
日本ソフトウェア科学会第 37 回大会 (2020 年度) 講演論文集

Attempts on applying graph neural network to

cross-language code-clone detection

Yao Xuyang, Shigeru Chiba

クロスプラットフォームアプリケーションやソフトウェアの移植が増加しているため，異なるプログラミング言語の
間での機能の重複は回避できなくなってきている．これらのようにプログラミング言語が異なる類似したコードの繰
り返しは言語間コードクローンとして知られている．複数のプログラミング言語の間での言語間コードクローンの検
出はクロスプラットフォームアプリケーションのバージョンコントロールやバグ修正のために非常に重要である．し
かし言語間コードクローンはふつう構文的にはあまり似ていない．このことが検出を難しくしている．この問題領
域ではすでに多くの研究が行われている．その中のいくつかはソースコードの構文的構造，抽象構文木 (Abstract

Syntax Tree, AST) を用いる．これは AST が，プログラミング言語が異なるにも関わらずコードクローンの類似
性を共有すると思われるからである．一方で，同一言語のコードクローン検出にグラフの構造情報を抽出できる革新
的なコンセプトであるグラフニューラルネットワーク (Graph Neural Network, GNN) を利用する研究も進められ
ており，多くの結果を残している．我々の研究では GNN モデルを言語間コードクローン検出に適用しようと試み
る．本論文ではいくつかのモデルの設定と関連する実験と結果，そして今後の構想を示す．

Due to the increase in cross-platform applications and the transplantation of software, repetitions of func-

tionality in different programming languages become unavoidable. These repetitions of similar code in

different programming languages are known as cross-language code-clones. Detecting cross-language code-

clones implemented in different programming languages is vital for tasks like version control and bug fixing

for cross-platform applications. However, cross-language code-clones are usually syntactically different to

each other which make them difficult to be detected. Many studies have already been conducted in this area,

some of them work on abstract syntax tree (AST), a syntactical structure of source code, which may share

some similarity between code-clones despite of the difference in programming language. Meanwhile, there

has been researches conducted on monolingual code-clone detection utilizing a novel concept called Graph

Neural Network (GNN), which is capable of extracting structural information from graphs and achieved

significant progress. In this work, we tried to apply a GNN model to the task of cross-language code-clone

detection. This paper will be about several model settings and corresponding experiments and results,

finishing with some future thoughts yet to be finished or conducted.

1 Introduction

Code-clones refers to pairs of code fragments that

share some level of syntactical or semantical simi-

larity. Undiscovered code-clones can cause poten-

tial problems in bug fixing, version maintenance or

∗ グラフニューラルネットワークを言語間コードクローン
検出に適用する試み
This is an unrefered paper. Copyrights belong to

the Author(s).

姚 旭楊, 千葉 滋, 東京大学大学院情報理工学系研究科,

Graduate School of Information Science and Tech-

nology, University of Tokyo .

even runtime efficiency. With the development of

cross-platform applications and increase of pack-

age transplanting among programming languages,

code-clones are occurring more and more frequently

among different languages. Thus there has been ris-

ing demand on efficiently detecting cross-language

code-clones.

However, the difference of syntax and keywords

between programming languages greatly stressed

the difficulty of syntactical detection of cross-

language code-clones, which makes the monolingual

code-clone detection approaches no longer feasible



on the cross-language task. Currently, in order to

detect semantical similarity between cross-language

code pairs, many recent works has been utilizing

intermediates such as Control Flow Graph (CFG)

and Abstract Syntax Tree (AST) which contains

code semantics in their structure. The literature

[4] compared the similarity of source code by di-

rectly comparing a modified AST; the literature

[5] generated vector representation for ASTs with

a recurrent neural network (RNN) model with long

short-term memory (LSTM) to compute their sim-

ilarity.

On the other hand, a new class of deep learning

model, Graph Neural Network (GNN), has been

proposed. GNN is a class of connectionist models

that capture the dependence of graphs via message

passing between the nodes of graphs. Due to its ca-

pability of process non-linear graph structures, we

believe GNN is also feasible for extracting informa-

tion and comparing similarity of ASTs. Although

plenty of GNN models has been proposed, as far as

we know currently there is no precedent on apply-

ing them to cross-language code-clone detection.

In this paper, we present our attempt on propos-

ing a GNN based model for detecting cross-

language code-clones. Our model is expected to

generate embeddings from ASTs, which could be

used to compute the similarity between correspond-

ing code fragments.We build the model by imple-

menting and modifying existing GNN models, and

training them with specially designed data set. Our

work mainly contributes as follows:

• To the best of our knowledge, we are the first

to attempt applying GNN models on cross-

language code-clone detection.

• We tried to automate the code embedding

stage by data augmentation, without the need

of a huge well-labeled data set.

• We studied the possibility of graph neural net-

work models detecting similarity between het-

erogeneous graphs.

The remainder of this paper is arranged as fol-

low. In section 2 we describe our motivation of

choosing to apply GNN models on ASTs. Then

in section 3 we present the implementation of our

model. The experiments and results are provided

in section 4, following with comparison with a close

work [7] section 5. Finally in section 6, we will give

a conclusion to this paper and talk about our plan

for next step.

2 Extracting semantic information

from ASTs

In this work, we aim to detect cross-language

code-clones by extracting semantic information

from abstract syntax tree (AST) with graph neural

network (GNN) models. Clone detection has been

a long studied topic and there has been promising

results on syntactical similar code-clone detection.

However, it remains an unsolved problem to effi-

ciently detect code-clones that are similar in seman-

tics but different in syntax, especially when they are

from different languages. Based on existing GNN

models, we propose to train an embedding genera-

tor that projects code fragments into a latent space

according to their functionality. Thus similarity of

code pairs can be computed with their embeddings,

even if they are from different languages.

Code-clones are commonly classified into four

types. While Type I-III clones share much similar-

ity on their source code, Type IV and weak Type

III code-clones can be quite different on the text.

Due to the fundamental difference in syntax be-

tween programming languages, all cross-language

code-clones are classified into Type IV. In order

to detect such clones, semantical information usu-

ally matters more than syntactical details. Thus

it has become a common approach to detect Type

IV, especially cross-language code-clones, by utiliz-

ing Abstract Syntax Tree (AST).



Figure 1 Overview of our proposed cross-language code-clone model. In this work, we implement

the node embedding and graph embedding stage by localizing existing GNN models, and focus on

the design of data set and the mapping stage to overcome the structural difference between ASTs

from different programming languages.

AST is a tree representation of the abstract syn-

tactic structure of source code written in program-

ming language. By ”abstracting” the ”syntax”,

ASTs ignore most of the text level details while

preserving the structure of the source code. Typ-

ically, indentation in Python and curled brackets

in Java which preserves the block information will

only result in the parent-children relationship in an

AST. Thus it is a common case where different code

fragment may share roughly similar ASTs.

There are more advantages for representing code

with AST. In an AST, each node is linked with its

neighbors in a clear hierarchical structure, which

may further indicate the general functionality of

the corresponding block of code. In other words, a

small neighborhood of nodes in an AST could pos-

sibly present the information contained in a long

sequence of tokens. Moreover, due to the hierar-

chical structure of AST, it’s easy to extract infor-

mation for different granularity of the source code,

simply by starting from different node.

Due to the non-linear tree structure of AST, it

cannot be directly processed by common linear ap-

proaches. There have been different attempts on

computing the similarity between ASTs. [6] lin-

earized the AST with traverse of a certain order

so that the resulted linear sequence can be com-

pared with Smith-Waterman local sequence align-

ment algorithm. [7] flattened the tree structure in

the depth order so that it can be fed in to a recur-

rent neural network (RNN) with long short-term

memory (LSTM).

On the other hand, graph neural network is a

class of model that take graphs as direct inputs and

extract their structural information, in the case of

code fragment, semantic information. For a typical

GNN model, it gathers information of each node

and its neighbors as the final node embedding out-

put. In the case of AST, such neighborhood in-

formation of each node is expected to represent a

partial functionality of the source code. Finally,

we believe aggregating the node embeddings would

generate a representation that acts as a ‘summary’

of the source code functionality, which can be uti-

lized for code-clone detection.

3 AST embedding models

In this section we will describe the models we pro-

posed for the task of cross-language code-clone de-

tection. Our general idea is to generate embeddings

for code fragments from different languages that

follows same local distribution. Then we project

the embeddings of one programming language to

the other with a mapping function to blur the

language-wise difference, so that similar code from



different programming languages could have close

embeddings.

Our embedding model consists of node embed-

ding and graph embedding. For the node embed-

ding stage, we implemented the existing GNN mod-

els DeepWalk [6] and GraphSage [1] for compari-

son. Since the DeepWalk model is originally de-

signed for single graph node embedding generation,

we specially modified the structure of data to fit the

input for the DeepWalk model. For the graph em-

bedding stage we modified the gated readout func-

tion proposed in the GGNN model [3]. Then we

trained our model with a data set generated with

special augmentation rule. Finally, since it’s an

early attempt, we simply applied a MLP as the

mapping function.

In the remainder of this section, we first describe

the setting of the node embedding and graph em-

bedding model. Then we introduce our idea for

data augmentation and embedding mapping.

3. 1 Node embedding model

In this stage, we re-implemented two existing

GNN models [1] [6] for node embedding. The aim of

this stage is to capture the structural information

from the neighborhood of each model, which could

potentially indicate the local functionality. The re-

sults generated by the two models are used for the

next stage respectively, for comparison.

3. 1. 1 DeepWalk

DeepWalk [6] is a commonly used approach for

generating latent representation of vertices in a

graph. For each training step, starting from an ar-

bitrary node, the model randomly picks a route of

certain hops according to some pre-designed tran-

sition rule. This route is called a random walk, and

it’s treated as the equivalent of a sentence. Then

the generated sentences are considered as a spe-

cial language, and processed by a neural language

model to capture neighborhood similarity and com-

munity membership.

However, DeepWalk is a embedding model for

single graph, and it lacks generalization ability

across graphs, which means for the same node la-

bel in different graphs, it’s very likely that Deep-

Walk will generate different embedding. So we first

treated the whole data set as a single disconnected

graph. To make the training process more intu-

itive, we further combined all the nodes with same

label into a single node. And we assigned the num-

ber of occurrences of each edge as its weight, thus

during the random walk stage, the probability of

choosing each neighbor node will be proportional

to the weight of the edge. In order to generate sim-

ilar embedding for different different programming

languages, in our case Python and Java, we further

merged similar nodes, e.g. IF node in Python and

Java.

As our expectation, a collection of information

in a certain neighborhood of AST could represent

local functionality. In this model setting, gener-

ated node embeddings are shared across all ASTs

after the training phase. For the embedding of

each node, it generalizes all possible situation of

functionality with occurrence of the node, instead

of representing the specific local functionality of

the node in a certain AST. In such case, the pro-

posed model blurs the differences in usage of the

same node. And since node embedding network

is learned in an unsupervised way and is separated

from graph embedding network, this model requires

relevantly less computational cost.

3. 1. 2 GraphSage

In order to capture more code-dependent local

functionality information, we applied the Graph-

Sage[13] model to generate node embedding. In-

stead of extracting substructure from the graph,

the GraphSage model directly learns a function

that generates embeddings by sampling and ag-

gregating features from a node’s local neighbor-



hood. With the constraint of the same generation

function, GraphSage model is capable of generat-

ing stable (slightly different according to neighbor-

hood structure) for same node label across different

graphs.

However, GraphSage is a supervised learning

model which requires labels (typically classifica-

tion) for each node, which is not required in the

graph classification step of our model. Instead of

training the node embedding before aggregating

them for graph embedding, we directly aggregate

the untrained node embeddings and train the node

embedding network and graph embedding network

together by providing graph-wise labels.

This model focus more on the specific local struc-

ture of each individual AST, and the node label

does not take significant part in the output. So

we tried both separated and merged node labels in

generating embeddings for different programming

languages.

3. 2 Graph embedding model

With the generated node embedding as local in-

formation, we further apply an aggregation func-

tion to compute graph embedding as a ‘summary’

of the corresponding code fragment. In this work,

we used the aggregation model proposed in the lit-

erature [3]:

hG = MLPG(
∑
i∈V

δ(MLPgate(hi))⊙MLP (hi))

(1)

Intuitively, this model works as an aggregation

function with attention mechanism. First the node

embedding is processed by a simple MLP. At the

same time, it go through a Gate network MLPgate

which outputs a importance weight for each dimen-

sion of the processed node embedding. Finally all

the weighted node embedding is aggregated (sum,

average, max pooling, etc.) and output through a

final aggregation network MLPG.

By the observation that in an AST, the nodes

closer to the root node usually have a closer rela-

tionship to the main function of the code, we also

trained a weight parameter for each layer of the

AST to utilize the structural information:

hG = MLPG(
∑
i∈V

δ(MLPgate(hi))⊙MLP (hi)×layer(i))

(2)

where layer(i) refers to the weight parameter of the

layer of node i.

3. 3 Learning code space

Unlike common classification tasks, code-clone

detection task is a pair-wise classification task

where there is no certain label for each single code.

Instead of mapping the input code fragments into

a finite set of discrete class, our model intend

to project them into an infinite continuous latent

space, where the distance between each pair of em-

bedding indicates the similarity of the correspond-

ing code fragments. This can be achieved with pair-

wise labels using a deep similarity learning method

called TripletMarginLoss[15]:

LTriplet(E,E+, E−) = max(d(E,E−)−d(E,E+),m)

(3)

Given an arbitrary output embedding E, and em-

beddings from a positive sample E+ and a nega-

tive sample E−, the loss function encourage the

distance between negative pairs d(E,E−) to be

greater than positive pairs d(E,E+) by a least a

margin m. However, the clone pairs given by com-

mon code clone data sets are usually too similar,

and the positive samples are limited to the clone

pairs. An ideal data set should contain a relative

distance ’label’ for arbitrary pair of code, which is

not available.

In this work, we propose to inject positive and

negative samples to the original data set by uti-

lizing data augmentation. Currently the injected

samples are generated by changing node types and



Figure 2 General idea for latent space learning and mapping. In figure (a), solid lines represents

the training phase, closer distance between embeddings indicates higher similarity between

corresponding code fragments. Dotted line shows when the model tries to embed a new code

fragment unseen in the data set. Figure (b) shows the mapping stage designed for cross-language

code-clone detection. By mapping embeddings from one language cluster to another, we implicitly

remove the language-wise difference in the embeddings.

moving edges between nodes randomly. Positive

samples are generated with lower probability of

changing, and nodes are more likely to be replaced

by similar types, e.g. replacing FOR with While.

Negative samples are generated with higher chang-

ing probability and randomness.

3. 4 Mapping function

The graph embedding generated by the previous

steps captures not only semantic information of the

source code, but also the structure style of AST of

the certain language. In the monolingual case, em-

beddings from different code fragments share the

same language style information, thus the differ-

ence between embedding pairs can be regarded as

semantic difference. But in cross-language situa-

tion, the language-wise difference is too significant

to be ignored. However, according to our expecta-

tion, though code embeddings from different lan-

guages are distributed separately due to the struc-

tural difference of AST, they should obey same lo-

cal distribution rule according to their semantics.

Thus, we further proposes a mapping function that

attempts to map the latent representation of one

language to the other in order to blur the language-

wise difference.

4 Experiments & Results

In this section we present the experiments we

conducted and the current result of our models

on both monolingual and cross-language code-clone

detection. Though we did not achieve a promising

result on the cross-language task, we tried to prove

the feasibility of our approach, thus we argue that

applying GNN models on such task is an idea worth

trying, and there is much space for improvement for

our model.



4. 1 Monolingual clone detection

4. 1. 1 Experiment settings

We believe being able to detect monolingual

code-clone is a precondition for a model to detect

cross-language code-clones, so we started from the

former task. We used two data sets for the mono-

lingual code-clone detection task, one crawled from

LeetCode[9] containing answers written in Python

and Java for 100 different questions, and the data

set from BigCloneBench[10] benchmark.

For the data set crawled from LeetCode, we in-

jected positive and negative samples by data aug-

mentation, with adding, removing and switching of

nodes (sub-trees) by a specific probability. During

the training and testing phase, only the original

sample and injected positive and negative samples

are labeled as positive and negative pairs respec-

tively. We will discuss about this limitation in sec-

tion 6.We used 70% of the data set for training,

15% for testing and 15% for validation.

BigCloneBench is a widely used large code clone

benchmark that contains over 6,000,000 true clone

pairs and 260,000 false clone pairs from 10 dif-

ferent functionalities extracted from Java projects.

BigCloneBench mainly contains Type-3 and Type-

4 clones, thus is appropriate for testing semantic

code-clone detection models. In this work, instead

of separating the data set of BigCloneBench into

training and testing data set, we trained the model

with the LeetCode data set and tested it with Big-

CloneBench, in order to prove the generalization

ability of the proposed model.

We implemented the DeepWalk and GraphSage

model following the source code from github repos-

itory[11,16]. We refer our models implement-

ing DeepWalk and GraphSage as DeepWalk and

GraphSage respectively, in the remainder of this

paper. We used 3-layer MLPs with activation func-

tion ReLU for the readout function, gate function

and aggregation function in the final aggregation

step.

We train the model for 20 epochs with adaptive

learning rate (the decrease speed of loss becomes

slow enough according to observation). We com-

pute the similarity score with normalized Euclidean

distance and set the threshold to 0.6 for LeetCode

data set and 0.8 for BigCloneBench (code pairs

with score lower than 0.8 are considered clone).

4. 1. 2 Results

On the crawled LeetCode data set, our model

managed to detect all injected positive clones, while

classifying some of the negative pairs as clones.

However, we have to mention that in the aug-

mented data set, only the original injected samples

will be selected as positive or negative pairs, which

could cause bias on the result.

For test on the BigCloneBench, we used the

testing tool BigCloneEval provided by the author.

Though trained with a totally different data set,

our model still managed to detect most of the Type-

Table 1 Monolingual result on

crawled LeetCode data set

model precision recall

DeepWalk 0.88 1

GraphSage 0.91 1

Table 2 Cross-language result on

BigCloneBench

Recall Per Clone Type

Clone types recall

Type-1 1.0

Type-2 1.0

Type-2 (blind) 1.0

Type-2 (consistent) 1.0

Very-Strongly Type-3 1.0

Strongly Type-3 0.9816

Moderately Type-3 0.8907

Weakly Type-3/Type-4 0.5117



(a) Language-wise distribution (b) File name distribution

Figure 3 An example of the code embedding generated by the GraphSage model. (a) shows the

distribution of code fragments from different languages, where red dots stand for Java and blue

dots stand for Python. (b) shows the distribution of code fragments by their file index, where

darker dots corresponds to greater index, however, file index has no direct relationship to the

functionality of code fragment. While language-wise clustering is obvious, it’s almost impossible to

observe any distribution patter inside the clusters.

3 clones, failing mostly on weakly Type-3/Type-4

clones. This proves the feasibility of our model on

monolingual code-clone detection task despite the

bias on the training data set.

4. 2 Cross-language clone detection

4. 2. 1 Experiment settings

For detecting cross-language code-clones, first we

project the code fragments from each programming

language to independent latent spaces with the em-

bedding generation model. Again we used Deep-

Walk and GraphSage respectively as the node em-

bedding model. The experiment setting of this

stage exactly follows the monolingual setting. Then

we map one of the latent space into the other with

a mapping function. We used a simple 3-layer MLP

as the mapping function. In order to The embed-

ding model and mapping function is trained sepa-

rately. Finally, for a pair of randomly sampled code

fragments, we compute the distance of their embed-

ding and compare it with the threshold to judge if

they are clone or not. For performance evaluation,

we randomly sampled positive and negative code

pairs at a ratio of 1:5, and computed Area Under

the Curve (AUC) score.

4. 2. 2 Results

It’s a pity to admit we did not acquire promis-

ing result in the experiment for detecting cross-

language code-clones.

The training of code embedding model finished

normally. We generated code embedding with

model implementing DeepWalk and GraphSage re-

spectively. However, the training of mapping func-

tion on both embedding set failed to converge. The

loss of mapping function on both embedding set os-

cillate around 0.4-1.5. In the evaluation, while the

model implementing DeepWalk got an AUC score

of 0.5, the AUC score for the model implementing

GraphSage occasionally reaches 0.58-0.6, indicat-

ing it works slightly better by capturing individual

structure of code fragment.

For the embedding generated by the GraphSage

model, we put the vector representation of Python

and Java code together to observe the pattern. The

model generated clearly separated embedding for

Python and Java, which means the model is capa-

ble of distinguishing language-wise structure differ-

ence even without explicit training. But there is no



sign of specific pattern inside each language cluster

which is required for code-clone detection.

5 Related work

The literature [7] is the most recent work try-

ing to solve monolingual code-clone detection task

with GNN model. As the first try on detecting

code-clones with GNN, they reached very promis-

ing result with their proposed model. Instead of

working directly on ASTs, they designed a novel

graph representation form FA-AST for Java pro-

grams by adding control flow edges and data flow

edges to enrich potential information contain in the

original ASTs. For the GNN model, they applied

GGNN [3] and graph matching network GMN [2] as

comparison model, and finally reached better result

with the GMN model.

Unlike typical GNN models that generate node

embedding or graph embedding for a single graph

each inference time, GMN model takes a pair of

graphs as input each time, and conducts a pair-

wise classification. Due to the pair-wise attention

mechanism, a GMN model is capable of capturing

general similarity of a pair of graphs while focusing

on detailed key differences. Thus by applying the

GMN model, the literature [7] managed to detect

structurally similar negative samples and positive

samples that only share detailed similarity.

However, as a monolingual code-clone detector,

[10] requires well labeled data set to work properly.

Besides, since GMN is a pair-wise classifier, the

embedding it generated for each graph depends on

the input pair thus each inference process requires

a complete work procedure of the whole model,

and the generated embeddings cannot be reused in

other situation. For the cross-language code-clone

task, the graph structure for ASTs from different

languages differs too much for the pair-wise atten-

tion mechanism to work correctly.

6 Conclusion & Future work

As proved in the literature [7], GNN models can

be a powerful tool for monolingual code-clone de-

tection. In our work, we would like to further argue

that GNN is also a proper choice for cross-language

code-clone detection. By the preliminary exper-

iments and results, we show that a GNN model

can project the code fragments into a latent space,

but the information preserved by that projection

greatly depends on the data set and the design of

training stage.

Currently in our proposed model:

• the possible range of input sampling is severely

limited by the augmented data set

• what the model can learn from the data set is

greatly biased due to the sub-optimal rule of

data augmentation

• the mapping function is too simple that might

not be capable of blurring the language-wise

difference

Despite these unsolved problems, we still in-

sist that a proper embedding model for generating

language-irrelevant embeddings can be proposed

base on GNN models. In the future, we will fo-

cus on overcoming the listed difficulties to improve

the performance of our model.

参 考 文 献

[1] Hamilton, W., Ying, Z., and Leskovec, J.: Induc-

tive representation learning on large graphs, Ad-

vances in neural information processing systems,

2017, pp. 1024–1034.

[2] Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli,

P.: Graph matching networks for learning the sim-

ilarity of graph structured objects, arXiv preprint

arXiv:1904.12787, (2019).

[3] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel,

R.: Gated graph sequence neural networks, arXiv

preprint arXiv:1511.05493, (2015).

[4] Nichols, L., Emre, M., and Hardekopf, B.: Struc-

tural and Nominal Cross-Language Clone Detec-

tion, Fundamental Approaches to Software Engi-

neering, Hähnle, R. and van der Aalst, W.(eds.),

Cham, Springer International Publishing, 2019,



pp. 247–263.

[5] Perez, D. and Chiba, S.: Cross-language clone

detection by learning over abstract syntax trees,

2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR), IEEE, 2019,

pp. 518–528.

[6] Perozzi, B., Al-Rfou, R., and Skiena, S.: Deep-

walk: Online learning of social representations, Pro-

ceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data min-

ing, 2014, pp. 701–710.

[7] Wang, W., Li, G., Ma, B., Xia, X., and Jin, Z.:

Detecting Code Clones with Graph Neural Network

and Flow-Augmented Abstract Syntax Tree, 2020

IEEE 27th International Conference on Software

Analysis, Evolution and Reengineering (SANER),

2020, pp. 261–271.


