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Overview of this paper

In an implementation of a managed language with GC:

• The layout information of ordinary objects may be recorded in
meta-objects.

• Existing sliding compaction cannot be applied to a heap where
ordinary objects and meta-objects are intermingled.

↓ cannot apply compaction

ordinary object meta-object

• We propose and evaluate a new compaction algorithm named
Fusuma that solves this problem.

1 / 23



Meta-objects

Meta-objects are special objects that have layout information of
ordinary objects.
• Java: class objects.
• JavaScript: hidden classes.

Layout information for an ordinary object may consist of multiple
meta-objects.

class C {
int x;
String y;

public C(int x, String y) {
this.x = x; this.y = y;

}
}

C A = new C(100, "Hello");
C B = new C(200, "World");
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Sliding compaction GC

Sliding compaction slides live objects to one end of the heap.
⇒ Fragmentation can be eliminated.

↓ compaction
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Why sliding compaction?

We are developing a JavaScript engine named eJS for IoT devices
where approx. 100KB of heap is available.

Mark-sweep GC and Copying GC are not space efficient.

⇒ We focused on sliding compaction, especially Jonkers’s
threaded compaction which needs no extra space.
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Problems in sliding compaction

Sliding compaction needs to

• move every object, and

• update all pointers to objects with their new addresses.

↓ compaction

For this reason, sliding compaction needs to know the locations of
pointers in an object. ⇒ The layout of each object must be known.
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Jonkers’s threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

⇒ ⇒

• Once threading is performed, the pointer cannot be followed
until compaction has been completed.

• In this presentation, we denote threaded pointers in red color.
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Jonkers’s threaded compaction

It transforms multiple pointers to the same object into a linked list of
pointers’ location without any extra space.

=

• Once threading is performed, the pointer cannot be followed
until compaction has been completed.

• In this presentation, we denote threaded pointers in red color.
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Example of failure in threading

ordinary object meta-object ★ layout information

GC must access ★ when threading A.
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Example of failure in threading

ordinary object meta-object ★ layout information

After marking live objects, scans the heap from left to right to search
a live object.
⇒ Meta-object X is found.
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Example of failure in threading

ordinary object meta-object ★ layout information

Threads the pointer from X to Y.
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Example of failure in threading

ordinary object meta-object ★ layout information

Processing X is over.
Scans the heap for the next live object.
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Example of failure in threading

ordinary object meta-object ★ layout information

Ordinary object A is found.
To know the location of pointer to B, ★ in meta-object Y is
necessary.
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Example of failure in threading

ordinary object meta-object ★ layout information

Unfortunately, since pointer to Y in X is threaded, we cannot access
★ in Y and cannot know the pointer location in A.
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Example of success in threading

Jonkers’s algorithm happens to succeed for the following heap.

ordinary object meta-object ★ layout information

All ordinary objects are to the left of meta-objects.

　 　

⇒ If we can enforce this processing order, the problem can

be solved.
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Jonkers’s algorithm happens to succeed for the following heap.

ordinary object meta-object ★ layout information

Scans the heap from left to right.
⇒ Ordinary object A is found. 　

⇒ If we can enforce this

processing order, the problem can be solved.
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Example of success in threading

Jonkers’s algorithm happens to succeed for the following heap.

ordinary object meta-object ★ layout information

Because we have not threaded the pointer to X, we can access ★.
⇒ We can successfully thread the pointer to B. 　

⇒ If we can

enforce this processing order, the problem can be solved.
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Example of success in threading

Jonkers’s algorithm happens to succeed for the following heap.

ordinary object meta-object ★ layout information

Processing A is over.
Goes to the next live object. 　

⇒ If we can enforce this

processing order, the problem can be solved.
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Example of success in threading

Jonkers’s algorithm happens to succeed for the following heap.

ordinary object meta-object ★ layout information

Ordinary object B is found.

　 　

⇒ If we can enforce this processing order, the problem can

be solved.
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Example of success in threading

Jonkers’s algorithm happens to succeed for the following heap.

ordinary object meta-object ★ layout information

For B, nothing to do.
Goes to the next live object. 　

⇒ If we can enforce this

processing order, the problem can be solved.
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Example of success in threading

Jonkers’s algorithm happens to succeed for the following heap.

ordinary object meta-object ★ layout information

Nothing to do for Y.
We have successfully processed all live objects in the heap. 　

⇒ If

we can enforce this processing order, the problem can be solved.
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Example of success in threading

Jonkers’s algorithm happens to succeed for the following heap.

ordinary object meta-object ★ layout information

The reasons of success are:

• All live ordinary objects are to the left of live meta-objects.

• Consequently, all ordinary objects are processed before any
meta-object is processed.

⇒ If we can enforce this processing order, the problem can be solved.
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Proposed algorithm: heap observation

Based on this observation, we invented the Fusuma compaction by
extending the Jonkers’s compaction.

If we process all ordinary objects before we start processing
meta-objects, everything should be fine.

⇓
To maintain this processing order, it would be better if ordinary
objects and meta-objects were not intermingled.

⇓
We allocate:
• ordinary objects from the left of the heap in the forward direction
• meta-objects from the right of the heap in the backward
direction.

　　　　　−→　　　　　　←−
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Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation −→ ←−
Scanning −→ ←−
Sliding ←− −→

　　　　−→

We scan the ordinary object area from left to right and process
every live ordinary object.
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Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation −→ ←−
Scanning −→ ←−
Sliding ←− −→

　　　　←−

We slide every live ordinary object from right to left.
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Proposed algorithm: compaction

Ordinary objects Meta-objects
Allocation −→ ←−
Scanning −→ ←−
Sliding ←− −→

−→　　　

GC is now complete.
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Boundary tag

Fusuma scans the meta-object area from right to left.
⇒ Fusuma places size information at both ends of every meta-object.

This size information at the bottom of a meta-object is called the
boundary tag.

A naive implementation is to add an extra word next to a
meta-object.
⇒ This implementation imposes space overhead.
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Boundary tag

Fusuma scans the meta-object area from right to left.
⇒ Fusuma places size information at both ends of every meta-object.

This size information at the bottom of a meta-object is called the
boundary tag.

An embedding implementation halves the bit length of the size
information in the meta-object header.
⇒ This implementation merges the boundary tag of a meta-object
with the header of the immediately following one.
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Evaluation

We implemented Fusuma in eJSVM and evaluated it.

Environment
Intel x64 (X64) Raspberry Pi (RP)

CPU Core i7-10700 Cortex-A53 (ARMv8)
Frequency 2.90 GHz 1.40 GHz

OS Debian 10.7 Raspbian 9.13
eJSVM for 64bit for 32bit

We compared three eJSVMs that used different GC algorithms.

MS : the mark-sweep algorithm

TC : Fusuma using the naive boundary tag implementation

TCE : Fusuma using the boundary tag embedding implementation
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Benchmark programs

Benchmark programs:

• From AreWeFastYet benchmark: 7 programs

• From Sunspider benchmark: 8 programs

• IoT application: 1 program
• repeatedly converts a sequence of bits from a temperature and

humidity sensor into numerical values.

• Synthetic program: 1 program
• continuously adds new properties.

Benchmark programs can be classified into two groups.

• Group A: Fragmentation occurred in MS: 8 programs.

• Group B: Serious fragmentation did not occur in MS:
9 programs.
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Evaluation items

• Space efficiency:
• the lower limit heap size required to run each program

• Time efficiency:
• execution times and GC times of each program against the heap

sizes
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Space efficiency: lower limit heap size (RP)
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Group A:
• The lower limits for TC and TCE were substantially smaller than
that for MS.
⇒ The fragmentation occurred in MS was eliminated by the
compaction of TC and TCE.
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Space efficiency: lower limit heap size (RP)
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Group A:
• For an IoT-oriented program, TCE reduced the lower limit by 20
KiB (40%) compared with MS.
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Space efficiency: lower limit heap size (RP)
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Group B:
• The lower limits for MS and TCE were similar.
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Space efficiency: lower limit heap size (RP)
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Most programs in A and B:
• The lower limit for TC was larger than that for TCE.
⇒ The spatial overhead of the boundary tags was successfully
reduced in TCE.
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Time efficiency: dht11 (RP, group A)
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※ lower is better

↙ Execution time

↙ GC time

• MS failed to run at 1.5x the minimum heap size, while TC and
TCE ran in a reasonable time.
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Time efficiency: access-nbody (RP, group B)
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Small heap:
MS ran faster than TC and TCE.

• TC and TCE took longer GC time due to compaction.
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Time efficiency: access-nbody (RP, group B)
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↑
Mutator time

↓

Larger heap (6x the minimum heap size):
All three showed almost the same performance.

• GC time: MS<TC≈TCE
• Mutator time: MS>TC≈TCE due to improvement of locality?
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Overhead of GC (1)

In many programs, TCE took more GC time than MS.

⇒ This overhead was caused by the use of threaded compaction
itself, not by the use of Fusuma (double-ended method).

To confirm this, we conducted experiments on the next slide.
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Overhead of GC (2)

• We prepared two separate heaps, one for ordinary objects and
the other for meta-objects.
• We compared two variations.

• VM1 executed GC only for ordinary object area.
• VM2 executed GC for both heaps.

Before GC
After GC VM1
After GC VM2

Ratio of GC times (VM1/VM2)

X64 RP
Minimum 0.88 0.87
Average 0.96 0.95

Compaction of ordinary object area was the dominant factor of the
GC time of Fusuma.
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Related work: Other approaches to this problem

Manage meta-objects in a separate heap :

• MMTk [Blackburn, et al.’04]
→ It may space level fragmentation.

Move to unused area, avoiding overwriting ‘from-object‘ :

• Copying GC [Cheney’70]
→ It needs ‘copy reserve‘.

Fusuma is more space efficient.
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Related work: Other sliding compactions

Other compaction algorithms than Jonkers’s also cause the problems
focused on in this research.

Major sliding compaction algorithms :

• Lisp2 [Knuth’97]
• Requires additional space for storing forwarding pointer in every

object.

• Break-Table [Haddon, et al.’67]
• Needs to sort object destination table.

Jonkers’s algorithm requires no additional space, and needs only
scanning heap with threading.
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Conclusion

• We have proposed Fusuma, a double-ended threaded
compaction.
• This allows ordinary objects and meta-objects to be allocated in

the same heap.

• By using the boundary tag embedding, Fusuma can be
implemented without any extra space for each meta-object.

• We implemented Fusuma in eJSVM and confirmed its
effectiveness.
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Thank you!

This is all of my presentation.
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Thank you!

Thank you for your attention!
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