
Domain-specific programming assistance in an embedded DSL
for generating processor emulators

Katsumi Okuda
okuda@csg.ci.i.u-tokyo.ac.jp
The University of Tokyo

Okuda.Katsumi@eb.MitsubishiElectric.co.jp
Mitsubishi Electric Corporation

Shigeru Chiba
chiba@acm.org

The University of Tokyo

ABSTRACT
This paper presents a design approach for developing an embedded
domain-speci�c language (DSL) with domain-speci�c programming
assistance. To demonstrate the proposed approach, we describe the
design of our processor description language called MELTRANS,
which is an embedded DSL hosted by Java. MELTRANS is used
to generate a fast processor emulator with dynamic binary trans-
lation. Although such embedded DSLs have provided only poor
domain-speci�c assistance for programming, MELTRANS improves
this poorness. Our idea is to let the integrated development envi-
ronment (IDE) of the host language provide better programming
assistance using domain-speci�c knowledge. To this end, we de-
compose a program in MELTRANS into several Java classes corre-
sponding to a di�erent concern and set a rule for the description
order. The language runtime takes each class and generates not only
the code for processor emulators but also superclasses for classes
written later. The user writes each class describing a concern as
the subclasses of a generated class. The generated classes enable
the user to bene�t from programming assistance by Java IDEs in a
more domain-speci�c style. While MELTRANS is hosted in Java,
the generated emulators are written in C++. To validate our design,
we implement several emulators in MELTRANS and perform ex-
periments with them. The results show that our domain-speci�c
programming assistance can e�ectively reduce the amount of code
that needs to be written by the user, and the generated emulators
achieve over 1,000 MIPS.

CCS CONCEPTS
• Software and its engineering→Domain speci�c languages;
Speci�cation languages; Simulator / interpreter ; Software design
engineering;

KEYWORDS
Domain speci�c languages, Processor description languages, Pro-
cessor emulators, Instruction set simulators, Dynamic binary trans-
lation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8104-8/21/03.
https://doi.org/10.1145/3412841.3442000

ACM Reference Format:
Katsumi Okuda and Shigeru Chiba. 2021. Domain-speci�c programming
assistance in an embedded DSL for generating processor emulators. In The
36th ACM/SIGAPP Symposium on Applied Computing (SAC ’21), March 22–26,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3412841.3442000

1 INTRODUCTION
Domain-speci�c languages (DSLs) are widely used in many do-
mains to develop software e�ciently for a particular use. Because
DSL users can concentrate on the domain-speci�c problem, the
development in DSLs is more e�cient than in general-purpose
programming languages. One successful application of DLSs is pro-
cessor speci�cation to generate a processor emulator or to design a
processor. The DSLs for this purpose are called processor descrip-
tion languages (PDLs) or architecture description languages [16].
Several PDLs, including nML [10], ISDL [9], LISA [21], EXPRES-
SION [23], Harmless [12], and HPADL [13], have been developed
and used in academia and industry.

Some PDLs are implemented as embedded DSLs, which are li-
braries or frameworks in their host languages. Examples include
Pydgin [15] hosted in Python and ArchC [1] hosted in SystemC [20].
An advantage of embedded DSLs is that they can borrow the host
language’s tools, including their integrated development environ-
ments (IDEs), thereby reducing the development cost of DSLs. How-
ever, the programming assistance by IDEs is not satisfactory; more
domain-speci�c assistance for convenience and correctness should
be provided.

In this paper, we present a design approach to the embedded
DSLs enabling domain-speci�c programming assistance by their
host’s IDEs. The DSLs are carefully designed to let the IDEs pro-
vide better auto-completion and error detection by domain-speci�c
knowledge. To this end, the DSL compiler/runtime generates sup-
port programs while the users write a DSL program. The DSL
program is split into multiple components for di�erent concerns;
the DSL compiler reads a component written earlier and gener-
ates a support program for later components. The domain-speci�c
knowledge is encoded into the support program, and the IDE refers
to this support program for providing domain-speci�c assistance
when other components are written. An example of the support
program is the superclass of the class written by the DSL user.

The contributions of this work are three-fold:

• We reveal that domain-speci�c programming assistance by
IDEs is poor for embedded DSLs and present our approach
to address this problem. Our approach exploits program

1256

https://doi.org/10.1145/3412841.3442000
https://doi.org/10.1145/3412841.3442000

generation such that programming assistance for the host
language can be regarded as domain-speci�c.
• We conduct a case study by developing a practical embedded
DSL calledMELTRANS and demonstrate the domain-speci�c
assistance that is available when the user is writing a pro-
gram in MELTRANS.
• We experimentally con�rm that the domain-speci�c assis-
tance provided by MELTRANS can e�ectively reduce the
amount of code to be written by the user, the generated
emulator can emulate a processor in over 1,000 MIPS, and
MELTRANS is general enough to generate an emulator for
several commercial instruction sets (ARM,MIPS64, SH, RH850,
RISC-V, and RX).

In the rest of this paper, we �rst reveal that domain-speci�c
programming assistance by IDEs is inadequate for embedded DSL
by using a processor description language as an example. We then
propose a design approach for developing an embedded DSL with
domain-speci�c programming assistance. We also present our ex-
periments and related work. Finally, we conclude this paper.

2 MOTIVATING PROBLEM
The growing adoption of cross-platform virtualization and the rise
in instruction set architecture (ISA) diversity are resulting in a need
for an e�cient method to develop a fast processor emulator. One
promising approach is to generate processor emulators using the
program written in PDLs. In general, practical processor emulators
need to implement dynamic binary translation (DBT) to execute
the guest program rapidly. The implementation of emulators with
DBT is complicated without a PDL. The emulator with DBT trans-
lates guest instructions into host native instructions at runtime.
Without a PDL, the developer of emulators needs to describe how
the emulator translates guest instructions into host instructions.
The developer is required to have a deep understanding of not only
guest instructions but also host instructions. When we use a PDL,
the PDL compiler can generate code for the translation on behalf
of the developer.

A PDL can be implemented as an embedded DSL. An advantage
of this approach is that users can exploit an existing tool-chain for
the host language of the embedded DSL. However, a drawback of
this approach is that it provides poor domain-speci�c programming
assistance.

Suppose that we describe the MUL instruction of the ARM pro-
cessor in such an embedded DSL. TheMUL instruction multiplies
values in the source registers and stores the result in the destination
register. Listing 1 is the pseudo-code expressing the semantics of
theMUL instruction, which is quoted from the ARM reference man-
ual [11]. In a Python-based embedded DSL, the Pydgin PDL [15],
the same semantics is implemented by the execute_mul function
shown in Listing 2. This function appears to be very similar to
the pseudo-code in Listing 1. Thus, the user can describe the exe-
cute_mul function by mostly copying the pseudo-code in the refer-
ence manual. The user does not have to specify how to translate
theMUL instruction into the host instructions when implementing
the processor emulator in Pydgin.

Expressions inst.cond, inst.rm, and inst.rn in Listing 2 represent
the values of the instruction �elds of MUL, which are cond, Rm,

Listing 1: MUL instruction in the reference manual (ARM)
1 i f c ond i t i o n_pa s s ed ()
2 d = UInt (Rd) ;
3 n = UInt (Rn) ;
4 m = UInt (Rm) ;
5 s e t f l a g s = (S == ' 1 ')
6 operands1 = S I n t (R[n])
7 operands2 = S I n t (R[m])
8 r e s u l t = operand1 ∗ operand2
9 R[d] = r e s u l t <31 : 0 >
10 i f s e t f l a g s then
11 APSR .N = r e s u l t <31 > ;
12 APSR . Z = I s Z e r oB i t (r e s u l t) ;

Listing 2: MUL instruction in Pydgin (ARM)
1 de f execute_mul (s , i n s t) :
2 i f c ond i t i o n_pa s s ed (s , i n s t . cond) :
3 Rn , Rm = s . r f [i n s t . rn] , s . r f [i n s t . rm]
4 r e s u l t = t r im_32 (Rn ∗ Rm)
5 s . r f [i n s t . rd] = r e s u l t
6
7 i f i n s t . S :
8 s .N = (r e s u l t >> 31)&1
9 s . Z = r e s u l t == 0
10
11 i f i n s t . rd == 1 5 :
12 r e t u r n
13 s . r f [PC] = s . f e t c h_p c () + 4

Figure 1: Encoding of the MUL instruction (ARM)

and Rn, respectively. Figure 1 shows the excerpt of the bit encoding
of theMUL instruction taken from the ARM reference manual. The
MUL instruction has �ve instruction �elds: cond, S, Rd, Rm, and Rn.
Expressions inst.cond, inst.rm, and inst.rn are method calls on inst,
which is a function parameter to execute_mull, and they return the
values of those instruction �elds.

The type of inst is the Instruction class, whichmust be de�ned by
the Pydgin user. Listing 3 is an example of the Instruction class for
ARM, which is included in the source tree of Pydgin. We renamed
the methods in the class such that the names are consistent with
the �eld names in Figure 1. The methods in Instruction extract the
value of an instruction �eld from the binary representation of the
instruction. The binary representation is available from self.bits.
For example, method rd extracts instruction �eld Rd in bits 16–19.

The Pydgin user can expect that the IDE for Python, which is
the host language, reads the de�nition of the Instruction class and
provides programming assistance to the user. For example, when
the user writes execute_mul, auto-completion can be expected.
When inst. is typed, a modern IDE would show the list of the word
candidates that could follow inst., and this list would include cond,
rm, and rn.

However, this auto-completion lacks domain-speci�c assistance.
Even if the IDE correctly infers that the type of inst is the Instruction
class, the candidates for the auto-completion would include imm24,

1257

Listing 3: De�nition of the Instruction class
1 c l a s s I n s t r u c t i o n (o b j e c t) :
2 . . .
3 @property
4 de f rd (s e l f) : r e t u r n (s e l f . b i t s >> 1 6) & 0 xF
5
6 @property
7 de f rm (s e l f) : r e t u r n (s e l f . b i t s >> 8) & 0 xF
8
9 @property
10 de f rn (s e l f) : r e t u r n s e l f . b i t s & 0 xF
11 . . .
12 @property
13 de f imm24 (s e l f) : r e t u r n s e l f . b i t s & 0 xFFFFFF
14 . . .

Figure 2: Encoding of the B instruction (ARM)

which is the method for extracting the imm24 �eld of the B (branch)
instruction shown in Figure 2. The reason is that this method is
included in the Instruction class. In Pydgin, all of the methods for
extracting an instruction �eld are included in the Instruction class.
Although imm24 is not available in the body of execute_mul, if the
user selects imm24 after typing inst., the IDE would not warn the
user of that incorrect selection. Note that the selection is valid from
the host-language perspective of Python; it is invalid only from the
domain-speci�c perspective of Pydgin.

To mitigate this problem, some readers might change the design
of Pydgin to enable the user to de�ne a di�erent version of the
Instruction class for a di�erent instruction. For example, the type
of inst passed to execute_mul could be MulInstruction, whereas
that to execute_b could be BInstruction. Then, they could provide
only the methods available for their instruction. However, this
design requires the user to exert extra e�ort; numerous Instruction
classes should be de�ned; thereby complicating the type inference
by the IDE. If the host language were statically typed, that design
would require the user to pay extra attention to the type of the inst
parameter.

The domain-speci�c programming assistance in embedded DSLs
is poorer than the assistance in external DSLs. If Pydgin were a
standalone external DSL, it would report a compilation error when
the user writes inst.imm24 in the body of the execute_mul function.
A dedicated IDE for Pydgin would provide better programming
assistance to prevent writing inst.imm24 mistakenly in the body of
execute_mul.

Developing a dedicated IDE for an embedded DSL might be
another option to mitigate the poor domain-speci�c assistance.
Developing an external program-analysis tool might be another
option. However, these options decrease the bene�t of embedded
DSLs; the user would not be able to use the DSL as a library for its
host language. The user would be forced to write a program in a
particular IDE, whichmay be unfamiliar. Moreover, developing IDEs
for DSLs from scratch is too costly, according to the literature [3].

4. Branch predicate 5. Delay slots 6. Likely predicate

3. Exclusion predicate

1. Format 2. Semantics

IsaExclusionPredicateBase

IsaFormat IsaSemantics

IsaBranchPredicate IsaLikelyPredicateIsaDelaySlots

IsaSemanticsBase

IsaExclusionPredicate

IsaDelaySlotsBase IsaLikelyPredicateBaseIsaBranchPredicateBase

: Generated superclass

: User-defined subclass

: Generation

Figure 3: Structure of a program written in MELTRANS

3 MELTRANS: A PDL WITH
DOMAIN-SPECIFIC PROGRAMMING
ASSISTANCE

We present our design approach to an embedded DSL that enables
domain-speci�c programming assistance. Our idea is to let the host-
language IDE provide better programming assistance by domain-
speci�c knowledge. To this end, a DSL program is split into multiple
components for di�erent concerns. We take advantage of the fact
that some concerns contain useful domain-speci�c knowledge for
the description of other concerns. The DSL programming is divided
into multiple stages. When the user writes a DSL program in the
early stage, the DSL compiler generates support code written in
the host language from that user’s DSL program. The domain-
speci�c knowledge is encoded in that support code so that the
IDE can provide domain-speci�c assistance for the later-stage DSL
programming.

We have developed a PDL called MELTRANS with our design
approach. MELTRANS is an embedded DSL hosted by Java for im-
plementing a processor emulator with DBT. The emulator �nally
generated from a MELTRANS program is written in C++. We chose
Java because it is a statically typed language, and its IDEs support
rich programming assistance. Its environment-independent speci�-
cation is also appropriate. For example, an integer value of type int
is always 32-bit precision. The user of MELTRANS does not have
to care about the execution environment to know the size of the
integer.

A program in MELTRANS consists of six Java classes, each of
which corresponds to a di�erent concern about the description of
a processor. There are dependencies among the concerns; some
concerns contain domain-speci�c knowledge used when the user
describes other concerns. The language runtime of MELTRANS
utilizes these dependencies to provide domain-speci�c assistance
by generating superclasses of the classes. Figure 3 shows the classes
and concerns, as well as the relations among them. Each concern,
except for the format concern, consists of a generated superclass
and a user-de�ned subclass. The arrows are drawn from a concern
to the superclass that is generated by the runtime of MELTRANS
from the former. Each superclass serves as a canvas that provides

1258

Listing 4: Class for the format concern for ARM
1 c l a s s ArmFormat {
2 / / i n s t r u c t i o n e n c o d i n g s
3 S t r i n g Inst105_A1_MUL =
4 "31[cond]27[0 b0000000]20[S]19[Rd]15[0 b0000]11[Rm]7[0 b1001]3[Rn]" ;
5 S t r i n g Ins t016_A1_B =
6 "31[cond]27[0 b1010]23[imm24]" ;
7 . . .
8 } ;

auto-completion and limits the risk of error when the user de�nes
the subclass for the concern.

The user de�nes classes in an order that is based on the depen-
dencies among the concerns. The user starts by de�ning the format
concern of a processor because it does not depend on any con-
cern. For example, when the user develops a processor emulator
for the ARM instruction set, the user starts by de�ning the class
named ArmFormat. In MELTRANS, there is a naming convention
in which all the class names start with the ISA name, such as ARM,
and the concern name follows the ISA name. The de�nition of the
format concern enables the language runtime of MELTRANS to
generate superclasses for a concern, of which subclass the user then
writes. The generated superclasses are named ArmSemanticsBase,
ArmExclusionBase, and ArmBranchPredicateBase. In MELTRANS,
the name of a superclass starts with the name of its subclass and
ends with Base according to the convention. The domain-speci�c
knowledge about the instruction format is encoded in the meth-
ods in the generated superclasses so that the IDE can exploit them
for programming assistance. Thus, the user can expect domain-
speci�c assistance by the IDE when writing subclasses ArmSemen-
tics, ArmExclusion, and ArmBranchPredicate. After the user writes
the class for the branch-predicate concern, named ArmBranchPred-
icate, MELTRANS generates a new Java class, ArmDelaySlotsBase,
from that class. Then, the user writes ArmDelaySlots, and the same
pattern follows.

3.1 Concerns
In this subsection, we present the six concerns in MELTRANS and
demonstrate what domain-speci�c assistance the user can expect
when writing each concern, except for the format concern.

3.1.1 Format. The language runtime ofMELTRANS uses the domain-
speci�c knowledge written in the class for the format concern to
provide programming assistance for writing classes for other con-
cerns. Because the class for the format concern is written �rst,
domain-speci�c assistance is not available when the user writes this
class. To ease the de�nition of the class with only general-purpose
assistance, we designed a mini DSL in the string embedding style
for specifying an instruction encoding.

The class for the format concern describes the bit encoding of
every instruction. For each instruction, the class declares a �eld
of String type with its initial value, representing the bit encoding
written in the mini DSL. The name of this �eld is used as the
identi�er of that instruction. For example, the class for the ARM
instruction set is shown in Listing 4, in which the Inst105_A1_MUL
�eld represents the bit encoding of the MUL instruction. Inst105
denotes its section number in the ISA manual, and A1 indicates that
the instruction is an ARM instruction and not a Thumb instruction.

String Inst105_A1_MUL =
"31[cond]27[0b0000000]20[S]19[Rd]15[0b0000]11[Rm]7[0b1001]3[Rn]";

Figure 4: String literal for the MUL instruction (ARM)

Listing 5: Class for the semantics concern for ARM
1 c l a s s ArmSemantics extends ArmSemanticsBase {
2
3 @Override
4 void Inst105_A1_MUL (in t cond , in t S , in t Rd , in t Rm, in t Rn) {
5 i f (i sCond i t i o nPa s s ed (cond)) {
6 in t r e s u l t = reg [Rn] ∗ r eg [Rm] ;
7 r eg [Rd] = r e s u l t ;
8 i f (S == 1) {
9 cp s r .N = e x t r a c t (r e s u l t , 3 1) ;
10 cp s r . Z = (r e s u l t == 0) ? 1 : 0 ;
11 }
12 }
13 }
14
15 @Override
16 void Ins t016_A1_B (in t cond , in t imm24) {
17 i f (i sCond i t i o nPa s s ed (cond)) {
18 in t imm32 = s i gnEx t end (imm24 << 2 , 2 5) ;
19 se tNex tPc (ge tPc () + 8 + imm32) ;
20 }
21 }
22 . . .
23 }

The user can easily write the string literal in our mini DSL by
almost copying the description of the instruction in the ISA manual.
For example, Figure 4 shows the string literal for the MUL instruc-
tion and its format description found in the ISA manual for ARM.
The string literal is read as follows. The bits from the 31st to (but
excluding) the 27th are used for the instruction �eld named cond,
bits from the 27th up to the 20th must be 0000000 (0b is the pre�x
for binary numbers), the 20th bit is instruction �eld S, and so on.

3.1.2 Semantics. The class for the semantics concern must declare
the methods specifying the behavior of every instruction. The name
of the method for each instruction must be identical to the name
of the corresponding �eld in the class for the format concern. For
example, Listing 5 shows the class for the semantics concern for
ARM. In Listing 5, the method name for MUL is Inst105_A1_MUL,
whereas that for B is Inst016_A1_B. These names are found in
the ArmFormat class that the user wrote for the format concern.
The parameters to the methods are the instruction �elds of each
instruction. They are also de�ned in the class for the format concern.
For example, the parameters to the Inst105_A1_MUL method are
cond, S, Rd, Rm, and Rn, and they are de�ned in the string literal
given to the Inst105_A1_MUL �eld in the ArmFormat class.

The bodies of those methods can be written by almost copying
the corresponding description in the ISA manual. For example, the
body of Inst105_A1_MUL is fairly identical to the description of the
behavior of MUL in the ISAmanual shown in Listing 1. It multiplies

1259

Figure 5: Auto-completion of instruction names

Figure 6: Instruction �eld rd is not available for ADDI

the Rn register by the Rm register and stores the result into the Rd
register. Then it updates the current program status register.

The user can expect domain-speci�c programming assistance
by the IDE when writing the class for the semantics concern. First,
all of the methods that the user must write when specifying the
instruction’s behavior are already declared in the superclass gener-
ated by MELTRANS, although their bodies are empty. For example,
superclass ArmSemanticsBase declares the Inst105_A1_MUL and
Inst016_A1_B methods. The ArmSemantics class, which the user
must write, overrides them. Thus, when the user types the �rst
few letters of a method name, the IDE shows the candidate list of
methods for auto-completion, as illustrated in Figure 5. The user
can simply choose one of them to obtain a skeleton of a method
declaration. In Listing 5, lines 3, 4, and 13 can be automatically
completed when the user writes the Inst105_A1_MUL method.

Second, the instruction �elds are encoded into the parameters
to the method specifying the instruction’s behavior. This also im-
proves the domain-speci�c assistance by the IDE. For example, the
IDE reports an error when the user writes the name of an instruc-
tion �eld unavailable for the instruction that is being written by
the user. Figure 6 shows an error message that is reported when
the user attempts to store a value into the rd register (the regis-
ter speci�ed by instruction �eld rd), which is not available for the
ADDI instruction in MIPS64. This is a typical mistake unless the
user carefully reads the ISA manual because most instructions in
MIPS64, such as ADD, store the arithmetic results into the rd reg-
ister. ADDI exceptionally stores the result into the rt register. In
MELTRANS, this mistake is detected as an error of using an un-
declared parameter or variable. The domain-speci�c knowledge
regarding which instruction �elds are available is encoded into the
method parameters so that the domain-speci�c assistance will be
provided as normal programming assistance in the host language.

This design of MELTRANS also helps the IDE to detect another
typical mistake. Although the result of ADD in MIPS64 is stored in
the rd register, the user might misinterpret that ADD is a double-
operand instruction and store the result into the rt register (the

Figure 7: Result of ADD is stored in an incorrect register

second operand). The IDE may detect this mistake as an error
because the third method parameter, rd, is never used in the method
body of InstADD (Figure 7). When the instruction is executed, all
of the instruction �elds should be used. MELTRANS exploits this
fact and thus passes them through the method parameters to the
method implementing the instruction’s behavior, such as InstADD.

3.1.3 Exclusion Predicate. The class for the exclusion-predicate
concern describes how to disambiguate the instructions that share
the same opcode. This is necessary for certain ISAs such as ARM
and RH850.

Suppose that we implement an emulator for the RH850 instruc-
tion set. The class for the format concern would include the follow-
ing �eld declarations for the DIVH and RIE instructions:
S t r i n g Inst028_DIVH = "15[r]10[0 b000010]4[R]" ;
S t r i n g I n s t 0 8 6 _R I E = "15[0 b0000000001000000]" ;

When both the instruction �elds, r and R, in DIVH are 00000, we
cannot distinguish DIVH and RIE because their bit patterns are
identical. For disambiguation, the ISA manual for RH850 speci�es
that instruction �eld r or R in theDIVH instruction must not be zero.
We call this the exclusion predicate of the DIVH instruction. In the
class for the exclusion-predicate concern for RH850, the exclusion
predicate of the DIVH is written as follows:
@Override
boolean Inst028_DIVH (in t r , in t R) {

return r == 0 | R == 0 ;
}

The Inst028_DIVH method returns true when the given instruction
�eld, r or R, is zero; hence, it is not valid. If it returns true, then the
current instruction word is not that of DIVH, but that of RIE.

The user can expect domain-speci�c programming assistance
when writing this class. This user-de�ned class must inherit from
the superclass generated from the class for the format concern. The
superclass declares all of the methods that the user may declare in
its subclass. These methods return false. Therefore, the user can
expect domain-speci�c assistance similar to the assistance that can
be expected for the semantics concern.

3.1.4 Branch Predicate. The class for the branch-predicate concern
describes which instructions are branch instructions. It declares a
method for every instruction, and the method returns true if the
instruction is a branch.

For example, the B instruction in ARM is a branch instruction.
The user can specify this by de�ning a method in the class for the
branch-predicate concern as follows:
@Override
boolean Ins t016_A1_B () {

return true ;
}

The return value indicates that the B instruction is a branch instruc-
tion.

1260

For some instructions, its instruction �elds determine whether
the instruction is a branch. For example, the ADD instruction in
ARM is a branch instruction when instruction �eld Rd (destination
register) is the program counter. Otherwise, ADD is not a branch
instruction. To support this, the class for the branch-predicate con-
cern can declare a method taking all the instruction �elds. Hence,
the branch predicate for the ADD is written as follows:
@Override
boolean Inst005_A1_ADD (in t cond , in t S , in t Rn , in t Rd , in t imm12) {

return Rd == 1 5 ;
}

The expression in the return statement indicates that the ADD
instruction is a branch instruction when Rd is the program counter
(register 15).

The user can expect domain-speci�c programming assistance
when writing the class for the branch-predicate concern. This class
must inherit from the superclass generated by the language runtime
of MELTRANS from the class written for the format concern. The
generated class declares two methods for every instruction. One
takes no parameter while the other takes all the instruction �elds
as parameters. Because the methods in the superclass return false,
the subclass does not need to declare the methods for instructions
that are always non-branch instructions. When the subclass needs
to declare the method, the user can use auto-completion by the IDE
to select one method for each branch instruction.

3.1.5 Delay Slots. The emulators for some ISAs must consider
delay slots for each branch instruction. In MELTRANS, the user
can describe the delay slots by writing a class for the delay-slots
concern. This class declares a method for the branch instruction
with delay slots; the method returns the number of delay slots.

For example, the BFS instruction in the SH instruction set is a
branch instruction with a delay slot. The user can specify this by
writing a method in the class for the delay-slots concern as follows:
@Override
in t I n s tBFS () {

return 1 ;
}

The return value indicates that the BFS instruction has one delay
slot.

The user can also expect domain-speci�c programming assis-
tance when writing a class for the delay-slots concern. The user-
de�ned class inherits from the superclass generated by MELTRANS
from the class for the branch-predicate concern. The superclass
declares a method for every branch instruction. Because the method
in the superclass returns 0, its subclass can declare only the methods
for the branch instructions with more than zero delay slots.

Note that the superclass declares only the methods for branch
instructions and not all instructions. Therefore, the method list
for auto-completion is more accurate. Even if the user declares a
method for a non-branch instruction, the IDE will report a warning
message because the method does not override any method in the
superclass (Figure 8). To determine which instruction is a branch
one, MELTRANS investigates the bodies of the methods in the class
for the branch-predicate concern. If the method may return true,
MELTRANS considers the corresponding instruction as a branch
one.

Figure 8: No overridden method in the superclass because
the method is not for a branch instruction

Algorithm 1 Translation of a basic block
Input: memory model memory, start address of BB addr, strategy object isaStrategy
Output: llvm IR corresponding to BB
1: repeat
2: iword← fetchInstruction(memory, addr)
3: (inst, fields) ← isaStrategy.decode(iword)
4: inst.generateIr(fields) . semantics
5: addr← addr + inst.length . format
6: until inst.isBranch(fields) . branch predicate
7: if inst.delaySlots > 0 then . delay slots
8: generateDelaySlotsIr(memory, addr, inst) . delay slots and likely predicate

3.1.6 Likely Predicate. The class for the branch-likely concern
declares a method for every branch-likely instruction. The method
must return true.

Some ISAs have branch-likely instructions. They skip the execu-
tion of the following instructions in the delay slots when the branch
is not taken. From the class for the delay-slots concern, MELTRANS
generates the superclass of the class for the likely-predicate con-
cern. The superclass declares a method for every branch instruction
with delay slots. This method returns false because MELTRANS
assumes that all branch instructions are not branch-likely instruc-
tions by default. Hence, the subclass needs to declare only a method
for branch-likely instructions. The generated superclass enables
domain-speci�c assistance similar to the assistance for the delay-
slots concern.

3.2 Generated Processor Emulator
To explain how the six concerns contribute to the DBT, we show our
ISA-independent skeleton of DBT in Algorithm 1. The name of the
concern denotes that the operation in its source line depends on that
concern. Algorithm 1 dynamically translates the guest instructions
in a basic block (BB) into the LLVM [14] intermediate representation
(IR). Once the LLVM IR is available, the generated emulator uses
the LLVM JIT engine to generate the host native code. Algorithm 1
is based on the strategy pattern [7] win which ISA-dependent parts
are implemented in the strategy objects. The language runtime of
MELTRANS generates ISA-dependent parts from the six concerns
written in MELTRANS.

Algorithm 1 takes the memory model memory, the start address
of a BB addr, and a strategy object isaStrategy as parameters, and
it generates the LLVM IR that emulates the behavior of the instruc-
tions in the BB. In lines 1–6, the emulator translates a guest BB
into the LLVM IR. For each iteration in lines 2–5, a single guest
instruction is translated into the LLVM IR instructions, which are
appended to the resulting LLVM IR. In line 3, the decode method
is called with arguments isaStrategy and iword to decode instruc-
tion iword in the ISA-speci�c way. The decode method returns the

1261

identi�ed instruction and its instruction �elds as inst and fields,
respectively. The implementation of decode can be generated from
the format and exclusion-predicate concerns using the algorithm
proposed in [18]. In line 4, the emulator generates the LLVM IR
code according to the identi�ed instruction and its instruction �elds.
The LLVM IR for the instruction is generated by the AST of the
method for the instruction in the semantic concern. We use the
deep rei�cation approach proposed in [4] to obtain ASTs from a
program written in MELTRANS. In line 5, the emulator increments
address addr such that it points to the next instruction. The length
of the instruction is retrieved from the format concern. In line 6,
the emulator checks whether the decoded instruction is a branch
instruction. If it is a branch instruction, the emulator terminates the
iteration; otherwise, the emulator goes back to line 2. In lines 7–8,
the emulator translates the instructions in the delay slots immedi-
ately after the branch, if any. The number of delay slots is obtained
from the delay-slots concern.

4 EXPERIMENTAL RESULTS
To validate our design, we implemented several processor emulators
with MELTRANS and conducted experiments using them.

4.1 Amount of Code to Be Written
To determine whether the domain-speci�c assistance is achieved
without increasing the amount of code to be written by the user,
we compared MELTRANS with Pydgin in terms of the code metrics
of their programs for ARM. We used Eclipse as an IDE in this
experiment.

The results are summarized in Table 1. For example, the �rst row
in Table 1 shows that the format concern implements 173 instruc-
tions, and its code accounts for 5.87% of the entire code; the lines
of code (LOC) excluding comments and the blank lines is 180, LOC
per instruction is 1.04, and LOC automatically completed by the
IDE is zero and accounts for 0% of the format concern. The format
concern includes one method, and its cyclomatic complexity [8] is
1.0 on average.

The total LOC per instruction for ARM in MELTRANS is 17.74.
This result is comparable with the LOC per instruction of 16.18
for ARM in Pydgin. MELTRANS requires an additional 1–2 LOC
per instruction compared with Pydgin for ARM. This di�erence
appears to be caused by the di�erence between the host languages.
In general, Java is more verbose than Python.

In MELTRANS, 39.49% of the code could be automatically com-
pleted by the IDE. Although auto-completion may be available in
each line of the program, we counted only lines for the method
templates completed by the IDE, which consisted of method sig-
natures with the @Override annotation and a pair of opening and
closing braces. If we remove the automatically completed lines from
the total amount of code, the remaining LOC becomes 1,857, and
the LOC per instruction becomes 10.73. The result shows that our
domain-speci�c assistance can e�ectively reduce the amount of
code to be written by the user.

4.2 Performance
To determine whether the generated processor emulators run at
practical speeds, we compared the emulator for ARM generated by

a2
ti

m
e

ai
ff

tr

ai
fir

f

ai
iff

t

ba
se

fp

bi
tm

np

ca
ch

eb

ca
nr

dr

id
ct

rn

iir
flt

m
at

ri
x

pn
tr

ch

pu
w

m
od

rs
p

ee
d

tb
lo

ok

tt
sp

rk

Benchmarks

0

1000

2000

3000

P
er

fo
rm

an
ce

[M
IP

S
]

MELTRANS

Pydgin

QEMU

Figure 9: Performance of the emulators (ARM)

MELTRANS with state-of-the-art QEMU and the emulator gener-
ated by Pydgin in terms of their simulation speed. We used bench-
mark programs from the EEMBC [22] Autobench benchmark suite,
which is one of the de-facto industrial standard benchmarks for
comparing embedded processors. We performed all of the measure-
ments presented in this paper on a Linux-based desktop machine
with a 64-bit Core i7 7700T at 2.9 GHz, disabling Turbo Boost, and
a 16-GB main memory. We built gcc 6.1.0 and used it with the -O2
�ag to cross-compile the benchmark programs. We also used gcc
7.5.0, which is the default compiler in the host operating system, to
build the processor emulators. The generated emulators used the
JIT engine of LLVM 10.0 to translate LLVM IR into the host AMD64
instructions. Our emulator uses a superblock as a translation unit.
A superblock consists of all BBs that are traceable through direct
branch instructions, except call instructions when the emulator
needs translation.

Figure 9 depicts the results. Our emulator achieved 1,449 MIPS
on average. A minimum of 253 MIPS was observed when the em-
ulator ran tblook, and the maximum was 3,704 MIPS when it ran
ai�rf. It appeared that the emulator runs fast when highly executed
superblocks contain loops. In such a case, the superblock was well
optimized by LLVM.

Our emulator outperformed the other two emulators in seven
of the 16 programs. On average, QEMU and Pydgin executed the
programs in 1,430 and 945 MIPS, respectively. Because all of these
emulators use di�erent translation strategies, the performance ten-
dencies in the benchmark programs appeared to be di�erent among
the emulators.

4.3 Generality
To determine whether MELTRANS is general enough to generate
emulators for multiple ISAs, we implemented MIPS64, RH850, SH,
RISC-V, and RX, which are widely used in industry in addition to
ARM, and compared the code metrics of the programs. Six concerns
were used to write these programs. The results are listed in Table 2.
For example, the �rst row in Table 2 shows that the program for
ARM consists of concerns 1–4 and implements 173 instructions,
its LOC is 3,069, the LOC per instruction is 17.74, and the IDE
automatically completes 39.49% of the LOC. Each number of a
concern corresponds to the number shown in Figure 3. The table
shows that the IDE can automatically �ll 24.17%–49.02% of the LOC.

1262

Table 1: Comparison of code metrics among PDLs (ARM)

PDL Concern Instructions LOC % LOC per Completed Completed Methods Complexity
instruction LOC LOC (%)

MELTRANS Format 173 180 5.87 1.04 0 0.00 1 1.00
Semantics 173 1,953 63.64 11.29 519 26.57 191 2.65
Exclusion predicate 173 695 22.65 4.02 519 74.68 173 1.00
Branch predicate 173 235 7.66 1.36 174 74.04 58 1.00
All 173 3,069 100.00 17.74 1212 39.49 423 1.75

Pydgin - 62 1003 100.00 16.18 0 0.00 116 3.1

Table 2: Comparison of code metrics among ISAs

ISA Concerns Instructions LOC LOC per Completed
instruction LOC (%)

ARM 1, 2, 3, 4 173 3,069 17.74 39.49
MIPS64 1, 2, 3, 4, 5, 6 250 2,185 8.74 49.02
RH850 1, 2, 3, 4 223 3,389 15.20 24.17
SH 1, 2, 4, 5 154 1,334 8.66 40.48
RISC-V 1, 2, 4 54 397 7.35 46.85
RX 1, 2, 4 473 3,619 7.65 44.43

Although the percentage of the code automatically completed by
the IDE depends on the complexity of the ISA, all six concerns are
su�cient to describe these ISAs. Because other commercial ISAs
such as PowerPC and TriCore are similar to these ISAs, it appears
that MELTRANS is general enough to describe many practical ISAs.

5 RELATEDWORK
Programming Assistance in Embedded DSLs. One of the advantages
of embedded DSLs is its low implementation cost. However, domain-
speci�c programming assistance in embedded DSLs is poor. Re-
searchers have tackled this problem, and their solutions appear to
be able to be combined with our approach.

Dinkelaker [5] proposed the Eclipse plug-in called TigersEye,
which enables the use of the domain’s established syntax in pro-
grams in an embedded DSL. Nosal et al. [17] proposed techniques
for customizing host IDEs for embedded DSLs, including the pre-
vention of inexpert editing, code completion, and error reporting.

Embedded DLSs for Emulator Generation. Several embedded DSL
approaches have been proposed for generating processor emu-
lators; however, they do not provide domain-speci�c assistance.
Pydgin [15] uses a Python-based embedded DSL for generating
processor emulators. It uses PyPy’s [2] meta-tracing JIT compiler
for DBT. The resulting processor simulator runs the guest program
with tracing JIT compilation. ArchC [1] is a SystemC [20]-based
PDL. SystemC is also an embedded DSL hosted by C++ for sys-
tem simulation. A processor description in ArchC can be compiled
as a C++ program and runs as an interpretive processor emula-
tor. Wagsta� et al. [24] proposed a method to generate processor
emulators with DBT using the description written in ArchC.

Engel et al. [6] and Okuda et al. [19] proposed frameworks in
C/C++ to generate static binary translators and dynamic binary
translators, respectively. In these systems, the user can develop a

processor emulator with binary translation as if an interpretive one
is developed.

6 CONCLUSION
This paper presented our design approach for developing an em-
bedded DSL with domain-speci�c programming assistance. The
proposed approach divides DSL programming into multiple stages,
and the language processor of that DSL generates a program from
the program written by the user in an earlier stage. The generated
program exploits the inheritance mechanism to provide domain-
speci�c assistance to the user. To demonstrate our approach, we
explain the design of our PDL named MELTRANS, which is an
embedded DSL hosted by Java. We implemented several emulators
in MELTRANS and experimentally con�rmed that our domain-
speci�c programming assistance e�ectively reduces the amount of
code that needs to be written by the user.

REFERENCES
[1] Rodolfo Azevedo, Sandro Rigo, Marcus Bartholomeu, Guido Araujo, Cristiano

Araujo, and Edna Barros. 2005. The ArchC Architecture Description Language
and Tools. Int. J. Parallel Program. 33, 5 (Oct. 2005), 453–484.

[2] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009.
Tracing the Meta-Level: PyPy’s Tracing JIT Compiler. In Proceedings of the 4th
Workshop on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (ICOOOLPS ’09). ACM, 18–25.

[3] Barrett R. Bryant, Je� Gray, and Marjan Mernik. 2010. Domain-Speci�c Soft-
ware Engineering. In Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research (FoSER ’10). ACM, 65–68.

[4] Shigeru Chiba, YungYu Zhuang, and Maximilian Scherr. 2016. Deeply Reifying
Running Code for Constructing a Domain-Speci�c Language. In Proceedings of
the 13th International Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’16). ACM, Article
1, 12 pages.

[5] Tom Dinkelaker, Michael Eichberg, and Mira Mezini. 2011. Incremental Concrete
Syntax for Embedded Languages. In Proceedings of the 2011 ACM Symposium on
Applied Computing (SAC ’11). ACM, 1309–1316.

[6] Frank Engel, Johannes Nührenberg, and Gerhard P. Fettweis. 2000. A Generic
Tool Set for Application Speci�c Processor Architectures. In Proceedings of the
Eighth International Workshop on Hardware/Software Codesign (CODES ’00). ACM,
126–130.

[7] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. 1993.
Design Patterns: Abstraction and Reuse of Object-Oriented Design. In Proceedings
of the 7th European Conference on Object-Oriented Programming (ECOOP ’93).
Springer-Verlag, 406–431.

[8] Geo�rey K. Gill and Chris F. Kemerer. 1991. Cyclomatic complexity density and
software maintenance productivity. IEEE transactions on software engineering 17,
12 (1991), 1284–1288.

[9] George Hadjiyiannis, Pietro Russo, and Srinivas Devadas. 1999. A Methodology
for Accurate Performance Evaluation in Architecture Exploration. In Proceedings
of the 36th Annual ACM/IEEE Design Automation Conference (DAC ’99). ACM,
927–932.

[10] Mark R. Hartoog, James A. Rowson, Prakash D. Reddy, Soumya Desai, Douglas D.
Dunlop, EdwinA. Harcourt, andNeeti Khullar. 1997. Generation of Software Tools
from Processor Descriptions for Hardware/Software Codesign. In Proceedings of
the 34th Annual Design Automation Conference (DAC ’97). ACM, 303–306.

1263

[11] ARM Holdings. 2014. ARM Architecture Reference Manual, ARMv7-A and
ARMv7-R edition. Arm Holdings (2014).

[12] Rola Kassem, MikaëL Briday, Jean-Luc BéChennec, Guillaume Savaton, and
Yvon Trinquet. 2012. Harmless, a hardware architecture description language
dedicated to real-time embedded system simulation. J. Syst. Archit. 58, 8 (Sept.
2012), 318–337.

[13] Marco Kaufmann, Matthias Häsing, Thomas Preußer, and Rainer Spallek. 2011.
The Java Virtual Machine in Retargetable, High-Performance Instruction Set
Simulation. In Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java (PPPJ ’11). ACM, 21–30.

[14] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime
Optimization (CGO ’04). IEEE, 75–86.

[15] Derek Lockhart, Berkin Ilbeyi, and Christopher Batten. 2015. Pydgin: generating
fast instruction set simulators from simple architecture descriptions with meta-
tracing JIT compilers. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 256–267.

[16] Prabhat Mishra and Nikil Dutt. 2008. Processor Description Languages. Morgan
Kaufmann Publishers Inc.

[17] Milan Nosál, Jaroslav Porubän, and Matú Sulír. 2017. Customizing host IDE
for non-programming users of pure embedded DSLs: A case study. Computer
Languages, Systems & Structures 49 (2017), 101–118.

[18] Katsumi Okuda and Haruhiko Takeyama. 2016. Decision Tree Generation for
mDecoding Irregular Instructions. In Proceedings of the 2016 Conference on Design,
Automation & Test in Europe (DATE ’16). EDA Consortium, 1592–1597.

[19] Katsumi Okuda, Minoru Yoshida, Haruhiko Takeyama, and Minoru Nakamura.
2017. Automated generation of dynamic binary translators for instruction set
simulation. In 2017 22nd Asia and South Paci�c Design Automation Conference
(ASP-DAC). IEEE, 214–219.

[20] Preeti Ranjan Panda. 2001. SystemC: A Modeling Platform Supporting Multi-
ple Design Abstractions. In Proceedings of the 14th International Symposium on
Systems Synthesis (ISSS ’01). ACM, 75–80.

[21] Stefan Pees, Andreas Ho�mann, Vojin Zivojnovic, and Heinrich Meyr. 1999. LISA
Machine Description Language for Cycle-accurate Models of Programmable DSP
Architectures. In Proceedings of the 36th Annual ACM/IEEE Design Automation
Conference (DAC ’99). ACM, 933–938.

[22] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. 2009. A
Benchmark Characterization of the EEMBC Benchmark Suite. IEEE Micro 29, 5
(Sept. 2009), 18–29.

[23] Mehrdad Reshadi, Nikil Dutt, and PrabhatMishra. 2006. A retargetable framework
for instruction-set architecture simulation. ACM Trans. Embed. Comput. Syst. 5,
2 (May 2006), 431–452.

[24] HarryWagsta�, Miles Gould, Björn Franke, and Nigel Topham. 2013. Early Partial
Evaluation in a JIT-Compiled, Retargetable Instruction Set Simulator Generated
from a High-Level Architecture Description. In Proceedings of the 50th Annual
Design Automation Conference (DAC ’13). ACM, Article 21, 6 pages.

1264

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryList_V1
 qi2base

