Fusuma: Double-Ended Threaded Compaction

URL - hititR-Onozanas cTamebary Yeayar / (Hidsya lwasaki 1 75070

* Graduate School of Informatics and Engineering
The University of Electro-Communications
*+ Graduate School of Information Science and Technology
The University of Tokyo

22 June 2021

Fusuma: Double-Ended Threaded Compaction

URL - hititR-Onozanes cTamehard Yeawar / (Hidsya lwasakis 1 75062

* Graduate School of Informatics and Engineering
The University of Electro-Communications
*+ Graduate School of Information Science and Technology
The University of Tokyo

22 June 2021

Overview of this paper

In an implementation of a managed language with GC:

® The layout information of ordinary objects may be recorded in
meta-objects.

e Existing sliding compaction cannot be applied to a heap where
ordinary objects and meta-objects are intermingled.

J cannot apply compaction

[] ordinary object [] meta-object

® We propose and evaluate a new compaction algorithm named
Fusuma that solves this problem.

1/23

Meta-objects are special objects that have layout information of
ordinary objects.

® Java: class objects.
® JavaScript: hidden classes.

class C {
; i Object A
é:;lﬁ i JoC Meta-Object
g7 “X” 0
.) . 0 100 oV 1
public C(int x, String y) A 1 “Hello”
this.x = x; this.y = y;
} Object B
}
C A = new C(100, "Hello"); 0 200
C B = new C(200, "World"); 1] “World"

2/23

Meta-objects are special objects that have layout information of

ordinary objects.
® Java: class objects.
® JavaScript: hidden classes.

Layout information for an ordinary object may consist of multiple

meta-objects.

class C {
int x;
String y;

public C(int x, String y) {
this.x = x; this.y = y;

}
}
C A = new C(100, "Hello");
C B = new C(200, "World");

Object A
Meta-Object
x| o
100
“Hello”
Meta-Object
Object B uy'| 1
(null)
200
“World”

2/23

Sliding compaction GC

Sliding compaction slides live objects to one end of the heap.
= Fragmentation can be eliminated.

1 compaction

3/23

Why sliding compaction?

We are developing a JavaScript engine named eJS for loT devices
where approx. 100KB of heap is available.

Mark-sweep GC and Copying GC are not space efficient.

= We focused on sliding compaction, especially Jonkers’s
threaded compaction which needs no extra space.

4/23

Problems in sliding compaction

Sliding compaction needs to
® move every object, and
® update all pointers to objects with their new addresses.

Al et N

1 compaction

R EE

[BTN

For this reason, sliding compaction needs to know the locations of

pointers in an object. = The layout of each object must be known.
5/23

Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Object O

Pointer a
O — AL

Pointer b

® Once threading is performed, the pointer cannot be followed
until compaction has been completed.

6/23

Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Pointer a Object O Pointer a Object O
= Rl SR
| i
Pointer b = : Pointer b - !

® Once threading is performed, the pointer cannot be followed
until compaction has been completed.

6/23

Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Pointer a Object O Pointer a Object O Pointer a
= P R = /.
:> ! i i jec
Pointer b : Pointerb ! = : Pointerb _ y-pru===
.

® Once threading is performed, the pointer cannot be followed
until compaction has been completed.

6/23

Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Pointer a Pointer a

Object O Object O
= -

; Pointer b 1~ Pointer b X
:"'F"“" ““‘ [_’_(4

® Once threading is performed, the pointer cannot be followed
until compaction has been completed.

6/23

Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Pointer a Object O Pointer a Object O
A/ = (X
E Pointer b 4__: — Pointer b
I..___

® Once threading is performed, the pointer cannot be followed
until compaction has been completed.

® In this presentation, we denote threaded pointers in red color.

6/23

Example of failure in threading

¥ X A B + Y

| 4
[l ordinary object [] meta-object % layout information

GC must access % when threading A.

7/23

Example of failure in threading

K X A B * Y

|4

[] ordinary object [meta-object % layout information

After marking live objects, scans the heap from left to right to search
a live object.
= Meta-object X is found.

7/23

Example of failure in threading

K X A B & Y

|4

[l ordinary object [] meta-object % layout information

Threads the pointer from X to Y.

7/23

Example of failure in threading

¥ X A B é Y

| 4
[l ordinary object [] meta-object % layout information

Processing X is over.
Scans the heap for the next live object.

7/23

Example of failure in threading

K X A B é Y

|4

[] ordinary object [meta-object % layout information

Ordinary object A is found.
To know the location of pointer to B, % in meta-object Y is
necessary.

7/23

Example of failure in threading

¥ X A B é Y

| 4
[l ordinary object [] meta-object % layout information

Unfortunately, since pointer to Y in X is threaded, we cannot access
% in Y and cannot know the pointer location in A.

7/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B v X vy
*

WA

[] ordinary object [meta-object % layout information

All ordinary objects are to the left of meta-objects.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B + X + Y

: *
oot

[] ordinary object [meta-object % layout information

Scans the heap from left to right.
= Ordinary object A is found.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B + X + Y

*

W

[] ordinary object [meta-object % layout information

Because we have not threaded the pointer to X, we can access X.
= We can successfully thread the pointer to B.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J) X + Y

*

W

[] ordinary object [meta-object % layout information

Threads the pointer to meta-object X

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J) X + Y

*

W

[] ordinary object [meta-object % layout information

Processing A is over.
Goes to the next live object.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B L X vy
: *
-ae=t

[] ordinary object [meta-object % layout information

Ordinary object B is found.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J> X + Y

*

W

[] ordinary object [meta-object % layout information

For B, nothing to do.
Goes to the next live object.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B Lox vy
; *
-ae=t

[] ordinary object [meta-object % layout information

Meta-object X is found.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J) X $ Y

*

WO

[] ordinary object [meta-object % layout information

Threads the pointer to Y.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J> X é Y

*

W

[] ordinary object [meta-object % layout information

Processing X is over.
Goes to the next live object.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B Lox Loy
: *
-ae=t

[] ordinary object [meta-object % layout information

Meta-object Y is found.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J> X é Y

*

W

[] ordinary object [meta-object % layout information

Nothing to do for Y.
We have successfully processed all live objects in the heap.

8/23

Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B Lox Loy
*

W

[] ordinary object [meta-object % layout information

The reasons of success are:
e All live ordinary objects are to the left of live meta-objects.
e Consequently, all ordinary objects are processed before any
meta-object is processed.

= If we can enforce this processing order, the problem can be solved.
8/23

Proposed algorithm: heap observation

Based on this observation, we invented the Fusuma compaction by
extending the Jonkers's compaction.

If we process all ordinary objects before we start processing
meta-objects, everything should be fine.

4

To maintain this processing order, it would be better if ordinary
objects and meta-objects were not intermingled.

U
We allocate:
® ordinary objects from the left of the heap in the forward direction
® meta-objects from the right of the heap in the backward

direction.
H %

9/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
—

We scan the ordinary object area from left to right and process
every live ordinary object.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
—

We scan the ordinary object area from left to right and process
every live ordinary object.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
—

We scan the ordinary object area from left to right and process
every live ordinary object.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
—

We scan the ordinary object area from left to right and process
every live ordinary object.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
%

We scan the meta-object area from right to left and process every
live meta-object.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
%

We scan the meta-object area from right to left and process every
live meta-object.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
%

We scan the meta-object area from right to left and process every
live meta-object.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
%

We scan the meta-object area from right to left and process every
live meta-object.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —
%

We slide every live ordinary object from right to left.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —
%

We slide every live ordinary object from right to left.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —
%

We slide every live ordinary object from right to left.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —

We slide every live meta-object from left to right.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —

We slide every live meta-object from left to right.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —

We slide every live meta-object from left to right.

10/23

Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —

GC is now complete.

10/23

Boundary tag

Fusuma scans the meta-object area from right to left.
= Fusuma places size information at both ends of every meta-object.

This size information at the bottom of a meta-object is called the
boundary tag.

Size of Y
Size of Y
Size of X
Size of X

A naive implementation is to add an extra word next to a
meta-object.

= This implementation imposes space overhead.

11/23

Boundary tag

Fusuma scans the meta-object area from right to left.
=- Fusuma places size information at both ends of every meta-object.

This size information at the bottom of a meta-object is called the
boundary tag.

| Size of Y

Size of Y | Size of X
[P

Size of X |

An embedding implementation halves the bit length of the size
information in the meta-object header.

= This implementation merges the boundary tag of a meta-object
with the header of the immediately following one.

11/23

Evaluation

We implemented Fusuma in eJSVM and evaluated it.

Environment
Intel x64 (X64) Raspberry Pi (RP)
CPU Core i7-10700 Cortex-A53 (ARMv8)

Frequency 2.90 GHz 1.40 GHz
0S Debian 10.7 Raspbian 9.13
eJSVM for 64bit for 32bit

We compared three eJSVMs that used different GC algorithms.
MS : the mark-sweep algorithm

TC : Fusuma using the naive boundary tag implementation

TCE : Fusuma using the boundary tag embedding implementation

12/23

Benchmark programs

Benchmark programs:
® From AreWeFastYet benchmark: 7 programs
® From Sunspider benchmark: 8 programs
® |oT application: 1 program

® repeatedly converts a sequence of bits from a temperature and
humidity sensor into numerical values.

® Synthetic program: 1 program
® continuously adds new properties.

Benchmark programs can be classified into two groups.
® Group A: Fragmentation occurred in MS: 8 programs.

® Group B: Serious fragmentation did not occur in MS:
9 programs.

13/23

Evaluation items

® Space efficiency:
® the lower limit heap size required to run each program
® Time efficiency:
® execution times and GC times of each program against the heap
sizes

14/23

Space efficiency: lower limit heap size (RP)

500
20,0 1601
140
175
4004
o 1204
7 150 g Z
H H 3
N e 1001
5 125 5 3001 g
a a
3 2 5 80
2 100 g H
N 5 2001 £ 601
] g 3
§ " g
40
5.0
100 21

O, 4 T o
oy, "or

Group A:

S’%g
o

o,
’770,2%

& S
04, £ L
Moo g, Ve
o

,

e,

9% Mgy May Sty n
o, CSS%C%: 0 g, Ty, o,
2, ‘5011 Ty, e, ISepy, "t
0: 'y,

'

® The lower limits for TC and TCE were substantially smaller than

that for MS.

= The fragmentation occurred in MS was eliminated by the

compaction of TC and TCE.

15/23

Space efficiency: lower limit heap size (RP)

20,0 1609
s 140
: 400
o 1204
7 150 g H
e < % 100
2 % 100
8 125 & 3004 a
a a 2
8 g S 80
2 100 o £
E = g
P g 200 H
g 75 g g
ki 3
40
504
100 21
25
Y, S N 9, m, m, S Sty ‘i
e oy sy, °°e;$0 e My ey e K o1,

80
U g, e
‘e 1, Dop, D
7o a0, s, Gvr» %6,
eqy "0,

Sto,. .
0 3
"%e mo"p/’

0, A T o
Wrg&/g@g%"

Group A:

® For an loT-oriented program, TCE reduced the lower limit by 20
KiB (40%) compared with MS.

15/23

Space efficiency: lower limit heap size (RP)

140
1751
400 4
o 1204
o 15.04 o <
= < o
b bt 5 100
8 3004
S 125 & 300 g
o o
S 100 s H
£ E -
= 5 200 $ 604
5 g H
S 2 a
ki 3

404

100 204

Yy e

& 9, B Sty v
Oune, Pong, e ey, s Fces, Mty ”ia% ing. , Vg, . ety ",
53 1, e S, ng Pay,, pec s, 7 N
o /J, Oy Tty Uy, e6g
egy "0,

%3

Sto,. o
o 3
"% mo"p/’

o) 4
%5/(,8 oy

Group B:
® The lower limits for MS and TCE were similar.

15/23

Space efficiency: lower limit heap size (RP)

200 160
140
175
4004
o 1204
o 150 o <
S < 3 100
= 2 100
p 3 5
S 125 & 3001 g
o o
£ 100 M £
E £ g
5 g 2007 I
: 75 H S
S 3
40
5.0
100 21
25
S, % s, o
; % . f@ ey, /ch,

Bo e, e ™ ”; Sty
/3 Q 3 "Co 9, 9,
nee ey, e g, Cess, Cesg 14 s, .
or

- b, K2 9
O, 5 "’s% © "9 o % "o e‘%, Seﬁq R
e K "o o

Sto,. o
o 3
"% mo"p/’

Most programs in A and B:
® The lower limit for TC was larger than that for TCE.

= The spatial overhead of the boundary tags was successfully
reduced in TCE.

15/23

Time efficiency: dhtll (RP, group A)

Heap size [KiB]
80 100 120

40 60 140 160
25 ‘ ‘ ‘ ‘ ‘ ‘

IKTC335 & . .
“\“"\TCE 104 MS (total) D Ms (GC) % lower is better
; 5 TC(total) & TC(GC) |,

2 201 ;“ —A— TCE (total) --4-- TCE (GC)

£ —

=y ‘[‘ g

.o ! | [ul

515 ! 305

o | g

2] . . =

% " Execution time s

3 F20.9

3 1oy =

o O

g S

b3 (78]

205 10

Heap size relative to minimum heap size

e MS failed to run at 1.5x the minimum heap size, while TC and
TCE ran in a reasonable time.

16/23

Time efficiency: access-nbody (RP, group B)

Heap size [KiB]
80 100

20 40 60 120 140 160
25 : : ‘ : ‘ ‘ ‘
—E— MS (total) --E-- MS (GC) % lower is better
~ O TC(total) O TC(GC) |25
ooty —A&— TCE (total) --4& -- TCE (GC)
= \ g
E;
‘é 1.5 g
e 155
® 5
@ 1.0 5
(Ew SURY 5
S 05 B :
= IS B
= B-B-A-A
0.0 " ——°
1 2 5 6

Heap size relative to minimum heap size

Small heap:
MS ran faster than TC and TCE.

e TC and TCE took longer GC time due to compaction.

17/23

Time efficiency: access-nbody (RP, group B)

Heap size [KiB]
80 100

20 40 60 120 140 160
25 ‘ ‘ ‘ : ‘ ‘ :
—@— MS (total) @ MS (GC) % .
% lower is better
— & TC(total) & TC(GC) tfo2s
g201® A TCE (total) --4& - TCE (GC)
+ \\\ —
c 203
8 \ o,
515 EK i 5}
3 = £
% L1553
o <
E Lo+ 710-%
T ol . g
5) Mutator time i
Sos o E s
TB-BA--a--a
0.0 ghg”g“ii%t'fé*’"@fi@ 0

1 2 3 4 5 6
Heap size relative to minimum heap size

Larger heap (6x the minimum heap size):
All three showed almost the same performance.

e GCtime: MS<TC~TCE
e Mutator time: MS > TC~ TCE due to improvement of locality?

17/23

Overhead of GC (1)

In many programs, TCE took more GC time than MS.

= This overhead was caused by the use of threaded compaction
itself, not by the use of Fusuma (double-ended method).

To confirm this, we conducted experiments on the next slide.

18/23

Overhead of GC (2)

® We prepared two separate heaps, one for ordinary objects and
the other for meta-objects.
® \We compared two variations.
® VM1 executed GC only for ordinary object area.
® VM2 executed GC for both heaps.

Before GC [T[T [T [JI T
After GCVM1 [[[| [| Il
After GCVM2 [[] | [| I

Ratio of GC times (VM1/VM2)

‘ X64 ‘ RP
Minimum | 0.88 | 0.87
Average | 0.96 | 0.95

Compaction of ordinary object area was the dominant factor of the

GC time of Fusuma.
19/23

Related work: Other approaches to this problem

Manage meta-objects in a separate heap :

e MMTk [Blackburn, et al.’04]
— It may space level fragmentation.

Move to unused area, avoiding overwriting ‘from-object’ :
e Copying GC [Cheney'70]
— It needs ‘copy reserve'.

Fusuma is more space efficient.

20/23

Related work: Other sliding compactions

Other compaction algorithms than Jonkers's also cause the problems
focused on in this research.

Major sliding compaction algorithms :
e Lisp2 [Knuth'97]

® Requires additional space for storing forwarding pointer in every
object.

¢ Break-Table [Haddon, et al.'67]
® Needs to sort object destination table.

Jonkers's algorithm requires no additional space, and needs only
scanning heap with threading.

21/23

Conclusion

® We have proposed Fusuma, a double-ended threaded

compaction.
® This allows ordinary objects and meta-objects to be allocated in
the same heap.

® By using the boundary tag embedding, Fusuma can be
implemented without any extra space for each meta-object.

e \We implemented Fusuma in eJSVM and confirmed its
effectiveness.

22/23

BEMZLEDORO ¥—EE

URL : httpSZ//WWV\f.ﬁl-% I||l.“3 teq ér na n}é@l all php?id=2175062

IS a n 10

23/23

BEMZLEDORO ¥—EE

our a

URL : https: //WW\Afﬁlan illus tfgpy‘l/m%it%ggac@il.php?id:2175070

23/23

