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Overview of this paper

In an implementation of a managed language with GC:

® The layout information of ordinary objects may be recorded in
meta-objects.

e Existing sliding compaction cannot be applied to a heap where
ordinary objects and meta-objects are intermingled.

J cannot apply compaction

[] ordinary object [] meta-object

® We propose and evaluate a new compaction algorithm named
Fusuma that solves this problem.

1/23



Meta-objects are special objects that have layout information of
ordinary objects.

® Java: class objects.
® JavaScript: hidden classes.

class C {
; i Object A
é:;lﬁ i JoC Meta-Object
g7 “X” 0
. ) . 0 100 oV 1
public C(int x, String y) A 1 “Hello”
this.x = x; this.y = y;
} Object B
}
C A = new C(100, "Hello"); 0 200
C B = new C(200, "World"); 1] “World"
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Meta-objects are special objects that have layout information of

ordinary objects.
® Java: class objects.
® JavaScript: hidden classes.

Layout information for an ordinary object may consist of multiple

meta-objects.

class C {
int x;
String y;

public C(int x, String y) {
this.x = x; this.y = y;

}
}
C A = new C(100, "Hello");
C B = new C(200, "World");

Object A
Meta-Object
x| o
100
“Hello”
Meta-Object
Object B uy'| 1
(null)
200
“World”
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Sliding compaction GC

Sliding compaction slides live objects to one end of the heap.
= Fragmentation can be eliminated.

1 compaction
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Why sliding compaction?

We are developing a JavaScript engine named eJS for loT devices
where approx. 100KB of heap is available.

Mark-sweep GC and Copying GC are not space efficient.

= We focused on sliding compaction, especially Jonkers’s
threaded compaction which needs no extra space.
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Problems in sliding compaction

Sliding compaction needs to
® move every object, and
® update all pointers to objects with their new addresses.

Al et N

1 compaction

R EE

[ BTN

For this reason, sliding compaction needs to know the locations of

pointers in an object. = The layout of each object must be known.
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Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Object O

Pointer a
O — AL

Pointer b

® Once threading is performed, the pointer cannot be followed
until compaction has been completed.
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Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Pointer a Object O Pointer a Object O
= Rl SR
| i
Pointer b = : Pointer b - !
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Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Pointer a Object O Pointer a Object O Pointer a
= P R = /.
:> ! i i jec
Pointer b : Pointerb ! = : Pointerb  _ y-pru===
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Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Pointer a Pointer a

Object O Object O
= -

; Pointer b 1~ Pointer b X
:"'F"“" ““‘ [ _’_(4

® Once threading is performed, the pointer cannot be followed
until compaction has been completed.

6/23



Jonkers's threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

Pointer a Object O Pointer a Object O
A/ = ( X
E Pointer b 4__: — Pointer b
I..___

® Once threading is performed, the pointer cannot be followed
until compaction has been completed.

® In this presentation, we denote threaded pointers in red color.
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Example of failure in threading

¥ X A B + Y

| 4
[l ordinary object [] meta-object % layout information

GC must access % when threading A.
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Example of failure in threading

K X A B * Y

|4

[] ordinary object [ meta-object % layout information

After marking live objects, scans the heap from left to right to search
a live object.
= Meta-object X is found.
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Example of failure in threading

K X A B & Y

|4

[l ordinary object [] meta-object % layout information

Threads the pointer from X to Y.
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Example of failure in threading

¥ X A B é Y

| 4
[l ordinary object [] meta-object % layout information

Processing X is over.
Scans the heap for the next live object.
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Example of failure in threading

K X A B é Y

|4

[] ordinary object [ meta-object % layout information

Ordinary object A is found.
To know the location of pointer to B, % in meta-object Y is
necessary.
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Example of failure in threading

¥ X A B é Y

| 4
[l ordinary object [] meta-object % layout information

Unfortunately, since pointer to Y in X is threaded, we cannot access
% in Y and cannot know the pointer location in A.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B v X vy
*

WA

[] ordinary object [ meta-object % layout information

All ordinary objects are to the left of meta-objects.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B + X + Y

: *
oot

[] ordinary object [ meta-object % layout information

Scans the heap from left to right.
= Ordinary object A is found.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B + X + Y

*

W

[] ordinary object [ meta-object % layout information

Because we have not threaded the pointer to X, we can access X.
= We can successfully thread the pointer to B.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J) X + Y

*

W

[] ordinary object [ meta-object % layout information

Threads the pointer to meta-object X
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J) X + Y

*

W

[] ordinary object [ meta-object % layout information

Processing A is over.
Goes to the next live object.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B L X vy
: *
-ae=t

[] ordinary object [ meta-object % layout information

Ordinary object B is found.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J> X + Y

*

W

[] ordinary object [ meta-object % layout information

For B, nothing to do.
Goes to the next live object.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B Lox vy
; *
-ae=t

[] ordinary object [ meta-object % layout information

Meta-object X is found.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J) X $ Y

*

WO

[] ordinary object [ meta-object % layout information

Threads the pointer to Y.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J> X é Y

*

W

[] ordinary object [ meta-object % layout information

Processing X is over.
Goes to the next live object.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B Lox Loy
: *
-ae=t

[] ordinary object [ meta-object % layout information

Meta-object Y is found.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B J> X é Y

*

W

[] ordinary object [ meta-object % layout information

Nothing to do for Y.
We have successfully processed all live objects in the heap.
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Example of success in threading

Jonkers's algorithm happens to succeed for the following heap.

A B Lox Loy
*

W

[] ordinary object [ meta-object % layout information

The reasons of success are:
e All live ordinary objects are to the left of live meta-objects.
e Consequently, all ordinary objects are processed before any
meta-object is processed.

= If we can enforce this processing order, the problem can be solved.
8/23



Proposed algorithm: heap observation

Based on this observation, we invented the Fusuma compaction by
extending the Jonkers's compaction.

If we process all ordinary objects before we start processing
meta-objects, everything should be fine.

4

To maintain this processing order, it would be better if ordinary
objects and meta-objects were not intermingled.

U
We allocate:
® ordinary objects from the left of the heap in the forward direction
® meta-objects from the right of the heap in the backward

direction.
H %
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Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
Sliding — —
—

We scan the ordinary object area from left to right and process
every live ordinary object.
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Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation —n’ —
Scanning — —
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We scan the meta-object area from right to left and process every
live meta-object.
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Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —
%

We slide every live ordinary object from right to left.
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Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —

We slide every live meta-object from left to right.
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Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation > —
Scanning — —
Sliding — —

GC is now complete.
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Boundary tag

Fusuma scans the meta-object area from right to left.
= Fusuma places size information at both ends of every meta-object.

This size information at the bottom of a meta-object is called the
boundary tag.

Size of Y
Size of Y
Size of X
Size of X

A naive implementation is to add an extra word next to a
meta-object.

= This implementation imposes space overhead.
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Boundary tag

Fusuma scans the meta-object area from right to left.
=- Fusuma places size information at both ends of every meta-object.

This size information at the bottom of a meta-object is called the
boundary tag.

| Size of Y

Size of Y | Size of X
[ P

Size of X |

An embedding implementation halves the bit length of the size
information in the meta-object header.

= This implementation merges the boundary tag of a meta-object
with the header of the immediately following one.
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Evaluation

We implemented Fusuma in eJSVM and evaluated it.

Environment
Intel x64 (X64)  Raspberry Pi (RP)
CPU Core i7-10700  Cortex-A53 (ARMv8)

Frequency 2.90 GHz 1.40 GHz
0S Debian 10.7 Raspbian 9.13
eJSVM  for 64bit for 32bit

We compared three eJSVMs that used different GC algorithms.
MS : the mark-sweep algorithm

TC : Fusuma using the naive boundary tag implementation

TCE : Fusuma using the boundary tag embedding implementation
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Benchmark programs

Benchmark programs:
® From AreWeFastYet benchmark: 7 programs
® From Sunspider benchmark: 8 programs
® |oT application: 1 program

® repeatedly converts a sequence of bits from a temperature and
humidity sensor into numerical values.

® Synthetic program: 1 program
® continuously adds new properties.

Benchmark programs can be classified into two groups.
® Group A: Fragmentation occurred in MS: 8 programs.

® Group B: Serious fragmentation did not occur in MS:
9 programs.
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Evaluation items

® Space efficiency:
® the lower limit heap size required to run each program
® Time efficiency:
® execution times and GC times of each program against the heap
sizes
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Space efficiency: lower limit heap size (RP)
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® The lower limits for TC and TCE were substantially smaller than

that for MS.

= The fragmentation occurred in MS was eliminated by the

compaction of TC and TCE.
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Space efficiency: lower limit heap size (RP)
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Group A:

® For an loT-oriented program, TCE reduced the lower limit by 20
KiB (40%) compared with MS.
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Space efficiency: lower limit heap size (RP)
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Group B:
® The lower limits for MS and TCE were similar.
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Space efficiency: lower limit heap size (RP)
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Most programs in A and B:
® The lower limit for TC was larger than that for TCE.

= The spatial overhead of the boundary tags was successfully
reduced in TCE.
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Time efficiency: dhtll (RP, group A)

Heap size [KiB]
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Heap size relative to minimum heap size

e MS failed to run at 1.5x the minimum heap size, while TC and
TCE ran in a reasonable time.
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Time efficiency: access-nbody (RP, group B)

Heap size [KiB]
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Heap size relative to minimum heap size

Small heap:
MS ran faster than TC and TCE.

e TC and TCE took longer GC time due to compaction.
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Time efficiency: access-nbody (RP, group B)

Heap size [KiB]
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Larger heap (6x the minimum heap size):
All three showed almost the same performance.

e GCtime: MS<TC~TCE
e Mutator time: MS > TC~ TCE due to improvement of locality?
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Overhead of GC (1)

In many programs, TCE took more GC time than MS.

= This overhead was caused by the use of threaded compaction
itself, not by the use of Fusuma (double-ended method).

To confirm this, we conducted experiments on the next slide.
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Overhead of GC (2)

® We prepared two separate heaps, one for ordinary objects and
the other for meta-objects.
® \We compared two variations.
® VM1 executed GC only for ordinary object area.
® VM2 executed GC for both heaps.

Before GC [ T[T [T [ JI T
After GCVM1 [ [ [ | [ | Il
After GCVM2 [ [ ] | [ | I

Ratio of GC times (VM1/VM2)

‘ X64 ‘ RP
Minimum | 0.88 | 0.87
Average | 0.96 | 0.95

Compaction of ordinary object area was the dominant factor of the

GC time of Fusuma.
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Related work: Other approaches to this problem

Manage meta-objects in a separate heap :

e MMTk [Blackburn, et al.’04]
— It may space level fragmentation.

Move to unused area, avoiding overwriting ‘from-object’ :
e Copying GC [Cheney'70]
— It needs ‘copy reserve'.

Fusuma is more space efficient.
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Related work: Other sliding compactions

Other compaction algorithms than Jonkers's also cause the problems
focused on in this research.

Major sliding compaction algorithms :
e Lisp2 [Knuth'97]

® Requires additional space for storing forwarding pointer in every
object.

¢ Break-Table [Haddon, et al.'67]
® Needs to sort object destination table.

Jonkers's algorithm requires no additional space, and needs only
scanning heap with threading.
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Conclusion

® We have proposed Fusuma, a double-ended threaded

compaction.
® This allows ordinary objects and meta-objects to be allocated in
the same heap.

® By using the boundary tag embedding, Fusuma can be
implemented without any extra space for each meta-object.

e \We implemented Fusuma in eJSVM and confirmed its
effectiveness.
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