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ABSTRACT

This dissertation presents our research to improve the domain-specific program-
ming assistance for embedded domain-specific languages (DSLs). Using embedded
DSLs is a promising approach to efficient software development for specific applica-
tion domains. The developer of an embedded DSL can implement it with less effort
compared to external DSLs. For example, the embedded DSL designer does not need
to develop parsers for the embedded DSL since it is implemented as a library or frame-
work for the host language. Moreover, the embedded DSL designer does not need to
develop an integrated development environment (IDE) since the DSL user can use
IDEs for the host language. However, using the syntax and IDEs of the host language
limits the domain-specific assistance for the embedded DSL since only programming
assistance for the host language is available in the embedded DSL. To provide better
programming assistance for the embedded DSL, the embedded DSL developer has to
implement additional tools. This effort reduces the benefit of the embedded DSL.
To address this problem, we categorized programming assistance into static one and
dynamic one and developed efficient methods for implementing each assistance. The
dissertation includes three studies: (1) proposal of lake symbols for island parsing, (2)
proposal of interactive grammar editing for island grammars, and (3) design approach
to an embedded DSL for dynamic programming assistance. Study (1) and Study (2)
achieve reducing the effort to implement static programming assistance for embedded
DSLs. On the other hand, Study (3) proposes the importance of dynamic domain-
specific assistance for embedded DSLs and the language design that can exploit the
IDE for domains-specific assistance.

We define static programming assistance as domain-specific abstraction provided
in the syntax level of the language. The key to an efficient implementation of syntax
extension is to decrease the effort for developing a parser. The number of rules in the
grammar for generating the parser reflects the effort to developing the parser. The
island grammar is a promising technique to reduce the number of rules in the grammar
by omitting the rule for the uninteresting part of the language. Island grammars
are suitable for syntax extension to reduce the number of rules since only extended
programming constructs are interesting and the remaining parts are uninteresting.
However, the description of practical island grammar is complex because it requires
complex definitions of rules to skip the uninteresting part of the language.

The lake symbol proposed in Study (1) eases the description of island grammar.
The lake symbol is a novel grammatical symbol similar to nonterminal symbols. The
embedded DSL designer can use lake symbols as a wildcard symbol at the place in
the grammar where she wants the parser to skip the input until it finds an extended
programming construct of interest. The lake symbol automatically calculates symbols
called alternative symbols that prevent lake symbols from skipping the interesting part
of language as a wildcard. Without lake symbols, the embedded DSL designer must
find alternative symbols manually and specify them in the island grammar. Previous
work has been tackled the same problem to ease the description of island grammars.
However, it calculates the subset of alternative symbols. This limits the place in the
grammar where the parser can skip the uninteresting part of the language. Our lake
symbols relax this imitation.

While the lake symbols ease the description of island grammar, writing island
grammar is not easy. The description of correct island grammar requires iterations
of trial-and-error. Hence, an efficient way to editing island grammars is required.
Based on this motivation, Study (2) proposes the interactive editing method and tool
called PEGSEED. With PEGSEED, the language designer can write a working island
grammar in a step-by-step manner. In each step, she adds a rule for a new island.



After adding a new rule, she can test the grammar on an example text by highlighting
the text area recognized by the latest rule. A rule for a new island can be added by
concatenating already tested islands. By incrementally refining the island grammar
tested in each step, DSL designers can efficiently get the expected island grammar.
PEGSEED also provides GUI operations to add a new rule by using an example text.
By selecting a text area and applying one of the GUI operations. The user can add a
new rule without writing it by hand. Our case study shows that the parsers for syntax
extension can be available only with the GUI operations provided by PEGSEED.

In Study (3), we introduce the importance of domain-specific programming assis-
tance for embedded DSLs. We define auto-completion and error checking provided by
IDEs as dynamic programming assistance. Careful language design enables dynamic
domain-specific programming assistance via an IDE for the host language. We demon-
strate this with our practical processor description language called MELTRANS. Our
case study shows that domain-specific assistance can be available by exploiting an
IDE for the host language. Moreover, because our design approach does not need to
customize the IDE or develop a specialized IDE, it does not sacrifice the benefit of
embedded DSLs.
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Chapter 1

Introduction

It is a common understanding that both software scale and the application do-
mains are increasing more than ever. Developing an efficient method to imple-
ment software is one of the most critical research topics in software engineer-
ing. One promising approach for efficient software development is using domain-
specific languages (DSLs) for software construction. A DSL is a programming
language that is designed for a specific application domain. In general, a DSL
provides easy-to-use programming interfaces to develop software for the domain.
These programming interfaces enable the user to develop her software efficiently.

The efficient development of DSLs is also essential to apply them to software
development for their domains. A DSL is designed and implemented to develop
software for a specific domain efficiently. Therefore, the higher the labor to
develop the DSL becomes, the smaller the benefit of using the DSL is.

Developing a DSL as an embedded DSL is an efficient method to develop
the DSL. Embedded DSLs are DSLs that are embedded in a general-purpose
programming language. In many cases, embedded DSLs are implemented as
libraries or frameworks written in the host language. In contrast to embedded
DSLs, DSLs implemented from scratch are called external DSLs. The devel-
opment of an external DSL resembles the development of a general-purpose
programming language. For example, the language developer has to implement
a parser to analyze a source program. On the other hand, when developing an
embedded DSL, the developer does not need to implement a parser since the
embedded DSL exploits the syntax of the host programming language. For the
same reason, the integrated development environment (IDE) for the host lan-
guage can be used when writing the program in the embedded DSL. Hence, the
language developer does not need to implement an IDE for the embedded DSL.
In general, development efforts for embedded DSLs are lower than for external
DSLs.

1.1 Motivation

The motivation of this dissertation is to reduce the effort to implement domain-
specific programming assistance in embedded DSLs. Though sophisticated pro-
gramming assistance is essential to develop a program efficiently, it is not ade-
quate in embedded DSLs due to its implementation cost. Domain-specific assis-
tance includes syntax level support, auto-completion, and error checking avail-
able at programming. While an embedded DSL can exploit the general-purpose
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syntax level support such as the class mechanism or the lambda expression, the
expressiveness of the embedded DSL is limited to the host language. Similarly,
while IDEs for the host language may provide auto-completion and error check-
ing, the assistance is limited to general-purpose ones for the host language.

In principle, any domain-specific assistance provided in external DSLs can
also be implemented in an embedded DSL. However, it is not practical due
to its additional implementation efforts. To provide domain-specific assistance
in an embedded DSL, the language developer must implement additional tools
equivalent to tools for external DSLs. These implementation efforts of additional
tools diminish the benefit of the low implementation cost of embedded DSLs.
To implement domain-specific programming assistance in embedded DSLs, we
need reasonable methodologies for developing it.

1.2 Approaches

We categorized domain-specific programming assistance into static one and dy-
namic one and studied them, respectively. We define static programming assis-
tance as support available in all life-cycle of programs. On the other hand, we
define auto-completion or error checking as dynamic ones since they are available
while the user writes the program.

1.2.1 Approaches to Static Programming Assistance

Static programming assistance includes library support for the language, docu-
mentation of the language, and syntax-level support for the language. Method-
ologies for supports of library and documentation in embedded DSLs are not
different from ones for the general-purpose programming languages. Therefore
we focused on improving the syntax-level support.

For example, even if the use of the unless statement is more natural than
the use of the if statement in the application domain, the use of the unless

statement is impossible if the host language does not support it. For example,
even if the user wants to write a program with the unless statement as follows:

unless (isConditionPassed ()) {

doit();

}

, she may have to write a program without unless statement as follows:

if (! isConditionPassed ()) {

doit();

}

The difference may look small. However, if there are many places where the
unless statement is natural, the difference will not be neglectable. If we designed
the DSL as external DSL, we would implement the unless statement in the DSL.

Syntax extension is a technique to improve the expressiveness of programs in
embedded DSLs. It enables the use of domain-specific programming constructs
in a program written in the embedded DSL. For example, syntax extension
enables the use of the unless statement even if the host programming language
does not support it.
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Syntax extension is not widely used in embedded DSLs due to the imple-
mentation cost of a parser. Syntax extension is implemented by an external
tool called a program transformer. Program transformers take a program with
domain-specific programming constructs and convert it into an equivalent pro-
gram without domain-specific programming constructs. The structure of pro-
gram transformers resembles compilers. They convert an input program into a
tree with their parsers and generate a lower-level program by traversing it. The
efficient development of program transformer is a key to make syntax exten-
sion applicable to embedded DSLs. Language tools such as MetaBorg [15] and
TXL[18] have been proposed to develop program transformers easily. They pro-
vide language support to write transformation rules for programming constructs.
The user of these tools has to write only transformation rules for extended pro-
gramming constructs in addition to a grammar for the parser. Nevertheless,
these tools have not been widely used in practical embedded DSLs. These tools
do not reduce the effort to write a parser.

Grammar-based parser construction is a best practice to obtaining parser
today. There are a lot of parsing algorithms based on grammar. Many parser
generators, such as Yacc based on LALR(1) grammar and ANTLR based on
LL(*) grammars, have been developed. These grammars are not ambiguous in
common. However, extending the syntax of an existing language tends to result
in ambiguous grammar. Hence, unambiguous grammar-based parsing algorithms
are not suitable for syntax extension. Instead, more flexible parsing algorithms
such as Cocke-Younger-Kasami (CYK)[96], GLL[83], GLR[88], or packrat pars-
ing have been used for syntax extension. The effort to implement a parser is
reflected in the grammar size regardless of which parsing algorithm is used.

An island grammar is a well-known technique to reduce the size of grammar
for a parser. Island parsers extract only programming constructs of interest as
islands from an input text, and they ignore the rest of the text as water. Such
incomplete parsers are often easy to develop but still useful enough for many
software engineering tools, including syntax extension. These tools do not need
the complete parse tree or the abstract syntax tree (AST) of the input program.
They only need a parse tree or an AST for the interesting parts of the program.
Suppose that we develop a program transformer for the unless statement. The
program transformer only needs a parse tree for unless statements. We can
ignore the rest of the program. An island grammar fits this application; the
statements like unless are islands while the rest is water. An island parser is also
suitable for source model extraction from incomplete program [67], multilingual
parsing [87, 90, 2], extracting programming constructs from documentations [9,
81], and lightweight impact analysis [68].

Island grammars are described in a formal language such as PEG (Pars-
ing Expression Grammar) [32], SDF (Syntax Definition Formalism) [44], or
TXL [20, 19]. These grammars consist of the rules for islands and water. The
number of rules in an island grammar is often smaller than the corresponding
full-featured grammar, which is for parsing a whole program. The rules for the
water are usually simple, in an ideal case, just one wildcard character, and thus
the grammar for island parsing consists of only a small number of rules.

In practice, the grammar for island parsing consists of a small number of rules
only when most parts of a program are recognized as water. To do so, some inner
parts of the island must also be water, which is not fully parsed. For example,
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if an island is a if/else statement, the expressions included in that statement
should be recognized as water. However, the rules for such water in the middle of
an island are complicated and difficult to describe. Due to this difficulty, island
parsing seems to be not widely used today despite its applicability to software
engineering tools.

In this dissertation, we propose the lake symbols to mitigate the difficulty in
describing the rules for the water in the middle of an island. We call this water a
lake. A lake symbol is a special symbol used in a grammar to represent a lake in
the grammar. In the simplest case, the lake symbol works as a special wildcard
that matches any character except the parts of the island. The parser needs to
know what text patterns must not be taken as water to exclude the parts of
the island from the lake. These patterns are given by terminal or non-terminal
symbols, which we call the alternative symbols. The lake symbol automates
the enumeration of the alternative symbols so that it can be used as a simple
wildcard-like symbol. The user can also specify inner programming constructs
in the lake by writing the rule for the lake symbol. This feature enables the
handling of nested islands inside the lake. We also propose an extension to
PEG for supporting our lake symbols. We present an algorithm to translate
this extended PEG into the normal PEG, which can be used as an input to an
existing PEG-based parser or parser-generator.

Furthermore, we implemented PEGIsland, an island-parser generator sup-
porting our extended PEG. By using PEGIsland, we implemented 36 island
parsers for Java programs and 20 ones for Python programs. We compared
the number of their grammar rules with the number of the rules for the full-
featured Java/Python parser. The comparison revealed that our extended PEG
effectively reduces the number of rules.

While lake symbols ease the creation of lakes in islands, debugging island
grammar is still not easy. If we fail to write some rules in the grammar cor-
rectly, the parsing result is not what we expect. If the grammar were not an
island grammar but a complete one, the debug would be easier. We could check
that each rule in the grammar is correct by comparing it with the language
specification. In the case of the island grammar, we cannot compare the rules in
the island grammar with the language specification since most parts of original
grammar are omitted and modified in the island grammar.

To check whether the island grammar is correct or not, we repeat trial-and-
errors. Therefore we need a way to confirm the parsing result interactively
and effectively step by step while editing an island grammar. While interactive
tools for generating parsers such as Parsify [61] and Parsimony [60] have been
proposed, they do not support island grammars. They provide a way to editing
grammar interactively through GUI operations by using an example program.
For example, the user selects expressions in the example program and labels
them as expressions. The user can get an unambiguous grammar by repeatedly
applying operations. However, the grammar is ambiguous until the user finishes
labeling all the programming constructs in the language. The resulting grammar
is not an island grammar but a complete grammar.

We propose an incremental description of island grammars with lake symbols
and tool support for it. Our approaches enable the description of an island
grammar in a step-by-step manner. In each step, the user can add a rule to
the grammar and immediately test the rule. This enables the island parser to
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Figure 1.1: Auto completion provided by the IDE

always partially work as what the user expects. This prevents us from repeating
inefficient trial-and-error to write an island grammar. We also propose GUI
operations for the user to add a new rule to the grammar. These GUI operations
take an example text as input and generate a new rule based on the user’s
selection. This prevents the user from making a specific type of mistake when
editing an island grammar.

1.2.2 Approaches to Dynamic Programming Assistance

We define dynamic programming assistance as support that is available while
the programmer is writing a source code. Usually, such assistance is provided
by editors or IDEs for a language. While programmers write a source code in an
IDE, the IDE provides auto-completion, error checking, and text highlighting.

While embedded DSL users can use IDEs for the host language, domain-
specific assistance tends to be insufficient. Let us suppose that we design a
processor description language. In this language, the user writes the formats
and semantics of each instruction. The semantics of an instruction are described
with the instruction’s operands specified in the corresponding instruction format.
Hence, the IDE for this language should provide auto-completion when the user
writes the semantics of an instruction by using the format description of the same
instruction as shown in Figure 1.1. In the DSL program in Figure 1.1, formats
of several instructions have already been defined. The IDE shows the list of
possible instructions to be defined by using the formats of instructions. However,
if we implement equivalent processor description language as embedded DSLs,
this type of auto-completion will no be available. Available dynamic assistance
in embedded DSLs is limited to the one provided for the host programming
language. To provide domain-specific assistance not covered by assistance for
general-purpose one, the language developer must implement a domain-specific
IDE for this purpose.

While methodologies for developing IDEs have been proposed, they are not
suitable for embedded DSLs. Language workbenches such as Xtext and JetBrain
MPS provide a way to develop an IDE for DSLs. For example, the user of Xtext
can generate a plugin for Eclipse IDE for her DSL by writing a grammar for her
DSL. However, the grammar must be a complete grammar of the DSL. In the
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case of embedded DSL, writing the complete grammar is not realistic. Even if
the DSL designer uses Java, she will not want to describe a complete grammar
for Java. What we want is a way that does not require the development of a
specific IDE.

To provide domain-specific assistance with minimum effort, we propose a lan-
guage design pattern called the divide-and-generate pattern. In the divide-and-
generate pattern, the embedded DSL program is divided into multiple concerns.
The DSL runtime takes concern and generates a support code for another con-
cern. When the DSL user writes the subsequent concern, the domain-specific
assistance is provided via the support code. The support code is written in
the host language. Therefore IDEs for the host language can provide auto-
completion and error checking. This assistance is for the host language, but we
can also regard it as a domain-specific one. An example of a support code is a
superclass that declares methods that the subclass should implement.

To demonstrate our idea, we implemented practical processor description
language MELTRANS and experimented on it. Processor description is one
of the successful domains for which many DSLs have been developed. An ex-
ample of processor description language implemented as an embedded DSL is
Pygin hosted in Python. We implemented our MELTRANS as an embedded
DSL hosted in Java with our divide-and-generate pattern. MELTRANS is used
for generating fast processor emulators from the specifications of instruction
set architectures. We divide processor description into six concerns and imple-
ment MELTRANS’s runtime that generates superclasses for these concerns. We
confirmed that MELTRANS could provide auto-completion and error checking,
which are not available in Pygin processor description language. A research
question is whether domain-specific assistance does not have a negative impact
on other aspects of processor description language. To answer this question, we
count the lines of code (LOC) for the ARM architecture and compare the results
with Pygin. We also measured the performance of generated and compared the
results with Pydgin and the state-of-the-art QEMU. The results show that the
divide-and-generate pattern does not negatively impact the program’s code met-
rics and the performance of the generated emulator. The LOC of the program
for ARM is equivalent to the LOC of the program written in Pydgin. Similarly,
the performance of the emulator generated by MELTRANS is equivalent to the
other emulators.

1.3 Positioning

1.3.1 Study on Languages for Describing Grammar

Our study on lake symbols for syntax extension is a kind of study on languages for
describing grammar. The position of our study is depicted in Figure 1.2. Tools
for syntax extension have been proposed, such as MetaBorg [15] and TXL [18].
These tools provide a way to write a grammar and rewriting rules for extended
syntax. While the effort to write rewriting rules is small, the effort to write a
grammar is not diminished since these tools require a complete grammar for the
extended syntax.

TIGEREYS [26] proposed the use of an island grammar in syntax extension
to reduce the effort to write many grammar rules for syntax extension. Island
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Figure 1.2: Study on languages for describing grammar

grammar is introduced by Moonen [67] as a technique to reduce the effort to
write a grammar for an application that is only interested in specific program-
ming constructs. While we focus on syntax extension as an application of island
grammar, there are studies on other applications including source model extrac-
tion from incomplete program [67], multilingual parsing [87, 90, 2], extracting
programming constructs from documentations [9, 81], and lightweight impact
analysis [68].

Bounded seas introduced the difficulty in writing island grammars and pro-
posed water operator in PEG. The user can use the water operator as a special
wildcard to skip uninteresting parts of an input program as water. While it eases
the description of island grammar, the place where the water operator can be
used is restricted. For example, the water operator does not work as expected
at the beginning of an operand of an ordered choice operator. Our lake symbol
is yet another syntax support for writing island grammars. While lake symbols
can be used similar to the water operator, they can be used almost anywhere
in a grammar as a special wildcard symbol for an advanced shortest match for
writing an island grammar.

1.3.2 Study on Grammar Editors

Related work of our study on grammar editor is depicted in Figure 1.3. GUI-
based parser generators have been proposed, such as Parsify [61] and Parsi-
mony [60]. They provide operations to refine the grammar for a parser by ap-
plying the programming by example technique to parser generation. These tools
aim to obtain a fully functional parser with a complete grammar. Hence, the
working parser is not available until the user teaches all the programming con-
structs in a language.

Our interactive grammar editor proposed in Chapter 4 is based on our lake
symbols proposed in Chapter 3. Our iterative grammar editor called PEGSEED
uses a lake symbol like a test stub for software under testing. Therefore, a func-
tional parser is always available from a grammar being edited in PEGSEED.
This feature is convenient to write a grammar for extracting only extended pro-
gramming constructs.
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1.3.3 Study on Dynamic Domain-Specific Assistance

Related work of our study on dynamic domain-specific assistance is depicted in
Figure 1.4. Dynamic assistance is usually provided by integrated development
environments (IDEs). Language workbenches that support efficient develop-
ment of IDEs for external DSLs have been proposed, such as Xtext [30] and
Spoofax [50]. While these techniques can also be used for embedded DSLs,
developing an IDE for an embedded DSL is too expensive.

For providing dynamic domain-specific assistance for embedded DSLs, two
approaches have been proposed. The first approach is customizing an IDE for a
host language. Nosal et al. [70] have reported their study on extending NetBeans
IDE for non-programmers.

The other approach is exploiting an IDE of a host language. Fluent API can
be used to enable code completion and error checking for method chaining. While
the implementation of fluent API is not easy, tools for generating fluent API have
been proposed, such as Fling [36], Silverchain [69], and typelevelLR [94].

Our study on dynamic domain-specific assistance also focuses on exploiting
an IDE for a host language. Our study discovers a new case for code completion
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and error checking, which is more general than the fluent API case. We also
propose the divide-and-generate pattern for its solution and validate our pattern
through a case study on a practical processor description language.

1.4 Contributions

The contributions of this dissertation are summarized as follows:

• We propose the lake symbols and an extended PEG supporting the lake
symbols. It mitigates the difficulty in describing the grammar rule for the
water in the middle of an island. This contributes to reducing the total
number of rules for an island parser and thereby improving the usefulness
of the island parser.

• We introduce a novel semantics of the shortest match suitable for island
parsing. Our shortest match with a lake symbol consumes an arbitrary
input character until a part of the whole of an island appears.

• We implemented island parsers based on the extended PEG and revealed
that the extended PEG effectively reduced the size of the grammar for
island parsing.

• We propose an incremental description of island grammars with lake sym-
bols and tool support for it. Our approaches enable the description of an
island grammar in a step-by-step manner. In each step, the user can add
a rule to the grammar and immediately test the rule. This enables the
island parser always to work correctly as the user expects. This prevents
us from doing inefficient trial-and-error to write an island grammar.

• We propose an example-based GUI tool for editing grammar. This tool
provides three GUI operations for the user to add a new rule to the gram-
mar. These GUI operations take an example text as input and generate a
new rule based on the user’s selection. This prevents the user from making
a specific type of mistake when editing the island grammar.

• We implemented our tool called PEGSEED that supports incremental edit-
ing and GUI operations for editing island grammars. We developed a
framework for syntax extension based on PEGSEED. We confirmed that
the possible mistake is detected soon in our PEGSEED. We also confirmed
that we could construct the parser for syntax extensions only with proposed
GUI operations.

• We reveal that domain-specific programming assistance by IDEs is inad-
equate for embedded DSLs and propose the divide-and-generate pattern
to addressing this problem. The divide-and-generate pattern exploits pro-
gram generation such that programming assistance for the host language
can be regarded as domain-specific.

• We conduct a case study by developing a practical embedded DSL called
MELTRANS and demonstrate the domain-specific assistance that is avail-
able when the user is writing a program in MELTRANS.
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• We experimentally confirm that the domain-specific assistance provided
by MELTRANS can effectively reduce the amount of code to be written
by the user, the generated emulator can emulate a processor in over 1,000
MIPS, and MELTRANS is general enough to generate an emulator for
several commercial instruction sets (ARM, MIPS64, SH, RH850, RISC-V,
and RX).

1.5 Structure of This Dissertation

The remaining part of this dissertation is composed as follows:

Chapter 2: Embedded DSLs

We introduce embedded DSLs and existing approaches for supporting domain-
specific assistance in them. We clarify what problems have not been solved yet
and what we address in this dissertation.

Chapter 3: Lake Symbols for Island Parsing

Chapter 3 proposes a methodology to reduce the effort to implement static pro-
gramming assistance in embedded DSLs. We propose the lake symbols for island
parsing. The lake symbol is a novel grammatical symbol similar to a nonterminal
symbol. Embedded DSL developers can use lake symbols to describe an island
grammar for syntax extension. The Lake symbol can be used in a similar manner
with a wildcard character to skip uninterest parts of the program. In contrast
with a wildcard character, a lake symbol does not consume island parts of the
input program. This feature is archived by automatically calculating a set of
alternative symbols, which recognize parts of islands. Our algorithm proposed
in this chapter takes grammar with lake symbols and generates an equivalent
grammar without lake symbols. Automatically calculated alternative symbols
are embedded in the rules derived from lake symbols. Without lake symbols,
the user must enumerate all alternative symbols and explicitly specify them in
the grammar.

Chapter 4: Interactive Editor for Island Grammars

Chapter 4 also proposes a methodology to reduce the effort to implement static
programming assistance in embedded DSLs. We propose an interactive editor
called PEGSEED for island grammar. In PEGSEED, the user incrementally
refines island grammar from the initial grammar, which skips a whole program
as water. The user adds a rule that recognizes small islands to the grammar
in a step-by-step manner. In each step, the user can test the latest rule with
text highlighting provided by PEGSEED. We also propose example-based GUI
operations to update an island grammar. By using GUI operations, embedded
DSL developers can describe an island grammar for syntax extension without
directly editing the grammar.
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Chapter 5: Dynamic Domain-Specific Programming As-
sistance

In Chapter 5, we reveal that dynamic domain-specific assistance is poor in an
embedded DSL. We also propose a design approach for developing an embedded
DSL with dynamic domain-specific programming assistance. To demonstrate the
proposed approach, we describe the design of our processor description language
called MELTRANS, which is an embedded DSL hosted by Java. MELTRANS
is used to generate a fast processor emulator with dynamic binary translation.

Chapter 6: Conclusion

We conclude this dissertation and explain the future work related to our studies.
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Chapter 2

Domain-Specific Assistance in
Embedded DSLs

2.1 Domain-Specific Languages

Domain-specific languages are languages that are developed for providing bet-
ter domain-specific abstraction than general-purpose programming languages.
For example, Dot is a domain-specific language for generating a graph image.
The PNG file corresponding to Figure 2.1 can be generated from the following
program written in Dot:

digraph {

Car -> Vehicle;

Motorbike -> Vehicle;

Vehicle -> Machine;

}

Dot provides a domain-specific abstraction for the user to draw a graph. The
programmer of Dot specifies the relations between nodes in the graph. The Dot
interpreter Graphviz layouts each node on behalf of the programmer and draws
the graph in the PNG file from the above program. Similarly, LaTex is a DSL
for generating a well-formatted document and SQL is a DSL for manipulating
data held in a relational database management system.

DSLs are categorized into external DSLs and embedded DSLs based on how
they are implemented. External DSL is implemented similarly with general-
purpose programming languages, as shown in Figure 2.2. The developer of an
external DSL implements a DSL interpreter or compiler. Figure 2.2 also shows
the structure of the DSL interpreter. The DSL interpreter consists of a lexer,
parser, and evaluator, as same as interpreters for general-purpose programming
languages. The lexer takes a DSL program and creates a stream of tokens.
The parser takes the stream as input and creates an abstract syntax tree (AST)
representing the program’s semantics. The evaluator traverses the AST and does
its domain-specific tasks, such as generating a graph image.

On the other hand, an embedded DSL is implemented as a framework or
a library for a general-purpose programming language, as shown in Figure 2.3.
The general-purpose programming language is called the host language of the
embedded DSL. Embedded DSL exploits the syntax of the host language. There-
fore, the embedded DSL developer does not need to implement a lexer and a
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Figure 2.2: External DSL developers implement an interpreter

parser for her embedded DSL. Domain-specific functionality corresponding to
the evaluator for external DSL is implemented in the host library or framework
written in the host language.

2.2 Why Embedded DSLs?

An essential factor of a DSL is its implementation cost. A DSL is developed to
accelerate the development of software in a specific domain. In many cases, a
DSL is developed at the same time with its application. Therefore, the effort to
develop DSL must be reasonable.

The benefit of developing a DSL as embedded DSL is its low implementation
cost. In general, the effort to developing an embedded DSL is lower than external
DSLs. As mentioned earlier, since an embedded DSL exploits the syntax of
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Figure 2.3: Embedded DSL developers implement a library

the host language, the development of the embedded DSL does not include
implementing a lexer and a parser, which is needed for external DSLs. Moreover,
exploiting the syntax of the host language enables the use of IDEs for the host
language. The programmer of the embedded DSL can use IDEs for the host
language when writing a program. Therefore, the DSL developer does not need
to provide a specific IDE for the DSL.

An example of embedded DSLs is Rake1 hosted in Ruby. Rake is a language
for building software like Make. The following program is an example program
written in Rake:

file "message.txt" do |task|

system ("echo Hello!> #{task.name }")

end

The code specifies the rule for creating a file named ”message.txt”. The file

command in Line 1 is just implemented as a library function and provides a
domain-specific abstraction to the user for specifying the rule to generate a file.
The above Rake program is equivalent to the following program in Make, which
is an external DSL for software building:

"message.txt":

echo Hello! > $@

While the program written in Make is slightly simpler than the one in Rake,
the development effort of Rake is lower than Make. The development of Rake
does not require writing a lexer and parser for Ruby. Instead, it requires the
implementation of library functions, such as the file function in the above
example. Moreover, when the user writes a program in Rake, she can use an
IDE for Ruby.

1https://docs.ruby-lang.org/ja/latest/library/rake.html
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2.3 Programming Assistance in DSLs

Programming assistance helps the user of a DSL to write a program in the DSL.
Depending on when the assistance is available, programming assistance in DSLs
is divided into static and dynamic ones. In this thesis, we define static assistance
as support available throughout the life-cycle of a program written in a DSL.
Similarly, we define dynamic assistance as dynamically available support while
the programmer is editing a program in a DSL in a specific environment. Li-
braries, documentation, and syntax of the host language provide static program-
ming assistance. They help the user of the language throughout the life-cycle
of a program. On the other hand, auto-completion, error checking, and syntax
highlighting, which are typically provided by IDEs, are dynamic programming
assistance. They are available only when the DSL user edits a program.

Programming assistance in an embedded DSL is usually provided by the host
programming language and tools for it. For example, dynamic programming as-
sistance in an embedded DSL hosted by Java is provided by the Eclipse IDE
for Java. Programming assistance available in an embedded DSL is not domain-
specific but general-purpose for the host language. To provide domain-specific
programming assistance in embedded DSLs, many researchers have studied so
far. The remaining parts of this chapter introduce existing research on program-
ming assistance for embedded DSLs.

2.4 Static Domain-Specific Programming Assistance

Since static programming assistance provided by libraries or documentation is
not specific to embedded DSL, we focus only on syntax-level support for pro-
gramming. Syntax-level support in embedded DSLs is relatively poor. While
external DSLs can provide rich syntax-level support in nature, the degree of
syntax-level support available in an embedded DSL depends on its host pro-
gramming language. Usually, the syntax-level support in an embedded DSL is
only limited to the general-purpose ones provided by the host language. While
an embedded DSL user can use programming constructs such as class or lambda
provided by the host language, she cannot use any domain-specific programming
construct. If the embedded DSL developer wants to add domain-specific pro-
gramming constructs to the embedded DSL, extra effort is required for syntax
extension.

2.4.1 Syntax Extension

Syntax extension is a solution to provide domain-specific syntax-level support
in embedded DSLs. DSL developers extend the syntax of the host language by
adding new programming constructs to the host language. Suppose that unless
statements are essential for writing a natural program in a target domain when
the host language does not support unless statements. An unless statements
execute its block statement only when a given condition is not satisfied. An
example of an unless-statement is as follows:

unless (isConditionPassed()) {

doit();
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Figure 2.4: Embedded DSL developers write a grammar and rewriting rules

}

In this case, doit() is called only when isConditionPassed() returns false.
This program is equivalent to the following program:

if (!isConditionPassed()) {

doit();

}

The above program does not contain any unless statement. Hence, compilers or
interpreters of the host language can handle this program. Syntax extension with
unless statement can be implemented by a program transformer that converts
a program with unless statement into an equivalent program without unless

statement.

2.4.2 Program Transformer

Program transformers are tools for syntax extension. They convert a program
written in language A into an equivalent program written in language B. Syntax
extension is implemented with a program transformer. The program transformer
can transform a program written in an extended language into an equivalent pro-
gram written in the original language without extension. The typical structure
of a program transformer is shown in Figure 2.4. A program transformer is con-
figured by a grammar and rewriting rules. The grammar specifies the grammar
of the input program, and the rewriting rules specify how to convert input pro-
grams. Embedded DSL developers can implement extended syntax by writing
the grammar of the extended language and rewriting rules for new constructs
in the extended language. The program transformer parses the input program
based on the given grammar and generates an AST of the program. Then,
the program transformer rewrites the AST based on the given rewriting rules.
Finally, the program transformer unparses the AST and generates a program
written in the language without extended syntax.
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MetaBorg [15] and TXL[18] are language tools that can be used as a pro-
gram transformer. MetaBorg takes a grammar written in the syntax definition
formalism (SDF) [89] and rewriting rules written in the program transformation
language Stratego/XT [14]. TXL is a language for language prototyping. It
provides a syntax for a grammar and rewriting rules.

Describing grammar requires more effort than describing rewriting rules for a
program transformer. While syntax extension requires only a rewriting rule for
newly added programming constructs, it usually requires a complete grammar
containing all the extended language’s grammatical rules.

2.4.3 Grammar for Parsing

A grammar for obtaining a parser is written in a specific metalanguage. For
example, Yacc takes a grammar written in metalanguage similar to Backus-Naur
form (BNF) [53]. Many software translation systems adopt syntax definition
formalism (SDF) as a metalanguage for describing a grammar. Metalanguage
such as BNF and SDF can be used to describe a context-free grammar (CFG).
Another option for describing a grammar is using parsing expression grammar
(PEG) [32]. The word “PEG” is used to represent two different things. First,
PEG means one of the metalanguages such as BNF for describing grammar.
Second, a PEG represents one of the formal grammars such as CFG.

2.4.4 Parsing Algorithm for Syntax Extension

Parsing algorithms that can handle CFG or PEG are suitable for syntax ex-
tension, while many parsing algorithms can be used to parse a program writ-
ten in programming languages. For example, scanner-less GLR [92] is used in
MetaBorg, and GLL [84] is used in TXL. Scanner-less GLR and GLL are CFG
parsers. GLR [88], Cocke-Younger-Kasami (CYK) [96], and Early algorithms are
also CFG parsers. These CFG parsers can handle any context-free languages.
If the PEG is used for syntax extension, packrat parsing [31] can be used as a
parsing algorithm.

Other algorithms such as LL(1) or LR(1) are not suitable for syntax ex-
tension, while they are often used for programming languages. LL(1)/LR(1)
parsers can handle only LL(1)/LR(1) languages. However, adding a domain-
specific programming construct in a host language tends to result in a language
in a different class of the host language. For example, adding a new construct in
a LL(1) language such as Pascal may result in a language that is not an LL(1)
language. Whether the resulting language is LL(1) depends on how complex the
added programming construct is. Hence, the expressive of extended language is
restricted by a parsing algorithm. The more languages the parsing algorithms
can handle, the more expressiveness is available by syntax extension.

2.4.5 Island Grammar

An island grammar is a promising technique to reduce the labor for describing
grammar for syntax extension. The name “island grammar” was initially intro-
duced by Van Deursen et al. [90] as a grammar development technique to reduce
the grammar development time. Moonen [67] defined island grammar as quoted
as follows:
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An island grammar is a grammar that consists of detailed produc-
tions describing certain constructs of interest (the islands) and liberal
productions that catch the remainder (the water).

If the application program is only interested in specific constructs in a lan-
guage, the grammar for the application does not need to be complete grammar
for the language. Instead, the grammar contains the detailed rules for islands
that the application is interested in and the rules to skip the rest of the text.
Such a grammar is called an island grammar. In many cases, the rules for water
are not complicated as corresponding rules in the complete grammar. Therefore,
the island grammar is relatively smaller than the complete grammar.

An island grammar does not depend on any specific formalism for the defi-
nition of syntax. In literature, SDF and PEG are often used to describe island
grammars.

For example, the following grammar is typical island grammar written in
PEG:

program <- sea*

sea <- island / water

program is recognized as repetition of sea in the grammar. The sea is recognized
when the parser recognizes islands or water. When both island and water match
the substring starting with the current location in parsing, an island is always
preferred because the left-hand operand of choice operator / in PEG is prioritized
to the right-side operand.

2.4.6 Application of Island Grammar to Syntax Extension

The idea that using island grammar for syntax extension has been introduced
by Afroozeh et al. [2]. They reported a case study on an island grammar for
embedding the Tom language [76] in some host languages. Tom can be embed-
ded in a host language such as Java without a complete grammar for the host
language by using island grammar. Hence, in the island grammar, Tom’s pro-
gram constructs are described as islands, and water is defined to skip the parts
of a program written in the host language. The resulting grammar is almost
host language agnostic. Hence, the grammar can be reused for embedding Tom
to multiple host languages. The island grammar resulted in having ambiguity.
Afroozeh et al. [2] reported disambiguation techniques that can be used with
GLL parsing to solve the conflicts in the grammar for embedding Tom. The
techniques include accommodating the input grammar or postprocessing a parse
forest based on pattern matching within the parse forest. Tom’s construct starts
with a specific delimiter and ends with the closing brace. While postprocessing
a parse forest is general enough to be used in other guest languages, defining
string literal start withs ’’ and ends ’’ as water is a useful technique that can be
used as a universal technique.

2.4.7 Bounded Seas for Island Grammar

Defining water in an island grammar is not easy. The definitions of water differ
depending on where each water is in the grammar. Bounded seas are a tech-
nique that eases the definition of water in an island grammar. Bounded seas
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introduced the sea operator ~ for defining a bounded sea in an island grammar.
A bounded sea is defined as an island surrounded by context-aware water. For
example, ~island~ is a bounded sea defined by the nonterminal symbol island.
A bounded sea can be used in an island grammar instead of specifying the fully
detailed rules for parsing the corresponding parts of the language.

For example, we can write an island grammar for extracting nestable blocks
that begin with ’{’ and end with ’}’ as follows:

program <- (block / .)*

block <- ’{’ ~(block / ϵ)~* ’}’

The parser corresponding to the grammar recognizes a program as repetition of
block or any character. Note that the above grammar specifies a bounded sea
instead of specifying the details of the inner parts of the block. In this case, the
bonded sea is represented as ~(block / ϵ)~. When the parser parses the inner
parts of a block surrounded by ’{’ and ’}’, the parser skips the input until
it encounters an inner block or closing ’}’. The grammar is equivalent to the
following PEG without the sea operator:

program <- (block / .)*

block <- ’{’ ((!’}’ !’{’ .)* (block / ϵ) (!’}’ !’{’ .)*)* ’}’

In the above grammar, the sea operator ~ is converted to parsing expression
(!’}’ !’{’ .)*, which consumes any characters until it encounters ’}’ or ’{’.
’}’ and ’{’ represent the boundaries of the sea and shore parts of islands. In
bounded seas, the expressions that recognize the shore parts immediately follow
the bounded sea ~e~ represented by the NEXT (e) function. In general, ~e~ is
equivalent to:

(!next1 !next2 ... .)* e (!next1 !next2 / ... .)*

where next1, next2, ... are members of NEXT (e). NEXT (e) is similar to tradi-
tional FOLLOW (X ) for CFG. However, NEXT (e) is different from FOLLOW (X )
in that NEXT (e) contains not only terminal symbols but also nonterminal sym-
bols, while FOLLOW (X ) contains only terminal symbols.

2.4.8 Tools for Editing Grammar

Another approach for reducing the effort to write a grammar is providing tools
for editing the grammar. Parsify [61] and Parsimony [60] are grammar editors
with a graphical user interface for non-expert users. The users can construct
a grammar definition by interactively showing an example of how it is parsed.
The user selects a text area on an editor screen and labels it with nonterminal.
The editor automatically infers the rule for the nonterminal and shows possible
parse trees. Typically, the user labels the text area in a bottom-up manner from
leaves to the root of the parse tree. Until the user finishes teaching all the rules
for the grammar, grammar is ambiguous. The grammar under editing generates
a parse forest instead of a parse tree. To handle this ambiguity, Parsify uses
CYK algorithm, and Parsimony uses GLR algorithm inside them, respectively.
After teaching all the grammar rules, the user can get a functional parser that
creates a unique parse tree from an input program.
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2.5 Dynamic Domain-Specific Programming Assistance

We define dynamic programming assistance as support that is available while the
user writes a program. They are usually provided by editors or IDEs, which pro-
grammers use to write a program. Assistance provided by modern IDEs includes
text highlighting, auto-completion, and error checking. This section introduces
existing approaches for providing dynamic domain-specific programming assis-
tance in embedded DSLs.

2.5.1 Language Workbench

Language workbenches have been developed and used in many external DSLs.
These language workbenches can generate tools for DSLs, including an IDE
for the language. Xtext [30] and Spoofax [50] are grammar-based language
workbenches that can support the development of IDEs. For example, Xtext
generates a plugin for the Eclipse IDE from a grammar for a DSL. The generated
plugin provides assistance such as code completion when the DSL user writes
a program. Similarly, Spoofax also generates Eclipse plugins from declarative
specifications for languages.

2.5.2 Customizing IDEs for the Host Languages

Customizing host IDEs is another option for better programming assistance
in embedded DSLs. Nosal et al. [70] have reported their study on extending
NetBeans IDE for non-programmers. They pointed out that programs written
in embedded DSLs are too noisy or verbose for domain exports that are not
programmers. They addressed this problem by extending an IDE for the host
language with their plugin. Their plugin provides a way to hide the noisy part
of the host language from the user.

2.5.3 Fluent API

A kind of domain-specific assistance is available in host IDEs by using fluent
API. Fluent API is an API that the programmer uses in a method chaining. In
a method chaining, methods are called one after another. Quoted example of a
method chaining used in jOOQ2 is as follows:

create.select(BOOK.TITLE)

.from(BOOK)

.where(BOOK.PUBLISHED_IN.eq (2011))

.orderBy(BOOK.TITLE)

This method chaining represents a SQL query for a relational database in an
embedded DSL way. It is equivalent to the following SQL query:

SELECT TITLE

FROM BOOK

WHERE BOOK.PUBLISHED_IN = 2011

ORDER BY BOOK.TITLE

2https://www.jooq.org/
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The method chining is regarded as a program in a mini-DSL embedded in
the host language. The grammar of this mini-DSL is encoded in type definitions
written in the host language. These definitions keep the user from writing an in-
valid program. For example, SQL allows GROUP BY, HAVING, ORDER BY, or LIMIT
clauses after WHERE clause. Fluent API emulates this restriction with the type of
value returned by the where method. The return type of the where method only
implements groupBy, having, orderBy, limit. Therefore, if another method is
specified by mistake, the error was detected before executing a program. If the
user writes a method changing in an IDE for the host language, it can provide
domain-specific code completion and error checking. For example, if the user
types Ctrl and space after typing the call of the where method, the IDE will
show the list of the methods which are allowed at the place. If the user happens
to write an invalid method, the IDE will warn it immediately.

While fluent API is convenient for the user of the embedded DSL, imple-
menting fluent API is not easy. The developer of fluent API has to write many
complex type definitions to implement the fluent API. To mitigate this problem,
Gil et al. [35, 36], Nakamaru et al. [69] and Yamazaki et al. [94] have proposed
automated generation of a fluent API. These tools take the grammar of a fluent
API as input and generate class definitions that implement the fluent API.

2.6 Motivation

Our motivation is to reduce the effort to implement both static and dynamic
domain-specific assistance in embedded DSLs. Inadequate domain-specific as-
sistance in embedded DSLs is because many additional efforts are needed to im-
plement domain-specific assistance. While a benefit of embedded DSLs is their
low implementation cost, these additional efforts reduce this benefit. Hence,
reasonable ways to implement domain-specific assistance in embedded DSL are
required.

2.6.1 Static Programming Assistance

The key to better static programming assistance in embedded DSLs is to improve
the difficulty in writing island grammars for parsers. The development of a parser
is the most laborious task in implementing syntax extension for programming
assistance.

Island parsing is a promising technique to implement a parser for syntax
extension. The island grammar does not contain the detailed parts of the lan-
guage that are irrelevant to extended programming constructs. Therefore, the
number of rules for parsing is relatively smaller than complete grammar for the
language. For example, let us consider implementing the unless statement by
syntax extension. An example of an unless statement handled by this syntax
extension is as follows:

unless (x < 0) {

doit();

}

This program is converted into the following program with the if statement:
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if (!(x < 0)) {

doit();

}

To implement this syntax extension, we are only interested in the leading part
of the if statement, of which pattern is represented as the following pattern:

unless (<A>)

What we need is the unless keyword and the following condition part of the
unless statement. In the above pattern, <A> represents the uninteresting part
of the leading part of the unless statement. If we can extract the text matched
by the above pattern, we can convert it into an equivalent code snippet as shown
in the following pattern:

if (!(<A>))

An island grammar enables the DSL developer to write a grammar similar to
the above pattern to extract the leading part of the unless statement. Island
grammars consist of rules for island that is a programming construct of interest
and water that is uninteresting parts of the language. Since the rules for water
are not be fully specified, the number of the rule in island grammar is smaller
than the complete grammar.

While the number of rules is small in an island grammar, it is not easy to
define rules for water. Writing rules for water on the island is complicated,
especially when the water appears inside islands. The language designers must
write rules for water such that the parser does not consume a part of the island
as water. For example, if we want to extract the leading part of the unless
statement represented by the following pattern:

unless (<A>)

, we must define a rule for water to skip <A> such that it does not consume
) at the end of the condition clause. The rule for water must specify that )

should be excluded. Bounded seas partially reduce this difficulty in writing the
rule for water by automatically calculating the NEXT (e) of a bounded sea. In
the case of the unless statement, ) is automatically calculated as a member of
NEXT (e). Therefore, the user does not need to specify ) by herself.

However, relying on NEXT (e) limits the applicability of the sea operator.
Let’s assume we want to extract only C-like statements as shown in the language
represented by the following PEG:

program <- stmt*

stmt <- block / expr_stmt

block <- ’{’ stmt* ’}’

expr_stmt <- expr ’;’

expr <- ...

While the details of expr is omitted in the above grammar, its definition requires
many rules for subexpressions. Hence we do not want to specify the grammar
fully. So we want to write the island grammar with the sea operator as follows.

22



program <- stmt*

stmt <- block / expr_stmt

block <- ’{’ stmt* ’}’

expr_stmt <- ~~ ’;’

expr <- ...

and it is equivalent to:

program <- stmt*

stmt <- block / expr_stmt

block <- ’{’ stmt* ’}’

expr_stmt <- (! ’;’)* (! ’;’)* ’;’

expr <- ...

The sea operators are converted into (! ’;’) in the above grammar. However, the
above grammar cannot correctly parse the following program:

{ x = x + 1; } y = x;

After the parser recognizes x = x + 1; as expr_stmt, it recognizes the
} y = x; as another expr_stmt by mistake. This is due to (! ’;’ .)* in
the rule for expr_stmt consumes the ’}’ as water. An correct island grammar
would be as follows:

program <- stmt*

stmt <- block / expr_stmt

block <- ’{’ stmt* ’}’

expr_stmt <- (! (’}’ / ’;’) .)* ’;’

expr <- ...

The rules for expr_stmt contains not only ; but also } as operands of the not
predicate. This indicates that the sea operator cannot be used in the leading
part of an ordered choice operator.

The problem of the bounded sea is that we cannot handle the leading part of
the island as water. If the DSL developer is not interested in the leading part of
the program construct, she must write a complicated rule for water to prevent
the water from consuming a part of an island.

2.6.2 Dynamic Programming Assistance

The key to providing better dynamic domain-specific assistance in embedded
DSLs is exploiting IDEs for the host language. If the host IDE can provide
dynamic domain-specific assistance, the embedded DSL developer does not need
to develop a specific IDE or plugin for an existing IDE for the host language.
Developing these tools may not be easy for the embedded DSL developer since
the host language is not the same as the one for developing these tools.

While the idea of exploiting the host IDE for the host language has been
proposed, the idea is limited to method chaining. The embedded DSL developer
can support dynamic-domain specific assistance in method chaining by imple-
menting Fluet API. Fluent API is implemented in the host language. The DSL
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Listing 2.1: MUL instruction in the reference manual (ARM)

1 if condition_passed ()

2 d = UInt(Rd);

3 n = UInt(Rn);

4 m = UInt(Rm);

5 setflags = (S == ’1’)

6 operands1 = SInt(R[n])

7 operands2 = SInt(R[m])

8 result = operand1 * operand2

9 R[d] = result <31:0>

10 if setflags then

11 APSR.N = result <31>;

12 APSR.Z = IsZeroBit(result);

developer does not have to write a program in a language different from the host
language.

Fluent API indicates that the design and implementation of the embedded
DSL affect the availability of dynamic domain-specific assistance in the embed-
ded DSL. Regardless of whether Fluent API is implemented or not, method
chaining can be provided. By carefully designing types for method chaining as
Fluent API, better dynamic programming assistance is available.

What we need to focus on is language design in terms of dynamic program-
ming assistance. In general, the language design of the embedded DSL for better
dynamic programming assistance has not been considered except Fluent API.
Even with well-designed embedded DSL, there is room to improve its domain-
specific assistance.

One successful application domain of embedded DSLs is processor descrip-
tion. DSLs for the processor description are called processor description language
PDL. PDSL are designed for a task such as generating processor emulators or
design space expropriation in developing a processor. Suppose that we describe
the MUL instruction of the ARM processor in such an embedded DSL. The MUL

instruction multiplies values in the source registers and stores the result in the
destination register. Listing 2.1 is the pseudo-code expressing the semantics of
the MUL instruction, which is quoted from the ARM reference manual [45]. In
a Python-based embedded DSL, the Pydgin PDL [62], the same semantics is
implemented by the execute mul function shown in Listing 2.2. This function
appears to be very similar to the pseudo-code in Listing 2.1. Thus, the user can
describe the execute mul function by mostly copying the pseudo-code in the
reference manual. The user does not have to specify how to translate the MUL

instruction into the host instructions when implementing the processor emulator
in Pydgin.

Expressions inst.cond, inst.rm, and inst.rn in Listing 2.2 represent the
values of the instruction fields of MUL, which are cond, Rm, and Rn, respectively.
Figure 2.5 shows the excerpt of the bit encoding of the MUL instruction taken
from the ARM reference manual. The MUL instruction has five instruction fields:
cond, S, Rd, Rm, and Rn. Expressions inst.cond, inst.rm, and inst.rn are
method calls on inst, which is a function parameter to execute mull, and they
return the values of those instruction fields.
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Listing 2.2: MUL instruction in Pydgin (ARM)

1 def execute_mul( s, inst ):

2 if condition_passed( s, inst.cond ):

3 Rn, Rm = s.rf[ inst.rn ], s.rf[ inst.rm ]

4 result = trim_32(Rn * Rm)

5 s.rf[ inst.rd ] = result

6
7 if inst.S:

8 s.N = (result >> 31)&1

9 s.Z = result == 0

10
11 if inst.rd == 15:

12 return

13 s.rf[PC] = s.fetch_pc () + 4

Figure 2.5: Encoding of the MUL instruction (ARM)

The type of inst is the Instruction class, which must be defined by the
Pydgin user. Listing 2.3 is an example of the Instruction class for ARM,
which is included in the source tree of Pydgin. We renamed the methods in
the class such that the names are consistent with the field names in Figure 2.5.
The methods in Instruction extract the value of an instruction field from the
binary representation of the instruction. The binary representation is available
from self.bits. For example, method rd extracts instruction field Rd in bits
16–19.

The Pydgin user can expect that the IDE for Python, which is the host
language, reads the definition of the Instruction class and provides program-

Listing 2.3: Definition of the Instruction class

1 class Instruction( object ):

2 ...

3 @property

4 def rd( self ): return (self.bits >> 16) & 0xF

5
6 @property

7 def rm( self ): return (self.bits >> 8) & 0xF

8
9 @property

10 def rn( self ): return self.bits & 0xF

11 ...

12 @property

13 def imm24( self ): return self.bits & 0xFFFFFF

14 ...
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Figure 2.6: Encoding of the B instruction (ARM)

ming assistance to the user. For example, when the user writes execute mul,
auto-completion can be expected. When inst. is typed, a modern IDE would
show the list of the word candidates that could follow inst., and this list would
include cond, rm, and rn.

However, this auto-completion lacks domain-specific assistance. Even if the
IDE correctly infers that the type of inst is the Instruction class, the can-
didates for the auto-completion would include imm24, which is the method for
extracting the imm24 field of the B (branch) instruction shown in Figure 2.6. The
reason is that this method is included in the Instruction class. In Pydgin, all of
the methods for extracting an instruction field are included in the Instruction

class. Although imm24 is not available in the body of execute mul, if the user
selects imm24 after typing inst., the IDE would not warn the user of that incor-
rect selection. Note that the selection is valid from the host-language perspective
of Python; it is invalid only from the domain-specific perspective of Pydgin.

To mitigate this problem, some readers might change the design of Pydgin
to enable the user to define a different version of the Instruction class for a
different instruction. For example, the type of inst passed to execute mul could
be MulInstruction, whereas that to execute b could be BInstruction. Then,
they could provide only the methods available for their instruction. However,
this design requires the user to exert extra effort; numerous Instruction classes
should be defined; thereby complicating the type inference by the IDE. If the
host language were statically typed, that design would require the user to pay
extra attention to the type of the inst parameter.

The dynamic domain-specific programming assistance in embedded DSLs is
poorer than the assistance in external DSLs. If Pydgin were a standalone exter-
nal DSL, it would report a compilation error when the user writes inst.imm24
in the body of the execute mul function. A dedicated IDE for Pydgin would
provide better dynamic programming assistance to prevent writing inst.imm24

mistakenly in the body of execute mul.
Developing a dedicated IDE for an embedded DSL might be another option

to mitigate the inadequate domain-specific assistance. Developing an external
program-analysis tool might be another option. However, these options decrease
the benefit of embedded DSLs; the user would not be able to use the DSL as a
library for its host language. The user would be forced to write a program in a
particular IDE, which may be unfamiliar.
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Chapter 3

Lake Symbols

3.1 Introduction

Island parsing is a promising technique for the development of software engi-
neering tools. Island parsers extract only programming constructs of interest as
islands from an input string and they ignore the rest of the string as water. Such
incomplete parsers are often easy to develop but still useful enough for a number
of software engineering tools. These tools do not need the complete parse tree
or the abstract syntax tree (AST) of the input program. They only need a parse
tree or an AST for the interesting parts of the program. Suppose that we develop
a tool for measuring the chromatics complexity [63] of programs. The tool only
needs a parse tree for all the if/else statements and other control-flow state-
ments. We can just ignore the rest of the program. An island parser fits this
application; the statements like if/else are islands while the rest is water. An
island parser is also suitable for source model extraction from incomplete pro-
gram [67], multilingual parsing [87, 90, 2], extracting programming constructs
from documentations [9, 81], and lightweight impact analysis [68].

The grammar for an island parser is described in a formal language such
as PEG (Parsing Expression Grammar) [32], SDF (Syntax Definition Formal-
ism) [44], or TXL [20, 19]. This grammar consists of the rules for islands and
water. Describing this grammar is often easier than describing the corresponding
full-featured grammar, which is for parsing a whole program. The rules for the
water are usually simple, in an ideal case, just one wildcard character, and thus
the grammar for island parsing consists of only a small number of rules. The
island parser can be constructed from this grammar in the same way as ordinal
parsers.

In practice, the grammar for island parsing consists of a small number of rules
only when most parts of a program are recognized as water. To do so, some inner
parts of the island must be also water, which is not fully parsed. For example,
if an island is an if/else statement, the expressions included in that statement
should be recognized as water. However, the rules for such water in the middle of
an island are complicated and difficult to describe. Due to this difficulty, island
parsing seems to be not widely used today despite its applicability to software
engineering tools.

In this chapter, we propose the lake symbols to mitigate the difficulty in
describing the rules for the water in the middle of an island. We call this water a
lake. The lake symbols are newly added lexical elements in a PEG to represent

27



lakes in the PEG. A lake symbol can be used at the same place where nonterminal
symbols can be specified in the PEG. A lake symbol is used as an operand of
PEG’s operators in the same way as nonterminal symbols. Lake symbols are
surrounded with <> to be distinguished from nonterminal symbols. For example,
<expr> is a lake symbol. A lake symbol can optionally have a rule whose left-
hand side is the lake symbol in the same way as nonterminal symbols. Without
an optional rule, the lake symbol can be regarded as a special wildcard that
matches any single character except some parts of the island in/around that
lake.

A lake symbol is typically used with a repeat operator such as * and +.
We can use a lake symbol with a repat operator to find the shortest match of
an arbitrary string between islands. It resembles .+? (one or more arbitrary
characters with the lazy qualifier) in the regular expression. A lake symbol
matches arbitrary character until the parser encounters a part or the whole of
an island. For example, suppose that we want to extract statements terminated
by a semicolon (;) as islands. The rule in PEG for the statement is described
with a lake symbol as follows:

statement <- <e>+ ’;’

In the above rule, <e> is a lake symbol. This rule describes that the statement

non-terminal symbol is recognized if its right-hand side <e>+ ’;’ matches the
input string. <e>+ ’;’ is one or more repetitions of the <e> lake symbol followed
by ’;’ and matches the shortest string that ends with a semicolon like x = 1;. A
semicolon may alternatively appear in an input string instead of characters that
<e> should match. <e> is not a naive wildcard like . in the regular expression. If
we replace <e> with . in <e>+, the . happens to match ’;’ since the . qualified
with the one or more operator + matches a string greedy. For example, if the
input string consists of multiple statements such as x = 1; y = 1;, .+ matches
x = 1; y = 1, excluding the last semicolon greedy according to the widely used
semantics of regular expressions. As a result, .+ ’;’ matches two statements
x = 1; y = 1; unintentionally. On the other hand, <e>+ ’;’ matches only one
statement x = 1; or y = 1;. Therefore, <e>+ is not equivalent to .+. Moreover,
<e>+ is not equivalent to the shortest match like .+? in the regular expression.
<e>+ does not match a part or the whole of an island. To explain this, we change
the above rule as follows:

statement <- <e>+ ’;’ / block

where / is the ordered prioritized operator in the PEG. We assume that the
block non-terminal symbol recognizes a string surrounded with {} such as
{ k = 1; }. Now, statement recognizes block as well as the shortest string
that ends with a semicolon. <e>+ does not match the strings recognized by
block since block is regarded as an island in the above rule. If we replace <e>+
with .+?, it may match the strings recognized by block unintentionally. For
example, { k = 1; is recognized as statement, although it should have been
recognized as a part of block. This results in failing to recognize block cor-
rectly. The parser needs to know what text patterns must not be matched by
a lake symbol to exclude the parts of the island. These patterns are given by
terminal or non-terminal symbols, which we call the alternative symbols. In the
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above example, ’;’ and block are the alternative symbols. The lake symbol au-
tomates the enumeration of the alternative symbols so that it can be used as a
wildcard-like symbol for the shortest match.

Although a lake symbol matches any character except alternative symbols by
default, the user can explicitly specify the patterns that the lake symbol should
match. The user can specify this by writing a rule whose left-hand side is the
lake symbol and whose right-hand side represents the pattern to be matched. If
there is a rule whose left-hand side is a lake symbol, the lake symbol behaves
as a wildcard if the pattern on the right-hand side of the rule fails to match the
input string. The pattern on the right-hand side is prioritized over alternative
symbols. A lake symbol matches the input string if the pattern on the right-
hand side matches the input string, even if one of the alternative symbols also
matches the input string. We can define the rule for a lake symbol to create
a lake containing its alternative symbols as (part of) its islands. For example,
if the pattern for string literals is specified in the right-hand of the rule for a
lake symbol, the lake symbol can match a string literal even if it contains an
alternative symbol as part of it. The rule for a lake symbol also enables to handle
nested islands inside the lake. We can put a pattern for nested islands on the
right-hand side of the rule for the lake symbol.

A grammar in PEG with lake symbols can be translated into an equivalent
one without lake symbols. We present an algorithm for this translation. The
resulting grammar without lake symbols can be used as an input to an existing
PEG-based parser or parser-generator. A grammar in PEG with lake symbols
can be translated into an equivalent one without lake symbols. We present an
algorithm for this translation. The resulting grammar without lake symbols can
be used as an input to an existing PEG-based parser or parser-generator.

Furthermore, we implemented PEGIsland, an island-parser generator sup-
porting our extended PEG with lake symbols. By using PEGIsland, we imple-
mented 36 island parsers for Java programs and 20 ones for Python programs.
We compared the number of their grammar rules with the number of the rules
for the full-featured Java/Python parser. The comparison revealed that our
extended PEG effectively reduces the number of the rules.

The contribution of this chapter is threefold:

• We propose the lake symbols and an extended PEG supporting the lake
symbols. It mitigates the difficulty in describing the grammar rule for the
water in the middle of an island. This contributes to reducing the total
number of rules for an island parser and thereby improving the usefulness
of the island parser.

• We introduce a novel semantics of the shortest match suitable for island
parsing. Our shortest match with a lake symbol consumes an arbitrary
input character until a part or the whole of an island appears.

• We implemented island parsers based on the extended PEG and revealed
that the extended PEG effectively reduced the size of the grammar for
island parsing.

In the rest of this chapter, we first present island parsing and our motivating
problem. We then propose the lake symbols, an extension to PEG for supporting
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Listing 3.1: The PEG for a simple language

1 program <- spacing (stmt / func_def)*

2 func_def <- FUNCTION ID LPAREN ID? RPAREN block

3 if_else_stmt <- if_stmt (ELSE stmt)?

4 if_stmt <- IF LPAREN expr RPAREN stmt

5 stmt <- block / if_else_stmt / exp_stmt

6 exp_stmt <- expr SEMICOLON

7 block <- LBRACE stmt* RBRACE

8 expr <- rel_expr (ASSIGN rel_expr)*

9 rel_expr <- add_expr ((EQ / GT / LT) add_expr)*

10 add_expr <- mul_expr ((PLUS / MINUS) mul_expr)*

11 mul_expr <- pri_expr ((MUL / DIV) pri_expr)*

12 pri_expr <- LPAREN expr RPAREN / lambda_expr / funcall /

NUMBER / STRING / ID

13 lambda_expr <- LAMBDA LPAREN ID? RPAREN block

14 funcall <- ID LPAREN expr? RPAREN

15
16 spacing <- [ \t\n]*

17 ID <- [_a -z]+ spacing

18 LPAREN <- ’(’ spacing

19 RPAREN <- ’)’ spacing

20 LBRACE <- ’{’ spacing

21 RBRACE <- ’}’ spacing

22 SEMICOLON <- ’;’ spacing

23 IF <- ’if’ spacing

24 ELSE <- ’else ’ spacing

25 STRING <- ’"’ [^"]* ’"’ spacing

26 FUNCTION <- ’function ’ spacing

27 LAMBDA <- ’lambda ’ spacing

28 NUMBER <- [0 -9]+ spacing

29 ASSIGN <- ’=’ spacing

30 EQ <- ’==’ spacing

31 GT <- ’>’ spacing

32 LT <- ’<’ spacing

33 PLUS <- ’+’ spacing

34 MINUS <- ’-’ spacing

35 MUL <- ’*’ spacing

36 DIV <- ’/’ spacing

the lake symbols, and the algorithm for translating the extended PEG into the
normal PEG. We also present our experiments and related work. Finally, we
conclude this chapter.

3.2 Motivating Example

A parsing expression grammar (PEG) [32] is one of the formal grammars that
are used for building a top-down parser (see Appendix A.1 for details on PEGs).
Listing 3.1 shows an example of PEG. It specifies a simple language; its program
consists of statements (stmt) and function definitions (func def). A statement
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Listing 3.2: A program in the language in Listing 3.1

1 function make_cmp_f(x)

2 {

3 if (x == 0)

4 func = lambda (y) {

5 if (y > x) {

6 result = "positive ";

7 }

8 else if (y < x) {

9 result = "negative ";

10 }

11 else {

12 result = "zero";

13 }

14 result;

15 };

16 else

17 func = lambda (y) {

18 ...

19 };

20 func;

21 }

22
23 compare = make_cmp_f (0);

24 compare (1);

is either a block (block), an if/else statement (if else stmt), or an expression
statement (exp stmt). An expression statement is an expression (expr) with a
semicolon at the end. An expression supports several binary operators such as
+ and > and its terms are parenthesized expressions, function calls, or number
literals. Note that the terms may be a lambda expression (lambda expr), which
includes a block and the statements in that block.

The starting symbol of this grammar is program. The grammar is scanner-
less and its terminal symbols (or lexical tokens) are every character of its pro-
grams. spacing is a nonterminal symbol used for recognizing whitespace and
skipping it. For example, the parsing expression for program starts with spacing

for skipping the whitespace at the beginning of the program.
A program in Listing 3.2 is an example written in the language specified by

Listing 3.1. Lines 1 to 21 are a function definition recognized by the nonter-
minal symbol func def. Lines 3 to 19 are an if/else statement recognized by
if else stmt. Lines 4 to 15 are a lambda expression that includes another
if/else statement on lines 5 to 13. Lines 8 to 13 are also an if/else statement
that is the else part of the if/else statement on lines 5 to 13.

Figure 3.1 is the parse tree obtained after the parser based on the grammar
in Listing 3.1 parses the program in Listing 3.2. Each node of the tree is labeled
with a nonterminal symbol. For example, the root of the tree is labeled with
program. The details of the subtree labeled with expr is omitted and represented
by a gray triangle in this figure.

Island parsing is a technique for recognizing only interesting program con-
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Figure 3.1: The parse tree for the program in Listing 3.2

structs such as an if/else statement in the given program. The benefit of island
parsing is that the number of the rules in the grammar is reduced since we can
eliminate the rules for the uninteresting constructs from the grammar. The pro-
gram text of these uninteresting constructs is skipped by using a wildcard-like
symbol. The interesting program constructs are called islands and recognized
by the parser while the rest of the constructs are called water and skipped by
the parser. Islands and water are also called sea.

Suppose that we are interested in only the if/else statements for the language
in Listing 3.1 when we are developing a simple tool for that language. We
assume that the tool rewrites if/else statements so that they will be written with
curly braces. Coding conventions such as MISRA C [7] state that the control
structures should be written with curly braces. In the case of the Listing 3.2, the
tool rewrites the outermost if/else statement on lines 3 to 19 since it does not
include braces for the if clause and the else clause. The parse tree that we would
want to obtain does not need to contain the nodes or leaves that are irrelevant to
the if/else statements. It would be the tree consisting of only the nodes labeled
with a solid name in Figure 3.1. The gray nodes or the gray triangles would not
be included in the tree.

An island parser that we need recognizes only an if/else statement as an
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Listing 3.3: The grammar for the island parser

1 program <- spacing program_sea*

2 program_sea <- if_else_stmt / program_water

3 program_water <- STRING / .

4 if_else_stmt <- if_stmt (ELSE stmt)?

5 if_stmt <- IF LPAREN expr RPAREN stmt

6 stmt <- block / if_else_stmt / exp_stmt

7 exp_stmt <- expr SEMICOLON

8 block <- LBRACE stmt* RBRACE

9 expr <- expr_sea+

10 expr_sea <- if_else_stmt / expr_water

11 expr_water <- LPAREN expr_sea* RPAREN / block / STRING / !(

SEMICOLON / RPAREN / RBRACE) .

12
13 spacing <- [ \t\n]*

14 LPAREN <- ’(’ spacing

15 RPAREN <- ’)’ spacing

16 LBRACE <- ’{’ spacing

17 RBRACE <- ’}’ spacing

18 SEMICOLON <- ’;’ spacing

19 IF <- ’if’ spacing

20 ELSE <- ’else ’ spacing

21 STRING <- ’"’ [^"]* ’"’ spacing

island but skips the others as water. The grammar for that parser does not
need to include the rule for func def. It is obtained by eliminating the rule for
func def from Listing 3.1 and adding the following three rules:

program <- spacing program_sea*

program_sea <- if_else_stmt / program_water

program_water <- STRING / .

We introduce two new nonterminal symbols program sea and program water.
A program is the repetition of program sea, which is either if else stmt (i.e.
an island) or program water. program water is a wildcard-like symbol. It
recognizes either a string literal or any character matching a wildcard charac-
ter “.”. Note that the prioritized choice operator / gives a higher priority to
if else stmt than program water. Otherwise, program sea would not recog-
nize an if else stmt at all. The rule for program water is not

program_water <- .

since this would let the parser recognize a string literal like "if(x)y;" wrongly
as if else stmt.

Next, we remove expr from the grammar as well as func def since the details
of expr are not interesting. The grammar without expr and func def is listed
in Listing 3.3. The size of this grammar is approximately only two thirds of
the original one in Listing 3.1. In this grammar, the original rule for expr is
replaced with a simpler one. It is the repetition of expr sea, and expr sea is
either if else stmt or expr water as program sea is.

Note that expr water is not the same as program water although both are
water symbols, which are used as a wildcard matching any symbol.
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expr_water <- LPAREN expr_sea* RPAREN / block / STRING / !(

SEMICOLON / RPAREN / RBRACE) .

First, recall that an expression may be a lambda expression, which may include
an if/else statement in its body. Thus, the parser must recognize an if/else
statement as an island when it is included in the expression. expr water must
be aware of a parenthesized expression, a block, and a string literal since they
may include an if/else statement. On the other hand, program water must be
aware of only a string literal.

Second, the last option of the prioritized choice / in expr water is not only
a wildcard character . but:

!( SEMICOLON / RPAREN / RBRACE) .

The wildcard character follows a not predicate (negative lookahead). This reads
as matching any character except a semicolon, a right parenthesis, and a right
brace. Since they are parts of an island, they should not be recognized as a part
of water. They are sentinels for terminating the repetition of a wildcard. We call
these symbols as alternative symbols in this dissertation. Note that the wildcard
character in the rule for program water does not follow a not predicate.

Since expr appears in the parsing expressions (the right-hand side of <-

for the rule) for other nonterminals such as if stmt and exp stmt, its water
symbol expr water may not match the symbols following expr in those parsing
expressions. These symbols are alternative symbols for expr water.

For example, the parsing expression for exp stmt is:

expr SEMICOLON

Since expr matches the repetition of if else stmt or expr water, expr water

may not match a semicolon. Note that the PEG-based parser can be regarded
as the parser always finding the longest match. Unless a semicolon is excluded
from the symbols that expr water matches, a semicolon would be absorbed into
expr and thus not recognized as the last token of expr stmt.

The alternative symbols for expr water are not only the symbols following
expr. They are also the symbols that may appear at the grammatical position
where expr water may appear. In other words, the alternative symbols include
the symbol that the parser must consume as part of a different non-terminal
when the parser can consume it as expr water. Thus, the idea of the alternative
symbols are different from the follow set used in the LALR(1) parsing.

An example of such an alternative symbol is RBRACE for expr water. Note
that RBRACE does not follow expr. However, RBRACE is included in the alternative
symbols for expr water. The parser must consume it as a part of block when
the parser can consume it as expr water. Suppose that the parser has read the
following character/token sequence:

if (x < 0) { x = 1;

The parser recognizes this as

IF LPAREN expr RPAREN LBRACE stmt

The parser will next attempt to recognize another occurrence of stmt. It will
try block, if else stmt, and finally expr stmt. If the next token is }, that is,
the parser reads:
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if (x < 0) { x = 1; }

then the parser does not recognize } (RBRACE) as the first token for block or
if else stmt. So the parser next attempts expr stmt but this attempt must
fail. The parser must fail to recognize } as expr water. It must recognize } as
the last token for block instead of expr water. This is why RBRACE is included
in the alternative symbols for expr water.

Island parsing is a useful technique when we only need a parser that recog-
nizes only interesting program constructs, such as an if/else statement, in the
given program. The size of the grammar for island parsing is often smaller than
that of the normal grammar. This fact reduces the development cost of the
parser. Furthermore, an island parser can recognize program constructs even
when a syntax error is included in the program but in the program constructs
that the parser does not recognize but it skips.

However, implementing the grammar definition for island parsing is not easy.
As we showed above, the rules for water symbols tend to be complicated and
error-prone. For example, selecting a right set of the alternative symbols is not
easy. This difficulty is a burden to the developers when implementing an island
parser.

3.3 Lake Symbol

To reduce the development cost of island parsers, we propose an extension to
Parsing Expression Grammar (PEG). It supports island parsing by a new kind
of symbol named a lake symbol.

An island parser parses a program as the repetition of sea. sea is either an
island or water.

program <- sea*

sea <- island / water

An island is a symbol representing the program constructs that we want to parse,
while water is a symbol representing the other program constructs. Since we are
not interested in the latter constructs or want to parse them, the naive definition
of the water is a wildcard that anything matches.

As we have seen in the previous section, the definition of the water becomes
complicated when we are not interested in inner parts of the island. For example,
when we were not interested in the expressions included in an if/else statement,
we had to define the water that the expressions match, and that definition was
complicated.

We call such uninteresting inner parts lakes because they are water in an
island. As the sea consists of islands and water, the lake consists of islands and
water. Thus, there may be an island in the middle of the lake. The lake is a kind
of the sea but it is an inner part of an island. Our lake symbol helps us define
the lake. In particular, it automates the calculation of the alternate symbols.

Our lake symbol is a grammatical symbol that has the following properties:

1. It is always enclosed in angle brackets <>, unlike nonterminal symbols.

2. It can be used on the right-hand side of any rules in the same way as other
grammatical symbols. It matches any character as a wildcard symbol for
shortest matching.
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3. It can optionally have a rule whose left-hand side is itself and whose right-
hand side is any parsing expression, in the same way as nonterminal sym-
bols. It matches the input string that the parsing expression on the right-
hand side matches. It works as a wildcard matching any single character
only when it has no rule or the right-hand side of its rule does not match
the input string.

For example, <STRING_lake> is a lake symbol. It can be used on the right-
hand side of any rule. Suppose that a string literal STRING is an island. <STRING_lake>
is used as follows:

STRING <- ’"’ <STRING_lake >* ’"’ spacing

Here, <STRING_lake> is used as part of the parsing expression on the right-hand
side of the rule. It represents a lake in the string literal. We do not have to
write the rule for defining this lake symbol. The lake symbol can be regarded as
a wildcard character that any character except " matches since the lake symbol
is a wildcard for shortest matching. So the parsing expression <STRING_lake>*

matches any text enclosed in double quotes ". The excluded character " is
automatically detected; this is a difference from the wildcard for the regular
expressions. " is an alternative symbol of this lake. A lake symbol with a
repetition operator can be considered as a representation of the shortest match
of an arbitrary string followed by an alternative symbol.

A lake symbol is not a simple wildcard. It can have a rule whose left-hand
side is itself. If a lake symbol has a rule, a lake symbol matches the input string
that the right-hand side of that rule matches in the same way as nonterminal
symbols. The lake symbol works as a wildcard matching any single character
only when the right-hand side does not match the input string. We can specify
islands in the lake by defining a rule for the lake symbol. Suppose that a block

is an island.

block <- ’{’ <block_lake >* ’}’

<block_lake > <- block

Here, <block_lake> is a lake symbol. The second line specifies that a block

enclosed in another block is an island. If there are multiple kinds of islands in
the lake, they are enumerated by using the prioritized choice operator /.

The rule for a lake symbol can be recursive. For example,

block <- ’{’ <block_lake >* ’}’

<block_lake > <- ’{’ <block_lake >* ’}’

In the second rule, <block_lake> is recursively referred to in the parsing ex-
pression on the right-hand side of ->. This reads as the parser considers the
nested curly braces, but it does not parse an inner block as an island. It parses
only the outermost block as an island. This rule is necessary to identify which
closing brace is balanced to an opening brace, even if we are not interested in
inner blocks.

In our extended PEG, water is a special symbol. The parsing expression
for water is appended to the parsing expressions for all the lake symbols. For
example, if the rule for water is:

water <- COMMENT / STRING

then the following rule for a lake:
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Listing 3.4: The grammar written with lake symbols

1 program <- spacing program_sea*

2 program_sea <- if_else_stmt / water

3 water <- STRING / .

4 if_else_stmt <- if_stmt (ELSE stmt)?

5 if_stmt <- IF LPAREN expr RPAREN stmt

6 stmt <- block / if_else_stmt / exp_stmt

7 exp_stmt <- expr SEMICOLON

8 block <- LBRACE stmt* RBRACE

9 expr <- <expr_lake >*

10 <expr_lake > <- if_else_stmt / LPAREN <expr_lake >* RPAREN /

block

11
12 spacing <- [ \t\n]*

13 LPAREN <- ’(’ spacing

14 RPAREN <- ’)’ spacing

15 LBRACE <- ’{’ spacing

16 RBRACE <- ’}’ spacing

17 SEMICOLON <- ’;’ spacing

18 IF <- ’if’ spacing

19 ELSE <- ’else ’ spacing

20 STRING <- ’"’ <STRING_lake >* ’"’ spacing

<block_lake > <- block

is treated as an equivalent of this:

<block_lake > <- block / COMMENT / STRING

Note that water is also used for the top-level rule program. Listing 3.4 shows
the grammar definition written with lake symbols expr_lake and STRING_lake.
It is equivalent to Listing 3.3 except the use of lake symbols. water is used in
line 2 and defined in line 3 in that grammar definition.

We can generate an island parser from our extended PEG. We first translate
the extended PEG into a normal PEG and then use this normal PEG to generate
a parser based on packrat parsing [31] or its variants [28]. In the following
subsections, we present how our extended PEG is translated into a normal PEG.

3.3.1 Translation into a Normal PEG

Our extended PEG with lake symbols can be represented by a tuple G =
(VN , VL, VT , R, es, ew), where VN is a set of nonterminal symbols, VL is a set
of lake symbols, VT is a set of terminal symbols, R is a set of rules, es is a
starting expression, ew is a global water expression, VN ∩ VL = ∅, VN ∩ VT = ∅,
VL ∩ VT = ∅. The extended elements of the tuple is VL and ew. VL is a set of
symbols enclosed in angle brackets <> and ew is given by the rule for the special
symbol water. If water is not explicitly given in the grammar, ew is the regular
expression !. (i.e. nothing matches ew).

We translate an extended PEG G into a normal PEG G′′. Here, G′′ =
(V ′

N , VT , R
′′, es), such that V ′

N = VN ∪ VL. The translation is divided into two
steps. In the following, X, <X> and e are meta-variables. X ranges over
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Listing 3.5: The syntax of parsing expressions

parsing_expr ::= parsing_expr parsing_expr | parsing_expr

’/’ parsing_expr

| parsing_expr ’*’ | parsing_expr ’+’ | parsing_expr

’?’

| ’&’ parsing_expr | ’!’ parsing_expr

| grammar_symbol

nonterminal symbols VN , <X> ranges over lake symbols VL, and e ranges over
a parsing expression.

Step 1

We translate an extended PEGG into an intermediate PEG G′ = (VN , VL, VT , R
′, es).

In G′, the global water expression ew is appended to the parsing expression of
the rule for every lake symbol in VL.

For each rule in R, if the rule is X ← e, then R′ includes the rule X ← e as
it is. If the rule is <X>← e, then R′ includes the following rule:

<X>← e/ew

For each lake symbol <X> in VL, if R does not include a rule for <X>, <X>←
e, then R′ includes the following rule:

<X>← ew

Step 2

For each rule in R′, if the rule is X ← e, then R′′ includes the rule X ← e as it
is. If the rule is <X>← e, then R′′ includes the following rule:

<X>← e/!(s1/.../sn) .

such that si ∈ VN ∪ VT and s1, s2, ..., sn are the elements of ALT (e), the set of
the alternative symbols for e, which is the definition of <X> in R′. This rule
reads as <X> is e or any character that is not the first part of the text string
recognized by s1, s2, ..., sn. Note that the last period in the rule is a wildcard
character.

3.3.2 Alternative Symbols

ALT (e) is the set of the alternative symbols for e. The elements of ALT (e) are
grammar symbols, which are either a terminal, nonterminal, or lake symbol.

We below use meta-variables ei, ej, ... ranging over the parsing expressions
in R′. ei, ej, ... are location-aware. Location-aware means that two lexically
equivalent parsing expressions ei and ej are not identical when they belong to
a different rule or they are different sub-expressions in the same expression. A
parsing expression parsing_expr is defined as in Listing 3.5. We assume that
the sequence operator and the prioritized choice operator have left associativity.

Suppose that we have a grammar written in our extended PEG:
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Figure 3.2: The parsing expressions in the grammar

block <- ’{’ stmt* ’}’

stmt <- expr_stmt / block

expr_stmt <- <elake >* ’;’

The step 1 presented in Section 3.3.1 translates this PEG into the intermediate
PEG shown in Figure 3.2. All the parsing expressions included in this interme-
diate PEG are also presented. There are 15 parsing expressions. We label 1 to
15 for each parsing expression. The domain of ALT for this grammar is these
parsing expressions e1 to e15.

Definition of ALT

We define ALT (ei) as the set of the uppermost symbols that the parser may
recognize immediately after it fails to recognize ei. When the parser recognizes a
non-terminal symbol, it also recognizes its lower-level symbols. We discard these
lower-level symbols when calculating ALT (ei). We use the fixed-point iteration
algorithm shown in Algorithm 1 to calculate ALT (ei) for all ei in the intermediate
PEG. The constraints satisfied by the fixed-point is shown in Appendix A.2.1.
The input to Algorithm 1 is the rules R′ of the intermediate PEG G′ obtained
at the step 1. Algorithm 1 also takes a set E as the input. E contains all the
parsing expressions appearing in the rules R′.

The fixed-point iteration terminates after a finite number of iterations since
the size of every ALT (ei) grows monotonically but it is smaller than |VN | +
|VL|+ |VT |. In the worst case, every iteration adds only one element to only one
instance of ALT . This case may cause the maximum number of iteration, which
is still lower than |E| · (|VN |+ |VL|+ |VT |).

Algorithm 1 uses two functions BEGINNING(ei) and SUCCEED(ei). BE-
GINNING and SUCCEED are similar to FIRST and FOLLOW for context-free
grammars. The difference is that BEGINNING and SUCCEED contain not
only terminal symbols but also non-terminal symbols. This difference is essen-
tial when a grammar is written in PEG, in which a terminal symbol is just a
letter. BEGINNING(ei) is the set of grammar symbols that the parser may
first recognize when it starts recognizing the parsing expression ei. When ei
recognizes an empty input, BEGINNING(ei) includes ϵ. SUCCEED(ei) is a set
of grammar symbols that the parser may next recognize after it recognizes ei.
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Algorithm 1 Calculation of ALT (ei)
Input: a set of all the parsing expressions E included in the rules R′

Output: ALT (ei) includes the alternative symbols for the parsing expression ei
1: for all parsing expressions ei in E do
2: ALT (ei)← ∅
3: while ALT (ei) is changing for some ei in E do
4: for all parsing expressions ei in E do
5: if ei is a terminal symbol then
6: do nothing
7: else if ei is a nonterminal or lake symbol S and S ← ej ∈ R′ then
8: ALT (ej)← ALT (ej) ∪ ALT (ei)
9: else if ei is ej∗, ej+, or ej? then
10: ALT (ej)← ALT (ei) ∪ SUCCEED(ei)
11: else if ei is !ej then
12: ALT (ej)← SUCCEED(ei)
13: else if ei is &ej then
14: ALT (ej)← ALT (ei)
15: else if ei is ej/ek then
16: ALT (ek)← ALT (ei)
17: if ϵ ∈ BEGINNING(ek) then
18: ALT (ej)← ALT (ei) ∪ (BEGINNING(ek) − {ϵ}) ∪ SUCCEED(ek)
19: else
20: ALT (ej)← ALT (ei) ∪ BEGINNING(ek)

21: else if ei is ejek then
22: ALT (ej)← ALT (ei)
23: if ϵ ∈ BEGINNING(ej) then
24: ALT (ek)← ALT (ei)
25: else
26: ALT (ek)← ∅

The two functions are calculated by Algorithm 2 and Algorithm 3, respectively.
They use fixed-point iteration. Each fixed-point satisfies the constraints shown
in Appendix A.2.2 and A.2.3.

The algorithm calculates ALT (ei) for every parsing expression ei in E, which
is the set of all the parsing expressions included in the rules R′. For every ei, the
algorithm first sets ALT (ei) to an empty set. Then the algorithm incrementally
updates ALT (ei) until ALT (ei) does not change for any ei in E. The update is
performed according to line 5 to 26 for every ei in E. For example, when ei is e2
in Figure 3.2, ALT (e9) is updated to be ALT (e9) ∪ ALT (e2) according to line
8. Since e2 is a nonterminal symbol stmt and R′ includes the rule stmt <- e9,
ALT (e2) is added to ALT (e9). When ei is e9, ALT (e8) is updated to be ALT (e9)
according to line 16. ALT (e7) is updated to be ALT (e7) ∪ BEGINNING(e8)
according to line 20 because BEGINNING(e8) does not include ϵ; e8 does not
recognize an empty input.

3.3.3 Example

In this subsection, we show the calculation of ALT for the parsing expressions
in Figure 3.2. Before doing so, we first show that block, ’;’, and ’}’ are the
alternative symbols for <elake>, which is ALT (e15) by using a railroad diagram.
The railroad diagram is useful to visualize alternative symbols.

Figure 3.3 is the railroad diagram for the nonterminal symbol block. stmt in
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Algorithm 2 Calculation of BEGINNING(ei)
Input: a set of all the parsing expressions E included in the rules R′

Output: BEGINNING(ei) includes the grammar symbols that the parser may first recognize
when it starts recognizing ei.

1: for all parsing expressions ei in E do
2: BEGINNING(ei)← ∅
3: while BEGINNING(ei) is changing for some ei in E do
4: for all parsing expressions ei in E do
5: if ei is a terminal symbol α then
6: BEGINNING(ei)← {α}
7: else if ei is a nonterminal or lake symbol S and S ← ej ∈ R′ then
8: BEGINNING(ei)← {S }
9: else if ei is ej? or ej∗ then
10: BEGINNING(ei)← BEGINNING(ej) ∪ {ϵ}
11: else if ei is ej+ then
12: BEGINNING(ei)← BEGINNING(ej)
13: else if ei is !ej or &ej then
14: BEGINNING(ei)← {ϵ}
15: else if ei is ej/ek then
16: BEGINNING(ei)← BEGINNING(ej) ∪ BEGINNING(ek)
17: else if ei is ejek then
18: if ϵ ∈ BEGINNING(ej) then
19: BEGINNING(ei)← (BEGINNING(ej)− {ϵ}) ∪ BEGINNING(ek)
20: else
21: BEGINNING(ei)← BEGINNING(ej)

Figure 3.3: Railroad diagram

the parsing expression for block has been expanded into its definition. expr_stmt
has been also expanded. In Figure 3.3, round boxes depict terminal symbols
while square boxes depict nonterminal or lake symbols.

The alternative symbols for <elake> are what the parser may recognize when
it can next recognize <elake>. These symbols are identified by looking at the
railroad diagram in Figure 3.3. According to this diagram, the parser recognizes
<elake> after the grammar symbols ’{’, ’;’, and block. In other words, when
the parser recognizes these symbols, it can next recognize <elake>. We can see
that the parser can next recognize block, ’;’, and ’}’ as well as <elake> when it
recognizes ’{’, ’;’, or block. Therefore, the symbols block, ’;’, and ’}’ are the
alternative symbols for <elake>. The alternative symbols are the destination
symbols reached from the source symbols that we can also reach <elake> from.

Table 3.1 illustrates how Algorithm 1 calculates ALT (ei) for every parsing
expression ei in Figure 3.2. To calculate the fixed point, the algorithm iterates
five times. Each row represents a parsing expression e1 to e15. BEGINNING(ei)
and SUCCEED(ei) are also shown for each ei. Each iteration examines a parsing
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Algorithm 3 Calculation of SUCCEED(ei)
Input: a set of all the parsing expressions E included in the rules R′

Output: SUCCEED(ei) includes the grammar symbols that the parser may next recognize
after ei.

1: for all parsing expressions ei in E do
2: SUCCEED(ei)← ∅
3: while SUCCEED(ei) is changing for some ei in E do
4: for all parsing expressions ei in E do
5: if ei is a terminal symbol then
6: do nothing
7: else if ei is a nonterminal or lake symbol S and S ← ej ∈ R′ then
8: SUCCEED(ej)← SUCCEED(ei) ∪ SUCCEED(ej)
9: else if ei is ej? then
10: SUCCEED(ej)← SUCCEED(ei)
11: else if ei is ej∗ or ej+ then
12: SUCCEED(ej)← SUCCEED(ei) ∪ BEGINNING(ei)− {ϵ}
13: else if ei is !ej or &ej then
14: SUCCEED(ej)← ∅
15: else if ei is ej/ek then
16: SUCCEED(ej)← SUCCEED(ei)
17: SUCCEED(ek)← SUCCEED(ei)
18: else if ei is ejek then
19: SUCCEED(ek)← SUCCEED(ei)
20: if ϵ ∈ BEGINNING(ek) then
21: SUCCEED(ej)← (BEGINNING(ek)− {ϵ}) ∪ SUCCEED(ek)
22: else
23: SUCCEED(ej)← BEGINNING(ek)

expression in the order from e1 to e15.
In the first iteration, for example, when the algorithm processes e3, it up-

dates ALT (e2) since e3 is a zero-or-more expression e2∗. ALT (e3) is empty but
SUCCEED(e3) = {’}’}. Thus, the updated ALT (e2) is {’}’}. When the algo-
rithm processes e9, it updates ALT (e7) since e9 is a prioritized-choice expression
e7/e8. ALT (e9) is empty in this iteration and BEGINNING(e8) = {block}.
Thus, the updated ALT (e7) is {block}.

In the second iteration, when the algorithm processes e2, it updates ALT (e9).
Since e2 is a nonterminal symbol stmt and its rule is stmt← e9, ALT (e2) = {’}’}
is added to ALT (e9). Thus, it updates ALT (e9) into {’}’}. Then, when the
algorithm processes e9, it updates ALT (e7) again. Since ALT (e9) is already
{’}’} at this time, ALT (e7) becomes {block, ’}’}.

In the final iteration, when the algorithm processes e10, it updates e15 into
ALT (e15)∪ALT (e10) = {’;’, block, ’}’}. This is what we need as the alternative
symbols for <elake>.

Since we have obtained ALT (e15), we can apply Step 2 in Section 3.3.1 to
the intermediate grammar shown in Figure 3.2. The rule for <elake>:

<elake > <- !.

in the intermediate PEG is translated into the following rule:

<elake > <- !. / !(block / ’;’ / ’}’) .

in the normal PEG. This rule is semantically equivalent to the following rule:

<elake > <- !(block / ’;’ / ’}’) .
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Table 3.1: ALT (ei) for each iteration
ei operator BEGINNING(ei) SUCCEED(ei) ALT(ei) for each iteration

1 2 3 4 5

e1 Terminal
{

{’{’} {stmt, ’}’} ∅ ∅ ∅ ∅ {’}’}

e2 Nonterminal
stmt

{stmt} {stmt, ’}’} {’}’} {’}’} {’}’} {’}’} {’}’}

e3 Zero-or-
more
e2*

{ϵ, stmt} {’}’} ∅ ∅ ∅ ∅ ∅

e4 Sequence
e1e3

{’{’} {’}’} ∅ ∅ ∅ {’}’} {’}’}

e5 Terminal
}

{’}’} {stmt, ’}’} ∅ ∅ ∅ ∅ ∅

e6 Sequence
e4e5

{’{’} {stmt, ’}’} ∅ ∅ {’}’} {’}’} {’}’}

e7 Nonterminal
expr_stmt

{expr_stmt} {stmt, ’}’} {block} {block, ’}’}{block, ’}’} {block, ’}’} {block, ’}’}

e8 Nonterminal
block

{block} {stmt, ’}’} ∅ {’}’} {’}’} {’}’} {’}’}

e9 Prioritized
choice
e7/e8

{expr_stmt, block} {stmt, ’}’} ∅ {’}’} {’}’} {’}’} {’}’}

e10 Lake
<elake>

{<elake>, ϵ} {<elake>, ’;’} {’;’} {’;’} {’;’, block} {’;’, block, ’}’} {’;’, block, ’}’}

e11 Zero-or-
more
e10*

{ϵ, <elake>} {’;’} ∅ {block} {block, ’}’} {block, ’}’} {block, ’}’}

e12 Terminal
;

{’;’} {stmt, ’}’} ∅ {block} {block, ’}’} {block, ’}’} {block, ’}’}

e13 Sequence
e11e12

{<elake>, ’;’} {stmt, ’}’} ∅ {block} {block, ’}’} {block, ’}’} {block, ’}’}

e14 Terminal
.

{’.’} ∅ ∅ ∅ ∅ ∅ ∅

e15 Not
!e14

{ϵ} {<elake>, ’;’} ∅ {’;’} {’;’} {’;’, block} {’;’, block, ’}’}

since !. does not match any input. Note that block, ’;’, and ’}’ are the alter-
native symbols for <elake>, which are the elements of ALT (e15).

3.3.4 Limitations

The island parser looks ahead into the remaining text and attempts to match
alternative symbols to check if the next token is water. The number of lookahead
tokens is not limited and depends on what the alternative symbols are. However,
at least one or more lookahead token is needed. In other words, our algorithm
does not support the case that the alternate symbol for a lake symbol recognizes
an empty input ϵ. For example,

stmt <- expr ’;’

expr <- <term > opt

opt <- ’++’?

The ++ operator is optional. The alternate symbols for <term> are opt and ’;’
and the rule for <term> is:

<term > <- !(opt / ’;’) .

Since opt can recognize ϵ, this not-predicate always fails. Thus, the lake symbol
<term> could not recognize any symbol; it could not work as a wildcard-like
symbol.

Our prototype system of the island-parser generator detects whether a lake
symbol has ϵ as its alternative symbol. If our prototype detects such a lake
symbol, it prints a warning message so that the user can modify the grammar.
Our system reports that ϵ is the alternative symbol for a lake symbol <X> if there
exists Y ∈ ALT (<X>) such that Y ← ei and ϵ ∈ BEGINNING(ei).
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3.4 Experiments

We have implemented our prototype system PEGIsland in Python. PEGIsland
is an island parser. It reads a grammar definition written in our extended PEG
and then parses a given source program to build a parse tree based on that
grammar. It performs packrat parsing [31], based on the internally generated
normal PEG from the given grammar. The generated normal PEG can be
optionally written out to a file. The parse tree is written out in the JSON
format. Their intermediate nodes correspond to nonterminal symbols or lake
symbols in the grammar. Their leaves correspond to terminal symbols.

We conducted experiments using PEGIsland to answer our research question,
to what extent the lake symbols reduce the number of grammar rules for parsers.
We implemented island parsers for Java and Python and compared the size of
their grammars with the size of the full-featured grammars.

We also compared the size of the grammars written for island parsers with
lakes and without lakes. Although our lake symbols help the definition of lakes,
an island parser can be implemented without lakes. As we showed in Section 3.2,
writing a grammar without lakes is not difficult. It was easy when we only
defined program_sea and program_water. It became difficult when we defined
expr_sea and expr_water for a lake so that we could omit the definition of expr
appearing in the middle of the island, if_else_stmt. We examined whether or
not the use of the lakes effectively affected the number of grammar rules for
island parsers. This was our second research question.

3.4.1 Java

For the full-featured Java grammar, we chose the grammar definition of an open-
source PEG parser MOUSE [79]. It is based on the Java Language Specification
for Java SE 8 Edition, with the corrections by the MOUSE developer to make
it compatible with javac. The grammar consists of 279 PEG rules.

We implemented 36 island parsers on top of our PEGIsland parser. For
each parser, we implemented two versions with lakes and without lakes. As
an island, each of these parsers recognizes one of the nonterminal symbols in
the full-featured grammar. According to the source-code comments, that gram-
mar includes the nonterminal symbols corresponding to a program construct
described in the dedicated section of the Java Language Specification [39]. We
chose these nonterminal symbols as the islands. We implemented the island
parsers so that the number of their grammar rules would be as small as possible.
We used lake symbols to avoid defining irrelevant nonterminal symbols as far as
the parser could correctly recognize an island. To verify that those island parsers
correctly recognized their islands, we ran the island parsers to parse all the 7695
Java source files distributed as part of the Java 1.8 SDK. We then confirmed
that these island parsers recognized the same number of islands as the number
of the corresponding nonterminals that the full-featured Java parser recognized.

Table 3.2 lists the results. Each row represents the result of each island
parser. For example, the second row represents that the parser recognizes
PackageDeclaration as an island and it is described in Section 7.4 of the Java
Language Specification (JLS). The number of the rules for its grammar is 22
and this grammar includes two lake symbols and three alternative symbols. #
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Table 3.2: The island parsers for Java

Section Nonterminal symbol # of grammar rules # of grammar rules # of # of
without lakes with lakes lakes ALT

7.3 CompilationUnit 279 16 1 1
7.4 PackageDeclaration 277 22 2 3
7.5 ImportDeclaration 280 137 5 8
7.6 TypeDeclaration 280 109 6 8
8.1 ClassDeclaration 274 80 5 6
8.3 FieldDeclaration 274 206 3 3
8.4 MethodDeclaration 274 130 5 8
8.6 InstanceInitializer 274 274 0 0
8.7 StaticInitializer 274 21 1 1
8.8 ConstructorDeclaration 274 236 1 1
8.9 EnumDeclaration 274 94 4 7
9.1 InterfaceDeclaration 274 88 4 6
9.3 ConstantDeclaration 274 204 3 3
9.4 InterfaceMethodDeclaration 274 133 5 8
9.6 AnnotationTypeDeclaration 274 39 2 2
9.7 Annotation 274 26 1 1
10.6 ArrayInitializer 274 274 0 0
14.2 Block 274 274 0 0
14.4 LocalVariableDeclaration-

Statement
274 274 0 0

14.5 Statement 274 274 0 0
14.8 StatementExpression 274 274 0 0
14.11 SwitchBlock 274 23 1 1
14.14 BasicForStatement 274 231 4 13
14.20 TryStatement 274 29 2 2
15.2 Expression 274 274 0 0
15.8 Primary 274 274 0 0
15.9 ClassCreator 274 72 3 6
15.10 ArrayCreator 274 73 2 6
15.12 Arguments 274 274 0 0
15.15 UnaryExpression 274 274 0 0
15.16 CastExpression 274 274 0 0
15.17-24 InfixExpression 274 274 0 0
15.25 ConditionalExpression 274 274 0 0
15.26 AssignmentExpression 274 274 0 0
15.27 LambdaExpression 274 82 2 8
15.28 ConstantExpression 274 174 1 3

of ALT is the sum of the alternative symbols for every lake. We counted du-
plicate symbols more than once. The grammar defined without lakes needs 277
rules. PackageDeclaration is described in JLS 7.4 as follows:

PackageDeclaration:

{PackageModifier} package Identifier {. Identifier} ;

PackageModifier:

Annotation

It consists of an optional PackageModifier, the package keyword, comma-
separated identifiers, and a semicolon. PackageModifier is an annotation.
When we used a lake symbol, we could substitute a lake symbol for the iden-
tifiers between package and a semicolon. The alternate symbol for this lake
symbol was a semicolon. We could also redefine PackageModifier as a lake
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Figure 3.4: The number of the rules for each island parser for Java

symbol following ’@’. However, when we did not use a lake symbol, we used
only the sea symbol. Because we had to define the Annotation symbol for the
PackageModifier symbol, we had to define almost all the other nonterminals
included in the full-featured grammar. An annotation may include a lambda
expression and its body may include almost all kinds of statements and decla-
rations. The number of the grammar rules in this case was 277; only two rules
could be omitted.

Figure 3.4 illustrates the comparison of the number of rules listed in Table 3.2.
The height of bars indicates the number of rules in percentage. The number of
the rules for the full-featured grammar is 100%. Each pair of bars corresponds
to the island parsers for recognizing the same nonterminal symbol. The left bar
indicates the island parser without lakes while the right bar indicates with lakes.

Without Lakes

The experiments revealed that an island parser for Java did not reduce the num-
ber of grammar rules unless it uses lakes. The best case was 274 rules whereas the
full-featured Java parser needs 279 rules; only 2% reduction. In Java, most pro-
gram constructs may include almost all kinds of program constructs. As shown
above, a PackageDeclaration may include an annotation and an annotation
may include a lambda expression. A lambda expression may include all kinds
of statements and declarations in its body. A PackageDeclaration, therefore,
may indirectly include all kinds of statements and declarations. Without a lake,
the grammar for the island parser for PackageDeclaration must include the

46



rules for almost all nonterminal symbols in Java.

With Lakes

If lakes are used, 22 of 36 island parsers needed a smaller number of gram-
mar rules than the full-featured Java parser and the island parser using no
lakes. The 22 island parsers are 61% among all. They needed 16 to 231 rules.
CompilationUnit needed 16 rules and it achieved 94% reduction. BasicForStatement
needed 231 rules and it achieved 17% reduction. The rules included 1 to 6 lake
symbols. The lake symbols automated the enumeration of 1 to 13 alternative
symbols. They enumerated 1.7 alternative symbols per lake.

Some island parsers needed a number of grammar rules for correctly recogniz-
ing an island. For example, MethodDeclaration needed 130 rules despite 5 lake
symbols included in the rules. It needed such a large number of rules because
it had to be distinguished from InterfaceMethodDeclaration. The following
code snippet:

abstract void foo(int x);

is recognized as a MethodDeclaration when it is enclosed in a class declaration.
However, it is recognized as an InterfaceMethodDeclaration when it is en-
closed in an interface declaration. To recognize only a MethodDeclaration, the
island parser had to also recognize ClassDeclaration and InterfaceDeclaration
so that it could distinguish MethodDeclaration from InterfaceMethodDeclaration.

Block needed 274 rules for the same reason. Its grammar is just slightly
smaller than the grammar for the full-featured Java parser. A Block recognizes
a token sequence that starts with { and ends with } but other nonterminal
symbols also recognize such a sequence. ClassBody, SwitchBlock, EnumBody,
and so on recognize the sequence. To distinguish them, we had to define the
rules for recognizing all of them. If we did not distinguish them but we just
wanted to recognize any kind of block-like structure, the grammar for this island
parser would be much smaller.

The island parsers for expressions, such as Expression, Primary, and UnaryExpression,
needed a large number of rules despite the use of lakes. Since Java supports infix
operators, these nonterminal symbols do not start with a particular keyword. It
is difficult to spot where these symbols start in the sea or a lake. Thus, we had
to recognize all the program constructs that may enclose such an expression.
This is why the grammars had to include almost all the nonterminal symbols
that the full-featured grammar does. Although the island parser for a most kind
of expression needed a large grammar, LambdaExpression was an exception. It
only needed 82 rules since it always starts with a parenthesized parameter list
or comma-separated identifiers, and an arrow ->.

3.4.2 Python

For the full-featured Python grammar, we chose the grammar distributed with
Python 3.7.4. Since it was a LL(1) grammar, we manually translated it into a
PEG. The number of nonterminal symbols in the grammar was 187. The original
grammar requires that the input text is preprocessed, so that its indentations
will be converted into tokens INDENT and DEDENT. Our PEG translation of this
grammar also takes similarly preprocessed text as its input.
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Table 3.3: The island parsers for Python

Section Nonterminal symbol # of grammar rules # of grammar rules # of # of
without lakes with lakes lakes ALT

6.13. lambdef 105 20 3 8
7.3. assert stmt 107 12 1 2
7.4. pass stmt 8 8 0 0
7.5. del stmt 107 12 1 2
7.6. return stmt 107 12 1 2
7.7. yield stmt 111 16 1 2
7.8. raise stmt 107 12 1 2
7.9. break stmt 8 8 0 0
7.10. continue stmt 8 8 0 0
7.11. import stmt 25 17 3 5
7.12. global stmt 14 12 1 2
7.13. nonlocal stmt 14 12 1 2
8.1. if stmt 188 34 5 13
8.2. while stmt 188 31 5 12
8.3. for stmt 188 36 6 15
8.4. try stmt 188 37 5 13
8.5. with stmt 188 33 6 15
8.6. funcdef 188 36 6 13
8.7. classdef 188 35 6 14
8.8. async funcdef 188 41 5 12

We implemented 20 island parsers on top of our PEGIsland parser. For
each parser, we implemented two versions with lakes and without lakes. As
an island, each of these parsers recognizes one of the nonterminal symbols in
the full-featured grammar. We selected 20 nonterminal symbols from the full-
featured grammar. These 20 symbols correspond to the program constructs
described in a dedicated section 7 or 8 in the Python Language Reference [1]. We
excluded expression statements and assignment statements but added lambda
expressions from Section 6 because we knew that island parsing was not suitable
for expressions after we had conducted the experiments for Java. To verify the
correctness of our island parsers, we ran the island parsers to parse 1634 Python
source files under the lib directory of the Python 3.7.4 distribution.

Table 3.3 lists the results. Each row represents the result of each island
parser. Figure 3.5 illustrates the comparison of the number of rules listed in
Table 3.3.

Without Lakes

As in Java, 8 island parsers could not reduce the number of grammar rules
without lakes. For example, if_stmt and while_stmt could not reduce because
if and while statements may enclose all other program constructs in its body.
They rather slightly increased the number of rules due to the introduction of the
sea symbol.

However, because the Python grammar is relatively simpler than Java’s,
the other 12 island parsers implemented without lakes could successfully re-
duce the number of grammar rules. For example, pass_stmt, break_stmt, and
continue_stmt needed only 8 rules. They achieved 96% reduction. The 6 island
parsers such as lambdef and assert_stmt achieved 41–44% reduction.
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Figure 3.5: The number of the rules for each islands parsing for Python

With Lakes

All the island parsers implemented with lakes successfully reduced the number
of grammar rules. They achieved more than 78% reduction. Unlike Block in
Java, different nonterminal symbols in Python never recognize the same token
sequence as their parts. This was a reason why lake symbols effectively reduced
the number of grammar rules. Every lake symbol automated the enumeration
of 2.4 alternative symbols in average.

Compared to the island parser without lakes, the island parser with lakes
achieved larger reduction of the grammar rules. The lake symbols could reduce
the number of grammar rules even when the island parsers without lakes could
reduce it against the full-featured parser. For example, the island parser for
lambdef without lakes reduced 44% against the full-featured parser but the
parser with lakes reduced 89%. This was 45% improvement. The exceptions were
the three parsers pass_stmt, break_stmt, and continue_stmt, which needed
only 8 rules. They could not reduce the number of their grammar rules against
the parser without lakes.

3.4.3 Summary of the Experiments

For our first research question, to what extent the lake symbols reduce the
number of grammar rules for parsers, the results of our experiments revealed
that the lake symbols effectively reduced the number of grammar rules for Java
and Python except the nonterminal symbols for expressions and some others.
The lake symbols worked better for Python. Excluding the nonterminal symbols
for expressions (and lambdef), the average reduction rate for Python was 89%
whereas it was 42% for Java. This would be related to the syntactical complexity
of the two languages. Python is much simpler than Java. However, in both
languages, the lake symbols were not effective when the start and the end of
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the nonterminal symbol were not spot by a particular symbol. They were not
effective either when more than one nonterminal symbols recognized a token
sequence as their parts.

For our second research question, whether the use and disuse of lakes affect
the number of grammar rules for island parsing, the results of the experiments
revealed that the use of lakes was indispensable to reduce the number of grammar
rules. However, in several cases, the use of lakes did not affect the number of
grammar rules. The number of rules did not change no matter if lakes are used
or not.

One of the threats of validity is that we used only one grammar as the full-
featured grammar for each language, Java and Python. If we use a different
full-featured grammar, we might see different results. Another threat is that we
only examined Java and Python. The effects of the lakes may change depending
on the syntactical complexity of the language.

3.5 Related Work

Koopa1 is a parser generator with support for island grammars that has been
used to implement an industrial-strength Cobol parser. Koopa provides the
skip-to operator to support the description of water. The skip-to operator skips
anything it encounters up to the given pattern. While the skip-to operator
cannot handle nested islands in water, our lake symbol can handle them.

The semi-parsing approach used for Agile parsing [23] can be considered as a
variant of island parsing. It proposed the use of the not operator in TXL [20, 19]
so that the user can manually specify the alternative symbols, which our lake
symbol automatically derives from the rest of the grammar.

Bounded seas [55] automatically calculate the alternative symbols and use
them for the not predicate as our lake symbols do. However, as far as we under-
stand, the bounded seas calculate only a subset of all the alternative symbols,
which corresponds to our SUCCEED. Thus, its applicability is limited.

The generalized parsers, such as CYK [96], GLL [83], and GLR [88], can be
used for island parsing although they deal with context-free grammars (CFGs)
but our work deals with PEGs. The generalized parsers generate not a parse tree
but parse forest, which consists of several candidates of parse tree for a given
source program. This is useful to recognize water without specifying complex
alternative symbols. However, the user must manually disambiguate the forest
to obtain a single parse tree.

Afroozeh et al. [2] addressed this disambiguation for their GLL-based island
parsing used for the Tom language. They proposed to use pattern matching for
the disambiguation.

Noise skipping parsing [57] proposed the GLR* parser, which can parse any
input sentence by ignoring unrecognizable parts of the sentence. The application
domain of GLR* is speech recognition. GLR* supports the sea but not the lakes.

Goloveshkin et al. [38] proposed the special terminal symbol Any that matches
zero or more tokens constituting uninteresting parts of a given input program.
Any can be used to define the sea but not the lakes.

1https://github.com/krisds/koopa.
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Fuzzy parsing is the parsing approach where only certain parts of a program-
ming language is recognized. A hand-written fuzzy parser was presented for
C++ in [11]. A framework for fuzzy parser was proposed by Koppler [54]. In
the framework, the scanner searches an input source program to spot the an-
chors where the parser starts parsing. The user must manually implement that
scanner.

Klusener et al. [52] proposed the method that constructs a skeleton grammar
for tolerant parsing from a given grammar. The parsers derived from the skeleton
grammar can be considered as an island parser. Their proposal does not support
lakes but could be extended to support our lake symbols.

3.6 Summary

This chapter presented the lake symbols for island parsing and an extended PEG
supporting lake symbols. The lake symbol is a special grammatical symbol like a
wildcard. The user can use lake symbols to define rules for an island with lakes.
The user can also define a rule for each lake symbol to specify inner islands or
recursive structures inside the lake. This chapter proposed an algorithm that
translates our extended PEG to the normal PEG that can be given to existing
PEG parsers. We experimentally revealed that lake symbols effectively reduced
the size of the grammars for island parsers for Java and Python, compared to
their fully detailed grammars.

3.6.1 Future Work

We have defined the semantics of lake symbols by translating them into a specific
grammar. Defining its semantics without the translation is our future work.

The implementation of lake symbols for another grammar class is also future
work. The concept of lake symbols will be applicable not only PEGs but also
context-free grammars (CFGs) and their subsets such as LR and LL grammars.
An issue is the ambiguity of a grammar when introducing lake symbols into
another grammar class than PEGs. Since a lake symbol works as a wildcard,
the grammar written with lake symbols tends to be ambiguous. This ambi-
guity causes shift/reduce conflicts, for example, when using the LR parsing.
We expect that the alternative symbols proposed in this chapter can be used
for disambiguating the grammar. The algorithm for calculating the alternative
symbols in CFGs would be similar to what we presented in this chapter. In
this chapter, we selected PEGs since PEG’s prioritized choice operator does not
cause ambiguity even when lake symbols are used.

Other future work is to evaluate with more practical applications. Our exper-
iment confirmed that the number of rules to extract a specific kind of program-
ming construct decreased with lakes. Although we believe that reducing rules
ease the construction of island parsing, the relation between the real workload
and the number of rules has not been studied experimentally. Besides, while
we assumed that the application is interested in only one kind of programming
constructs in our experiment, a realistic application may need more than one
kind of programming constructs.
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Chapter 4

Interactive Grammar Editor

4.1 Introduction

Island parsing is a technique to extract programming construct of interest with-
out specifying a complete grammar for a language. It extracts program con-
structs of interest as islands and skips the remaining parts of the program as
water. An island grammar consists of rules for islands and water. Typically,
an island grammar for island parsing contains fewer rules than the complete
grammar since water can be handled by a wildcard character.

While island parsing reduces the effort to write a grammar for parsing, de-
bugging island grammar is not easy. If we fail to write some grammar rules
correctly, the parsing result is not what we expect. If the grammar were not
an island grammar but a complete one, the debug would be easier. We could
check that each rule in the grammar is correct by comparing it with the language
specification. In the case of the island grammar, we cannot compare the rules
in the island grammar with the language specification since most parts of the
original grammar are omitted and modified in the island grammar.

To check whether the island grammar is correct or not, we repeat trial-and-
errors. Therefore we need a way to confirm the parsing result interactively
and effectively step by step while editing an island grammar. While interactive
tools for generating parsers such as Parsify [61] and Parsimony [60] have been
proposed, they do not support island grammars. They provide a way to edit a
grammar interactively through GUI operations by using an example program.
For example, the user selects expressions in an example program and labels
them as expressions. The user can get an unambiguous grammar by repeatedly
applying operations. However, the grammar is ambiguous until the user finishes
labeling all the programming constructs in the language. The resulting grammar
is not an island grammar but a complete grammar.

We propose an incremental description of island grammars with lake symbols
and tool support for it. Our approaches enable the description of an island
grammar in a step-by-step manner. In each step, the user can add a rule to
the grammar and immediately test the rule. This prevents us from repeating
inefficient trial-and-error to write an island grammar. We also propose GUI
operations for the user to add a new rule to the grammar. These GUI operations
take an example text as input and generate a new rule based on the user’s
selection. This prevents the user from making a specific type of mistake when
editing the island grammar.
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The contributions of this chapter are twofold:

• We propose an example-based GUI tool for editing grammar. This tool
provides three GUI operations for the user to add a new rule to the gram-
mar. These GUI operations take an example text as input and generate a
new rule based on the user’s selection. This prevents the user from making
a specific type of mistake when editing the island grammar.

• We implemented our tool called PEGSEED that supports incremental edit-
ing and GUI operations for editing island grammars. We developed a
framework for syntax extension based on PEGSEED. We confirmed that
the possible mistake is detected soon in our PEGSEED. We also confirmed
that parsers for syntax extensions could be constructed only with proposed
GUI operations.

4.2 Motivation

We need tool support for writing an island grammar. While island grammars are
suitable for extracting specific programming constructs of interest, it is difficult
for non-experts to write an island grammar. In this section, we introduce island
parsing and the difficulty of writing island grammars.

4.2.1 Use Case of Island Parsing

Island grammars are a best practice in developing parsers for software engineer-
ing tasks such as syntax extension, source code analysis, and so on. These tasks
are only interested in specific programming constructs, and island grammars can
be used to extract such specific programming constructs. Island parsers based on
an island grammar can be seen as a pattern matcher like grep based on regular
expressions. They extract only interesting programming constructs as islands
and skip the remaining parts of the program as water.

One of the applications of island parsing is syntax extensions for the exist-
ing programming languages. Syntax extension is a promising technique to ex-
tend existing programming languages with additional programming constructs
for application specific-domain. Syntax extension enables concrete syntax for
domain-specific abstraction in host programming languages.

Let us suppose that we want to improve the readability of programs for a
specific domain by implementing syntax extension for the programming lan-
guage. For example, if we have to repeatedly write many programs that have
a lot of nested if statements as shown in Listing 4.1, we want to extend the
language such that it supports onlyWhen statements that enable the program
can be rewritten as shown in Listing 4.2. At first glance, an onlyWhen statement
may look like just a function call in the language. However, it is not a function
call, but a part of special programming construct specifying that the statements
following the onlyWhen statement until the end of the surrounding block must
be executed only when the condition given to onlyWhen is satisfied.

This onlyWhen can be implemented by using a program transformer based on
an island grammar. The program transformer converts onlyWhen constructs into
native if statements. For example, the program transformer converts Listing 4.2
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Listing 4.1: Program with nested if statements

1 {

2 doit();

3 if (fooIsNeeded ()) {

4 foo();

5 if (barIsNeeded ()) {

6 for (i = 0; i < 3; i++) {

7 bar();

8 if (bazIsNeeded ()) {

9 for (j = 0; j < 3; j++) {

10 baz();

11 }

12 }

13 }

14 }

15 }

16 }

Listing 4.2: Example program with onlyWhen

1 {

2 doit();

3 onlyWhen(fooIsNeeded ());

4 foo();

5 onlyWhen(barIsNeeded ());

6 for (i = 0; i < 3; i++) {

7 bar();

8 onlyWhen(bazIsNeeded ());

9 for (j = 0; j < 3; j++) {

10 baz();

11 }

12 }

13 }

into Listing 4.1. This program transformation can be done by pattern rewriting
like sed. When the program transformer encounters the following pattern in the
program,

{

<A>

onlyWhen(<B>);

<C>

}

, where <A>, <B> and <C> indicates the ommision of parts of the program, it
rewrites the program as shown below.

{

<A>

if (<B>) {

<C>

}

54



Listing 4.3: Island grammar for the onlyWhen constructs

1 program = sea*

2 sea > = island | water

3 island =

4 ’{’ sea* ’onlyWhen ’ ’(’ water* ’)’ ’;’ sea* ’}’

}

Note that the onlyWhen construct starts with not onlyWhen keyword in line 3 in
Listing 4.2 but the left curly brace in line 1. Since it must detect the end of the
block surrounding the onlyWhen statement, the onlyWhen construct starts with
the corresponding left curly brace.

While it may seem that a regular expression is suitable for this pattern match-
ing, the extraction of the above example cannot be handled by a regular expres-
sion since it cannot handle recursive structures of the programming language.
To handle nested structures of a programming language, we need a parser.

We can use an island grammar to obtain a parser that can extract extended
programming constructs from a program. An island grammar is a specific gram-
mar written for extracting only interesting programming constructs of a lan-
guage. An island grammar does not mean a specific grammar or a grammar
class. Moreover, island grammar is not bound to particular syntax formalism
or parser generation tools. An island grammar can be described in any syntax
formalism such as BNF, SDF, and PEG.

When we want to extract only onlyWhen constructs, we can write an island
grammar as shown in Listing 4.3 written in EBNF. In line 1, program is defined
as repetition of sea that is defined as island or water. island represents
the onlyWhen construct, which we are interested in. On the other hand, water
represents the remaining parts of the program. The right-hand side of the rule
for island contains seas and water at the place that we are not interested
in. We use sea not water at the place where nested onlyWhen constructs may
appear. water is like a wildcard symbol in regular expressions.

As shown in Listing 4.3, the island grammar is significantly smaller than
the complete grammar for the language. If we had to write the rules for the
uninteresting part of the program, we would have to write much more rules for
the language. In general, programming languages need hundreds of rules for
their grammars. Therefore, island grammars can reduce the effort to obtain a
parser for extracting programming constructs dramatically.

4.2.2 Difficulty in Writing Island Grammar

It is not easy for non-experts to write a practical island grammar since island
grammars tend to be ambiguous. The grammar is ambiguous when the resulting
parse tree is not unique. In other words, ambiguous grammar generates not a
single parse tree but a parse forest. In general, grammars must not be ambiguous
for software engineering tasks.

For example, the grammar in Listing 4.3 may be ambiguous depending on
the definition of water. Ideally, we want to define water as just a wildcard
symbol. However, if we define the water nonterminal as just a naive wildcard,
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Listing 4.4: Island grammar with lake symbls

1 program <- <sea >*

2 <sea > <- island / water

3 island <-

4 ’{’ <sea >* ’onlyWhen ’ group ’;’ <other >* ’}’

5 <other > <- island / water

6 water <- group / block

7 group <- ’(’ <sea >* ’)’

8 block <- ’{’ <sea >* ’}’

the resulting grammar will become ambiguous. Multiple parse trees are available
when we parse a program in Listing 4.2 with a grammar in Listing 4.3. While one
possible result is what we want, other results are not. For example, one possible
result is produced when the whole program is skipped as water. However, it
is obviously not the one the user expects. Without disambiguation, the parser
cannot determine which parsing result is what the user expects.

Hence, to use an island grammar in practical applications such as syntax ex-
tension, the user must remove the ambiguity from the grammar. Some language
tools such as a parser generator or syntax formalisms provide ways to disam-
biguate a grammar. For example, SDF supports the description of attributes for
each rule in a grammar for this purpose. In SDF, the user can use the prefer

attribute to specify that an island is prioritized to water. However, available
disambiguation mechanisms are different among tools or syntax formalism. In
the case of PEG, the same prioritizing can be done by using a prioritized choice
operator. Moreover, prioritizing is not sufficient for disambiguating a grammar.
The user must write the rules for water carefully to prevent water from being
matching to the part of an island. Some strategies are proposed for a specific
language [2], but some languages provide a more general way to ease the water.

We can use our lake symbols to disambiguate the grammar in Listing 4.3.
It can be rewritten as Listing 4.4 in extended PEG with lake symbols. In List-
ing 4.4, <sea> is a lake symbol. A lake symbol works as just a special wildcard
without its definition. In the case of Listing 4.4, <sea> has its definition in
line 2. It can recognizes island and explicitly specified water. We use <sea> at
the place where islands or water appear. If the <sea> does not recognize islands
or explicitly specified water, it works as a wildcard character. For example, we
use <sea> after ’{’ in line 4 in Listing 4.4. If the <sea> does not recognize
isand or explicitly specified water, it consumes any character until onlyWhen
appears in the input string. The lake symbol <sea> prevents itself from con-
suming onlyWhen as water. Hence a lake symbol is a context-aware wildcard
symbol. The user does not need to explicitly specify excluding onlyWhen from
the water. Similarly, <sea> does not consume ’}’ and ’)’, which are shore parts
of islands.

Nevertheless, writing a correct island grammar is not easy. If we had forgot-
ten to specify the block in the rule for water in line 6, the resulting grammar
would have been incorrect. Without specifying block as water explicitly, the
closing brace that is part of a block is treated as a part of an island. For exam-
ple, when parsing the following onlyWhen construct:
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{ onlyWhen(x); { doit(); } }

, the incorrect parser extracts

{ onlyWhen(x); { doit(); }

as a island by mistake. To correctly parse the above program, { doit(); }
must be skiped as a water.

To efficiently write a correct grammar, we need tool support for debugging
the grammar. If the grammar were not an island grammar but a complete one,
the debug would be easier. We could check that each rule in the grammar is
correct by comparing it with the language specification. In the case of the island
grammar, we cannot compare the rules in the island grammar with the language
specification since most parts of original grammar are omitted and modified in
the island grammar. To check whether the island grammar is correct or not, we
repeat trial-and-errors. Therefore, we need an interactive tool that supports the
efficient repetition of trial-and-errors.

What we want is to enable the user to confirm the parsing result interactively
and effectively step by step while editing an island grammar. While interactive
tools for generating parsers such as Parsify [61] and Parsimony [60] have been
proposed, they do not support island grammars. They provide a way to editing
grammar interactively through GUI operations by using an example program.
For example, the user selects expressions in the example program and labels
them as expressions. The user can get a grammar by repeatedly applying oper-
ations. However, the grammar is ambiguous until the user finishes labeling all
the programming constructs in the language. The resulting grammar is not an
island grammar but a complete grammar.

4.3 Interactive Grammar Editing

4.3.1 Editing Grammar Incrementally

Overview

While island grammar can reduce the number of rules for extracting program-
ming constructs, obtaining a correct grammar is not easy. If water is not defined
correctly, water may happen to consume a part of an island. Therefore, we need
to check whether islands are extracted as intended and water does not consume
a part of islands by mistake.

To address the difficulty in writing island grammars, we propose an interac-
tive grammar editing system called PEGSEED. With PEGSEED, the user starts
editing grammar from an initial island grammar, which treats the whole program
as water. The user incrementally adds new islands into the grammar. Since the
working parser is always available after each update of the island grammar, the
user can immediately confirm that the island is correctly defined by parsing an
example program. PEGSEED provides text highlighting functionality for this
confirmation. The user can create a new island by adding a new token or con-
catenating existing small islands whose rules are already tested. Our system
also provides interactive operations for this purpose. After multiple iterations of
adding new islands into the grammar, the grammar finally becomes an expected
one.
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Example

We explain how the incremental grammar editing works by using onlyWhen

constructs introduced in Section 2 in a step-by-step manner. Each step can
be done with a GUI operation that our tool provides. We will explain these
operations later in this section.

To develop an island grammar, we start editing from the initial grammar as
follows:

1 program <- <lake >*

2 <lake > <- string

3 string <- r ’"([^"]|\") *?"\s*’

This initial grammar extracts no island and just skips the whole program as
water. The program nonterminal is defined as zero or more repetition of <lake>.
<lake> is a lake symbol. In this thesis, we use a convention that the name
of a lake symbol is surrounded by < and >. In line 2, the rule for <lake> is
defined. The right-hand side of the rule for <lake> indicates that string may
be recognized as <lake>. Even if <lake> does not match the parsing expression
on the right-hand side of the rule for it, it consumes any character like a wildcard
symbol. Since we are not interested in string literals, we can handle them as
water. string consumes a string literal as a chunk. It prevents the parser from
recognizing an island in the string literal by mistake. For example, even if the
input contains "{ onlyWhen(x==1); }", water recognizes it as the string literal.
This prevents the parser from extracting the onlyWhen construct embedded in
the string literal. For the same reason, the parsing expression that recognizes
comments in the language must be specified in the right-hand side of the rule for
water in a practical situation while we omit it in this thesis for simplicity. The
right-hand side of the rule for string in line 3 is a regular expression surrounded
by r’ and ’ like Python’s regular expressions.

From the initial grammar, the user refines the grammar incrementally. To
enable the grammar extract onlyWhen constructs, the user starts with adding
the rules for the tokens which build up onlyWhen constructs first. Such tokens
includes the onlyWhen keyword, parentheses, braces, and semicolon. The user
updates the grammar such that the parser can extract these tokens as islands.
For example, after the user adds the onlyWhen keyword as an island, the gram-
mar is updated as follows:

1 program <- <lake >*

2 <lake > <- onlyWhen / string

3 string <- r ’"([^"]|\") *?"\s*’

4 onlyWhen <- r’(?<!\w)onlyWhen (?!\w)\s*’

In this grammar, the rules in lines 4 was added. The rule in line 2 was also up-
dated such that the right-hand side of the rule contains onlyWhen nonterminal
as the first operand of the ordered choice expression. It means that only when

was added as an island. The onlyWhen nonterminal was newly defined nonter-
minal in line 4. The onlyWhen nonterminal recognizes the onlyWhen token with
additional white spaces. r’(?<!\w)onlyWhen(?!\w)\s*’ is a regular expression
that recognizes an onlyWhen token. Note that (?<!\w) matches if a look-behind
character is not an alphanumeric character nor an underscore. Similarly, (?!\w)
matches if a look-ahead character is not an alphanumeric character nor an un-
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Figure 4.1: Text highlighting

derscore. This prevents the parser from unintentionally recognizing parts of
another identifier such as NotonlyWhen or onlyWhenA as the onlyWhen token.
Concatenating additional white spaces represented by \s+ with a token is a
typical description pattern in PEG for the scanner-less parser.

After updating the grammar, the user can check if this rule for the island
is valid by highlighting the corresponding text areas in the example text. For
example, after adding the rule for the onlyWhen keyword. The user selects the
onlyWhen nonterminal for highlighting. Then, PEGSEED highlights the text
areas that are recognized as onlyWhen as shown in Figure 4.1. In Figure 4.1,
three text areas corresponding to onlyWhen is highlighted as expected since the
rule for the onlyWhen nonterminal is correctly defined. If these areas were not
highlighted as expected, the user could rewrite the rule for onlyWhen.

After adding all tokens as islands, the grammar becomes as follows:

1 program <- <lake >*

2 <lake > <- semi / rpar / lpar / rcub / lcub / onlyWhen /

string

3 string <- r ’"([^"]|\") *?"\s*’

4 onlyWhen <- r’(?<!\w)onlyWhen (?!\w)\s*’

5 lcub <- r’\{\s*’

6 rcub <- r’\}\s*’

7 lpar <- r’\(\s*’

8 rpar <- r’\)\s*’

9 semi <- r’;\s*’

Lines 5-9 are rules for newly added tokens. At this point, the user has confirmed
that all tokens are defined correctly with text highlighting.

Now, the user can create a larger island by using already defined tokens.
Let us consider adding a rule that recognizes the condition part of an onlyWhen

construct as a new island. A condition part starts with a left parenthesis and ends
with a right parenthesis. Since we are not interested in the strings surrounded
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by parentheses, we would like to treat them as water. This can be done by
concatenating existing islands as follows:

1 program <- <lake >*

2 <lake > <- group/ semi / rcub / lcub / onlyWhen / string

3 string <- r ’"([^"]|\") *?"\s*’

4 onlyWhen <- r’(?<!\w)onlyWhen (?!\w)\s*’

5 lcub <- r’\{\s*’

6 rcub <- r’\}\s*’

7 lpar <- r’\(\s*’

8 rpar <- r’\)\s*’

9 semi <- r’;\s*’

10 group <- lpar <lake >* rpar

Now, lpar and rpar, which recognize a left and right parenthesis respectively,
were removed from the rule for <lake> in line 2. Instead, the group nonterminal
symbol is added on the right-hand side of the grammar in line 2. The rule for
group is added in line 10. Note that the right-hand side of the rule for group

contains <lake> recursively for skipping uninteresting parts of the program.
Since the right-hand side of the rule for <lake> contains group, the grammar
can handle the recursive structure of group. We reuse <lake> in line 10 while it
is also used in line 1. If the reuse of <lake> caused a problem, we could create
a new lake symbol and put the group on the right-hand side of the rule for the
new lake symbol. We can also check if the definition of the group is valid with
text highlighting.

Next, we continuously define a larger island by concatenating islands already
defined and tested. By concatenating onlyWhen, group, and semi, we can define
onlyWhenStmt as follows:

onlyWhenStmt <- onlyWhen group semi

This onlyWhenStmt is added to the right-hand side of the rule for <lake> as
follows:

<lake > <- onlyWhenStmt / group / rcub / lcub / string

Note that onlyWhen and semi have been removed from the above rule. They do
not need to be recognized as <lake> since they are now recognized as part of
onlyWhenStmt. On the other hand group is still in the rule for <lake>. Since the
right-hand side of the rule for group includes <lake>, group must be specified
in the rule for <lake> to handle the recursive structure of group.

Now, all the small islands to build up an onlyWhen construct seem to be
already defined and tested. We can define a rule for an onlyWhen construct as
follows by concatenating these islands:

onlyWhenConstruct <- lcub <lake >* onlyWhenStmt <other >*

rcub

We use lake symbols to skip inner parts of onlyWhen constructs since we are not
interested in them. We need two different lake symbols, <lake> and <other>.
They are different in how they consume water. <lake> must not consume
onlyWhenStmt as water for the parser to recognize the following onlyWhenStmt.
On the other hand, <other> must skip onlyWhenStmt such as the one in line 5 in
Listing 4.2 since they are uninteresting parts of the surrouding onlyWhenConstruct.
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Figure 4.2: Text highlighting for invalid onlyWhenConstruct

A best practice for using lake symbols is to use different lake symbols for each dif-
ferent part in the grammar, since they are context aware. onlyWhenConstruct

is added to the right-hand side of the rule for <lake> as follows:

<lake > <- onlyWhenConstruct / group / string

The nonterminals used in the rules for onlyWhenConstruct is removed, and
onlyWhenConstruct is added. At this point, we can check if the above rule is
valid by highlighting the areas recognized by the onlyWhenConstruct nontermi-
nal. Unfortunately, the result is not what we expected, as shown in Figure 4.2.
While the number of onlyWhen constructs is as we expected, the extracted area
is not correct. We expected the right curly brace in line 13 is highlighted as
part of the outer onlyWhen construct. And the right curly brace in line 12 is
highlighted as part of the inner one. However, the outer one ends with the right
curly brace in line 12. Similarly, the inner one ends with the right curly brace in
line 11 and the following spaces, which are part of the for statement in lines 9–
11. The result is due to that we did not define block that begins with a right
curly brace and ends with a curly brace as water.

Hence, the user undoes the previous definition of onlyWhenConstruct, and
defines the following rule before defining onlyWhenConstruct instead:

<block > <- lcub <lake >* rcub

The above <block> is added to the right-hand side of the rule as follows:

<lake > <- block / group / semi / onlyWhen / string

After updating the grammar, we can check if the rule for <block> is properly
defined by text highlighting. The result is shown in Figure 4.3.

At this point, the onlyWhen constructs are recognized as <block>. We can
differentiate them from <block> by adding the rule for onlyWhenConstruct as
explained earlier in this section. Finally, we obtain the following grammar in
Listing 4.5. Now, we can check if the onlyWhenConstruct nonterminal is valid
with text highlighting.

61



Figure 4.3: Text highlighting for block

Listing 4.5: Island grammar for the onlyWhen construct

1 program <- <lake >*

2 <lake > <- onlyWhenConstruct / block / group / water

3 string <- r ’"([^"]|\") *?"\s*’

4 onlyWhen <- r’(?<!\w)onlyWhen (?!\w)\s*’

5 lcub <- r’\{\s*’

6 rcub <- r’\}\s*’

7 lpar <- r’\(\s*’

8 rpar <- r’\)\s*’

9 semi <- r’;\s*’

10 group <- lpar <lake >* rpar

11 onlyWhenStmt <- onlyWhen group semi

12 block <- lcub <lake >* rcub

13 <other > <- onlyWhenConstruct / block / group / water

14 onlyWhenConstruct <- lcub <lake >* onlyWhenStmt <other >*

rcub

As described above, we can get the correct island grammar quickly. Incre-
mental definition of rules eases the grammar description. By defining a new
island with already tested islands, we immediately found a mistake after defin-
ing a new rule if something is wrong. This benefit comes from incremental
description and text highlighting feature of our PEGSEED.

4.3.2 Syntax of Generated Grammars

Our PEGSEED always produces a grammar, whose meta-syntax is described
in EBNF in Listing 4.6. The grammar consists of one or more rules, as shown
in line 1. Each rule is a token rule, sequence rule, or choice rule (line 2).
PEGSEED provides GUI operations for defining these rules.

token rule represents a token rule that recognizes a specific kind of token
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Listing 4.6: Meta-syntax of an generated PEG in EBNF

1 grammar = rule+

2 rule = token_rule | choice_rule | sequence_rule

3 token_rule = nonterminal ’<-’ regex

4 sequence_rule = nonterminal ’<-’ (nonterminal ’*’?| lake

’*’)+

5 choice_rule = (nonterminal / lake) ’<-’ nonterminal (’/’

nonterminal)+

in a language. The left-hand side of a token rule is a nonterminal symbol. The
right-hand side is a regular expression. This regular expression starts with r’
and ends with ’ like a regular expression literal in Python. For example, the
following rule is a token rule:

onlyWhen <- r’(?<!\w)onlyWhen (?!\w)\s*’

onlyWhen is a nonterminal and r’(?<!\w)onlyWhen(?!\w)\s*’ is a regular ex-
pression.

squence rule represents a sequence rule that recognizes a specific sequence
of nonterminal or lake symbols. The left-hand side of a sequence rule is a non-
terminal symbol. The right-hand side is a parsing expression with PEG’s se-
quence operator. Each operand of the sequence operator is a nonterminal or
lake symbol with an optional postfix operator. For example, the following rule
is a sequence rule:

block <- lcub <lake >* rcub

Operands of PEG’s sequence operator is lcub, <lake>*, and rcub. They are
nonterminals or lake symbols with an optional postfix operator. For instance,
lcub is just a nonterminal, and <lake>* is a lake symbol with the optional
postfix operator. * is PEG’s zero or more operator.

choice rule represents a choice rule where a newly defined nonterminal can
be added. Its left-hand side is a nonterminal or lake symbol. The right-hand
side consists of one or more nonterminal symbols separated by PEG’s choice
operator. For example, the following rule is a choice rule:

<lake > <- string

This rule contains only one nonterminal symbol. When we define the onlyWhen

nonterminal, we can add it to the right-hand side of the rule for choice rule as
follows:

<lake > <- onlyWhen / string

The right-hand side of the rule for <lake> contains onlyWhen and string sep-
arated by PEG’s choice operator /.

4.3.3 Example-Based GUI Operations

Overview

Our PEGSEED always keeps the grammar under editing a correct island gram-
mar. By utilizing this property, we can provide advance assistance for adding a
new rule into the grammar. When the grammar is updated, PEGSEED parses
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an example text that the user provided with the latest grammar and obtains
the parse tree. This parse tree has information about which nonterminal symbol
corresponds to each subpart of the example text. PEGSEED uses this informa-
tion to realize assistance for updating the grammar. PEGSEED provides three
GUI operations by which the user can add a new rule with assistance.

To apply one of the three GUI operations, the user takes the following three
steps:

1. Select a text area in the example text

2. Select an operation to be executed

3. Fill out a dialog box corresponding to the selected operation

In Step 1, the user selects a text area that should be recognized by the rule to be
added. This Step is in common regardless of which operation to be executed. In
Step 2, the user clicks a button that corresponds to the operation to be executed.
Then, the dialog box for the operation pops up. Step 3 depends on the operation
that the user selected in Step 2.

Token Operation

The token operation adds a token rule corresponding to token rule in line 3 in
Listing 4.6. To apply this operation, the user selects a text area that should be
recognized by the token rule to be added. Then, PEGSEED shows the dialog
for the user to add the rule to the grammar as shown in Figure 4.4. This dialog
consists of three parts: (1) a text field for the name of nonterminal to be added,
(2) a text field of a regular expression, and (3) a list of nonterminals for choice
rules.

The user specifies the name of the nonterminal for the rule to be updated in
the text field (1). The default name of a nonterminal is automatically filled by
PEGSEED based on the text which the user selected. The dialog in Figure 4.4
is shown after the user selects ”onlyWhen” in the example text. PEGSEED
automatically fills the text field for the name of the nonterminal symbol with
”onlyWhen” as its default value. The user can change the name if needed. If
the same name already exists in the current grammar, PEGSEED warns it.

With text field (2), the user specifies a regular expression that recognizes
the token to be selected. The default regular expression for the token is au-
tomatically filled by PEGSEED based on the selected text. In Figure 4.4,
(?<!\w)onlyWhen(?!\w)\s* is automatically fill by PEGSEED. The default
regular expression is based on the text that the user selects. When the selected
text starts with or an alphanumeric character, a negative look-behind and
look-ahead prefixes are appended to the regular expression. It asserts that what
immediately precedes or follows the token is not or alphanumeric character
matched by regular expression \w. This prevents an unexpected character string
such as ”notonlyWhen” from being matched by the regular expression. \s* is
also appended at the tail of the regular expression to skip the trailing white
spaces. It is a practical technique to make the token rule consume trailing white
spaces as part of it in scanner less parsing. The user can modify the pattern if
the default regular expression is not what she expected.
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Figure 4.4: Dialog for the token operation

The user also specifies where the new rule is specified in the grammar. The
new rule can be inserted in one or more choice rules in the grammar. List (3)
shows all the candidate rules in the grammar. In the case of Figure 4.4, <lake> is
only one element of the list. PEGSEED automatically selects an element of the
list by default based on the text which the user selected. The default element
is what the user selected is currently recognized. In the case of Figure 4.4,
since each character of ”onlyWhen” is recognized as <lake>, it is selected by
default. When there are multiple candidate choice rules, the user can select ones
explicitly.

Sequence Operation

The sequence operation adds a sequence rule, which corresponds to sequence rule

in line 4 in Listing 4.6. To apply the sequence operation, the user selects a text
area that the sequence rule to be added should recognize. Then, the PEGSEED
shows the dialog for the user to add the rule to the grammar as shown in Fig-
ure 4.5. This dialog consists of four parts: (1) a text field for the name of
nonterminal to be added, (2) a list of list boxes, (3) a list of nonterminals for
choice rules to be updated, and (4) a list of nonterminal that must be removed
from choice rules selected in (3).

The user specifies the name of the nonterminal in the text field (1). In the case
of Figure 4.5, the user specifies ”onlyWhenStmt” as a name of the nonterminal.

The user specifies the rule to be added by using the list of list boxes (2).
Each list box contains a list of nonterminal or lake symbols. Each list box
corresponds to a substring of the text that the user selected. The user can
create a rule by selecting a combination of nonterminal or lake symbols in each
list box. For example, the dialog in Figure 4.5 was shown when the user selected
”onlyWhen(fooIsNeeded()));” in line 3 in Listing 4.2. This character string
consists of three islands: onlyWhen, group, and semi, that we have already
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Figure 4.5: Dialog for the sequence operation

made the rule for recognizing them. Hence, PEGSEED suggests the sequence of
these nonterminals as default. If the suggested combination of nonterminals is
what the user expected, she does not need to change the selection of each list box.
However, if it is not what she expected, she can change one or more list boxes.
Each list box contains other possible nonterminal or lake that can recognize the
corresponding character string. For example, the onlyWhen nonterminal is also
recogzied as <lake> since onlyWhen is specified in the right-hand side of the
rule for <lake>. Hence, the user can select <lake> in the list box as shwon
in Figure 4.5. If that part does not need to be onlyWhen, the user can specify
<lake> instead of the onlyWhen nonterminal. Moreover, the user can append
one of the postfix operators to <lake> if needed.

The user can also create a new lake by editing the list box directly. In such
a case, the right-hand side of the rule for the new lake is copied from the lake
listed in the list box.

With the list of choice rules (3), the user specifies the choice rules where the
new sequence rule should be added. As with the dialog for the token operation,
all choice rules are listed. In the case of the sequence operation, the user specifies
new lakes in the list of list boxes (2), the newly created lakes are also listed in
the list (3). The user can create a recursion by selecting the nonterminal that is
also specified in the list of list boxes (2).

With the list of nonterminals (4), the user can choose whether each nonter-
minal specified in the list of list boxes (2) should be removed from the choice
rule selected in (3). Now, since these nonterminals are part of the new sequence
rule, they may not need to be in the choice rules in many cases. An exception
is when there is a recursion. For example, the right-hand side of group selected
in the list of list boxes (2) contains <lake> selected in (3). In this case, group
is recursively defined via <lake>. If the group nonterminal is removed from the
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Figure 4.6: Transpiler for syntax extension

rule for <lake>, this recursion gets corrupt. Hence, PEGSEED automatically
selects only these choice rules as nonterminal not to be removed by default. If the
default selection is not what the user expects, the user can change the selection.

Choice Operation

The choice operation provides a way to add a new choice rule corresponding
to line 5 in Listing 4.6. The user can apply the choice operation to create a
new choice rule. The new rule contains only one nonterminal at first. To add
a nonterminal to the rule’s right-hand side, the user applies one of the three
operations specifying the choice rule to be updated.

The user applies the choice operation by selecting a text area that correspond-
ing to one of the islands and selecting the choice operation. Then, PEGSEED
shows the GUI operation similar to Figure 4.5. In contrast to Figure 4.5, the
list of list boxes contains only one list box. The user specifies the name of the
nonterminal that is the left-hand side of the new rule. Then, the user selects a
nonterminal from the list box. Finally, the user selects rules to be updated with
the new rule and whether the nonterminal selected in the list box is removed
from the rules to be updated.

4.4 Case Study

We applied our PEGSEED to implement a transpiler framework of syntax ex-
tension to confirm the effectiveness and usefulness of our proposed approach. In
this section, we show the design and implementation of the framework for tran-
spilers by using the onlyWhen construct as an example. Then we introduce two
other syntax extensions, including unless statements and JSX-like extension.

4.4.1 Design and Implementation of Framework for Transpiler

Transpilers are tools for syntax extension. As shown in Figure 4.6, they take
a program written in a language with syntax extension and convert it into a
program written in the original language. A transpiler consists of two main
software components: a parser and a transformer. The parser takes a program in
extended language and generates a parse tree based on an input island grammar.
The transformer takes the parse tree generated by the parser and traverses the
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{              doit();                     onlyWhen (fooIsNeeded())     ;                 …               }        

onlyWhenConstruct

onlyWhenStmtlcub rcub*

onlyWhen group semi

<lake>

program

*

…<lake> <lake>

*

…<other> <other>

: sequence rule

: choice rule

: token rule

: unary operator

…

Figure 4.7: Parse tree for the onlyWhen construct

parse tree, and generates an equivalent program in the original language without
the syntax extension.

Parse Tree

An example parse tree generated by the parser is shown in Figure 4.7. This
parse tree is generated from the program in Listing 4.2. Rules in the grammar
generated by PEGSEED are in one of three types: token rule, sequence rule, or
choice rule, as shown in Listing 4.6. Each type of rule is encoded in a node or a
leaf in a parse tree. The nonterminal symbol and lake symbol are used as a node
label. For example, the node labeled with onlyWhenConstruct corresponds to
the following sequence rule:

onlyWhenConstruct <- lcub <lake >* onlyWhenStmt <other >*

rcub

Operands of sequence such as lcub or <lake>* are children of the node la-
beled with onlyWhenConstruct. The leftmost child of the node labeled with
onlyWhenConstruct is the leaf labeled with lcub. The rule for lcub is a token
rule, which is always encoded into a leaf. The next child of the onlyWhenConstruct
node is the node labeled with *. PEG’s unary operators: *, + and ? are encoded
into nodes labeled with them. These nodes have zero or more children cor-
responding to their operands. The node labeled with * has multiple children
labeled with <lake>. The node labeled with <lake> corresponds to a choice
rule. Nodes for choice rules have zero or only one child labeled with a nonter-
minal that recognizes the corresponding part of the input text. When the lake
symbol works as just a wildcard character, the node corresponding to the lake
symbol is a leaf with no child.

Transformation

The second part of the transpiler is a transformer. The transformer takes a parse
tree generated by the parser and rewrites the input program by using the parse
tree. The user specifies the rewriting rule for the extended constructs.

Our framework generates not only a parser but also most parts of a trans-
former written in TypeScript on behalf of the user. The user can implement
the transformer just by writing a subclass that inherits the class generated by
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Listing 4.7: Default transformer for the onlyWhen construct

1 class Transformer {

2 ...

3 onlyWhenConsturct(node: Node_onlyWhenConstruct): string {

4 return text(node.lcub) + text(node.lake) + text(node.

onlyWhenStmt) + text(node.other) + text(node.lcub);

5 }

6 ...

7 }

Listing 4.8: Class definition for the node of the onlyWhen construct

1 class Node_onlyWhenConstruct extends Node{

2 lcub: Leaf;

3 lake: Node [];

4 onlyWhenStmt: Node_onlyWhenStmt;

5 other: Node [];

6 rcub: Leaf;

7 }

our framework. This superclass implements default methods for every sequence
rule in an island grammar edited with PEGSEED. The generated transformer
traverses a given parse tree in post-order and applies a method corresponding
to the label of the visited node to convert the parse tree into a native pro-
gram in plain text. Each method returns a text representation of the corre-
sponding subtree. The default methods in the generated class do not modify
the original input text at all. For example, the superclass generated by the
grammar in Listing 4.5 is shown in Listing 4.7. The Transformer class imple-
ments default methods for each sequence rule in the grammar. For example, the
onlyWhenConstructmethod corresponds to the rule for the onlyWhenConstruct
nonterminal. The onlyWhenConstruct method takes a parameter whose type is
Node onlyWhenConstruct. The definition of Node onlyWhenConstruct is shown
in Listing 4.8. This class is also generated by our framework from the grammar.
Each operand of PEG’s sequence operator becomes a property of the class. These
properties are children of the node of the Node onlyWhenConstruct. The de-
fault method for onlyWhenConstructNode concatenates all the transformation
results for each child and returns it. The text method in Listing 4.7 returns
the text representation of the given argument. The text returned by the text

method is the original text or a text modified by the user-defined method.
To rewrite the onlyWhen construct, the user writes a class that inherits

the Transformer class as shown in Listing 4.9. The onlyWhenTransformer

class extends Transformer generated by PEGSEED and overrides only the
onlyhenConstruct method. Lines 3–9 are a string interpolation that creates
rewritten text. The onlyWhenConstruct method converts a tree of the onlyWhen
construct into a block with an if statement. For example, when the input is the
program in Listing 4.2, the method can generate the program written in List-
ing 4.1. In this case, text(node.lake) return doit(); in Listing 4.2. Similary
text(node.onlyWhenStmt.group) returns (fooIsNeeded())).
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Listing 4.9: User defined transformer for the onlyWhen construct

1 class onlyWhenTransformer extends Transformer {

2 onlyWhenConsturct(node: Node_onlyWhenConstruct): string {

3 return ‘

4 {

5 ${text(node.lake)};

6 if ${text(node.onlyWhenStmt.group)} {

7 ${text(node.other)}

8 }

9 }

10 ‘;

11 }

12 }

4.4.2 Other Syntax Extensions

unless statement

Suppose that unless statements are essential for writing a natural program
in a target domain when the programming language does not support unless

statements. Unless statements execute its block statement only when a given
condition is not satisfied. An example of an unless statement is as follows:

unless (status == FAILED) {

doit();

}

In this case, doit() is called only when the value of the status variable status is
FAILED. Syntax extension enables the embedded DSL support unless statements
like the above one by converting a program in embedded DSL into a pure host
language. In the case of the above example, the resulting program must be as
follows:

if (!( status == FAILED)) {

doit();

}

We created an island grammar for converting unless statements into if

statements. In this case, we only need the leading part of the unless statement.
For example, we need to extract unless (status == FAILED) as an island.
We created the grammar in Listing 4.10 with only GUI operations provided by
PEGSEED. The rules in lines 4–8 are created by GUI operations. We commented
on each rule with the name of the corresponding operation. Five operations were
required to create the grammar. The last rule in line 8 recognizes the leading
part of an unless statement.

We also developed a transpiler that handles unless statements as shown in
Listing 4.11. The UnlessTransformer implments the Transformer class which
our framework generated from the grammar in Listing 4.10. It overrides only
the unless method declared in its superclass. The unless method returns the
leading part of an if statement whose condition is inversion of the condition in
the unless statement.
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Listing 4.10: Generated grammar for the unless construct

1 program <- <lake >*

2 <lake > <- unless_cond / group / string

3 string <- r ’"([^"]|\") *?"\s*’

4 unless <- r’(?<!\w)unless (?!\w)\s*’

5 lpar <- r’\(\s*’ // token

6 rpar <- r’\)\s*’ // token

7 group <- lpar <lake >* rpar // sequence

8 unless_cond <- unless group // sequence

Listing 4.11: User defined transformer for the unless construct

1 class UnlessTransformer extends Transformer {

2 unless(node: Node_unless_cond): string {

3 return ‘if (!${node.group.lake}) ‘;

4 }

5 }

JSX like statement

Embedding XML-like syntax into a host language is a successful application of
syntax extension. For example, JSX is an extended language based on JavaScript
and supports programming constructs similar to HTML tags. Listing 4.12 is an
example of a JSX program quoted from the JSX web page 1. The programming
construct in lines 1–3 is an expression in JSX and converted to the program in
Listring 4.13 by the JSX transpiler.

We implemented a transpiler for a subset of JSX with our framework such
that it can convert the example program. We used the program in Listing 4.12
as an example text and created the grammar in Listing 4.14 with only GUI
operations provided by PEGSEED. There are 16 rules, of which the last 13 rules
are created by GUI operations. We commented on each line with the name of
the corresponding operation. For example, the rule in line 4 was created by the
token operation. We used seven token operations, four sequence operations, and
two choice operations for the grammar in Listing 4.14. The last rule of which
the left-hand side is the element nonterminal, which recognizes the extended
program construct for JSX.

To implement a transpiler for the JSX construct, we wrote the program as
shown in Listing 4.15. The JSXTransformer class only implements the element
method declared in the Transformer, which is generated from the grammar
in Listing 4.14. This method converts the JSX construct into the call of the
createElement method on the React class.

Listing 4.12: Example of a JSX program

1 <MyButton color ="blue" shadowSize ={2}>

2 Click Me

3 </MyButton >

1https://reactjs.org/docs/jsx-in-depth.html
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Listing 4.13: Generated JavaScript program from the JSX program

1 React.createElement(

2 MyButton ,

3 {color: ’blue ’, shadowSize: 2},

4 ’Click Me’

5 )

Listing 4.14: Generated Grammar for JSX extension

1 program <- <lake >*

2 <lake > <- element / block / string

3 string <- r ’"([^"]|\") *?"\s*’

4 lcub <- r’\{\s*’ // token

5 rcub <- r’\}\s*’ // token

6 block <- lcub <lake >* rcub // sequence

7 value <- string_value / block // choice

8 string_value <- string // choice

9 equals <- r’=\s*’ // token

10 id <- r’(?<!\w)\w+(?!\w)\s*’ // token

11 attr <- id equals value // sequence

12 attrs <- attr+ // sequence

13 lt <- r’<\s*’ // token

14 ltsol <- r’<\/\s*’ // token

15 gt <- r’>\s*’ // token

16 element <- lt tag:id attrs* gt <lake >* ltsol tag:id gt //

sequence

Listing 4.15: User defined transformer for JSX extension

1 class JSXTransformer extends Transformer {

2 element(node: Node_element): string {

3 const args = node.attribute

4 .map((attr) => {

5 const value =

6 attr.value instanceof Node_block

7 ? text(attr.value.lake)

8 : text(attr.value);

9 return ‘${attr.SYMBOL }: ${value}‘;

10 })

11 .join(’, ’);

12
13 return ‘

14 React.createElement(

15 ${text(node.tag)},

16 {${args}},

17 ’${text(node.lake)}’

18 )

19 ‘;

20 }

21 }
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4.5 Related Work

4.5.1 Parser Generators

A number of parser generators such as Yacc have been developed. They generate
a parser from the given grammar definition. Their drawback is that the users
need to learn several tricky techniques to write a grammar that the generator can
process. For example, when the generator adopts the LR parsing, the users have
to learn how to deal with shift-reduce and reduce-reduce conflicts. When the LL
parsing or the packrat parsing is used, the users have to avoid left recursion.

ANTLRWorks [13] helps the users understand why the grammar did not
appropriately parse the input source program as they intend. Although ANTL-
RWorks provides graphical user interface as PEGSEED does, the ANTLRWorks
users have to directly edit a grammar definition. PEGSEED hides the details of
the PEG definition from the users.

The generalized parsers such as Cocke-Younger-Kasami (CYK) [96], GLL [83],
and GLR [88] can accept any context-free grammar even when the grammar is
ambiguous. This property is similar to PEGSEED’s but the user has to imple-
ment a post process when the generalized parsing is used. Since the generalized
parsers produce several possible parse trees from one input source program,
which are often called parse forest, the post process has to select the most ap-
propriate one among them. This is necessary for resolving ambiguity.

4.5.2 Interactive Grammar Construction

Interactive grammar construction addresses the difficulty in writing a grammar
definition. Crespi et al. [21] proposed an algorithm for generating a subset of
operator precedence grammar from valid statements interactively given by the
user as examples.

Parsify [61] and Parsimony [60] are parser generators with graphical user
interface for non-expert users. The users can construct a grammar definition
by interactively showing an example of how it is parsed. A difference from
PEGSEED is that they require the users to define a fully detailed grammar
even when the generated parser is used to recognize only a particularly kind of
non-terminal symbols in the input source program.

4.5.3 Grammatical Inference

Grammatical inference is a technique for learning a grammar through examining
the sentences in an unknown language. It has been studied for decades, for regu-
lar languages [5], reversible languages [4], reversible context-free languages [82],
and ultimately context-free languages [59]. Those results have been adopted in
the contexts of programming tools and software engineering, such as domain-
specific languages (DSL), visual languages, execution traces [86].

The grammatical inference for a dialect of existing programming language
has been proposed [27, 3, 25, 24]. These systems infer a grammar from not only
example programs but also the grammar of the original language. They only
learn differences from the original grammar. Unfortunately their approach is
not effective for our aim; we cannot assume that we have the grammar definition
of a language similar to the target language.

73



AUTOGRAM [46, 47] can infer a context free grammar by examining not only
valid program code but also syntactically-incorrect code in the target language.
Given a set of sample code, AUTOGRAM uses dynamic tainting to trace the
data flow of each input character. It reflects the data flow on the grammar
inference.

The grammatical inference for DSL has been studied. An evolutional algo-
rithm to infer grammars for DSLs have been developed by Crepinsek et al. [91]
and Javed et al. [48]. PAX [97] can infer a pattern language specification for
generating the parser for it from example programs.

4.5.4 Programming by Examples

PEGSEED can be regarded as a system based on programming by example
(PBE). The PBE technique has been studied broadly in software engineering [22,
40, 77]. The examples include the synthesis of string transformation [6, 40,
64], spreadsheet manipulation [10, 42], number transformation [85], and data
extraction from unstructured or semi-structured data [58].

The LAPIS [65] system can highlight code fragments on the editor pane
Some systems are similar to PEGSEED in that they are GUI-based interac-

tive systems. The STEPS [95] system supports text highlighting like PEGSEED,
but toward the narrower aim of generating text transforms like those performed
by short shell scripts.

4.6 Summary

In this chapter, we proposed an interactive approach for island grammars. With
this approach, the user adds rules into grammar incrementally. In each step, the
user adds a new rule that recognizes a small island. Rules added in each step
recognize a new token or sequence of already defined islands and lakes. After
adding a new rule, the user can immediately test the rule by highlighting text
areas corresponding to islands recognized by the rule in an example text.

We also proposed GUI operations to edit island grammar. The user can add
a new rule by selecting a text area and apply one of the GUI operations. Each
GUI operation creates a new rule via a dialog with the user. In our case study on
syntax extension, including the onlyWhen construct , the unless statement, and
the JSX like construct. The grammars for these syntax extensions were created
only with GUI operations.
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Chapter 5

Dynamic Domain-Specific Assistance

5.1 Introduction

Domain-specific languages (DSLs) are widely used in many domains to develop
software efficiently for a particular use. Because DSL users can concentrate on
the domain-specific problem, the development in DSLs is more efficient than in
general-purpose programming languages. One successful application of DSLs is
processor specification to generate a processor emulator or to design a processor.
The DSLs for this purpose are called processor description languages (PDLs)
or architecture description languages [66]. Several PDLs, including nML [43],
ISDL [41], LISA [75], EXPRESSION [80], Harmless [49], and HPADL [51], have
been developed and used in academia and industry.

Some PDLs are implemented as embedded DSLs, which are libraries or frame-
works in their host languages. Examples include Pydgin [62] hosted in Python
and ArchC [8] hosted in SystemC [73]. An advantage of embedded DSLs is
that they can borrow the host language’s tools, including their integrated devel-
opment environments (IDEs), thereby reducing the development cost of DSLs.
However, the programming assistance by IDEs is not satisfactory; more domain-
specific assistance for convenience and correctness should be provided.

In this chapter, we present a design approach to the embedded DSLs en-
abling domain-specific programming assistance by their host’s IDEs. The DSLs
are carefully designed to let the IDEs provide better auto-completion and error
detection by domain-specific knowledge. To this end, the DSL compiler/runtime
generates support programs while the users write a DSL program. The DSL pro-
gram is split into multiple components for different concerns; the DSL compiler
reads a component written earlier and generates a support program for later
components. The domain-specific knowledge is encoded into the support pro-
gram, and the IDE refers to this support program for providing domain-specific
assistance when other components are written. An example of the support pro-
gram is the superclass of the class written by the DSL user.

The contributions of this work are three-fold:

• We reveal that domain-specific programming assistance by IDEs is poor for
embedded DSLs and present our approach to address this problem. Our
approach exploits program generation such that programming assistance
for the host language can be regarded as domain-specific.

• We conduct a case study by developing a practical embedded DSL called
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MELTRANS and demonstrate the domain-specific assistance that is avail-
able when the user is writing a program in MELTRANS.

• We experimentally confirm that the domain-specific assistance provided
by MELTRANS can effectively reduce the amount of code to be written
by the user, the generated emulator can emulate a processor in over 1,000
MIPS, and MELTRANS is general enough to generate an emulator for
several commercial instruction sets (ARM, MIPS64, SH, RH850, RISC-V,
and RX).

In the rest of this chapter, we first reveal that domain-specific programming
assistance by IDEs is inadequate for embedded DSL by using a processor de-
scription language as an example. We then propose a design approach for devel-
oping an embedded DSL with domain-specific programming assistance. We also
present our experiments and related work. Finally, we conclude this chapter.

5.2 Motivating Problem

The growing adoption of cross-platform virtualization and the rise in instruction
set architecture (ISA) diversity are resulting in a need for an efficient method
to develop a fast processor emulator. One promising approach is to generate
processor emulators using the program written in PDLs. In general, practical
processor emulators need to implement dynamic binary translation (DBT) to
execute the guest program rapidly. The implementation of emulators with DBT
is complicated without a PDL. The emulator with DBT translates guest instruc-
tions into host native instructions at runtime. Without a PDL, the developer of
emulators needs to describe how the emulator translates guest instructions into
host instructions. The developer is required to have a deep understanding of
not only guest instructions but also host instructions. When we use a PDL, the
PDL compiler can generate code for the translation on behalf of the developer.

A PDL can be implemented as an embedded DSL. An advantage of this
approach is that users can exploit an existing tool-chain for the host language
of the embedded DSL. However, a drawback of this approach is that it provides
poor domain-specific programming assistance.

Suppose that we describe the MUL instruction of the ARM processor in such
an embedded DSL. The MUL instruction multiplies values in the source registers
and stores the result in the destination register. Listing 5.1 is the pseudo-code
expressing the semantics of the MUL instruction, which is quoted from the ARM
reference manual [45]. In a Python-based embedded DSL, the Pydgin PDL [62],
the same semantics is implemented by the execute mul function shown in List-
ing 5.2. This function appears to be very similar to the pseudo-code in List-
ing 5.1. Thus, the user can describe the execute mul function by mostly copying
the pseudo-code in the reference manual. The user does not have to specify how
to translate the MUL instruction into the host instructions when implementing
the processor emulator in Pydgin.

Expressions inst.cond, inst.rm, and inst.rn in Listing 5.2 represent the
values of the instruction fields of MUL, which are cond, Rm, and Rn, respectively.
Figure 5.1 shows the excerpt of the bit encoding of the MUL instruction taken
from the ARM reference manual. The MUL instruction has five instruction fields:
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Listing 5.1: MUL instruction in the reference manual (ARM)

1 if condition_passed ()

2 d = UInt(Rd);

3 n = UInt(Rn);

4 m = UInt(Rm);

5 setflags = (S == ’1’)

6 operands1 = SInt(R[n])

7 operands2 = SInt(R[m])

8 result = operand1 * operand2

9 R[d] = result <31:0>

10 if setflags then

11 APSR.N = result <31>;

12 APSR.Z = IsZeroBit(result);

Listing 5.2: MUL instruction in Pydgin (ARM)

1 def execute_mul( s, inst ):

2 if condition_passed( s, inst.cond ):

3 Rn, Rm = s.rf[ inst.rn ], s.rf[ inst.rm ]

4 result = trim_32(Rn * Rm)

5 s.rf[ inst.rd ] = result

6
7 if inst.S:

8 s.N = (result >> 31)&1

9 s.Z = result == 0

10
11 if inst.rd == 15:

12 return

13 s.rf[PC] = s.fetch_pc () + 4

cond, S, Rd, Rm, and Rn. Expressions inst.cond, inst.rm, and inst.rn are
method calls on inst, which is a function parameter to execute mull, and they
return the values of those instruction fields.

The type of inst is the Instruction class, which must be defined by the
Pydgin user. Listing 5.3 is an example of the Instruction class for ARM,
which is included in the source tree of Pydgin. We renamed the methods in
the class such that the names are consistent with the field names in Figure 5.1.
The methods in Instruction extract the value of an instruction field from the
binary representation of the instruction. The binary representation is available
from self.bits. For example, method rd extracts instruction field Rd in bits
16–19.

The Pydgin user can expect that the IDE for Python, which is the host
language, reads the definition of the Instruction class and provides program-
ming assistance to the user. For example, when the user writes execute mul,
auto-completion can be expected. When inst. is typed, a modern IDE would
show the list of the word candidates that could follow inst., and this list would
include cond, rm, and rn.

However, this auto-completion lacks domain-specific assistance. Even if the
IDE correctly infers that the type of inst is the Instruction class, the can-
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Figure 5.1: Encoding of the MUL instruction (ARM)

Listing 5.3: Definition of the Instruction class

1 class Instruction( object ):

2 ...

3 @property

4 def rd( self ): return (self.bits >> 16) & 0xF

5
6 @property

7 def rm( self ): return (self.bits >> 8) & 0xF

8
9 @property

10 def rn( self ): return self.bits & 0xF

11 ...

12 @property

13 def imm24( self ): return self.bits & 0xFFFFFF

14 ...

didates for the auto-completion would include imm24, which is the method for
extracting the imm24 field of the B (branch) instruction shown in Figure 5.2. The
reason is that this method is included in the Instruction class. In Pydgin, all of
the methods for extracting an instruction field are included in the Instruction

class. Although imm24 is not available in the body of execute mul, if the user
selects imm24 after typing inst., the IDE would not warn the user of that incor-
rect selection. Note that the selection is valid from the host-language perspective
of Python; it is invalid only from the domain-specific perspective of Pydgin.

To mitigate this problem, some readers might change the design of Pydgin
to enable the user to define a different version of the Instruction class for a
different instruction. For example, the type of inst passed to execute mul could
be MulInstruction, whereas that to execute b could be BInstruction. Then,
they could provide only the methods available for their instruction. However,
this design requires the user to exert extra effort; numerous Instruction classes
should be defined; thereby complicating the type inference by the IDE. If the
host language were statically typed, that design would require the user to pay
extra attention to the type of the inst parameter.

The domain-specific programming assistance in embedded DSLs is poorer
than the assistance in external DSLs. If Pydgin were a standalone external DSL,
it would report a compilation error when the user writes inst.imm24 in the body
of the execute mul function. A dedicated IDE for Pydgin would provide better
programming assistance to prevent writing inst.imm24 mistakenly in the body
of execute mul.

Developing a dedicated IDE for an embedded DSL might be another option to
mitigate the poor domain-specific assistance. Developing an external program-
analysis tool might be another option. However, these options decrease the
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Figure 5.2: Encoding of the B instruction (ARM)

benefit of embedded DSLs; the user would not be able to use the DSL as a
library for its host language. The user would be forced to write a program in a
particular IDE, which may be unfamiliar. Moreover, developing IDEs for DSLs
from scratch is too costly, according to the literature [16].

5.3 MELTRANS: A PDL with Domain-specific Program-
ming Assistance

We present our design approach to an embedded DSL that enables domain-
specific programming assistance. Our idea is to let the host-language IDE pro-
vide better programming assistance by domain-specific knowledge. To this end,
a DSL program is split into multiple components for different concerns. We take
advantage of the fact that some concerns contain useful domain-specific knowl-
edge for the description of other concerns. The DSL programming is divided
into multiple stages. When the user writes a DSL program in the early stage,
the DSL compiler generates support code written in the host language from that
user’s DSL program. The domain-specific knowledge is encoded in that support
code so that the IDE can provide domain-specific assistance for the later-stage
DSL programming.

We have developed a PDL called MELTRANS with our design approach.
MELTRANS is an embedded DSL hosted by Java for implementing a processor
emulator with DBT. The emulator finally generated from a MELTRANS pro-
gram is written in C++. We chose Java because it is a statically typed language,
and its IDEs support rich programming assistance. Its environment-independent
specification is also appropriate. For example, an integer value of type int is
always 32-bit precision. The user of MELTRANS does not have to care about
the execution environment to know the size of the integer.

A program in MELTRANS consists of six Java classes, each of which cor-
responds to a different concern about the description of a processor. There
are dependencies among the concerns; some concerns contain domain-specific
knowledge used when the user describes other concerns. The language runtime
of MELTRANS utilizes these dependencies to provide domain-specific assistance
by generating superclasses of the classes. Figure 5.3 shows the classes and con-
cerns, as well as the relations among them. Each concern, except for the format
concern, consists of a generated superclass and a user-defined subclass. The
arrows are drawn from a concern to the superclass that is generated by the run-
time of MELTRANS from the former. Each superclass serves as a canvas that
provides auto-completion and limits the risk of error when the user defines the
subclass for the concern.

The user defines classes in an order that is based on the dependencies among
the concerns. The user starts by defining the format concern of a processor be-
cause it does not depend on any concern. For example, when the user develops a

79



1. Format

2. Semantics 3. Exclusion predicate 4. Branch predicate

5. Delay slots

6. Likely predicate

Figure 5.3: Structure of a program written in MELTRANS

processor emulator for the ARM instruction set, the user starts by defining the
class named ArmFormat. In MELTRANS, there is a naming convention in which
all the class names start with the ISA name, such as ARM, and the concern name
follows the ISA name. The definition of the format concern enables the language
runtime of MELTRANS to generate superclasses for a concern, of which subclass
the user then writes. The generated superclasses are named ArmSemanticsBase,
ArmExclusionBase, and ArmBranchPredicateBase. In MELTRANS, the name
of a superclass starts with the name of its subclass and ends with Base accord-
ing to the convention. The domain-specific knowledge about the instruction
format is encoded in the methods in the generated superclasses so that the
IDE can exploit them for programming assistance. Thus, the user can expect
domain-specific assistance by the IDE when writing subclasses ArmSementics,
ArmExclusion, and ArmBranchPredicate. After the user writes the class for the
branch-predicate concern, named ArmBranchPredicate, MELTRANS generates
a new Java class, ArmDelaySlotsBase, from that class. Then, the user writes
ArmDelaySlots, and the same pattern follows.

5.3.1 Concerns

In this subsection, we present the six concerns in MELTRANS and demonstrate
what domain-specific assistance the user can expect when writing each concern,
except for the format concern.

Format

The language runtime of MELTRANS uses the domain-specific knowledge
written in the class for the format concern to provide programming assistance
for writing classes for other concerns. Because the class for the format concern is
written first, domain-specific assistance is not available when the user writes this
class. To ease the definition of the class with only general-purpose assistance, we
designed a mini DSL in the string embedding style for specifying an instruction
encoding.
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Listing 5.4: Class for the format concern for ARM

1 class ArmFormat {

2 // instruction encodings

3 String Inst105_A1_MUL =

4 "31[ cond ]27[0 b0000000 ]20[S]19[Rd ]15[0 b0000 ]11[Rm]7[0

b1001 ]3[Rn]";

5 String Inst016_A1_B =

6 "31[ cond ]27[0 b1010 ]23[ imm24]";

7 ...

8 };

String Inst105_A1_MUL = 
"31[cond]27[0b0000000]20[S]19[Rd]15[0b0000]11[Rm]7[0b1001]3[Rn]";

Figure 5.4: String literal for the MUL instruction (ARM)

The class for the format concern describes the bit encoding of every instruc-
tion. For each instruction, the class declares a field of String type with its initial
value, representing the bit encoding written in the mini DSL. The name of this
field is used as the identifier of that instruction. For example, the class for the
ARM instruction set is shown in Listing 5.4, in which the Inst105 A1 MUL field
represents the bit encoding of the MUL instruction. Inst105 denotes its section
number in the ISA manual, and A1 indicates that the instruction is an ARM
instruction and not a Thumb instruction.

The user can easily write the string literal in our mini DSL by almost copying
the description of the instruction in the ISA manual. For example, Figure 5.4
shows the string literal for the MUL instruction and its format description found
in the ISA manual for ARM. The string literal is read as follows. The bits from
the 31st to (but excluding) the 27th are used for the instruction field named
cond, bits from the 27th up to the 20th must be 0000000 (0b is the prefix for
binary numbers), the 20th bit is instruction field S, and so on.

Semantics

The class for the semantics concern must declare the methods specifying the
behavior of every instruction. The name of the method for each instruction must
be identical to the name of the corresponding field in the class for the format
concern. For example, Listing 5.5 shows the class for the semantics concern
for ARM. In Listing 5.5, the method name for MUL is Inst105 A1 MUL, whereas
that for B is Inst016 A1 B. These names are found in the ArmFormat class that
the user wrote for the format concern. The parameters to the methods are the
instruction fields of each instruction. They are also defined in the class for the
format concern. For example, the parameters to the Inst105 A1 MUL method
are cond, S, Rd, Rm, and Rn, and they are defined in the string literal given to
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Listing 5.5: Class for the semantics concern for ARM

1 class ArmSemantics extends ArmSemanticsBase {

2
3 @Override

4 void Inst105_A1_MUL(int cond , int S, int Rd, int Rm, int

Rn) {

5 if (isConditionPassed(cond)) {

6 int result = reg[Rn] * reg[Rm];

7 reg[Rd] = result;

8 if (S == 1) {

9 cpsr.N = extract(result , 31);

10 cpsr.Z = (result == 0) ? 1 : 0;

11 }

12 }

13 }

14
15 @Override

16 void Inst016_A1_B(int cond , int imm24) {

17 if (isConditionPassed(cond)) {

18 int imm32 = signExtend(imm24 << 2, 25);

19 setNextPc(getPc() + 8 + imm32);

20 }

21 }

22 ...

23 }

the Inst105 A1 MUL field in the ArmFormat class.
The bodies of those methods can be written by almost copying the corre-

sponding description in the ISA manual. For example, the body of Inst105 A1 MUL

is fairly identical to the description of the behavior of MUL in the ISA manual
shown in Listing 5.1. It multiplies the Rn register by the Rm register and stores
the result into the Rd register. Then it updates the current program status
register.

The user can expect domain-specific programming assistance by the IDE
when writing the class for the semantics concern. First, all of the methods
that the user must write when specifying the instruction’s behavior are already
declared in the superclass generated by MELTRANS, although their bodies are
empty. For example, superclass ArmSemanticsBase declares the Inst105 A1 MUL

and Inst016 A1 Bmethods. The ArmSemantics class, which the user must write,
overrides them. Thus, when the user types the first few letters of a method name,
the IDE shows the candidate list of methods for auto-completion, as illustrated
in Figure 5.5. The user can simply choose one of them to obtain a skeleton of
a method declaration. In Listing 5.5, lines 3, 4, and 13 can be automatically
completed when the user writes the Inst105 A1 MUL method.

Second, the instruction fields are encoded into the parameters to the method
specifying the instruction’s behavior. This also improves the domain-specific as-
sistance by the IDE. For example, the IDE reports an error when the user writes
the name of an instruction field unavailable for the instruction that is being writ-
ten by the user. Figure 5.6 shows an error message that is reported when the user

82



Figure 5.5: Auto-completion of instruction names

Figure 5.6: Instruction field rd is not available for ADDI

attempts to store a value into the rd register (the register specified by instruc-
tion field rd), which is not available for the ADDI instruction in MIPS64. This is
a typical mistake unless the user carefully reads the ISA manual because most
instructions in MIPS64, such as ADD, store the arithmetic results into the rd reg-
ister. ADDI exceptionally stores the result into the rt register. In MELTRANS,
this mistake is detected as an error of using an undeclared parameter or variable.
The domain-specific knowledge regarding which instruction fields are available
is encoded into the method parameters so that the domain-specific assistance
will be provided as normal programming assistance in the host language.

This design of MELTRANS also helps the IDE to detect another typical
mistake. Although the result of ADD in MIPS64 is stored in the rd register,
the user might misinterpret that ADD is a double-operand instruction and store
the result into the rt register (the second operand). The IDE may detect this
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Figure 5.7: Result of ADD is stored in an incorrect register

mistake as an error because the third method parameter, rd, is never used in
the method body of InstADD (Figure 5.7). When the instruction is executed,
all of the instruction fields should be used. MELTRANS exploits this fact and
thus passes them through the method parameters to the method implementing
the instruction’s behavior, such as InstADD.

Exclusion Predicate

The class for the exclusion-predicate concern describes how to disambiguate the
instructions that share the same opcode. This is necessary for certain ISAs such
as ARM and RH850.

Suppose that we implement an emulator for the RH850 instruction set. The
class for the format concern would include the following field declarations for
the DIVH and RIE instructions:

String Inst028_DIVH = "15[r]10[0 b000010 ]4[R]";

String Inst086_RIE = "15[0 b0000000001000000]";

When both the instruction fields, r and R, in DIVH are 00000, we cannot distin-
guish DIVH and RIE because their bit patterns are identical. For disambiguation,
the ISA manual for RH850 specifies that instruction field r or R in the DIVH

instruction must not be zero. We call this the exclusion predicate of the DIVH

instruction. In the class for the exclusion-predicate concern for RH850, the ex-
clusion predicate of the DIVH is written as follows:

@Override

boolean Inst028_DIVH(int r, int R) {

return r == 0 | R == 0;

}

The Inst028 DIVH method returns true when the given instruction field, r or
R, is zero; hence, it is not valid. If it returns true, then the current instruction
word is not that of DIVH, but that of RIE.

The user can expect domain-specific programming assistance when writing
this class. This user-defined class must inherit from the superclass generated
from the class for the format concern. The superclass declares all of the methods
that the user may declare in its subclass. These methods return false. Therefore,
the user can expect domain-specific assistance similar to the assistance that can
be expected for the semantics concern.

Branch Predicate

The class for the branch-predicate concern describes which instructions are
branch instructions. It declares a method for every instruction, and the method
returns true if the instruction is a branch.
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For example, the B instruction in ARM is a branch instruction. The user can
specify this by defining a method in the class for the branch-predicate concern
as follows:

@Override

boolean Inst016_A1_B () {

return true;

}

The return value indicates that the B instruction is a branch instruction.
For some instructions, its instruction fields determine whether the instruction

is a branch. For example, the ADD instruction in ARM is a branch instruction
when instruction field Rd (destination register) is the program counter. Other-
wise, ADD is not a branch instruction. To support this, the class for the branch-
predicate concern can declare a method taking all the instruction fields. Hence,
the branch predicate for the ADD is written as follows:

@Override

boolean Inst005_A1_ADD(int cond , int S, int Rn, int Rd, int

imm12) {

return Rd == 15;

}

The expression in the return statement indicates that the ADD instruction is a
branch instruction when Rd is the program counter (register 15).

The user can expect domain-specific programming assistance when writing
the class for the branch-predicate concern. This class must inherit from the
superclass generated by the language runtime of MELTRANS from the class
written for the format concern. The generated class declares two methods for
every instruction. One takes no parameter while the other takes all the instruc-
tion fields as parameters. Because the methods in the superclass return false, the
subclass does not need to declare the methods for instructions that are always
non-branch instructions. When the subclass needs to declare the method, the
user can use auto-completion by the IDE to select one method for each branch
instruction.

Delay Slots

The emulators for some ISAs must consider delay slots for each branch instruc-
tion. In MELTRANS, the user can describe the delay slots by writing a class for
the delay-slots concern. This class declares a method for the branch instruction
with delay slots; the method returns the number of delay slots.

For example, the BFS instruction in the SH instruction set is a branch in-
struction with a delay slot. The user can specify this by writing a method in the
class for the delay-slots concern as follows:

@Override

int InstBFS () {

return 1;

}

The return value indicates that the BFS instruction has one delay slot.
The user can also expect domain-specific programming assistance when writ-

ing a class for the delay-slots concern. The user-defined class inherits from the
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Figure 5.8: No overridden method in the superclass because the method is not
for a branch instruction

superclass generated by MELTRANS from the class for the branch-predicate
concern. The superclass declares a method for every branch instruction. Be-
cause the method in the superclass returns 0, its subclass can declare only the
methods for the branch instructions with more than zero delay slots.

Note that the superclass declares only the methods for branch instructions
and not all instructions. Therefore, the method list for auto-completion is more
accurate. Even if the user declares a method for a non-branch instruction, the
IDE will report a warning message because the method does not override any
method in the superclass (Figure 5.8). To determine which instruction is a
branch one, MELTRANS investigates the bodies of the methods in the class
for the branch-predicate concern. If the method may return true, MELTRANS
considers the corresponding instruction as a branch one.

Likely Predicate

The class for the branch-likely concern declares a method for every branch-likely
instruction. The method must return true.

Some ISAs have branch-likely instructions. They skip the execution of the
following instructions in the delay slots when the branch is not taken. From
the class for the delay-slots concern, MELTRANS generates the superclass of
the class for the likely-predicate concern. The superclass declares a method
for every branch instruction with delay slots. This method returns false be-
cause MELTRANS assumes that all branch instructions are not branch-likely
instructions by default. Hence, the subclass needs to declare only a method
for branch-likely instructions. The generated superclass enables domain-specific
assistance similar to the assistance for the delay-slots concern.

5.3.2 Generated Processor Emulator

To explain how the six concerns contribute to the DBT, we show our ISA-
independent skeleton of DBT in Algorithm 4. The name of the concern denotes
that the operation in its source line depends on that concern. Algorithm 4
dynamically translates the guest instructions in a basic block (BB) into the
LLVM [56] intermediate representation (IR). Once the LLVM IR is available, the
generated emulator uses the LLVM JIT engine to generate the host native code.
Algorithm 4 is based on the strategy pattern [34] win which ISA-dependent parts
are implemented in the strategy objects. The language runtime of MELTRANS
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Algorithm 4 Translation of a basic block
Input: memory model memory, start address of BB addr, strategy object isaStrategy
Output: llvm IR corresponding to BB
1: repeat
2: iword← fetchInstruction(memory, addr)
3: (inst, fields)← isaStrategy.decode(iword)

4: inst.generateIr(fields) ▷ semantics
5: addr← addr+ inst.length ▷ format
6: until inst.isBranch(fields) ▷ branch predicate
7: if inst.delaySlots ¿ 0 then ▷ delay slots
8: generateDelaySlotsIr(memory, addr, inst) ▷ delay slots and likely predicate

Table 5.1: Comparison of code metrics among PDLs (ARM)

PDL Concern Instructions LOC % LOC
per

Completed Completed Methods Complexity

instructionLOC LOC
(%)

MELTRANS Format 173 180 5.87 1.04 0 0.00 1 1.00
Semantics 173 1,953 63.64 11.29 519 26.57 191 2.65
Exclusion predicate 173 695 22.65 4.02 519 74.68 173 1.00
Branch predicate 173 235 7.66 1.36 174 74.04 58 1.00
All 173 3,069 100.00 17.74 1212 39.49 423 1.75

Pydgin - 62 1003 100.00 16.18 0 0.00 116 3.1

generates ISA-dependent parts from the six concerns written in MELTRANS.
Algorithm 4 takes the memory model memory, the start address of a BB

addr, and a strategy object isaStrategy as parameters, and it generates the
LLVM IR that emulates the behavior of the instructions in the BB. In lines 1–6,
the emulator translates a guest BB into the LLVM IR. For each iteration in
lines 2–5, a single guest instruction is translated into the LLVM IR instructions,
which are appended to the resulting LLVM IR. In line 3, the decode method is
called with arguments isaStrategy and iword to decode instruction iword in
the ISA-specific way. The decode method returns the identified instruction and
its instruction fields as inst and fields, respectively. The implementation of
decode can be generated from the format and exclusion-predicate concerns using
the algorithm proposed in [71]. In line 4, the emulator generates the LLVM IR
code according to the identified instruction and its instruction fields. The LLVM
IR for the instruction is generated by the AST of the method for the instruction
in the semantic concern. We use the deep reification approach proposed in [17]
to obtain ASTs from a program written in MELTRANS. In line 5, the emulator
increments address addr such that it points to the next instruction. The length
of the instruction is retrieved from the format concern. In line 6, the emulator
checks whether the decoded instruction is a branch instruction. If it is a branch
instruction, the emulator terminates the iteration; otherwise, the emulator goes
back to line 2. In lines 7–8, the emulator translates the instructions in the delay
slots immediately after the branch, if any. The number of delay slots is obtained
from the delay-slots concern.
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5.4 Experimental Results

To validate our design, we implemented several processor emulators with MELTRANS
and conducted experiments using them.

5.4.1 Amount of Code to Be Written

To determine whether the domain-specific assistance is achieved without increas-
ing the amount of code to be written by the user, we compared MELTRANS
with Pydgin in terms of the code metrics of their programs for ARM. We used
Eclipse as an IDE in this experiment.

The results are summarized in Table 5.1. For example, the first row in Ta-
ble 5.1 shows that the format concern implements 173 instructions, and its code
accounts for 5.87% of the entire code; the lines of code (LOC) excluding com-
ments and the blank lines is 180, LOC per instruction is 1.04, and LOC automat-
ically completed by the IDE is zero and accounts for 0% of the format concern.
The format concern includes one method, and its cyclomatic complexity [37] is
1.0 on average.

The total LOC per instruction for ARM in MELTRANS is 17.74. This
result is comparable with the LOC per instruction of 16.18 for ARM in Pydgin.
MELTRANS requires an additional 1–2 LOC per instruction compared with
Pydgin for ARM. This difference appears to be caused by the difference between
the host languages. In general, Java is more verbose than Python.

In MELTRANS, 39.49% of the code could be automatically completed by the
IDE. Although auto-completion may be available in each line of the program,
we counted only lines for the method templates completed by the IDE, which
consisted of method signatures with the @Override annotation and a pair of
opening and closing braces. If we remove the automatically completed lines
from the total amount of code, the remaining LOC becomes 1,857, and the
LOC per instruction becomes 10.73. The result shows that our domain-specific
assistance can effectively reduce the amount of code to be written by the user.

5.4.2 Performance

To determine whether the generated processor emulators run at practical speeds,
we compared the emulator for ARM generated by MELTRANS with state-of-
the-art QEMU and the emulator generated by Pydgin in terms of their simu-
lation speed. We used benchmark programs from the EEMBC [78] Autobench
benchmark suite, which is one of the de-facto industrial standard benchmarks
for comparing embedded processors. We performed all of the measurements
presented in this chapter on a Linux-based desktop machine with a 64-bit Core
i7 7700T at 2.9 GHz, disabling Turbo Boost, and a 16-GB main memory. We
built gcc 6.1.0 and used it with the -O2 flag to cross-compile the benchmark
programs. We also used gcc 7.5.0, which is the default compiler in the host
operating system, to build the processor emulators. The generated emulators
used the JIT engine of LLVM 10.0 to translate LLVM IR into the host AMD64
instructions. Our emulator uses a superblock as a translation unit. A superblock
consists of all BBs that are traceable through direct branch instructions, except
call instructions when the emulator needs translation.
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Figure 5.9: Performance of the emulators (ARM)

Figure 5.9 depicts the results. Our emulator achieved 1,449 MIPS on average.
A minimum of 253 MIPS was observed when the emulator ran tblook, and the
maximum was 3,704 MIPS when it ran aifirf. It appeared that the emulator
runs fast when highly executed superblocks contain loops. In such a case, the
superblock was well optimized by LLVM.

Our emulator outperformed the other two emulators in seven of the 16 pro-
grams. On average, QEMU and Pydgin executed the programs in 1,430 and
945 MIPS, respectively. Because all of these emulators use different translation
strategies, the performance tendencies in the benchmark programs appeared to
be different among the emulators.

5.4.3 Generality

To determine whether MELTRANS is general enough to generate emulators for
multiple ISAs, we implemented MIPS64, RH850, SH, RISC-V, and RX, which
are widely used in industry in addition to ARM, and compared the code metrics
of the programs. Six concerns were used to write these programs. The results
are listed in Table 5.2. For example, the first row in Table 5.2 shows that the
program for ARM consists of concerns 1–4 and implements 173 instructions,
its LOC is 3,069, the LOC per instruction is 17.74, and the IDE automatically
completes 39.49% of the LOC. Each number of a concern corresponds to the
number shown in Figure 5.3. The table shows that the IDE can automatically fill
24.17%–49.02% of the LOC. Although the percentage of the code automatically
completed by the IDE depends on the complexity of the ISA, all six concerns
are sufficient to describe these ISAs. Because other commercial ISAs such as
PowerPC and TriCore are similar to these ISAs, it appears that MELTRANS is
general enough to describe many practical ISAs.
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Table 5.2: Comparison of code metrics among ISAs

ISA Concerns Instructions LOC LOC per Completed
instruction LOC (%)

ARM 1, 2, 3, 4 173 3,069 17.74 39.49
MIPS64 1, 2, 3, 4, 5, 6 250 2,185 8.74 49.02
RH850 1, 2, 3, 4 223 3,389 15.20 24.17
SH 1, 2, 4, 5 154 1,334 8.66 40.48
RISC-V 1, 2, 4 54 397 7.35 46.85
RX 1, 2, 4 473 3,619 7.65 44.43

5.5 Divide-and-Generate Pattern

We generalized our design approach as the divide-and-generate pattern for pro-
viding a way to implement code completion and error checking for an embedded
DSL. The remaining part of this section explains the pattern in a similar way to
the description of ”Design Patterns” [34].

5.5.1 Intent

The divide-and-generate pattern provides a way to implement code completion
and error checking for an embedded DSL by exploiting an existing IDE for the
host language.

5.5.2 Motivation

Dynamic programming assistance such as code completion and error checking
in editing time is essential for efficient program development. Usually, the pro-
gramming assistance is provided by an IDE for the language. In the case of
embedded DSLs, an IDE for the host language provides them. However, avail-
able assistance is limited to general-purpose one, and domain-specific assistance
is inadequate for the embedded DSLs.

The solution to this problem is the divide-and-generate pattern. Figure 5.10
dipicts the divide-and-generate pattern. The DSL developer divides a DSL pro-
gram into multiple files such that each file addresses a separate concern, and
names used for describing a concern is also used for describing another concern.
We define that concern A dpends on concern B if names used to describe con-
cern A is provided by B. The DSL runtime generates support code for writing a
concern from another concern. In the case of Figure 5.10, while the first concern
does not depend on any concern, the second concern depends on the first con-
cern. With this dependency, the language runtime can generate support code
for the second concern from the first concern. Similarly, the language runtime
can generate support code for the third concern from the second concern.

The available names in a subsequent concern are declared as identifiers in the
support code for the concern, which is stored in a separate file from a program
written by the user. The names for describing a concern can be mapped to any
identifiers in the host language. We can use identifiers such as method names,
parameter names, macro names, member names, and so on to encode names
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Figure 5.10: Divide-and-generate pattern

to identifiers. Which kind of identifiers that should be used to encode a name
depends on where the name should be suggested with code completion. For
example, if the name should be suggested as a method name in a class, the
name should be declared as a method name in the superclass declared in the
support code.

The availability of each name is passed to the user program by importing
the declarations in the support code into the name scope. The IDEs for the
host language use a name scope at the cursor position where the user is editing
to provide auto-completion. Although this auto-completion is generic assistance
for the host language, we can regard it as a domain-specific one. Similarly, the
IDE warns the user if an unavailable name is used in the scope.

5.5.3 Applicability

The divide-and-generate pattern can be applied when all the following conditions
are satisfied.

• There is an IDE for the host language, which provides code completion
and error checking.

• Program is divided into two or more files such that each file addresses
a separate concern, and all names needed for describing a concern are
provided by another concern.

• The names are naturally encoded to an identifier in the host language.

In the case of MELTRANS, the divide-and-generate pattern can be applied
for the following reason. Since the host language is Java, IDEs such as Eclipse
or NetBeans are available. MELTRANS program is divided into six class files.
Each class file addresses a separate concern. For example, the format concern
addresses the format of each instruction. Similarly, the branch predicate concern
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addresses which instructions are branch instructions. The delay slots concern ad-
dresses the number of delay slots of each branch instruction. In branch predicate
concern, instruction names are used to specifies which instructions are branch
instructions. These instruction names are given by the format concern, which
specifies the name and the format of each instruction. Similarly, names of in-
struction fields used in the branch predicate concern are provided by the format
concern. The branch predicate concern uses the names of instruction fields to
check if some instructions are branch instructions or not. Since the name of
instructions and instruction fields consist of alphanumeric characters, they are
naturally encoded to an identifier in Java.

5.5.4 Consequences

Some of the benefits and liabilities of the divide-and-generate pattern are as
follows:

1. Code completion is available when the user of the DSL types one of the
names also declared in another concern.

2. The names suggested by code completion are limited to valid ones.

3. An error is detected immediately after the user types an invalid name that
is not declared in other concerns.

4. Inconsistency derived from updating a concern is detected by error check-
ing. If a name is removed or changed in a concern, the IDE warns against
the use of the name in another concern.

5. Programs for each concern may be slightly noisy, while noisy parts may be
automatically filled with code completion.

5.5.5 Implementation

We used Java’s superclasses as support code in our case study on MELTRANS.
In this section, we show other options for support code.

C Macros as Support Code

If we use C as a host language of an embedded DSL for processor description,
we can use C macros as support code. For example, we can generate C macro
from the description of the format concern instead of generating a superclass as
follows.

#define DEF_ADD void add(int rs , int rt , int rd)

#define DEF_ADDI void addi(int rs , int rt , int immediate)

We can define macro variables for describing the semantics concern. When the
user writes a program, domain-specific assistance can be provided as shown in
Figure 5.11. The user does not need to write the signature of a function directly.
The user can use a macro defined in support code instead of writing the signature
of a function directly. In addition, the user can use auto-completion when writing
the name of a macro as shown in Figure 5.11. When writing the body of the
function, the user can benefit from domain-specific assistance similar to the ones
presented in 5.3.1.
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Figure 5.11: Domain-specific assistance with C macros

Figure 5.12: Domain-specific assistance with C macros and structs

C Macros and C Structs as Support Code

Another option for the implementation of support code is using struct when the
host language is C, Instead of generating support code containing only macros,
we can generate the following support code containing the definitions of struc-
tures.

struct ADD { int rs; int rt; int rd; };

struct ADDI { int rs; int rt; int immediate; };

#define DEF_ADD void add(struct ADD i)

#define DEF_ADDI void addi(struct ADDI i)

There is a C struct for each instruction. Each member of a C struct corresponds
to each field of the instruction described in the format concern. When writing a
code for the semantics concern, dynamic domain-specific assistance is available
as shown in Figure 5.12. In this case, the name of each instruction field is
encoded into a member of a C struct. The user can know which instruction field
is available with auto-completion for the names of the members in that C struct.
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5.6 Related Work

Programming Assistance in Embedded DSLs

One of the advantages of embedded DSLs is its low implementation cost. How-
ever, domain-specific programming assistance in embedded DSLs is poor. Re-
searchers have tackled this problem, and their solutions appear to be able to be
combined with our approach.

Dinkelaker [26] proposed the Eclipse plug-in called TigersEye, which enables
the use of the domain’s established syntax in programs in an embedded DSL.
Nosal et al. [70] proposed techniques for customizing host IDEs for embedded
DSLs, including the prevention of inexpert editing, code completion, and error
reporting.

Embedded DSLs for Emulator Generation

Several embedded DSL approaches have been proposed for generating processor
emulators; however, they do not provide domain-specific assistance. Pydgin [62]
uses a Python-based embedded DSL for generating processor emulators. It uses
PyPy’s [12] meta-tracing JIT compiler for DBT. The resulting processor sim-
ulator runs the guest program with tracing JIT compilation. ArchC [8] is a
SystemC [73]-based PDL. SystemC is also an embedded DSL hosted by C++
for system simulation. A processor description in ArchC can be compiled as
a C++ program and runs as an interpretive processor emulator. Wagstaff et
al. [93] proposed a method to generate processor emulators with DBT using the
description written in ArchC.

Engel et al. [29] and Okuda et al. [72] proposed frameworks in C/C++ to gen-
erate static binary translators and dynamic binary translators, respectively. In
these systems, the user can develop a processor emulator with binary translation
as if an interpretive one is developed.

Using Ihneritance

The combination of separation of concerns and generating superclass have been
used in parser generation, while the aim is not to provide dynamic domain-
specific assistance. ANTLR [74] and SablcCC [33] are parser generator. They
divide description for a parser into a grammar and semantic actions. They
generate not only a parser from a grammar but also classes for traversing a
parse tree generated by the parser. The user can write semantic actions in the
class, inheriting the superclass generated by the parser generator. While we
used superclass as support code in MELTRANS, we also introduced that other
language mechanisms could be used to provide domain-specific assistance in 5.5.

5.7 Summary

This chapter presented our design approach for developing an embedded DSL
with domain-specific programming assistance. The proposed approach divides
DSL programming into multiple stages, and the language processor of that DSL
generates a program from the program written by the user in an earlier stage.
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The generated program exploits the inheritance mechanism to provide domain-
specific assistance to the user. To demonstrate our approach, we explain the
design of our PDL named MELTRANS, which is an embedded DSL hosted by
Java. We implemented several emulators in MELTRANS and experimentally
confirmed that our domain-specific programming assistance effectively reduces
the amount of code that needs to be written by the user.
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Chapter 6

Conclusion

In this dissertation, we proposed methods and design approaches that minimize
the effort to provide domain-specific programming assistance in embedded DSLs.
We categorized programming assistance into static one and dynamic one and
studied them, respectively.

In chapter 3, we proposed lake symbols for island parsing. The lake symbol is
a novel grammatical symbol that the DSL developer can use in the grammar for
syntax extension. The user can use lake symbols to skip the uninteresting parts
of the input program instead of describing the detailed rules for the uninteresting
parts. When the application is syntax extension, only extended programming
constructs are interesting. Therefore, the lake symbol can reduce the number of
rules in a grammar to be written by the DSL developer.

Chapter 4 proposed an interactive editing method for an island grammar
and tool called PEGSEED that helps the DSL developer write an island gram-
mar with lake symbols. With PEGSEED, the language designer can write a
functional island grammar in a step-by-step manner. In each step, she adds a
rule for a new island. After adding a new rule, she can test the grammar on
an example text by highlighting the text area recognized by the latest rule. A
rule for a new island can be added by concatenating already tested islands. The
DSL designer can efficiently get the expected island grammar by incrementally
refining the island grammar tested in each step. PEGSEED also provides GUI
operations to add a new rule by using an example text. By selecting a text area
and applying one of the GUI operations, the user can add a new rule without
writing it by hand. Our case study shows that the parsers for syntax extension
can be developed only with the GUI operations provided by PEGSEED.

In chapter 5, we introduced the importance of domain-specific programming
assistance for embedded DSLs. We define auto-completion and error checking
provided by IDEs as dynamic programming assistance. Careful language design
enables dynamic domain-specific programming assistance via an IDE for the
host language. We demonstrated this with our practical processor description
language called MELTRANS. Our case study shows that domain-specific assis-
tance can be available by exploiting an IDE for the host programming language.
Moreover, because our design approach does not need to customize the IDE or
develop a specialized IDE, it does not sacrifice the benefit of embedded DSLs
that the construction cost is low.
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Future Work

In chapter 3, we proposed lake symbols for island parsing. Our lake symbols
have been implemented only in the extended PEG. The implementation of lake
symbols for another grammar class is future work. The concept of lake symbols
will be applicable to not only PEGs but also to context-free grammars (CFGs)
and their subsets, such as LR and LL grammars.

Another future work related to lake symbols is to evaluate with more practical
applications. Our experiment confirmed that the number of rules to extract
a specific kind of programming construct decreased with lakes. Although we
believe that reducing the number of rules eases the construction of an island
parser, the relation between the real workload and the number of rules has not
been studied experimentally.

In chapter 5, we introduced the divide-and-generate pattern for dynamic
programming assistance for embedded DSLs. We think there are other patterns
that enable domain-specific assistance. Finding these patterns is future work. In
the case study, we developed our processor description language MELTRANS to
confirm the effectiveness of our divide-and-generate pattern. The results showed
that domain-specific assistance could be achieved without sacrificing the perfor-
mance of generated emulators. Moreover, the amount of code to be written in
MELTRANS is smaller due to available auto-completion in MELTRANS. Evalu-
ation of the divide-and-generate pattern on other domains is also another future
work.
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Appendix A

Additional Information Related to Lake
Symbols

A.1 Parsing Expression Grammars

This appendix gives a brief explanation on PEGs used in this dissertation. Ac-
cording to the literature [32], a parsing expression grammar (PEG) is a 4-tuple
G = (VN , VT , R, es), where VN is a finite set of non-terminal symbols, VT is a
finite set of terminal symbols, R is a finite set of rules, es is a start expression,
and VN ∩ VT = ∅. Each rule r ∈ R is represented as A ← e, where A is a
non-terminal symbol and e is a parsing expression.

A parsing expression is similar to a regular expression in that it presents a
pattern of strings to be recognized. A parsing expression consists of a sequence
of terminal/non-terminal symbols and operators. The operators are summarized
in Table A.1. The semantics of operators except /, !, and & are the same as
those in regular expressions. / and ! have important roles in island parsing.

/ operator is the prioritized choice operator. When both the left operand
e1 and right operand e2 match an input string, e1 is always prioritized. Hence,
ambiguity does not exist in a parsing expression. In island parsing, we use
a wildcard to skip water. If we use a wildcard as one of the operands of a
ordinal choice operator, the grammar becomes ambiguous. In PEG, the user
can disambiguate this situation by putting the wildcard on the right hand of /
operator.

! is the lookahead not-predicate. The parser is expected to lookahead the
input to check if the operand of ! recognize the head of the input without
consuming any character.

A.2 Fixed-Point Constraints

This appendix shows the constraints satisfied by the fixed-points computed by
Algorithms 1–3. We use meta-variables ei, ej, ... ranging over all the parsing
expressions, including sub-expressions in a grammar. ei, ej, ... are location-
aware. Location-aware means that two lexically equivalent parsing expressions
ei and ej are not identical when they belong to a different rule or they are
different sub-expressions in the same expression.
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Table A.1: Operators for parsing expressions

Operator Precedence Description
. 5 Any character
(e) 5 Grouping
e? 4 Optional
e∗ 4 Zero-or-more
!e 3 Not-predicate (Negative lookahead)
&e 3 And-predicate (Positive lookahead)
e1e2 2 Sequence
e1/e2 1 Prioritized choice

A.2.1 ALT

The ALT sets can be computed as the fixed-point over the following constraints:

1. If ei is a nonterminal or lake symbol S and S ← ej ⊆ R′, then ALT (ei) ∈
ALT (ej)

2. If ei is ej∗, ej+, or ej?, then ALT (ej) = ALT (ei) ∪ SUCCEED(ei)

3. If ei is !ej, then ALT (ej) = SUCCEED(ei)

4. If ei is &ej, then ALT (ej) = ALT (ei)

5. If ei is ej/ek, then ALT (ek) = ALT (ei) and

(a) If ϵ ∈ BEGINNING(ek), then ALT (ej) = ALT (ei)∪(BEGINNING(ek)−
{ϵ}) ∪ SUCCEED(ek)

(b) Else ALT (ej) = ALT (ei) ∪ BEGINNING(ek)

6. If ei is ejek, then ALT (ej) = ALT (ei) and

(a) If ϵ ∈ BEGINNING(ej), then ALT (ek) = ALT (ei)

(b) Else ALT (ek) = ∅

A.2.2 BEGINNING

The BEGINNING sets can be computed as the fixed-point over the following
constraints:

1. If ei is a terminal symbol α, then BEGINNING(ei) = {α}

2. If ei is a nonterminal or lake symbol S and S ← ej ∈ R′, then BEGINNING(ei) =
{S }

3. If ei is ej? or ej∗, then BEGINNING(ei) = BEGINNING(ej) ∪ {ϵ}

4. If ei is ej+, then BEGINNING(ei) = BEGINNING(ej)

5. If ei is !ej or &ej, then BEGINNING(ei) = {ϵ}
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6. If ei is ej/ek, then BEGINNING(ei) = BEGINNING(ej)∪BEGINNING(ek)

7. If ei is ejek

(a) If ϵ ∈ BEGINNING(ej), then BEGINNING(ei) = (BEGINNING(ej)−
{ϵ}) ∪ BEGINNING(ek)

(b) Else BEGINNING(ei) = BEGINNING(ej)

A.2.3 SUCCEED

The SUCCEED sets can be computed as the fixed-point over the following con-
straints:

1. If ei is a nonterminal or lake symbol S and S ← ej ∈ R′, then SUCCEED(ei) ⊆
SUCCEED(ej)

2. If ei is ej?, then SUCCEED(ej) = SUCCEED(ei)

3. If ei is ej∗ or ej+, then SUCCEED(ej) = SUCCEED(ei)∪BEGINNING(ei)−
{ϵ}

4. If ei is !ej or &ej, then SUCCEED(ej) = ∅

5. If ei is ej/ek, then SUCCEED(ej) = SUCCEED(ei) and SUCCEED(ek) =
SUCCEED(ei)

6. If ei is ejek, then SUCCEED(ek) = SUCCEED(ei)

(a) If ϵ ∈ BEGINNING(ek), then SUCCEED(ej) = (BEGINNING(ek)−
{ϵ}) ∪ SUCCEED(ek)

(b) Else SUCCEED(ej) = BEGINNING(ek)
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