
日本ソフトウェア科学会第 38 回大会 (2021 年度) 講演論文集

Attempts on using syntax trees to improve

programming language translation quality by

machine learning

Dai Feng, Shigeru Chiba
While the number of programming languages is increasing, scenarios of developing programs with same
functionality in different programming languages are becoming frequent. Although translation between
natural languages has been extensively studied, translation between programming languages has not been
well explored yet. In this paper, we present a method to improve translation quality between programming
languages by adopting syntax tree information to represent source code. Compared with existing methods,
our method pays more attention to structural information in syntax trees, and utilizes the structural infor-
mation in code representation. We show that our method could improve the translation quality between
Java code and Python code in a certain degree. We compare our results to the state-of-the-art results in the
field of cross programming language translation, and show that we might be able to achieve better accuracy
in some metrics.

1 Introduction

According to [3], the number of programming

languages has been growing and the popularity of

each programming language also keeps changing,

indicating that programmers nowadays have more

choices and switch languages more often. In fact,

there are many cases in which programmers have

to reconstruct a project with another programming

language, or implement same function in multiple

languages. This is not only time-consuming, but

also costly in terms of money.

Therefore, an automatic translator for source

code is desirable. Researchers have been look-

ing into this topic a lot, but no general translator

is developed until machine learning demonstrates

its power in the field of natural language transla-

This is a non-referred paper. Copyrights belong to
the Author(s).

Dai Feng, Shigeru Chiba, Graduate School of Infor-
mation Science and Technology, The University of
Tokyo.

tion. Some researchers have already tried to use

machine learning techniques for programming lan-

guage translation. Work by [8] gives it a try, but

we believe there is space for improvement.

In this paper, we present an approach for code

representation. This approach utilizes abstract

syntax trees for structural information. We use our

approach and existing approach to represent source

code, and do experiments on programming lan-

guage translation task. We present the comparison

between experiment results by two approaches, and

make a discussion about underlying indications.

2 Translation between Programming
Languages

Program translation, or code translation, refers

to converting a code snippet written in a high-level

programming language, such as Java and Python,

to another high-level programming language. It is

useful and necessary in many scenarios.

Aging software has been increasingly problematic

in recent years. Maintenance for old software, espe-

cially that written in old programming languages,

is often costly and time-consuming. During the be-

ginning period of Covid-19 pandemic, the Depart-

ment of Labor of the US government was in ur-

gent demand of programmers for COBOL, which

is a programming language developed in the 1950s,

because the system was overloaded due to the in-

creasing number of claims of unemployment. This

is not an easy job as old programmers have retired

while young programmers don’t use COBOL any-

more. Similarly, the Commonwealth Bank of Aus-

tralia spent around $750 million and 5 years of work

to convert its platform from COBOL to Java. In

such scenarios, an automatic tool for code conver-

sion is desirable.

Another reason for the necessity lies in the diver-

sity of programming languages. Usually, program-

ming languages are chosen adapted to the native

platforms. Android projects usually require a pro-

gramming language running on the Java Virtual

Machine like Java and Kotlin, while Web projects

running in the browser require to be written in

JavaScript. Therefore, when developing a project

for multiple platforms, writing same logic in differ-

ent programming languages is necessary, and au-

tomatic translation for such logic can save a lot of

time.

Many researchers have been looking into this

topic. Existing literature regarding this task are

mostly rule-based. Rule-based approaches tend to

result in translations containing bugs or lacking

readability, and can only deal with translation be-

tween two specific languages. They cannot trans-

late from an arbitrary programming language to

another. Recently, as machine learning has shown

its power in many fields, researchers have been con-

sidering adopting machine learning in programming

language translation. They want to develop a gen-

eral translator between two arbitrary programming

languages without having to write a lot of hand-

crafted rules.

Among the very few attempts to use machine

learning for code translation, the state-of-the-art

model is developed by Roziere et al [8]. They

adopt unsupervised machine learning techniques

from natural language translation, and use the

techniques in this task. When representing source

code, they follow the similar way to represent nat-

ural language text. They tokenize the source code,

learn sub-tokens with BPE, and linearize the source

code with BPE vocabulary. This is straight for-

ward, but losses the special features of program-

ming languages.

In programming languages, syntax trees are tree

representation of source code, and they contain rich

information regarding syntactic structure. There-

fore, combining syntax tree information in code

representation is a potential method to consider

special features of programming languages.

Besides, current model requires large amounts of

computing resource and data, and is not affordable

by everyone. A smaller model that is friendly in

resource is desirable.

For the above reasons, we want to do experiments

to see whether combining tree information in code

representation can contribute to machine learning

models, and also whether the model can work when

given limited computing resource and data. To the

best of our knowledge, no existing literature has

examined the idea so far.

3 Model Details

The purpose of this paper is to compare two ap-

proaches of code representation, one is our pro-

posal, another is from the paper by Roziere et al.,

and test the performance on a programming lan-

guage translation model.

We define our proposal as tree-based code rep-

resentation, while the approach from Roziere et al.

図 1 Comparison of two code representation

approaches

is text-based code representation. The overview of

two approaches is shown in Fig.1. The blue arrors

refer to approach by Roziere et al., and the red ar-

rors refer to our proposal. We describe the details

of two code representation approaches in this sec-

tion.

Besides, we also describe the machine translation

model and the training details in this section. We

use the same model as in the paper by Roziere et

al.

3. 1 Tree-based code representation

Tree-based code representation refers to code rep-

resentation with abstract syntax tree information.

Using AST for machine learning input is not our

original idea, but we borrow this idea and apply

it in the task of programming language translation

task.

Tree-based code representation refers to generat-

ing abstract syntax trees of source code, and repre-

senting source code with such trees. Abstract syn-

tax trees don’t preserve all the detailed information

such as parentheses, but only programming con-

structs and relationships between such constructs.

def

get_value if

< return

a 1 0

図 2 AST example

After obtaining these abstract syntax trees, we use

pre-order depth-first-search algorithm to get a lin-

earized version of the ASTs.

Consider the following piece of code in Lst.1 and

in Fig.2, the tree-based code representation is in

Lst.2.

1 def get_value ():

2 if a < 1:

3 return 0

Listing 1 Code representation example

1 def , get_value , if, <, a, 1, return , 0

Listing 2 Tree-based code representation

3. 2 Text-based code representation

Similar as dealing with text in natural languages,

we separate source code into individual words for

further processing, the separation is also called to-

kenization.

One traditional way to tokenize source code is

by identifiers, built-in key words and punctuation

marks. Identifiers include method names and class

names, built-in key words include for, if, while,...,

and punctuation marks include commas, colons,

brackets and so on. The tokens are linearized by

the order of appearance.

Another way is called Byte-Pair Encoding (BPE)

[10], which is to learn sub-tokens from the original

vocabulary to deal with rare tokens, such as class

names and method names. These names are usu-

ally concatenated by several words using camel case

or snake case. The BPE algorithm iterates the vo-

cabulary to count the most frequent byte pairs, and

merge two byte pair tokens into one token. Roziere

et al. use BPE algorithm in their paper.

The text-based code representation with tradi-

tional tokenization is in Lst.3, and the BPE tok-

enized code representation is in Lst.4.

1 def , get_value , (,), :, if , a, <, 1, :,

return , 0

Listing 3 Token-level code representation

1 def , get_@@ , value , (,), :, if , a, <,

1, :, return , 0

Listing 4 Token-level code representation BPE

3. 3 Machine translation model

After getting the representation of source code,

we will use it as input for machine translation

model. It is a typical sequence-to-sequence [11] pro-

cess, in which we use code representation from pre-

vious sections as input sequence, and source code

as output sequence.

The basic model for training is Transformer.

Transformer [12] is consisted of an encoder and a

decoder that both are composed of blocks stacked

on top of each other. In each block, there are sev-

eral modules which are meant for different pur-

poses, mainly multi-head attention modules and

feed-forward modules.

The training is consisted of three steps [8],

namely cross-lingual masked language model pre-

training [5], denoising auto-encoding [13] and back

translation [9]. We show the overview of the train-

ing pipeline in Fig.3. Briefly, cross-lingual masked

図 3 Model overview

language model pretraining is to map tokens with

similar meanings to close positions in vector space.

Denoising auto-encoding is to make the model learn

how to decode a sequence and be robust to noise.

Back translation is to make the model able to gen-

erate sequence based on cross-language input rep-

resentation.

4 Experiments

In this section, we present the designs and results

for following experiments. Both experiments are

evaluated by translating both ways between Java

and Python.

Roziere et al. Text-based representation of

source code with BPE tokenization

Our proposal AST-based representation of

source code

4. 1 Dataset

The training data both in Java and Python is

collected from GitHub. We sort the repositories

by stars for each language, and download top 100

repositories. In each repository, aside from the files

in its main language, there might also be some files

in other languages, such as scripts or configure files.

We exclude these files and only keep the files in ev-

ery repository’s main language. After obtaining the

source files, we extract the functions and methods

in the source code. We use the entire source files

for pretraining in order to get meaningful numerical

vectors for tokens. However, we only use functions

for denoising auto-encoding and back-translation

for simplicity and efficiency. After removing files

that are too long or contain rare symbols, we fi-

nally get 117028 Java source files and 999007 Java

methods, and 23518 Python source files and 171538

Python functions.

The evaluation dataset contains 97 parallel im-

plementations of functions both in Java and

Python. The data is collected from GitHub and

has been manually checked to make sure that par-

allel functions in a pair implement same logic.

4. 2 Configuration

The machine we use is an Nvidia Quadro P6000

GPU card with 24GB GPU memory, an Intel Core

i7-6850K CPU with 3.60GHz frequency, 6 cores and

12 threads, and 64GB memory.

For neural network model, we use a hidden em-

bedding size of 256, and train each model for 100

epochs. The training takes an average of 4 days for

each model.

As a comparison, Roziere et al. use 32 Nvidia

V100 GPU cards, each of them has 32GB GPU

memory. They set the hidden embedding dimen-

sion to be 1024.

4. 3 Results

We will evaluate the models by two kinds of cri-

teria. One is called BLEU score. it considers the

similarity between a generated sequence and the

ground truth sequence. Another one is about im-

portant structures in source code, such as for loops

and if statements.

表 1 BLEU score for translation results

Experiment Score

Text-based Java to Python 1.28436e-231

Text-based Python to Java 1.62241e-156

Tree-based Java to Python 1.15311e-231

Tree-based Python to Java 1.097212e-231

4. 3. 1 Translation quality by BLEU score

The BLEU scores of the translation results is

shown in Table.1. It can be seen that the absolute

values of the scores are very low, and are almost 0.

It means the model can barely generate valid trans-

lations compared with the ground truth references.

We take a look into the results, and find that the

model fails to generate consecutive tokens such as

2-grams.

4. 3. 2 Translation quality by important

structures

Loops and conditional statements are important

structures in programming. From the translations

by two models, we observe that the model with

tree-based code representation can generate more

structures such as loops or conditional statements

than the text-based model. Therefore, we evaluate

the translation quality by counting the number of

occurrences of such structures.

We define an occurrence of a for or a if in the

ground truth code as a positive case. If the trans-

lation successfully generates the for loop or the if

statement, we regard this translation as a true pos-

itive, or if the translation does not generate the

ground truth for or if, we regard this translation

as a false negative.

In all the cases, there are 80 files containing a for

loop or a if statement. In the text-based model,

it successfully generates 5 if statements and one

for loop when translating from Python to Java,

and successfully generates only one for loop when

translating from Java to Python. All the genera-

tions are true positive. In the tree-based model,

表 2 Results from text-based model

Type TP FP TN FN

Java to Python 1 0 17 79

Python to Java 6 0 17 74

表 3 Results from tree-based model

Type TP FP TN FN

Java to Python 15 6 11 65

Python to Java 13 0 17 67

表 4 Result scores from text-based model

Type accu prec recall F1-sco

Java to Python 0.186 1 0.0125 0.0247

Python to Java 0.237 1 0.075 0.1395

表 5 Result scores from tree-based model

Type accu prec recall F1-sco

Java to Python 0.268 0.714 0.1875 0.297

Python to Java 0.309 1 0.1625 0.2796

when translating from Python to Java, we success-

fully generate 12 if statements and one for loop,

and all the generations are true positive. When

translating from Java to Python, we generates 15

if statements and 6 for loops, however, 6 genera-

tions of if statements are incorrect.

From Table.2 and Table.3, we can see that tree-

based model can generate more important struc-

tures than text-based model. However, all the

generations by text-based model are correct, while

tree-based model may generate some incorrect

translations. We calculate the accuracy, the pre-

cision and the recall score for each model.

From Table.4 and Table.5, we can see that only

the precision score in tree-based model when trans-

lating from Java to Python is lower than that of

図 4 Ground truth code

図 5 Translation by tree-based model

図 6 Translation by text-based model

text-based model, and all other scores are higher or

equal to text-based model. Therefore, tree-based

model does better in generating important struc-

tures than text-based model. This could be the

evidence to show that embedding AST information

in the code representation can contribute to gen-

erating more important structures than text-based

code representation. To look more deeply into this

phenomenon, we provide a case study to see what

exactly do the models generate.

4. 4 Case study

We provide a real example of the generated

translation by tree-based model and by text-based

model, and discuss the indications from this exam-

ple.

The code we use to translate is shown in Fig.4,

and the code generated by tree-based model and

text-based model is shown in Fig.5 and in Fig.6.

From the generated translations, we can see that

both generations follow the Java code grammar.

However, the generated translations both contain

a lot of syntactical mistakes, such as wrong identi-

fiers and false method calls. Such kind of mistakes

make the translations impossible to pass the com-

piler. If we calculate the BLEU score of the gener-

ated translations, the absolute value of both scores

will be low. However, if we look at the structure

of the code, we can see that the translation gener-

ated by tree-based model successfully captures the

for-loop in the ground truth code, which indicates

that our translation is slightly more like the ground

truth code from a topological viewpoint.

Combined with the results shown in the previous

section, we can conclude that tree-based model is

better at generating important structures such as

loops and conditional statements than text-based

model. This is possible because tree-based model

embeds abstract syntax tree information in the

code representation. To some extend, an abstract

syntax tree preserves more structural information

than a linear sequence of tokens. Therefore, when

feeding the AST-based representation of code into

the neural machine translation model, the model

might have extra knowledge about the structure of

the source code, and this extra knowledge might

be able to contribute to final translation quality

compared with text-based representation of source

code. To prove this, we still need more experiments

to find concrete evidence.

5 Related Works

Applying natural language processing techniques

to programming language research has been a pop-

ular topic for a long time. In the area of code sug-

gestion [1], error detection [2] or code comment gen-

eration [4], natural language processing techniques

have been of much help.

Translating between programming languages is

also not a new research topic. For example, a

Python library called 2to3 can help to port Python

2 code to Python 3 [7]. However, these tools

are mostly rely on a set of human-defined rules,

and creating the rules requires a lot of time. Re-

cently, with the development of machine learning,

learning-based translation has been investigated

more than before. Nguyen et al. [6] developed a

model on a Java-C# corpus using phrase-based

statistical machine translation technique. Unfor-

tunately, these attempts are supervised, and rely

on parallel data that is not easy to obtain. In

2020, Roziere et al. [8] published a paper dis-

cussing the approach to translate source code from

one programming language to another in an un-

supervised manner. They adopted unsupervised

machine translation model to translate between

Java, Python and C++ pairwise with high accu-

racy, proving that unsupervised machine transla-

tion could be a useful tool in solving this task.

6 Conclusion

In this paper we present a comparison between

text-based code representation and tree-based code

representation. Text-based code representation re-

gards source code as plain natural text, while tree-

based code representation adopts abstract syntax

tree information. The comparison is based on a

programming language translation task.

We present the experiment results for tree-based

model and text-based model, and show that tree-

based model has potential advantages over text-

based model in generating important structures of

source code. We also provide a case study to dis-

cuss the reasons for the results. The results are

open for more discussion.

We believe there is space for further improve-

ment, and that part will be our future work.

参 考 文 献
[1] Allamanis, M., Barr, E. T., Bird, C., and Sutton,

C.: Learning Natural Coding Conventions, Pro-

ceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineer-
ing, FSE 2014, New York, NY, USA, Association
for Computing Machinery, 2014, pp. 281–293.

[2] Chen, Z., Kommrusch, S. J., Tufano, M.,
Pouchet, L.-N., Poshyvanyk, D., and Monperrus,
M.: SEQUENCER: Sequence-to-Sequence Learn-
ing for End-to-End Program Repair, IEEE Trans-
actions on Software Engineering, (2021), pp. 1–1.

[3] Frederickson, B.: http://www.benfrederickson.com/ranking-
programming-languages-by-github-users/, 2018.

[4] Hu, X., Li, G., Xia, X., Lo, D., and Jin, Z.: Deep
Code Comment Generation, Proceedings of the 26th
Conference on Program Comprehension, ICPC ’18,
New York, NY, USA, Association for Computing
Machinery, 2018, pp. 200–210.

[5] Lample, G. and Conneau, A.: Cross-lingual Lan-
guage Model Pretraining, 2019.

[6] Nguyen, A. T., Nguyen, T. T., and Nguyen,
T. N.: Lexical Statistical Machine Translation
for Language Migration, Proceedings of the 2013
9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, New York, NY,
USA, Association for Computing Machinery, 2013,
pp. 651–654.

[7] Python: https://docs.python.org/2/library/2to3.html.
[8] Roziere, B., Lachaux, M.-A., Chanussot, L., and

Lample, G.: Unsupervised translation of program-
ming languages, Advances in Neural Information
Processing Systems, Vol. 33(2020).

[9] Sennrich, R., Haddow, B., and Birch, A.: Im-
proving Neural Machine Translation Models with
Monolingual Data, 2016.

[10] Sennrich, R., Haddow, B., and Birch, A.: Neural
Machine Translation of Rare Words with Subword
Units, 2016.

[11] Sutskever, I., Vinyals, O., and Le, Q. V.: Se-
quence to Sequence Learning with Neural Networks,
CoRR, Vol. abs/1409.3215(2014).

[12] Vaswani, A., Shazeer, N., Parmar, N., Uszkor-
eit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I.: Attention Is All You Need, 2017.

[13] Vincent, P., Larochelle, H., Bengio, Y., and
Manzagol, P.-A.: Extracting and Composing Ro-
bust Features with Denoising Autoencoders, Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, New York, NY,
USA, Association for Computing Machinery, 2008,
pp. 1096 – 1103.

