is stored in the PropertyMap. Specifically,
GC needs to follow the pointer to the PropertyMap stored
in the Layout to obtain the number of special properties.
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Figure 3. Structure of a hidden class in eJSVM.

There are cases where meta-objects become garbage and
are reclaimed by GC in eJSVM. For example, a prototype
object is unlikely to share its PropertyMap with other objects
because each prototype object is usually created only once.
Therefore, PropertyMaps created during initialization of pro-
totype objects are likely to be tentative. The eJSVM unlinks
such tentative PropertyMaps from the transition edge. The
details of this are beyond the scope of this paper.

3 Jonkers’s Threaded Compaction
3.1 Overview
The threaded compaction algorithm by Jonkers [12] per-
forms space-efficient sliding compaction. This algorithm
transforms multiple pointers to the same object into a linear
list of locations for the pointers by reversing the pointer
direction through an operation called threading. Thanks to
the threading operation, Jonkers’s algorithm does not re-
quire any extra space in an object, as opposed to the Lisp2
algorithm [14].
Figure 4 (a)–(b) presents the relation between pointers

and objects before and after threading. After threading, the
header area of the object becomes the head of the list of
locations that pointed to the object. This list of threaded
pointers is called the threaded list from the object. The end
of the threaded list contains the original value in the object
header (“X” in Figure 4). Jonkers’s algorithm must recognize
that it does not hold a threaded pointer to detect the end of
a threaded list.
After determining an object’s destination, to which the

object is to be moved, the algorithm unthreads the threaded
list to update every location that pointed at the object before
threadingwith the destination address, as presented in Figure

4 (c). The pointer locations to be updated can be found by
following the threaded list from the object header.

3.2 Algorithm
Jonkers’s compaction algorithm consists of three phases:
the mark phase, the update-forward-reference phase, and
the update-backward-reference phase. Figure 5 presents an
example of a heap when this algorithm is applied. The two
pointers on the left of each sub-figure represent the roots,
and the wide area on their right represents the heap. The
value in the header of an object, e.g., a, is used to name the
object itself, for example, “object a.”
First, the mark phase marks all live objects, which are

reachable from the roots. The roots are pointers to objects
in the heap from outside. The heap after the mark phase
is presented in Figure 5 (a). In this figure, the gray color of
objects indicates that they are alive.
Next, the update-forward-reference phase updates every

pointer that points to a live object forward in the heap with
the destination address, to which the object is to be moved
(Figure 5 (b)–(f)). First, this phase threads all pointers in the
roots. It then scans the heap from the left to find live objects
and performs the following operations on every live object.
First, it unthreads the threaded list from the object by up-
dating every location in the list with its destination address.
Because the heap is scanned from the left, the destination
address is determined by summing up the sizes of all live
objects found so far. Next, the phase threads all pointers in
the object. The heap area after the update-forward-reference
phase is presented in Figure 5 (f), where only backward ref-
erences remain threaded.
Finally, the update-backward-reference phase moves all

live objects while unthreading backward pointers (Figure
5 (g)–(j)). As in the update-forward-reference phase, the
update-backward-reference phase scans the heap area from
the left and performs the following operations on every live
object. First, it unthreads the threaded list from the object
by updating every location in the list with its destination
address. Then it moves the object to the destination address.
The heap area after this phase is presented in Figure 5 (j),
where all live objects have been slid toward the left of the
heap and all pointers have been correctly updated.

3.3 Problem
During the mark and update-forward-reference phases, the
layout information of every object is indispensable to know
the locations of pointer fields in the object. In eJSVM, the
numbers of internal and external properties in the Layout
and the number of special properties in the PropertyMap are
necessary. If eJSVM implements unboxing [7] in the future,
information about whether each field holds a JSValue or
an unboxed value will also be stored in PropertyMaps. Un-
fortunately, when both meta-objects that constitute hidden
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(a) Before threading. (b) After threading. (c) After unthreading.

original pointer threaded pointer unthreaded (updated) pointer

Figure 4. Threading and unthreading.

(a) M: finished (b) F: threading root pointer is done

(c) F: begin of processing object a (d) F: begin of processing object b

(e) F: begin of processing object c (f) F: finished

(g) B: begin of processing object a (h) B: begin of processing object b

(i) B: begin of processing object c (j) B: finished

original pointer threaded pointer updated pointer
M: mark phase, F: update-forward-reference phase, B: update-backward-reference phase

Figure 5. Example of heap with Jonkers’s threaded compaction applied.

classes and ordinary objects are intermingled in the same
heap, the following problem might occur.

Suppose that an ordinary object, its Layout, and its Prop-
ertyMap reside in the heap in the order of the Layout, the
object, and the PropertyMap, as presented in Figure 6 (a).
In the update-forward-reference phase, the pointer in the
Layout to the PropertyMap is threaded first (Figure 6 (b)).
Then, when processing the object, it is possible to reach the
Layout from the object, but the number of special properties
in the PropertyMap is inaccessible because the pointer from
the Layout to the PropertyMap has already been threaded.
As a result, it is impossible to know the layout of the object,
which prevents Jonkers’s algorithm from being applied.

4 Double-Ended Threaded Compaction
This paper proposes Fusuma, a double-ended threaded com-
paction algorithm that solves the problem described in Sec-
tion 3.3.
Assume that the system has ordinary objects and meta-

objects and that they reside in the same monolithic heap. GC
may need to follow pointers in meta-objects to obtain the
layout information of ordinary objects. It does not matter
whether meta-objects have pointers to ordinary objects if
GC does not follow them. For example, hidden classes have
pointers to string objects, which are ordinary objects, in
eJSVM, but GC does not follow the pointers.
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(a) Before threading.

(b) After threading pointers in Layout.
original pointer threaded pointer

Figure 6. Problem in Jonkers’s algorithm.

Figure 7. Heap usage of Fusuma.

4.1 Basic Idea
Fusuma has the same phases as Jonkers’s compaction.
The basic idea of the proposed algorithm is that, in the

update-forward-reference phase, it processes all ordinary
objects first, during which it refers to meta-objects for layout
information to determine the locations of pointer fields inside
ordinary objects. Afterwards, it processes meta-objects. Note
that the layout of every meta-object is statically determined.
For this purpose, ordinary objects are allocated from the

left of the heap in the forward direction and meta-objects
from the right in the backward direction (Figure 7). The heap
area where ordinary objects are allocated is called the ordi-
nary object area, and that where meta-objects are allocated
is called the meta-object area.

During the compaction, ordinary objects and meta-objects
are slid toward the left end and the right end of the heap re-
spectively. Therefore, in the update-forward-reference phase
and update-backward-reference phase, ordinary objects are
scanned from the left, whereas meta-objects are scanned
from the right.

4.2 Algorithm
Figure 8 presents the pseudo code of Fusuma. In this code,
metaObjectTop(to,size) returns the top address of the
meta-object of which the bottom is pointed to by to, and
pointerToObject(p) returns the pointer to the ordinary
object / meta-object with a top address of p. For the case
of eJSVM, p points to the object header, and this function
returns the address of the next word to the header. Func-
tion getMetaObjectSize(b) determines the size of a meta-
object from its bottom address b. As for the other helper
functions, their names are self-explanatory. Figure 9 pro-
vides an example of a heap when Fusuma is applied.

Much like Jonkers’s compaction, Fusuma consists of three
phases: the mark phase, the update-forward-reference phase,
and the update-backward-reference phase. The mark phase
is the same as that of Jonkers’s compaction.
The update-forward-reference phase can be divided into

three steps (function updateForwardReferences()). The
first step (foreach loop) threads all pointers in the roots (Fig-
ure 9 (a)–(b)). The second step (the first while loop) scans
the ordinary object area from the left in the forward direc-
tion, as in the update-forward-reference phase of Jonkers’s
algorithm (Figure 9 (b)–(c)). Finally, the third step (the sec-
ond while loop) scans the meta-object area from the right
in the reverse direction (Figure 9 (c)–(e)). The processing
for each live meta-object found during the third step is the
same as for each live ordinary object in the second step; first,
the algorithm unthreads the threaded list by updating every
location in the list with the new destination address, and
then it threads every pointer in the meta-object.
The update-backward-reference phase (function update

BackwardReferences()) scans (in the first while loop) the
object area in the forward direction (Figure 9 (e)–(f)), and
then scans (in the second while loop) the meta-object area
in the reverse direction (Figure 9 (f)–(h)). The operation for
each ordinary object / meta-object is the same as the oper-
ation performed in the update-backward-reference phase
in Jonkers’s algorithm; it unthreads the threaded list and
then moves the object to its destination address. Please note
that an ordinary object is moved toward the left of the heap,
whereas a meta-object is moved toward the right.

By processing all ordinary objects before threading the
pointers inside meta-objects in the update-forward-reference
phase, the problem described in Section 3.3 is solved.

5 Implementation
5.1 Boundary Tags
Fusuma scans the meta-object area from right to left. To
make this possible, Fusuma places size information not only
in the header of every meta-object, but also in the next word
of the meta-object. This size information at the bottom of a
meta-object is called the boundary tag. Although no left-to-
right iteration is performed on the meta-objects, the object
header, including size and type, is still needed at the left of
each meta-object to make it possible to obtain its type in the
same manner as for ordinary objects.
A naive implementation of the boundary tag is to add

an extra word next to a meta-object, as presented in Figure
10 (a). This implementation imposes space overhead, which
might be critical for embedded systems with limited memory
for the heap. To reduce this overhead, this paper proposes
to use the boundary tag embedding technique [14].
The boundary tag embedding technique halves the bit

length of the size information in the meta-object header and
merges the boundary tag of a meta-object with the header
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gc() {
mark();
updateForwardReferences();
updateBackwardReferences();

}

thread(ref) {
ptr = *ref;
*ref = getHeader(ptr);
setHeader(ptr, ref);

}

unthread(ptr, dst) {
tmp = getHeader(ptr);
while (isThreadedPointer(tmp)) {
next = *tmp;
*tmp = dst;
tmp = next;

}
setHeader(ptr, tmp);

}

threadAllPointers(p) {
foreach (ptr in getPointers(p))

thread(&ptr)
}

updateForwardReferences() {
foreach (ptr in roots)

thread(&ptr)
scan = to = ordinaryObjectAreaStart;
while (scan < ordinaryObjectAreaEnd) {

p = pointerToObject(scan);
size = getObjectSize(p)
scan += size;
if (isMarked(p)) {

dest = pointerToObject(to);
unthread(p, dest);
threadAllPointers(p);
to += size;

}
}
scan = to = metaObjectAreaEnd;
while (metaObjectAreaStart < scan) {

size = getMetaObjectSize(scan);
scan = metaObjectTop(scan, size);
p = pointerToObject(scan);
if (isMarked(p)) {

to = metaObjectTop(to, size);
dest = pointerToObject(to);
unthread(p, dest);
threadAllPointers(p);

}
}

}

updateBackwardReferences() {
scan = to = ordinaryObjectAreaStart;
while (scan < ordinaryObjectAreaEnd) {

p = pointerToObject(scan);
size = getObjectSize(p)
scan += size;
if (isMarked(p)) {

dest = pointerToObject(to);
unthread(p, dest);
move(p, dest);
to += size;

}
}
scan = to = metaObjectAreaEnd;
while (metaObjectAreaStart < scan) {

size = getMetaObjectSize(scan);
scan = metaObjectTop(scan, size);
p = pointerToObject(scan);
if (isMarked(p)) {

to = metaObjectTop(to, size);
dest = pointerToObject(to);
unthread(p, dest);
move(p, dest);

}
}

}

Figure 8. Pseudo code of Fusuma.

(a) M: finished. (b) F: threading root pointer is done.

(c) F: start of processing meta-object x. (d) F: start of processing meta-object y.

(e) F: finished. (f) B: start of processing meta-object x.

(g) B: start of processing meta-object y. (h) B: finished.

original pointer threaded pointer updated pointer
M: mark phase, F: update-forward-reference phase, B: update-backward-reference phase

Figure 9. Example of heap with Fusuma applied.

of the immediately following meta-object, as presented in
Figure 10 (b). Through this technique, Fusuma can be im-
plemented without any extra space overhead except for a
single word containing the boundary tag for the rightmost
meta-object.

One drawback of the boundary tag embedding is that it
sacrifices the size field in the meta-object header. However, in
practical use in eJSVM, this is unlikely to introduce a problem
because it does not affect the size of ordinary objects, and
meta-objects are usually small enough. As will be presented
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(a) Naive implementation. (b) Embedding implementation.
M0–M3 represent meta-objects.

Figure 10. Two implementations of boundary tag.

in Section 5.2, even for the 32-bit implementation, the size
field has 20 bits. After the size field is halved, it still has 10
bits, allowing up to 1,023 words. In eJSVM, meta-objects do
not exceed this limit unless an object has more than 510
properties or a PropertyMap has more than 510 transition
links. In fact, the maximum size of meta-objects was only 163
words in the benchmark programs in Section 6. Nevertheless,
large meta-objects could be supported, although this has not
yet been implemented, by putting some special marker value
in the size field and recording the actual (large) size in an
adjacent extra word.

5.2 Object Header Types
Figure 11 presents the object header of both ordinary objects
and meta-objects and the boundary tag of the meta-objects
used in the naive implementation. Figure 12 presents the
object header of the ordinary objects and that of the meta-
objects used in the boundary tag embedding implementation.
For boundary tag embedding, the size field in the meta-

object header is equally divided into two: the forward size
field that holds the meta-object size of the header, and the
backward size field that holds the meta-object size just before
the header. Therefore, the bit length of the size field in the
ordinary object header is different from that of the forward
size field in the meta-object header. Despite this, when taking
the size of the current object of interest from its header, there
is no need to determine at runtime whether this object is an
ordinary object or a meta-object to use the proper bitmask.
Instead, it is always possible to use a deterministic bitmask
depending on the scanning area because the current object is
definitively an ordinary object / ameta-object when scanning
the ordinary object area / meta-object area respectively.

5.3 Terminal Bit
For both implementations, the LSB of every header is the
terminal bit, which is always set. As explained in Section 3,
distinguishing between a threaded pointer and a header is
necessary. The terminal bit is used for this purpose.

Pointers to ordinary objects / meta-objects are expected to
be placed at even addresses in memory. They may reside on
the GC target heap where ordinary objects and meta-objects

(a) Header of ordinary objects and meta-objects.

(b) Boundary tag of meta-objects.

Figure 11. Header and boundary tag in the naive implemen-
tation (M: mark bit, left: 64-bit, right: 32-bit).

(a) Header of ordinary objects.

(b) Header of meta-objects.

Figure 12. Header in boundary tag embedding implementa-
tion (M: mark bit, left: 64-bit, right: 32-bit).

are allocated, or outside the heap, such as local variables in
a C function. In the former case, pointers are always placed
at even addresses because objects are aligned at 64-bit / 32-
bit boundaries. In the latter case, although pointers are not
guaranteed to be placed at even addresses, the C compiler
generally avoids placing them at odd addresses. Therefore,
the LSB of a threaded pointer is cleared in our implementa-
tion of Fusuma. The unthread in Figure 8 investigates the
LSB of a target value by using isThreadedPointer. If the
LSB is cleared, the value is judged to be a threaded pointer;
otherwise, the value is a header.

5.4 Restoring the Pointer Tag in Unthreading
In eJSVM, first-class JavaScript values are represented by
the JSValue type (Section 2.2). eJSVM is customizable in
PTAG value assignments, where the PTAG is the type in-
formation in the lowest two or three bits in JSValue. For
example, it is possible to assign separate PTAG values to
simple Object and Array. By threading, the PTAG value
cannot be preserved in a threaded pointer because the LSB,
which overlaps with the PTAG, is used as a terminal bit in
the header. If the PTAG were written into a threaded pointer,
unthread could not identify the end of a threaded list cor-
rectly. Nevertheless, unthreading must restore the original
PTAGs on the JSValues that point to the new address.
In eJSVM, correspondences between HTAGs and PTAGs

are determined at VM customization time so that the PTAG
is uniquely decided according to the HTAG. Therefore, when
updating a threaded pointer to a new destination address,
the PTAG value to restore is determined based on the HTAG
value that resides at the end of the threaded list. Accord-
ingly, the unthreading operation needs two passes over the
threaded list: the first to obtain the HTAG value simply by
following the list to its end, and the second to update every



Fusuma: Double-Ended Threaded Compaction ISMM ’21, June 22, 2021, Virtual, Canada

Table 1. Execution environments.

X64 RP
CPU Core i7-10700 Cortex-A53 (ARMv8)

64-bit SoC
Frequency 2.90 GHz 1.40 GHz
Memory 32 GB 1 GB
OS Debian 10.7 Raspbian 9.13
GCC 8.3.0 (Debian 8.3.0-6) 6.3.0 20170516

(Raspbian 6.3.0-18
+rpi1+deb9u1)

eJSVM 64-bit configuration 32-bit configuration

threaded pointer with a new destination address by putting
the corresponding PTAG into the obtained HTAG.

5.5 Self-Referencing Pointer in a Meta-Object
When using the boundary tag embedding implementation,
if a meta-object has a self-referencing pointer inside, the
following must be considered. While scanning the meta-
object area in the update-forward-reference phase, if such a
live meta-object is found, the thread operation for the self-
referencing pointer stores a threaded pointer in the meta-
object header. As a result, the original value in the meta-
object header, in which the boundary tag of the previous
meta-object is embedded, is no longer there.

Fortunately, in eJSVM, a meta-object never has a pointer
to itself. When Fusuma is applied to systems other than
eJSVM, it might be necessary to consider the above case.

6 Evaluation
To evaluate the space efficiency and performance of Fusuma,
we ran benchmark programs on the following two environ-
ments, whose details are presented in Table 1.

• a desktop computer with an Intel x64 CPU (X64), and
• a Raspberry Pi 3 Model B+ (RP).

Although RP has a 64-bit CPU, Raspbian OS on RP runs on
32-bit; in particular, the address is 32-bit. Thus, for building
eJSVM on RP, we used the default 32-bit configuration. We
used these rich environments in order to use utility software
for the measurement while keeping the heap size of eJSVM
small.

Becausewewere unable to find a suitable JavaScript bench-
mark suite for embedded systems, we used standard bench-
mark suites instead.We used seven programs from theAreWe-
FastYet benchmark [16] and eight programs from the Sun-
Spider benchmark3, all of which invoked GC. These 15 pro-
grams were slightly modified to run on eJSVM. Their pro-
gram names are listed in Table 2. In addition, we used dht11
[17] and inc-prop programs, whichwe created. dht11 is based
on a program actually used on IoT devices. It repeatedly con-
verts a sequence of bits from a temperature and humidity

3https://webkit.org/perf/sunspider/sunspider.html

sensor into numerical temperature and humidity values. inc-
prop is a synthetic program that continuously adds new
properties of dynamically created names and, hence, creates
new hidden classes and reallocates external property arrays
of various sizes. The source code is in Appendix A.
In each of the two execution environments, we prepared

three eJSVMs that used different GC algorithms:

• the mark-sweep algorithm, which is the standard GC
in eJSVM (MS),

• Fusuma using the naive boundary tag implementation
(TC), and

• Fusuma using the boundary tag embedding technique
(TCE).

The MS implementation used a first-fit free list allocator
without size segregation. A fragment smaller than four words
was attached to its adjacent object. In addition to external
fragmentations commonly observed in non-moving GCs, it
caused internal fragmentations. GC was invoked when the
free space of the heap became less than 1/16 of the total heap
size to cope with fragmentation in MS and to make a fair
comparison of the three.

6.1 Space Efficiency
We investigated the minimum heap size required to run each
benchmark program. We hereinafter call this heap size the
lower limit heap size, or lower limit for short.We determined it
by repeatedly executing a benchmark programwhile altering
the heap size by 2 KiB. Table 2 presents the lower limit for
each benchmark on X64 and RP. A bracketed value means
that the execution time exceeded the realistic time when the
heap size was less than the bracketed value. We executed the
programs for at least twenty minutes before timeout. Note
that we will also use the term “lower limit” to denote this
bracketed value.
For MS, the lower limit was unclear; a program worked

with heap sizes smaller than the heap size where the program
failed to run. The reason was that a change in the heap
size triggered GC at a different point, which changed the
arrangement of objects in the heap. A different arrangement
caused a different spatial overhead because of fragmentation.
We regarded the minimum heap size such that execution did
not fail at any heap size that was equal to or larger than the
minimum as the lower limit of the program for MS.
The programs can be classified into two groups. In one

group, the lower limits for TC and TCE were substantially
smaller than that for MS. A program in this group has a
dagger (†) after its name in Table 2. For the programs in this
group, the fragmentation that occurred in MS reduced the
efficiency of heap utilization. In contrast, the fragmentation
was eliminated by the compaction in TC and TCE. Since the
severity of fragmentation depends on the program, the ratio
of the lower limit of MS to that of TC or TCE differed greatly
from program to program. Although programs in this group

https://webkit.org/perf/sunspider/sunspider.html


ISMM ’21, June 22, 2021, Virtual, Canada Hiro Onozawa, Tomoharu Ugawa, and Hideya Iwasaki

Table 2. Lower limit of each benchmark program.

Program X64 (KiB) RP (KiB)
MS TC TCE MS TC TCE

AreWeFastYet benchmark
DeltaBlue† 13,170 (6,440) (6,440) 9,464 (3,226) (3,222)
Havlak† 23,090 (10,566) (10,562) 20,702 (5,294) (5,294)
CD† 984 584 582 490 298 296
Bounce 50 50 48 32 28 28
Mandelbrot 48 48 48 28 28 26
Sieve† 138 72 70 74 38 38
Storage 550 550 548 278 278 276
SunSpider benchmark
3d-cube 46 48 46 26 26 26
3d-morph† (734) (616) (616) (458) (370) (370)
access-binary
-trees 44 46 44 24 26 24

access-nbody 44 48 44 26 26 26
math-partial
-sums 44 46 44 24 26 24

math-spectral
-norm 44 46 44 24 26 24

string-base64† 178 96 96 136 88 88
string-fasta 46 48 46 26 26 26
Our programs
dht11† 88 52 50 48 28 28
inc-prop† 320 116 114 164 58 58

tended to require a large heap, programs requiring a heap
of around 100 KiB or smaller also fell into this group. In
particular, for dht11, an IoT-oriented program, TCE reduced
the lower limit for RP by 20 KiB (42%) compared with MS.

For the other group, serious fragmentation did not occur.
Hence, the lower limits for MS and TCE were similar. How-
ever, we had to reserve a margin area, which was 1/16 of the
heap in this evaluation, for possible fragmentation for MS,
while we could reduce the margin for TCE.

The lower limit for TC was larger than that for TCE by 2
KiB for most programs because boundary tags were created
for each meta-object. In TCE, the spatial overhead of the
boundary tags was reduced.

In summary, we confirmed that TC and TCE reduced the
lower limits of programs subject to fragmentation in MS by
eliminating the fragmentation by means of the compaction.
We also confirmed that the spatial overhead caused by bound-
ary tags, which was observed in TC, was eliminated by the
boundary tag embedding technique.

eJSVM is targeted at embedded systems with 100 KiB, and
fragmentation may occur even in such systems. In fact, in
dht11, the lower limit of MS was larger than that of TC,
indicating that fragmentation had a significant impact. TCE
is useful in systems targeted by eJSVM, because it is capable
of alleviating the space performance degradation caused by
fragmentation and by boundary tags.

6.2 Time Efficiency
Figure 13 plots the execution times and GC times of each
program against the heap sizes. We present the results for
only typical programs in Fig. 13. The complete results are
shown in Appendix B. For each program, the execution times
are normalized to the fastest execution time, and the heap
sizes are normalized to the lower limit heap size of TCE in
Table 2. We executed each program ten times for each heap
size and plotted the mean value with quartiles. Missing data
points indicate that the execution failed at the heap size.

In general, the execution time comprises the mutator time
and the GC time. The mutator time is affected by the follow-
ing factors.

• TC and TCE may improve locality, which would im-
prove performance for TC and TCE.

• Allocation may be slow in MS because it may follow
the free list.

• TC and TCE require an extra shift instruction to re-
move the terminal bit to access the HTAG because the
LSB of the header word is used as the terminal bit, as
presented in Section 5.3.

As for the GC time,

• compacting GC tends to be slow.

In fact, we observed that TCE spent at most 2.50× longer
for GC than MS, which happened for DeltaBlue at 5.5× the
minimum heap size. The effect of each factor depended on
the program and the heap size.
access-nbody showed typical behavior of programs in

which serious fragmentation did not occur. access-nbody
created a bunch of floating point number objects. They were
of fixed size and usually ephemeral. With a small heap, MS
ran faster than TC and TCE because MS spent a shorter GC
time. The GC algorithms had almost the same number of
GC cycles (45, 631 cycles for MS, 43, 128 cycles for TC, and
41, 749 cycles for TCE at the minimum heap size), because
fragmentation was not serious. However, TC and TCE took
longer for a single GC cycle because they needed compaction.
For example, TCE took 1.44× longer than MS for GC for the
minimum heap size. As the heap became larger, GC operated
less frequently, and the difference betweenMS and the others
became smaller. At 6× the minimum heap size, all three GC
algorithms showed almost the same performance in terms
of total execution time.

TC and TCE might improve locality for access-nbody. The
difference between the total time and GC time, i.e., mutator
time, was smaller for TC and TCE compared with the dif-
ference for MS. For example, at 6× the minimum heap size,
the total execution times for all three GC algorithms were
almost the same, while the GC time for MS was shorter than
TC and TCE. Note that MS always succeeded in allocating
a floating point number object from the first chunk on the
free list because the floating point number object consisted
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(a) access-nbody (RP)
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(b) access-binary-trees (RP)
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(c) access-binary-trees (X64)
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(d) dht11 (RP)
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(e) inc-prop (RP)
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(f) Havlak (RP)

Figure 13. Total and GC times of selected benchmark programs.

of two words, which was smaller than the minimum free
chunk size of four words.

In contrast, for access-binary-trees, the mutator times for
TC and TCE were not significantly shorter than that of MS.
In X64, their mutator times were even longer.

dht11, inc-prop, and Havlak caused serious fragmentation.
For dht11, MS failed to run at 1.5× the minimum heap size,
while TC and TCE ran in a reasonable time. TC and TCE ran
at the minimum heap size, though they did so very slowly
(33.5× and 10.4× the fastest execution for TC and TCE),
performing GC frequently.

Fragmentation was more serious for inc-prop. MS failed to
run at 3× the minimum heap size. Fragmentation in this case
came from reallocation of the arrays of the property names
in hidden classes, which were meta-objects, and the external
property arrays of ordinary objects. inc-prop continuously
added properties with new names. This behavior tended to
cause serious fragmentation. In eJSVM, a hidden class man-
ages the set of property names with an array. Thus, adding
a new property caused reallocation of the array in order to
expand it. Furthermore, the object to which a property was
added reallocated its external property array. Because prop-
erties were added one by one, the sizes of the reallocated
arrays increased little by little. Thus, objects with a variety
of sizes were created, causing serious fragmentation. For TC
and TCE, any fragmentation caused by ordinary objects and
meta-objects was successfully eliminated.

For Havlak, MS showed a chaotic behavior. As shown in
Table 2, the lower limit of heap size for MS was 20,702 KiB
in RP. Thus, it failed to execute at 4× the minimum heap
size (18,529 KiB). However, it completed its execution at 3×
the minimum heap size. Furthermore, for larger heaps, the
curve for MS was not monotonic, bouncing on the curves for
TC and TCE. Given that MS spent a similar or shorter GC
time than the others, the extra overhead applied to the mu-
tator time varied from one heap size to another. The reason
might be that how seriously the heap became fragmented
varied. Generally speaking, when a heap is fragmented, allo-
cation tends to follow more chunks on the free list. For a free
list allocator, how seriously the heap becomes fragmented
depends on the point when GC is triggered. For example,
performing GC at the moment when all recently allocated
objects become unreachable does not cause fragmentation
while performing GC after the next object is allocated results
in the heap being divided into two parts by the object.

In many programs, TCE took more GC time than MS. This
overhead was caused by the use of threaded compaction
itself, not by the use of the double-ended method because
most of the GC time was spent on scanning the ordinary
object area. To confirm that this was the case, we prepared
two separate heaps, one for ordinary objects and the other
for meta-objects, and implemented two eJSVMs that used
the following GC strategies.
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• GC that targeted only the heap for ordinary objects
by using Jonkers’s threaded compaction. This did not
reclaim garbage in the heap for meta-objects (VM1).

• GC that targeted both heaps by using almost the same
algorithm as Fusuma (VM2).

We ran benchmark programs on both eJSVMs, setting the
same heap sizes to make the timings of GC invocation the
same, and compared them by calculating the ratio of the GC
time of VM1 to that of VM2 for each program. The results
showed that the minimum ratio was 0.88 on X64 and 0.87 on
RP, with averages of 0.96 and 0.95 respectively. These results
indicated that compaction of ordinary object area was the
dominant factor of the GC time.

7 Related Work
In statically typed languages such as Java, it is common
to hold the layout of an object in a meta-object. Such an
implementation suffers from the same problem that has been
focused on in this paper.

MMTk [3], which is a memorymanagement system for the
Jikes RVM [1], is a framework for implementing various GC
algorithms. MMTk allocates meta-objects in a dedicated area
managed by the mark-sweep GC, which makes it possible to
implement a GC that moves ordinary objects. In comparison,
Fusuma makes it possible to manage both ordinary objects
and meta-objects in the same heap area without worrying
about exhausting one of the areas.
In compaction algorithms where the source and destina-

tion regions of objects do not overlap, meta-objects can be
easily referred to during compaction. For example, copying
GC [5] simply follows the forwarding pointer of a meta-
object when the meta-object has already been copied. If
the heap is divided into fixed-length blocks and objects are
moved from some blocks to others to create contiguous free
space, such as the mixed strategy collection [15] or G1GC
[8], meta-objects can be referred to during GC in the same
way as in copying GC.

To overlap between source and destination regions for
objects, GC requires two distinct regions for objects to be
moved. Specifically, semi-space copying GC requires a heap
twice as large as that required by the total amount of objects
used by the program. In contrast, Fusuma has no spatial
overhead.
Often in concurrent GC, where mutators and collectors

operate concurrently, meta-objects are referred to during
GC. Even in concurrent GC with compaction [2, 8, 20], most
algorithms ensure that the source and destination regions
for objects do not overlap.
Sliding compaction algorithms other than threaded com-

paction include Lisp2 compaction [14] and Break-Table com-
paction [10]. As in threaded compaction, it is not easy for
these algorithms to compact ordinary objects and meta-
objects at the same time. In addition, Lisp2 compaction has

the disadvantage that every object needs an extra word for
the forwarding pointer.
Lisp2 compaction [14] first determines live objects and

then performs the destination determination phase. In this
phase, the heap area is scanned from the left. Every time a
live object is found, the destination address where the object
is to be moved is written into the forwarding pointer area.
Next, the pointer update phase is performed. In this phase,
pointers in each object are updated so that they point to the
new destination address. At this time, information on the
object layout is required. However, it is impossible to know
the object layout because pointers held in meta-objects may
have been updated. This problem can be solved by updating
ordinary objects pointers before updating the pointers held
in meta-objects in the way described in this paper.

Break-Table compaction [10] manages object destinations
in a table called the break table, which records the address of
each live object and the amount of movement of the object.
The break table is divided into several fragments, which are
created in gaps between live objects and are collected in one
place as the objects are moved. Although there is no spatial
overhead, the computation time is O(𝑁 log𝑁 ), where 𝑁 is
the number of objects, because the collected fragments are
sorted. In addition, until all objects are moved, the break
table is not sorted, and consequently the destination of an
object is not determined. Therefore, the object layout cannot
be referred to if meta-objects are targets of compaction.
A mark-sweep-compact collector [18] usually performs

mark-sweep GC while occasionally compacting the heap.
This can reduce the amortized cost of compaction. Although
this technique is orthogonal to the present proposal, it is
listed under future work.

8 Conclusion
This paper has proposed Fusuma, a double-ended threaded
compaction that allows ordinary objects and meta-objects
to be allocated in the same heap. By using the boundary
tag embedding technique, the proposed compaction can be
implemented without any extra space for each object.

We implemented Fusuma in eJSVM and confirmed to im-
prove space efficiency compared with mark-sweep GC. The
GC overhead of Fusuma was less than 2.50× that of mark-
sweep GC for a realistic heap size.
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function f(iter, loop) {
var base = [
"a","b","c","d","e","f","g","h","i",
"j","k","l","m","n","o","p","q","r",
"s","t","u","v","w","x","y","z"];

var props = [];
var objs = [];
iter = iter * 26;
for (var i = 0; i < iter; ++i) {
var size = 3 + Math.floor(iter / 26);
for (var s = 0; s < size; ++s) {
props[s] = base[(i + s) % 26];

}
for (var j = 0; j < loop; ++j) {

var o = {};
for (var s = 0; s < size; ++s)
o[props[s]] = 0;

objs[Math.floor(i / 2)] = o;
}

}
return objs;

}

measure(function() { f(32, 512); });

Figure 14. inc-prop benchmark.
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(g) Storage

Figure 15. Execution time and GC time vs. heap size for X64 (1).
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Figure 16. Execution time and GC time vs. heap size for X64 (2).
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Figure 17. Execution time and GC time vs. heap size for RP (1).
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Figure 18. Execution time and GC time vs. heap size for RP (2).
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