
日本ソフトウェア科学会第 38 回大会 (2021 年度) 講演論文集

Typecheck Python Programs and Find Semantic

Idioms

Senxi Li Tetsuro Yamazaki Shigeru Chiba

Researchers have been empirically studying public Python programs to understand how semantic idioms
are used in practice via mining software repositories. In this paper, we propose that the number of code
fragments of a semantic idiom can be derived by counting and comparing type errors reported by two dif-
ferent type systems. The proposed method works under a comparison scheme by using two type systems
with variance, typically different type kind or typing discipline: The same program can statically typecheck
or not, reporting false alarms or not, when enforced by two different type systems. The different number
of reported false alarms can be viewed as the approximate account of the target semantic idiom. To verify
our statement, we collected 841 Python repositories on Github and investigated the frequency of how ad-
hoc polymorphism is used by using existing type systems with a designed variance. Our empirical study
effectively observed the expected code fragments towards the designed type system variance. Besides, our
type-based mining approach also discovered some common programming practice which can be found by
traditional methods such as syntactic parsing.

1 Introduction

Researchers have been empirically studying pub-

lic Python programs to understand how semantic

idioms are used in practice via mining software

repositories. Understanding the convention of se-

mantic idioms can help people have a better under-

standing their practical usage and motivates rea-

sonable implications to developers for better lan-

guage designs [3,7,15,16,19,32]. A semantic idiom

refers to code fragments that are descriptive by a

particular programming concept. For instance, one

interesting idiom is polymorphism, and even what

specific kind of polymorphism like ad-hoc and para-

∗Typecheck Python Programs and Find Semantic Id-
ioms
This is an unrefereed paper. Copyrights belong to
the Author(s).

Senxi Li, Tetsuro Yamazaki, Shigeru Chiba, Gradu-
ate School of Information Science and Technology,
University of Tokyo.

metric. Class inheritance and method overriding

can also be good candidates.

On the other hand, semantic analysis in general

and static typing in particular have been widely ex-

plored on the Python programming language with

its growing popularity. Researchers have been ex-

ploring ways of adding static types to dynamic lan-

guages [5, 13], providing static guarantees so that

"well-typed programs cannot go wrong" by reject-

ing untypeable programs conflicting with the de-

fined type system. While language designers and

researchers extend a wide variety of type systems

to many applications, its combination with reposi-

tory mining has so far, as far as we know, received

little attention.

In this paper, We present that the number of

code fragments of a semantic idiom can be de-

rived by counting and comparing type errors re-

ported by two different type systems. More specifi-

cally, we use two different type systems to statically

typecheck a same program and they deliver differ-

ent number of type errors, respectively. Thus, a

type system variance can be deliberately designed

so that the program can typecheck under a type

system with the designed variance if there exists

code fragments written in a particular semantic id-

iom, and not vice versa. Consequently, the differ-

ent number of reported errors can approximately

answer the amount of the target code. We be-

lieve that such type-based approach is promising

and practical to achieve repository mining goals.

In summary, this paper ends up to the following

contributions:

• We propose a type-based approach that can

accomplish repository mining tasks of under-

standing semantic idioms. The method derives

the approximate amount of code written in a

semantic idiom by comparing the numbers of

type errors under two different, static type sys-

tems.

• We materialize the proposal with a concrete

type system variance, union type such that it

can uncover a specific semantic idiom, ad-hoc

polymorphism.

• We empirically investigate how ad-hoc poly-

morphism is used using the concretized method

on collected Python projects.

The remaining of this paper is organized as fol-

lows: Section 2 defines what semantic idioms we

want to survey in repository mining and motivates

the reader by example. Section 3 explains how our

proposed approach recognizes if a semantic idiom

is written in the corpus. Section 4 carries out an

empirical study via the proposed method on public

Python repositories. A practical research question

is raised in the empirical study, and we answer the

question by implementing the method we propose

in Section 3 with a designed, concrete type system

variance. Section 5 relates our work to proceeding

researches and a brief conclusion ends this paper.

2 Semantic Idioms in Python

A semantic idiom is a code fragment that serves

a single semantic purpose. Finding semantic id-

ioms in dynamic languages like Python is challeng-

ing. Yet, understanding the usage of those idioms

in production can help developers comprehend the

culture of the language and benefit further language

designs，which is rather an attracting task in repos-

itory mining.

Here we give an example program which outlines

a typical usage of ad-hoc polymorphism [17, 26],

shown in List 1.

1 class Person:

2 def __init__(self , name):

3 self.name = name

4

5 class Vehicle:

6 def __init__(self , name):

7 self.name = name

8

9 def getName(x):

10 return x.name

11

12 if input () == 'Person ':

13 x = Person('Alice ')

14 else:

15 x = Vehicle('Truck ')

16 getName(x)

Listing 1 Motivating example

The program first defines two classes Person and

Vehicle. A constructor method is defined by set-

ting an instance attribute both called name in the

method body in each of the class definitions, re-

spectively. It then defines a function getName which

takes one single argument. The body of the func-

tion searches for an attribute called name, and

treats this attribute as its return. In the main part

of the program, a variable x is initialized as either

an instance of class Person or class Vehicle in a

if statement, controlled by a runtime value read

from the user keyboard. Finally, function getName

defined before is called with the parameter x.

From the perspective of repository mining, one

interesting topic is to empirically investigate the

usage of ad-hoc polymorphism, which is a proper

instance of the semantic idioms we care in this pa-

per. In general, the investigation can be answered

by counting the number of functions and meth-

ods which are implementations of ad-hoc polymor-

phism. In this example, the answer can be 1, which

points to the function that takes argument of two

different data types defined at Line 9.

Uncovering such a semantic idiom in terms of

repository mining seems not straightforward or

widely studied. We believe that one of the rea-

sons behind is simply people have not developed a

proper methodology to fulfill the task in dynamic

languages. Semantic idioms like ad-hoc polymor-

phism we quoted are code fragments that serve par-

ticular semantic purposes. It is inherently notable

that one needs the knowledge of the semantics to

understand its existence in a program. Neverthe-

less, semantic analysis on dynamic languages itself

is rather complicated, and even worse on large-scale

empirical studies.

Another aspect of the challenge stems from the

dynamic nature of Python. For statically typed

programs, a lightweight approach one can conceive

is a regular lexical analysis used in many MSR re-

searches. A scenario can go as one parses the source

code and traverses the parsed trees to search type

hints such that one can have a superficial under-

standing of semantics of the program. For instance,

functions which arguments are generic-typed (e.g.

in Java) are reasonably parametric polymorphic.

Therefore, one can roughly know the amount of

the semantic idiom written by simply counting the

number of a specific kind of types in the program.

While for untyped programs, this handy recipe may

not give us a good taste of the mining purpose as

there is little semantic information from the parsed

syntax tree. As a result, the subsistence of ad-hoc

polymorphic code snippet cannot be proficiently

perceived using standard lexical analysis.

3 From a Perspective of Static Seman-
tics

We present that the number of code fragments

of a semantic idiom can be derived by counting

and comparing type errors reported by two different

type systems. The proposed approach uses static

typing under two type systems with variance and

they report type errors for untypable code, respec-

tively. By comparing the number of reported type

errors over the same program, it answers the ap-

proximate amount of code written in a semantic

idiom.

We begin by discussing standard type inference

which generates and solves type constraints, and

reports type errors if the program does not type-

check under two different type systems. Then we

discuss why the designed type systems and their

typechecking results can answer if the program con-

tains ad-hoc polymorphic code fragment we want to

mine.

3. 1 Standard Type Inference

This subsection defines one of the two type sys-

tems used in our approach to discover ad-hoc poly-

morphsic code fragments in an informal way. Also,

it briefly explains how a standard type inference

works to give types to an untyped program.

The core types of the type system is described

as:

τ ::= α | β | [id: τ] | τ → τ

τ ranges over types; α ranges over type variables; β

ranges over builtin and user defined classes; id de-

notes method or attribute names; [id: τ] ranges

over structural types; → denotes function types.

To typecheck untyped programs, one obvious so-

lution is to reconstruct types by type inference. We

t1 ≤ ["name": t3]

t3 ≤ t2

Person ≤ t4

Vehicle ≤ t4

t4 ≤ t1

(1)

(2)

(3)

(4)

(5)

図 1 Generated type constraints from Line 9 to

16 in List 1

first assign unique type variables for each of the

variables, function parameters and returns. Then

a syntax directed analysis over the program is given

to generate type constraints in a subtyping form. A

constraint s ≤ t indicates that s must be a sub-

type of t. We also use the terminologies to de-

scribe the constraint such that x is a lower bound

of y and y is a upper bound of x. After that, a se-

ries of resolution rules are applied to the generated

type constraints so that constraints are propagated

and checked if they admit a solution [22]. During

the constraint propagation, if there is any incon-

sistent constraint, the program is judged untypable

and a type error will be signaled. Otherwise, the

program typechecks and a least restricted solution

is computed from the lower and upper bounds for

each of the type variables [4].

Back the code example in List 1, we give some of

the type constraints generated by the typing disci-

plines of the type system, shown in Fig. 1. Paren-

thetically, function getName is typed as t1 → t2;

expression x.name has the type t3; variable x has

the type t4.

To give a closer analysis, the constraint set sug-

gests that t4 should be a supertype of its two lower

bounds Person and Vehicle, which conduces to a

solution object (the top class in Python’s class hi-

erarchy). While at the same time, it might be noted

that t4 should also be a subtype of ["name": t3]

due to transitive closure from Constraint (1) and

(5). That is, t4, inferred as object, should have an

attribute name, which is evidently invalid. In con-

sequence, the program will be rejected and a type

error is reported as "‘object’ type does not have

attribute ‘name’" at Line 10 in List 1.

3. 2 Adding a Type System Variance

Described in the natural language, a type system

variance is simply the difference between two type

systems. A type system is defined by constructors

operated on data types and a set of rules to classify

syntactic phrases by their values. So, a type sys-

tem variance mentioned in this paper is typically

a single type kind or one syntax directed typing

discipline.

To make the above program typecheck, we add

union type as the type system variance to the type

system described before. Furthermore, we will use

that type system to infer types for the same pro-

gram just as we did.

The type system now is defined as:

τ ::= α | β | [id: τ] | τ → τ | τ ∨ τ

where ∨ ranges over union types. Notice that the

only difference, or the variance between this type

system and the previous one is the adaption of

union type.

Same as the inference process illustrated before,

the type of variable x will be inferred by merging

its two lower bounds. Because the type system now

allows union type which permits multiple primitive

types for a shared instance, x will be inferred as

Person ∨ Vehicle. Since either type of the com-

ponents of the union holds an "name" attribute, the

type constraint t4 ≤ ["name": t3] is now valid

under the union type system. All the generated

type constraints can be successfully resolved and

the program typechecks.

3. 3 Observation and Discussion

Here a detectable diversity can be observed: a

difference between two type systems causes a differ-

ent number of reported type errors. In the example,

the program cannot typecheck with the first type

system and a type error is reported. Oppositely,

the program, specifically function getName, type-

check under the second type system which allows

union type.

We claim that this observation confirms the exis-

tence of ad-hoc polymorphic code fragments in the

program. That is, by counting the different number

of reported type errors from the two type systems,

one can approximately, but also effectively knows

the number of code fragments written in the se-

mantic idiom.

Our proposal works under the following assump-

tions: type kinds and typing disciplines typically

enforce a particular usage of data types and assign

types to a single kind of syntactic constructions, as

well as how programmers commonly implement a

sematic idiom. Therefore, a type kind or typing

discipline can be deliberately coined as a variance

between two type systems. Code fragments writ-

ten in the semantic idiom will not typecheck under

one type system, while the result becomes oppo-

site if the type system variance is turned on. Still,

the typechecking results of some uninterested code

fragments may also alter because of the variance.

We are aware of the fact that our method only tells

the approximate amount of code written in the tar-

get semantic idiom. Under the insight, we believe

that this proposed semantic analysis is promising

to perform repository mining tasks of uncovering

semantic idioms.
4 A First Attempt: How Ad-hoc Poly-

morphism is Used?

In this section, we carry out an empirical study

on a set of collected Python programs from public

open source. The methodology used in the study

is a concrete implementation of our proposal that

typechecks programs by type systems with a de-

signed variance. Particularly, the study implements

union type as the type system variance and gives

empirical evidence of showing how ad-hoc polymor-

phism is used in practice.

In the following of this section, we provide an

overview of the dataset. Moreover, a comprehen-

sive report of the study results is presented to an-

swer the raised research question.

4. 1 Dataset Overview

To build our dataset, we first collected 841

Python repositories on Github, which contain

18,433 Python files and 1,587,530 lines of code.

Those repositories were the top-starred Python

repositories from the response of the Github Search

API. Concurrently, because of the computing lim-

itation of the type inferencer we implemented, we

narrowed the searching results by using the search

qualifier size so that the sizes of all resulting repos-

itories are smaller than 5,000 KB.

We then extracted syntactically valid .py files

from each of the collected repositories. Since

our implementation only supports files written in

Python 3, we further discarded Python 2 files,

which resulted in 16,324 files and 1,260,287 LOC.

These files are the exact input to further analysis.

4. 2 How Ad-hoc Polymorphism is Used?

By comparing the typechecking results under the

two designed type systems, we figured out that

there were 11,100 reported type errors in difference.

Since we assume that all the collected public pro-

grams do not contain any runtime error, we treat

all detected type errors from our system as false

positives.

To provide more details, there were 318,241 num-

ber of reported false positives by the designed type

system without the variance. On the other hand,

307,141 errors were reported by the union type sys-

tem. To defense the effectiveness of our designed

type systems, 171,287 of 318,241, nearly 53.8%, of

all the errors were path resolution failures, which

means our tool failed to find the path for a module

or a missing of third party library. In other word,

over half of the false positives is not limitation of

the type system, but rather a matter of implemen-

tation. Although different dataset were involved

over studies, the ratio of non-import related errors

from our implementation was quite close to that

of Rak-amnouykit’s investigation [23] over main

stream Python static checkers Mypy [30] and Py-

type [10], which was 54.2% (22,556 of 41,607) ac-

cording to their qualitative report.

To understand the usage frequency of ad-hoc

polymorphism in the dataset, we further enumer-

ated the numbers of total expressions in all the in-

put .py files, which was 5,058,867. By dividing the

different number of false positives, the result shows

that nearly 0.22% of the expressions were success-

fully union-typed and used in an ad-hoc polymor-

phic manner. A quick interpretation goes as there

is one ad-hoc polymorphic usage for every 450 lines

of code.

We estimate that this result is quite reasonable to

public Python programs. To give a brief discussion,

we postulate the fact that real-world Python pro-

grams are semantically easy in terms of data types,

considering its major applications such as machine

learning. It can be easily imaged that functions

and methods in those programs typically operate

on particular and single data types. Our results

matches this hypothesis: We found that most of the

functions and methods are monomorphic so that

they take arguments of single data types based on

our type inference result.

4. 3 A Closer Look at Sampled Projects

To better investigate whether the designed type

system variance can successfully discover ad-hoc

polymorphic code, we provide a qualitatively closer

look of what specific code fragments are located at

some of the tested data.

We sampled some of the repositories in the

dataset, which were obtained by precisely inspect-

ing repositories with the most different reported

type errors by the two designed type systems with

the variance. In other words, the following sam-

pled repositories are those with the most number

of ad-hoc polymorphic code snippets suggested by

our analysis.

Late Bindings. In convnet-benchmarks †1, the

union type system typechecks the following piece

of code:

1 if args.arch == 'alexnet ':

2 import alex

3 model = alex.Alex()

4 elif args.arch == 'googlenet ':

5 import googlenet

6 model = googlenet.GoogLeNet ()

7 elif args.arch == 'vgga':

8 import vgga

9 model = vgga.vgga()

10 elif args.arch == 'overfeat ':

11 import overfeat

12 model = overfeat.overfeat ()

13 else:

14 raise ValueError('Invalid

architecture name')

15 # ...

16 model.forward ()

In the program, variable model is assigned with in-

stances of different classes in the if statement con-

trolled by an input argument. Alex, GoogLeNet,

vgga and overfeat are user defined classes in the

corresponding modules, all of which are derived

from class Chainer in the deep learning framework

chainer
†2. Each of the classes defines a method

forward and the method is invoked after model is

†1 https://github.com/soumith/convnet-benchmarks
†2 https://chainer.org/

assigned. In our applied type system without union

type, the type of variable model will be inferred as

a union of the four types. The message passed to

the variable at Line 16 can be successfully resolved

since each of the type component has the requested

property and thus the program typechecks. On the

contrary, variable model is inferred as type Chainer

under the type system without the union type vari-

ance. This time a type error is reported when the

message forward is requested since Chainer class

does not defined the method.

4. 4 What Are The Other False Positives?

We believe that false positives that cannot type-

check by the union type system can fairly help dis-

cover other semantic idioms in dynamic languages.

These false positives are assumed not meaningless

but rather of valuable indications which can serve

for mining purposes of discovering Pythonic code

fragments. As a further analysis, we substantiated

our claim by sampling and show evidence by con-

crete examples.

We randomly sampled 58 repositories which con-

tained 181,444 LOC in the dataset and manually

inspected the false positives reported by the union

type system. With further analysis, 5,319 of the er-

rors were errors that failure of resolution of a union

type. We took a closer look at the these places

and inspected the untyped code fragments to fig-

ure out why a union type cannot be successfully

given to the expressions, and to verify if these code

fragments match our expectation. We list them in

categories below.

Mixed types in containers. This coding exercise

describes elements of different data types in con-

tainer objects such as list and dictionary. As shown

in 2 discovered in repository datasets †3,

1 cfg = {'rsync_cmd ': 'rsync ', '

†3 https://github.com/fpbattaglia/datasets

rsync_sync_opts ': '-avz', '

rsync_list_opts ': '--list -only', '

data_store ': 'fpbatta@tompouce.

science.ru.nl', 'subdirs_as_datasets

': False}

Listing 2 Code in sampled repository

the type of the key of the dictionary expression will

be inferred as String under the designed union type

system. Besides, the type of its value will be in-

fered as String ∨ Bool, which is the union of its

all elements. Thus, if one of the values is retrieved

by from this dictionary object, a type error will be

raised when a massage not shared by the multiple

types is passed. Namely,

1 self.source_location = self.config['

data_store '] + ':' + self.source_dir

where the value of self.config is equal to the

value of cfg in List 2. Our type system blamed

that “bad operand for +: Int and String”, while

this is an expected behavior of the designed, static

type system though. Similar code snippets that

could not typecheck with our union type system

are also found in QuakeHordes †4 and HelloGitHub
†5.

Reassigning variables with different types. In

repository BeautifulDiscord †6, we found another

common coding pattern that cannot typecheck by

the union type system.

1 index = input("Discord executable to use

(number): ")

2 try:

3 index = int(index)

4 except ValueError as e:

5 print('Invalid index passed ')

Variable index is first assigned by getting input

from the user. After that, the same variable is reas-

signed to Int at Line 3 above. Therefore, the type

system will complain the usage of variable index to

the place where an Int is expected in the program

†4 https://github.com/mUogoro/QuakeHordes
†5 https://github.com/521xueweihan/HelloGitHub
†6 https://github.com/leovoel/BeautifulDiscord

later.
5 Related Works

In this section, we will review some of the exist-

ing studies and make a brief discussion comparing

with our proposal, respectively.

Monat et al. [18] derived a sound, static analysis

by abstract interpretation by giving Python pro-

grams a concrete semantics, and further taking full

control-flow into account such as supporting excep-

tion handling and expressing parametric polymor-

phism. Compared with their work of performing

static analysis by structural induction on the syn-

tax, our proposal applies a standard static type

checking, which is generally flow-insensitive and

context-insensitive, with a constraint-based type

inference for dynamically typed programs. Fur-

thermore, our approach performs repository mining

tasks by carefully designing several, different type

systems and uncovering a semantic idiom with the

corresponding type system variance.

Rak-amnouykit et al. [23] did an empirical sytudy

of how Python developers use type annotations

with PEP484 [30], and evaluated the performance

of Mypy [14] and Pytype [10] on public Github

repositories. Mypy and Pytype are two of the cele-

brated tools of performing static type checking and

inference for Python programs. The authors ex-

plored that programs with type annotations rarely

typecheck by the existing tools: both of them ex-

hibit false positives and also useful errors. From the

aspect of empirically studying open source Python

repositories, our work also enforces type systems to

statically typecheck Python programs. Conversely,

we offer our own implementation so that we can

easily apply and manage different type systems to

discover semantic idioms. Besides, reported false

positives are viewed as indication of the target code

fragments suggested by the designed variance of

two type systems.

6 Conclusion

In this paper we proposed a type-based approach

which can accomplish repository mining tasks of

uncovering semantic idioms. The proposed ap-

proach works by using two different type systems

with designed variance so that program typechecks

or not while switching the variance. By comparing

the number of reported false alarms, one can derive

the approximate amount of code that is written in

the corresponding semantic idiom.

We carried out an empirical study over 841 pub-

lic Python repositories to investigate common pro-

gramming idioms. Our approach successfully de-

tected the usage frequency of ad-hoc polymor-

phism, but also it uncovered some well-known

coding practice that can be found by traditional

methods like syntactic parsing. Thus, we believe

that such typed-based method is an effective and

promising approach to performing repository min-

ing tasks.

参 考 文 献
[1] Akbar, S. A. and Kak, A. C.: A Large-Scale

Comparative Evaluation of IR-Based Tools for Bug
Localization, Proceedings of the 17th International
Conference on Mining Software Repositories, MSR
’20, New York, NY, USA, Association for Comput-
ing Machinery, 2020, pp. 21–31.

[2] Allamanis, M. and Sutton, C.: Mining Idioms
from Source Code, Proceedings of the 22nd ACM
SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2014, New
York, NY, USA, Association for Computing Ma-
chinery, 2014, pp. 472–483.

[3] Amanatidis, T. and Chatzigeorgiou, A.: Study-
ing the evolution of PHP web applications, In-
formation and Software Technology, Vol. 72(2016),
pp. 48–67.

[4] An, J.-h. D., Chaudhuri, A., Foster, J. S., and
Hicks, M.: Dynamic Inference of Static Types
for Ruby, SIGPLAN Not., Vol. 46, No. 1(2011),
pp. 459–472.

[5] Aycock, J.: Aggressive Type Inference, Novem-
ber 1999.

[6] Cousot, P.: Types as Abstract Interpretations,
Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Lan-
guages, POPL ’97, New York, NY, USA, Associa-
tion for Computing Machinery, 1997, pp. 316–331.

[7] Dyer, R., Rajan, H., Nguyen, H. A., and
Nguyen, T. N.: Mining Billions of AST Nodes to
Study Actual and Potential Usage of Java Lan-
guage Features, Proceedings of the 36th Interna-
tional Conference on Software Engineering, ICSE
2014, New York, NY, USA, Association for Com-
puting Machinery, 2014, pp. 779–790.

[8] Garcia, R., Clark, A. M., and Tanter, E.: Ab-
stracting Gradual Typing, Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16,
New York, NY, USA, Association for Computing
Machinery, 2016, pp. 429–442.

[9] github: octoverse, May 2020.
[10] google: pytype, May 2016.
[11] Guido van Rossum, Barry Warsaw, N. C.: PEP

8 – Style Guide for Python Code, July 2001.
[12] Kagdi, H., Collard, M. L., and Maletic, J. I.:

A Survey and Taxonomy of Approaches for Min-
ing Software Repositories in the Context of Soft-
ware Evolution, J. Softw. Maint. Evol., Vol. 19,
No. 2(2007), pp. 77–131.

[13] Kazerounian, M., Ren, B. M., and Foster, J. S.:
Sound, Heuristic Type Annotation Inference for
Ruby, Proceedings of the 16th ACM SIGPLAN
International Symposium on Dynamic Languages,
DLS 2020, New York, NY, USA, Association for
Computing Machinery, 2020, pp. 112–125.

[14] Lehtosalo, J., van Rossum, G., and Levkivskyi,
I.: mypy, June 2012.

[15] Marcilio, D. and Furia, C. A.: How Java
Programmers Test Exceptional Behavior, 2021
IEEE/ACM 18th International Conference on Min-
ing Software Repositories (MSR), 2021, pp. 207–
218.

[16] Mazinanian, D., Ketkar, A., Tsantalis, N., and
Dig, D.: Understanding the Use of Lambda Expres-
sions in Java, Proc. ACM Program. Lang., Vol. 1,
No. OOPSLA(2017).

[17] Milner, R.: A theory of type polymorphism in
programming, Journal of Computer and System
Sciences, Vol. 17, No. 3(1978), pp. 348–375.

[18] Monat, R., Ouadjaout, A., and Miné, A.:
Static Type Analysis by Abstract Interpretation
of Python Programs, 34th European Conference
on Object-Oriented Programming (ECOOP 2020),
Hirschfeld, R. and Pape, T.(eds.), Leibniz In-
ternational Proceedings in Informatics (LIPIcs),
Vol. 166, Dagstuhl, Germany, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2020, pp. 17:1–
17:29.

[19] Nakamaru, T., Matsunaga, T., Yamazaki, T.,

Akiyama, S., and Chiba, S.: An Empirical Study
of Method Chaining in Java, Proceedings of the
17th International Conference on Mining Software
Repositories, MSR ’20, New York, NY, USA, Asso-
ciation for Computing Machinery, 2020, pp. 93–102.

[20] Oracle: JDK 5.0 Documentation, September
2004.

[21] Oracle: Java Platform, Standard Edition 8 API
Specification, March 2014.

[22] Pottier, F.: A Framework for Type Infer-
ence with Subtyping, SIGPLAN Not., Vol. 34,
No. 1(1998), pp. 228–238.

[23] Rak-amnouykit, I., McCrevan, D., Milanova, A.,
Hirzel, M., and Dolby, J.: Python 3 Types in the
Wild: A Tale of Two Type Systems, Proceedings of
the 16th ACM SIGPLAN International Symposium
on Dynamic Languages, DLS 2020, New York, NY,
USA, Association for Computing Machinery, 2020,
pp. 57–70.

[24] Siek, J. and Taha, W.: Gradual Typing for Ob-
jects, ECOOP 2007 – Object-Oriented Program-
ming, Ernst, E.(ed.), Berlin, Heidelberg, Springer
Berlin Heidelberg, 2007, pp. 2–27.

[25] Siek, J. G. and Taha, W.: Gradual Typing for
Functional Languages, IN SCHEME AND FUNC-
TIONAL PROGRAMMING WORKSHOP, 2006,
pp. 81–92.

[26] Strachey, C.: Fundamental Concepts in Pro-
gramming Languages, August 1967.

[27] Thatte, S.: Quasi-Static Typing, Proceedings of
the 17th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’90,
New York, NY, USA, Association for Computing
Machinery, 1989, pp. 367–381.

[28] Tobin-Hochstadt, S. and Felleisen, M.: Interlan-
guage Migration: From Scripts to Programs, Com-
panion to the 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, New York, NY,
USA, Association for Computing Machinery, 2006,
pp. 964–974.

[29] Turnu, I., Concas, G., Marchesi, M., Pinna, S.,
and Tonelli, R.: A modified Yule process to model
the evolution of some object-oriented system prop-
erties, Information Sciences, Vol. 181, No. 4(2011),
pp. 883–902.

[30] van Rossum, G., Lehtosalo, J., and Langa, L.:
PEP 484 – Type Hints, September 2014.

[31] Zapponi, C.: GitHut, May 2014.
[32] Zhai, H., Casalnuovo, C., and Devanbu,

P. T.: Test Coverage in Python Programs, 2019
IEEE/ACM 16th International Conference on Min-
ing Software Repositories (MSR), (2019), pp. 116–
120.

