
日本ソフトウェア科学会第 38 回大会 (2021 年度) 講演論文集

A Preliminary Design of an Easy-to-Dictate

Programming Language with Pronouns

Wennong Cai　 Soramichi Akiyama　 Shigeru Chiba

Programming-by-voice is a technique that enables programmers to code by partially or fully using voice-

input. Many existing researches attempt to design an easy-to-dictate spoken programming syntax that can

map into the syntax of an existing typing programming language. However, they are still thinking in a

typing programming style, while dictating should have its own advantage over typing. This paper proposes

the usage of context-dependent pronouns in the programming-by-voice design. The goal of using pronouns

is to replace long repetitive information with a short-length pronoun. In typing programming, repetitive

information can be typed quickly through the support of auto-complete, while the spoken programming can

hardly have such support. This paper presents our prototype spoken programming language: NPLang, and

shows the mechanism of using pronouns inside NPLang. In the end, this paper analyzes the limitation of

current proposed design and concludes with future direction.

1 Introduction

Programming supports various essential parts in

human’s daily life, while the request of fixing code

might occur anytime for a programmer. However,

when people need to go for a business trip, it is in-

convenient to carry a laptop only for preparing any

suddenly appeared coding work. On the contrary,

it is inefficient to complete coding work if they can-

not exploit spare time during the trip. Therefore,

being able to do programming on phones or tablets

is a lightweight and efficient solution.

However, it is difficult to do programming on

small devices because of the small screen size.

For example, “+”, “=” or “{ }” are frequently

used punctuation marks in most programming lan-

guages, but typing either of them on an iPhone key-

∗ 代名詞を使った口述プログラミング言語の初期設計
This is an unrefereed paper. Copyrights belong to

the Author(s).

蔡 文農, 穐山 空道, 千葉 滋, 東京大学大学院情報理工学系
研究科, Graduate School of Information Science and

Technology, The University of Tokyo.

board requires 3 times click: convert to numerical

mode button, convert to punctuation mode button,

and finally click on the target key.

Using voice-input as an assistance tool to support

programming on small devices will alleviate such

difficulty. Programming-by-voice is a research topic

that attempts to combine programming and voice,

though some researchers in this area are motivated

from different aspects such as helping Repetitive

Strain Injury programmers [2] [3] [4].

While existing programming-by-voice designs are

still not good enough due to their long length, we

show our idea of using pronouns in the program-

ming to refer existing long-length identifiers or ex-

pressions in order to reduce length by pruning re-

dundant information. We also present the proto-

type programming language NPLang we have im-

plemented that makes use of our idea.

In this paper, we first introduce the background

of programming-by-voice by presenting some ex-

isting programming-by-voice researches. Then we

present our proposal of using context-dependent

pronoun and its usage examples inside our proto-

type programming language. At last, related work

of using pronouns in programming language will be

introduced before the conclusion.

2 Programming-by-Voice Background

There are several existing researches that at-

tempts to design a programming-by-voice system.

However, they are not easy-to-dictate enough, be-

cause they only focus on designing the syntax for

programming language on a context-independent

style, which means dictating each statement is

treated independently.

For instance, VoiceGrip [3] is a system that trans-

lates a spoken programming language text into the

C language code. It provides some pre-defined syn-

tax structures so that users could dictate easier

than reading the C code directly. A usage example

is as follows:

“ if current record number less than max off set

then”

will generate the code:

1 if (currRecNum < maxOffSet) {

2 | // cursor will automatically

move to here

3 }

Code 1 VoiceGrip example

The VoiceGrip designs an abbreviation algorithm

to combine multiple words into a camelCase vari-

able name, which rescues users from dictating every

character of a variable name that cannot be recog-

nized by the speech recognition as a single word di-

rectly. Based on VoiceGrip, a further implementa-

tion VoiceCode [4] has designed more voice macros

to support navigating cursors by dictating.

However, those systems are still designing their

syntax in a typing programming thinking. For ex-

ample, to dictate the python code in Code 2:

1 maxOffSet = 30

2 prevRecNum = 20

3 currRecNum = 10

4 database = [maxOffSet , prevRecNum ,

currRecNum]

Code 2 Variables occur repetitively

The algorithm used by VoiceGrip and VoiceCode

could help users easily dictating the three camel-

Case variables in the first three lines, however,

those variables appear again in the fourth line.

Users cannot make use of the 3 sentences they have

dictated previously to support the dictation of the

fourth line, but have to speak “max off set [pause]

previous record number [pause] current record num-

ber” again, which is an inefficient and unpleasant

experience. Dictating longer also means harder for

the speech recognition system to fully and accu-

rately recognize user input.

We consider those repetitively appeared informa-

tion as redundant information in the spoken pro-

gramming context. Redundant information limits

the experience of spoken programming, but does

not cause a serious problem in typing program-

ming because there are existing mature tool-level

supports such as the auto-complete feature. Auto-

completion helps users quickly typing long vari-

able names appeared previously, while the spo-

ken programming is currently lack for good-quality

auto-complete support. One of the reasons that

makes auto-complete not suitable for spoken pro-

gramming is the possible latency of voice recog-

nition system. For instance, to dictate the vari-

able name “currRecNum” with the help of auto-

complete, a likely workflow might require speaking

“current [wait speech recognition system to process,

and editor to propose several completion candidates]

first option”, which makes dictation more com-

plicated than only speaking “current record num-

ber”. Therefore, redundant phrase is a difficulty

that makes dictation harder.

Figure 1 NPLang User Interface. The keyword ‘them’ refers to multiple variables: “maxOffSet”,

“prevRecNum”, “currRecNum”

3 Proposal: Context-Dependent Pro-

noun

3. 1 Overview

We propose the idea of Context-Dependent Pro-

noun, and present how it prunes the redundant in-

formation from the spoken programming code.

A context-dependent pronoun is a pre-defined

keyword embedded in the spoken programming

syntax, which refers to existing identifiers or ex-

pressions based on previous code context. Those

pronouns are replaced by the phases they are refer-

ring during the compilation to form a valid code of

an existing typing programming language.

For instance, in the previous Python example

Code 2 mentioned in Section 2, users have to speak

9 words to dictate all elements in the list, and more

words will need to be spoken if the length of list in-

creases. In our system, as Figure 1 shows in the

fourth line, users only use one keyword ‘them’ to

refer all three variables. The python code compiled

from it is the same as Code 2.

Since the meaning of the keyword ‘them’ changes

depending on the previous code context, we name

it the context-dependent pronoun.

The context-dependent pronouns prunes the re-

dundant information when a pronoun is shorter

than the phases it is referring to, which is the nor-

mal case in either natural language or our prototype

language. If those identifier names or expressions

are used repetitively and intensively, the sentence

that needs to be spoken becomes verbose and con-

tains many repetitive phases if we do not introduce

context-dependent pronouns.

3. 2 Prototype Programming Language:

NPLang

The NPLang (Natural Programming Language)

is a programming language we have designed for

our pronouns experiment. Its syntax is designed

to be similar to English so that it will be easy-

to-dictate. The NPLang compiler we have imple-

mented converts the NPLang code (as text form)

into the equivalent Python code.

In NPLang, we focus on embedding the con-

cept of context-dependent pronouns into the syn-

tax, therefore we assume the input variable name

is already well-recognised, instead of reproducing

the algorithms for recognising abbreviated variable

name from the work of VoiceGrip [3].

The BNF syntax is showed in Figure 2. The ter-

minal symbol “TYPE” is used to distinguish string

data from other types of data as well as the iden-

tifier, so that users do not have to dictate “open

Figure 2 BNF syntax of NPLang

double quotes” explicitly. Our current system does

not support loop statement or conditional state-

ment since we only focus on embedding the con-

cept of pronouns into spoken programming at the

current stage.

The core point of NPLang’s syntax is that the

program consists of multiple sentences, and each

sentence consists of multiple different kinds of

statements concatenated by the keyword ‘then’.

The context-dependent pronoun we propose works

in statement-level, which means each sentence is

considered as an independent context, and the

meaning of each pronoun depends on previous

statements within the same sentence.

3. 3 Rules of Analyzing Pronouns

During the compilation, each context-dependent

pronoun is replaced by the phrases it is referring

based on its previous context. In current design,

the meaning of each pronoun in NPLang is resolved

through a switch statement, and match different

cases based on the category of previous statements.

Specifically, the singular pronoun ‘it’ is inter-

preted as follows based on the category of the clos-

est previous statement:

• Declaration: refer to the declared variable

name.

• Assignment: refer to the assigned variable

name.

• Calculation: refer to the assigned variable

name if it involves calculation assignment op-

erator ‘by’ (i.e. +=, -=, *=, /=), else refer to

the whole expression.

• Invoke: refer to the whole expression.

• Function: refer to the declared function

name.

For the plural pronoun ‘them’, all previous state-

ments within the same sentence are examined sep-

arately through the above process, then separate

results are concatenated with the comma separa-

tor.

3. 4 Usage Examples

3. 4. 1 Refer based on Context

Figure 1 has already shown that using the

context-dependent pronoun could refer to a sin-

gle or multiple identifier name(s). As our pro-

posal name “context-dependent” suggests, the en-

tities being referred depend on previous program-

ming context, as shown in Code 3. The first oc-

currence of keyword ‘it’ refers to ‘num’, while the

second one refers to ‘greeting’.

1 set variable num with integer value

10,

2 then add it by integer value 5.

3 set variable greeting with string

value hello ,

4 then invoke print with it.

Compiled python result:

1 num = 10

2 num += 5

3 greeting = "hello"

4 print(greeting)

Code 3 Refer based on Context

3. 4. 2 Refer Expression

As described in the rules of analyzing pronouns,

a pronoun sometimes refers to an expression rather

than the identifier name in order to be more easy-

to-dictate.

1 define a function addTwo taking 2

arguments.

2 add p1 and p2 ,

3 then return it.

4 end define.

Compiled python result:

1 def addTwo(p1 , p2) {

2 return p1 + p2

3 }

Code 4 Refer Expression

In the current design, parameters of a function

are automatically named “p” + the sequence num-

ber of parameters. The pronoun ‘it’ in this example

refers to the expression “add p1 and p2”.

3. 4. 3 Expression Omission

To make the generated Python code more con-

cise, the NPLang compiler will omit an expression

if it is being referred later and has no necessary

side-effect such as assignment.

For instance, in the previous example Code 4, in-

side the definition of function “addTwo”, there are

two statements in the spoken text, which are a cal-

culation, and a return statement with a pronoun

‘it’. The compiler first translates them respectively

into “p1+p2” and “return p1+p2”, then the former

statement is omitted since it has been referred by

the latter statement and has no assignment effect.

Such design avoids the generated Python code

becoming verbose or unnatural. The example Code

5 proves this more obviously, where all of the four

statements are included in one single statement

without changing program logic.

1 add integer value 1 and integer

value 2,

2 then multiply integer value 2 and

integer value 5,

3 then invoke addTwo with them ,

4 then invoke print with it.

Compiled python result:

1 print(addTwo (1 + 2, 2 * 5))

Code 5 Expression Omission

3. 5 Limitation

Currently we use pre-defined rules to resolve the

meaning of each pronoun in the NPLang code.

Also, as shown in previous sub-sections, the pro-

noun in our preliminary design has only two op-

tions, which is either ‘it’ for singular or ‘them’ for

plural.

Such design is inefficient if we introduce new

pronoun words apart from ‘it’ and ‘them’ in fu-

ture. Because adding every new pronoun word re-

quires more delicately designed rules to avoid caus-

ing grammar ambiguity.

Another limitation of the current design is that

users have to remember those pre-defined rules in-

stead of just using them intuitively in order to

use context-dependent pronouns correctly, which

increases the learning curve of such technique.

4 Related Work

Some pronoun words are already widely known as

keywords in programming languages. For instance,

the keyword “this” in well-known in some program-

ming languages such as Java [5] or JavaScript [6]. It

is usually used to refer the current object scope in

order to fully exploit the design of object-oriented

programming. For instance, without the help of

the keyword ‘this’, the following JavaScript code

becomes verbose.

1 var a = {

2 v: 1,

3 setV: function(n) {

4 this.v = n;

5 }

6 }

7 var b = {

8 v: 1,

9 setV: function(obj , n) {

10 obj.v = n;

11 }

12 }

13 a.setV (0); // with ‘this ’

14 b.setV(b, 0); // without ‘this ’

Code 6 Keyword ‘this’ in JavaScript

The primary goals of the pronoun keyword ‘this’

from JavaScript and the Context-Dependent Pro-

noun in NPLang are different. In OOP languages,

keywords such as ‘this’ or ‘self’ are generally used to

enhance the usage of object-oriented design, while

in our research, the context-dependent pronoun

serves the purpose of being an alternative but sim-

pler way to express existing identifiers or expres-

sions.

Another programming language example of using

pronoun words is AppleScript [1]. In AppleScript,

the keyword ‘me’ refers the current script and the

keyword ‘it’ refers to the current target. As Code 7

(cited from [1]) shows, the word ‘its’ and ‘my’ are

used to access properties of the objects referred to

by ‘it’ and ‘me’.

Similar to previous example, AppleScript only

provides pronouns for referring the current scope

itself, rather than referring entities appeared in the

previous context. Our system exploits pronoun

words in a way that more similar to the usage in

natural languages.

1 tell application "Finder"

2 version

3 --output: "10.5.1" (Finder

version is the default

in tell block)

4 its version

5 --output: "10.5.1" (

specifically asks for

Finder version)

6

7 version of me

8 --output: "2.0" (AppleScript

version)

9 my version

10 --output: "2.0" (AppleScript

version)

11 version of AppleScript

12 --output: "2.0" (AppleScript

version)

13 end tell

Code 7 AppleScript Example

5 Conclusion

In this paper, we introduced the background of

programming-by-voice and our proposal of embed-

ding context-dependent pronouns to prune the re-

dundant information in order to make the spoken

programming syntax easier to be dictated. We

also presented our prototype programming lan-

guage NPLang, and showed how our proposal per-

form in this prototype.

We have mentioned that the current design suf-

fers from the limitation of flexibility to design more

pronoun words, as well as the efficiency for users

to learn how to use context-dependent pronouns.

Therefore, as the future direction, we are consid-

ering to apply coreference resolution models from

the area of Natural Language Processing into the

NPLang in order to resolve the pronoun keywords

automatically. The coreference resolution model

is used to group phrases that are referring to the

same entity. It is a evolving machine learning so-

lution to automatically resolve the meaning of pro-

nouns in natural languages. The usage of spoken

programming language might be more flexible with

help from such model, because the model might be

able to infer the referred phrases from the semantic

knowledge understanding of the pronouns.

参 考 文 献
[1] AppleScript Language Guide, Apple: The it and

me Keywords. Retrieved from: https://developer.

apple.com/library/archive/documentation/AppleSc

ript/Conceptual/AppleScriptLangGuide/conceptual

/ASLR fundamentals.html.

[2] Arnold, S. C., M. L. and Goldthwaite, J.: Pro-

gramming by voice, VocalProgramming, In Proceed-

ings of the fourth international ACM conference on

Assistive technologies, 2000, pp. 149–155.

[3] Desilets, A.: VoiceGrip: a tool for programming-

by-voice, International Journal of Speech Technol-

ogy, Vol. 4, No. 2(2001), pp. 103–116.

[4] Desilets, A., F. D. and Norton, S.: Voicecode:

An innovative speech interface for programming-

by-voice, In CHI’06 Extended Abstracts on Hu-

man Factors in Computing Systems, (2006 Apirl),

pp. 239–242.

[5] Java Documentation, Oracle: Using the this Key-

word. Retrieved from: https://docs.oracle.com/java

se/tutorial/java/javaOO/thiskey.html.

[6] JavaScript Reference, MDN Web Docs: This. Re-

trieved from: https://developer.mozilla.org/docs/

Web/JavaScript/Reference/Operators/this.

