
日本ソフトウェア科学会第 37 回大会 (2020 年度) 講演論文集

Type-check Python Programs with a Union

Type System

Senxi Li Tetsuro Yamazaki Shigeru Chiba

We propose that a simple type system and type inference can type most of the Python programs with an

empirical study on real-world code. Static typing has been paid great attention in the Python language

with its growing popularity. At the same time, what type system should be adopted by a static checker is

quite a challenging task because of Python’s dynamic nature. To exmine whether a simple type system and

type inference can type most of the Python programs, we collected 806 Python repositories on GitHub and

present a preliminary evaluation over the results. Our results reveal that most of the real-world Python

programs can be typed by an existing, gradual union type system. We discovered that 82.4% of the ex-

pressions can be well typed under certain assumptions and conditions. Besides, expressions of a union type

are around 3%, which indicates that most of Python programs use simple, literal types. Such preliminary

discovery progressively reveals that our proposal is fairly feasible.

1 Introduction

Static typing has been paid great attention in

the Python language with its growing popularity.

At the same time, what type system should be

adopted by a static checker is quite a challenging

task because of Python’s dynamic nature. There

have been sufficient existing works on static typing

for Python. Mypy [5], one of the most famed static

type checkers in Python, use type annotations in-

troduced from Python 3.0 and statically typecheck

programs by giving semantics to the annotations.

Mypy has a powerful type system with features

such as bidirectional type inference and generics,

∗Type-check Python Programs with a Union Type

System

This is an unrefereed paper. Copyrights belong to

the Author(s).

Senxi Li, Tetsuro Yamazaki, Shigeru Chiba, 東京大
学大学院情報理工学系研究科, Graduate School of

Information Science and Technology, University of

Tokyo.

while the effectiveness of the type system has not

been empirically studied. Other works such as Py-

type implement a strong type inferencer instead of

enforcing type annotations.

As a dynamically typed language, Python excels

at rapid prototyping and its avail of metaprogram-

ming and reflection. Pythonists can also customize

their own metaclasses and create classes at run-

time. Beside, programmers can introspect or fur-

ther create, modify Python objects dynamically in

any sense. However, these powerful features would

be nightmare for static checkers. Modifying a class

attribute with eval(‘Rect.setColor("red")’) at

runtime will not provide any type information to a

static checker. Therefore, the checker will complain

and raise an attribute error if the program inquires

this attibute by accessing Rect.color, or will just

throw an unknown type if the type system is grad-

ual. The operations can hardly provide any type

information before runtime and thus a checker will

fail to typecheck that piece of code. Consequently,

it is impossible for any exising type system to type-

check all Python programs at a theoretical level.

While such discussion can easily drive us to an

end that no existing type system can fully type-

check all Python programs, the following assump-

tions play a substantial role in our motivation:

• Python programs seems easy. Being a popu-

lar programming language used by people from

web developers to data scientists, most of the

Python programs shall be easy to read and

share. As another aspect, machine learning

tasks take a significant role in Python appli-

cations in recent years. In spite of their indeed

complicated algorithms, it can be smoothly

imagined that simple data types can handle

their code and many of the expressions are just

literals like numbers and lists. Initializing a

tensor with a value of List[float], function

of mathemetical multiplication over matrix and

vector being typed as List[List[float]] →
List[float] → List[float] and so on may

serve as evidence for our assumption.

• Programmers are competent and well-educated.

This hypothesis is heavily rooted in the com-

petent programmer hypothesis [1], which states

that most software faults introduced by ex-

perienced programmers are due to small syn-

tactic errors. Furthermore, the majority of

Python programmers are believed to have a

background of some statically typed languages.

In other words, well-educated programmers

write programs that may obey a type system

they are familiar with implicitly, even Python

syntatically never impedes them writing “un-

typable” code. Accordingly, a simple type sys-

tem for objects can type most of such Python

programs.

These concerns and assumptions lead us to our

research question: Is there an exising type system

able to type most of real-world Python programs?

To answer the question, we collected Python reposi-

tories from GitHub and analyzed their source code

with a static checker driven by a designed, sim-

ple gradual union type system. We believe that

union type can handle abstraction and polymor-

phism within bounds, which can meet the damand

of real-world Python code. In addition, we ap-

ply a type inference approach that infers function

and method types by type information from run-

time. While runtime can only tell properties of ob-

jects under limited conditions, we claim that vari-

ables, functions and objects can be correctly in-

ferred and typed if runtime can consistently provide

their types.

Our preliminary result shows that our designed,

simple type system and type inference algorithms

can typecheck most of the Python programs. The

investigation indicates that 82.4% of the expres-

sions in the source code are well typed under certain

conditions. Besides, only 3.1% of the expressions

are of union type. This paper also involves further

evaluation to better analyze if such a type system

can satisfy Python’s need.

This paper proceeds in the following manner.

Section 2 discuesses our motivation and briefly re-

views benefits of static typing over dynamic typing.

Section 3 proposes a pseudo language and by de-

scribing its core calculus we further discuss how our

system performs type checking. Section 4 shows

our empirical study of real-world Python programs

and its results will help answer the research ques-

tions that we address. Section 5 mentions related

works and a conclusion with directions for future

work ends this paper.

2 Motivation

There have been many complex type systems and

type inference algorithms proposed for Python in

order to statically typecheck programs. However,

they are not successful because of the dynamic na-

ture of Python. Many of the existing works ap-

ply strong type systems such as callable type to

type functions/methods and generics to abstract

objects more precisely. Type inference algorithms

infer types with hints avaiable in the source code.

In the following of this section, we will illustrate

how some of existing type systems can and cannot

type Python programs with examples.

One of the primary benefits of static typing over

dynamic typing is that it helps localize errors. For

example, suppose a programmer misunderstands

the use of a library function, such as a getSum func-

tion in a module arith which expects one argument

of a list of integers but instead the programmer

passes in a list of strings.

1 from arith import getSum
2

3 lst = ["sum", "the", "list"]
4 getSum(lst)

In a purely dynamically typed language, calling the

function in such a way will cause a runtime error.

Perhaps such runtime error will occur deep inside

the body of the function in arith, which contains

operations that can be performed on numbers but

not strings. On the other hand, if the programmer

make use of a static type checker, the error can be

detected and caught before the call to getSum. The

following shows that the parameter and return of

function getSum is annotated using type annota-

tions.

1 from typing import List
2

3 def getSum(argList: List[int]) −> int:
4 ...

The parameter of the function is well annotated

with a generic list type so that a static checker

can understand what type of elements a list should

hold. By documenting and enforcing type con-

strains on the definition of getSum, a static checker

can prevent the usage of the function if the given

argument conflicts as declared before indeed run-

ning the user code.

At this moment it seems that we can type Python

programs if a programmer carefully inject type an-

notations with the usage of a well implemented

type checker. However, the situation will not let

us stay optimistic as long as we are engaging with

Python. As a powerful dynamic language, Python

has a strong functionality on introspection and re-

flection, enabling programmers to introspect or fur-

ther modify objects at runtime. Consider the fol-

lowing piece of code:

1 class Rect:
2 pass
3

4 def touchColor(arg: Rect) −> str:
5 exec("arg.color = ‘red’")
6 return arg.color

Though this program can be seriously complained

about the bad attribute usage, the given code is

absolutely valid in Python. In the body of func-

tion touchColor, the behavior of the argument arg

is modified by the builtin function exec such that

a string is assigned to an attribute color of arg.

Calling this function by passing in an instance of

class Rect at runtime will return "red" just as de-

signed. Nevertheless, this piece of code cannot be

well typed with a normal type system, or any ex-

isting ones even its argument and return are finely

annotated. A static checker, such as Mypy [5], will

complain that “Rect” has no attribute “color”. The

confliction stems from the fact that the reflection

at line 5 does not render any type information to

the checker statically.

3 Core Calculus

Observations and presumptions bring us to the

following idea: a simple but well designed type sys-

tem can type most of the Python programs. We

choose a simple, gradual union type system which

seems powerful enough for typing Python code and

by applying the type system, we shall carry out an

empirical study to investigate to what extent real-

world Python programs are typeable. To show the

core calculus of our designed type system, we de-

fine a simple pseudo language MiniPy and give its

formal calculus. The static semantics of MiniPy is

almost a subset of the Gradual Typed Object Cal-

culus defined in [8]. For simplicity, MiniPy does not

have statements and only contains part of the ex-

pressions in Python. Meanwhile, the typing rules

and type checking of MiniPy are the core part of

that of our developed type system.

The type system of MiniPy is a gradual, union

type system. The purpose of choosing the grad-

ual typing, which allows the mixture of static and

dynamic typing, is to distinguish the typeable and

untypeable with the power of the unknown type. We

use the unknown type to mark the parts of the pro-

gram that cannot be typed as dynamically typed,

and use the other types in the type system to type

those typeable parts.

In the following subsections we first give the syn-

tax and typing rules of MiniPy and then show how

the type system typechecks programs.

3. 1 Syntax

The syntax of MiniPy is given as follows:

CL ::= class C(C): {M} [class]

M ::= def m(p): return e; [method]

e ::= x | C() | e.f | e(e) [expressions]

The metavariables are listed as follows: C, D range

over class names; M ranges over method declara-

tions; f ranges over fields; m ranges over methods;

x ranges over variables; e ranges over expressions;

In MiniPy, we can define a class with the class

definition CL. A class definition class C(D): {M}
introduces a class named C inheriting a superclass D.

The body of the class definition is a single method

declaration M. The body of the method is a single

return statement. Expressions e includes some of

the primary expressions in Python. C() refers to in-

stance initialization, which will create an instance

of a class C. e.f refers to field access. e(e) suggests

an invocation. Since there is no function definition

in MiniPy, e(e) can only be method invocation.

3. 2 Subtyping

Now let us define the types, denoted as follows:

T ::= ? | C | T → T | T ∨ T

T, S range over types; ? refers to the unknown

type in a gradual type system.

As the types suggest, our type system is grad-

ual, which mixs static and dynamic type checking

by introducing the unknown type ?. Gradual typ-

ing integrates the unknown type ? and type consis-

tency into an existing static type system in order

to support fully dynamic type checking, static type

checking, and any point on the continuum. [3]

Besides basic types and function type, the type

system allows union type. A union type, more pre-

cisely, an untagged union, noted T1 ∨ T2, denotes

the value of such a type can be either T1 or T2

at runtime. In the set-theoretic interpretation for

union type by Frisch [2], for example, Int ∨ Int is

the same type as Int; a value of Int can be a value

of Int ∨ String. Union type can be used to type

methods whose argument shares some same proper-

ties. For instance, a method declaration def m(x):

return x.f; can be well typed as type (T1 ∨ T2)

→ (S1 ∨ S2) if both T1 and T2 have the field f and

their resulting types are S1 and S2, respectively.

Before describing the subtyping rules, let us

briefly discuss the unknown type. ? is completely

unknown: we do not know what type it represents;

in other words, ? represents any type. For in-

stance, a type Int → ? represents a function from

Int to some unknown type. In other words, this

type can be any type of function as long as it maps

from Int to some other type.

While the type consistency relation will be de-

fined in the next subsection, here we present the

subtyping rules as the following:

(<:-?)
? <: ?

(<:-ID)
C <: C

C1 <: C2 C2 <: C3
(<:-TRANS)

C1 <: C3

class C(D): {. . .}
(<:-INHER)

C <: D

S2 <: S1 T1 <: T2
(<:-→)

S1 → T1 <: S2 → T2

S1 <: T S2 <: T
(<:-∨LEFT)

S1 ∨ S2 <: T

S <: T1
(<:-∨RIGHT1)

S <: T1 ∨ T2

S <: T2
(<:-∨RIGHT2)

S <: T1 ∨ T2

The subtype relation is straightforward to define.

Most of the rules just follow a traditional subtyp-

ing for objects. A special construct is about the

unknown type, which is given by ? <: ?. A class

inheritance simply gives a subtype relation from

the subclass to its superclass. <:-∨LEFT describes

that a union type is the subtype of another type if

both of its components are the subtype of that type.

<:-∨RIGHT1 describes that one type is the subtype

of a union type if that type is the subtype of one

of the components of the union type. <:-∨RIGHT2
just explains the other case.

3. 3 Type Consistency

The intuition behind type consistency is to check

whether the two types are equal in the parts where

both types are known. A gradual type system uses

type consistency, which replaces type equality that

a simple type system typically uses. A gradual

type check allows an implict conversion between

two types if they are consistent with each other.

We present the consistency relation∼ on types with

the following definition.

(∼-ID)
C ∼ C

(∼-?1)
? ∼ T

(∼-?2)
T ∼ ?

S1 ∼ S2 T1 ∼ T2
(∼-→)

S1 → T1 ∼ S2 → T2

S1 ∼ T1 S2 ∼ T2
(∼-∨1)

S1 ∨ S2 ∼ T1 ∨ T2

S1 ∼ T2 S2 ∼ T1
(∼-∨2)

S1 ∨ S2 ∼ T1 ∨ T2

The definition of type consistency is almost the

same as the one described in [8], while our type

system involves the union type. (∼-∨1) describes

that two union types are consistent if their com-

ponents are consistent with each other. (∼-∨2)
tells the same property with a reverse consistent

relation of their components since two union types

are identical with the same components even their

order are different.

3. 4 Consistent-Subtyping

Consistent-Subtyping is defined that takes both

type consistency and subtyping into account.

S <: T’ T’ ∼ T
(∼<:)

S ∼<: T

Although this rule still remains some non-

determinacy because of the type T’. Previous re-

searches have conceived the consistent-subtyping

relation in terms of a restriction operator T1|T2
which masks off the parts of a type T1 that are

unknown in a type T2. For space reason we will not

explain its formular or a formal definition of the

consistent-subtyping relation: all details are given

by [8].

3. 5 Typing Rules

The typing rules are outlined in this subsection.

An environment Γ is a finite mapping from variables

to types, written x: T.

Γ ::= ∅ | Γ, x: T

Before illustrating the typing rules, let us define

some operators on types and a lookup function that

are necessary to define and reason the typing rules

and further the type inference. The two operators

on types, especially on function types, are: (i) the

dom(.) operator that given a funciton type T re-

turns the domain of that type and (ii) the cod(.)

operator that returns its codomain. While the for-

mal definition of these two operators are omitted for

space reason, since the unknown type ? in our type

system can be any type (not only basic types), the

patterns for ? proceed as dom(?) = ? and cod(?)

= ?.

The intuition of the lookup function is that we

need to be able to identify the type of a field or

method upon a given type. Function field(T, f)

returns the field type of T if type T holds such a

field, and it is defined by:

field(C, f) = T

field(?, f) = ?

field(T1∨T2, f) = field(T1, f)∨field(T2, f)

field(,) = undefined

With these operators and the lookup function,

the typing rules are given as:

x: T ∈ Γ
(T-VAR)

Γ ⊢ x: T

(T-INST)
Γ ⊢ C(): C

Γ ⊢ e: T0 field(T0, f) = T1
(T-FIELD)

Γ ⊢ e.f: T1

Γ ⊢ m: T Γ ⊢ e: S S ∼<: dom(T)

Γ ⊢ m(e): cod(T) (T-INVK)

The type judegement for expressions is almost a

subset of the one provided by Siek and Taha [Grad-

ual Typing for Objects]. Since our type system is

gradual, T-INVK will judge not the subtype relation

<: between the argument and the parameter, but

their consistent-subtyping relation ∼<:.

4 Can the Union Type System Type

Real-World Python Programs?

In this section we will describe the empirical

study that examines whether our simple type sys-

tem can type most expressions in real-world Python

programs. Detailed construction of the experiment

will be illustrated and a preliminary result, though

still under rough analysis currently, will be given

to progressively show to what extent expressions in

real-world Python programs are typeable under our

designed type system.

To build our dataset, we collected 806 Python

repositories from Github. Our dataset contains 806

repositories, 101,442 Python files and 11,367,317

lines of code in total. Since we didn’t apply any

bias while searching repositories, which can indi-

cate that the applications of the collected reposito-

ries are of various fields. Algorithm 1 shows pseu-

docode for the overview of our experiment setup

and how we typecheck programs and detect static

type errors from a given set of repositories.

Algorithm 1: overview

Data: Repositories ← set of Python

repositories

Result: report of type errors

for repo ∈ Repositories do

run unit tests in repo;

collect runtime type information;

database ← collected runtime type

information;

for .py file ∈ repo do

code ← content of .py file;

typechecker(code, database);

end

end

In a word, for a given set of repositories we first

run their test code if there is. During the exe-

cution, runtime type information is collected and

recorded into database. After that, we extract all

valid Python files inside each repositories and then

use a type checker driven by the type system we

presented in Section 3 to typecheck those Python

files. Finally, a report of static type errors detected

by the checker is carried out.

In the following subsections, we explain how we

conduct each step of the experiment in detail, ana-

lyze the results and then answer the research ques-

tion we addressed.

4. 1 Collecting Runtime Type Informa-

tion

As the first step of the whole experiment, for

each repository we try to retrive runtime type in-

formation to help type inference in the type check-

ing step. Our system infers function and method

types with the type information obtained at run-

time. While runtime can only tell properties of

objects under limited conditions, if collected run-

time types during the execution can give consistent

types to all variables, expressions and functions in

our type system, then we claim that these variables,

expressions and functions can be typed.

Yet running the application is a far more compli-

cated task, fortunately unit test releases us so that

we can easily run the application. Unit test is a

software testing to validate that each unit of the

software performs as designed, quite lightweighted

but able to provide rich runtime information. Re-

garded as an alternative of static typing, unit test is

widely accepted and used by Python programmers.

While not all of the repositories in our dataset

are equipped with well-written unit tests, for those

repositories which have unit tests, we invoke their

tests by pytest [6], which is one of the most used

Python testing tool to build tests.

During the execution of unit tests, we inject

scripts which use the settrace function from the

builtin sys module to interpose on function calls

and method invocations. Furthermore, the argu-

ments and returns of the traced callables are pro-

filed so that the data type of the objects are ob-

tained and they are treated as the runtime type

information of the corresponding functions/meth-

ods. Additionally, builtin container types such

as list and tuple are recorded in generic types,

i.e., the data type of [1, 2, 3] will be profiled

as List[Int], while that of [42, 3.14, ‘tokyo’]

will be profiled as List[?].

For example, consider the following test code:

1 from PhoneMod import Phone
2

3 def test phonecall():
4 phone = Phone()
5 phone.call(123456)
6 phone.call("police")

Class Phone, from a module PhoneMod, has a

method call and its instance invokes this method

with an integer and a string, respectively, and both

will return None. When this piece of test code

is executed, method invocations are traced and

their arguments and returns are profiled. In other

words, the runtime type information of these two

method invocation will be observed as Phone →
Int → None and Phone → Str → None. Since

the method is invoked by the arguments with two

different types, these types will be merged into a

union type and therefore the type of method call

will be inferred as Phone → Int ∨ Str → None.

As we mentioned before, unit test can only test

functions/methods under limited conditions, thus

our type inference from runtime may fail to infer

function/method types if not enough runtime infor-

mation. However, if the given type information in

the unit test can consistently type the tested func-

tions, such type inference can be practically feasi-

ble. Hence, in the following type checking and fur-

ther analysis, we keep an optimistic attitude that

the collected runtime type information can give

consistent types to functions/methods and assume

that the inferred function/method types are typed

correctly.

4. 2 Type Checker

After collecting the runtime type information,

a static type checker is invoked to typecheck

Python programs under each repository. The tar-

get programs are all valid .py files (an unvalid

example could be setup.py file which is a spe-

cial named script file for Python package man-

agement). We implement the static type checker

in Python, parsing a .py file and applying the

typing rules described in Section 3. 5 for type-

checking. For example, following T-INVK defined

in Section 3. 5, function calls and method invo-

cations are checked by consistent-subtyping rela-

tion between the parameters and the given argu-

ments. For example, List[?] and List[Car] are of

consistent-subtyping relation, while List[Person]

and List[Car] are not.

1 from typing import Any, List
2 from mod import Car, Person
3

4 def runCars(arg: List[Car]) −> None:
5 pass
6

7 lst1: List[Any]
8 lst2: List[Person]
9 runCars(lst1) # OK

10 runCars(lst2) # Error!

In the above example, the function call at line 9 will

be totally fine while the call at line 10 will cause a

type error raised by the checker.

Since the calculus described in Section 3 shows

only the core part of the Python language, one of

the uncovered typing rules is the flow-sensitive typ-

ing in the control flow. An example can be:

1 x = "string" if condition else 42

In the above code, variable x can be a string or in-

teger at runtime according to variable condition

which has the type Bool. Flow-sensitive typing

is applied (also being applied to If statement and

other branch statements in Python) following the

semantics of the If expression. Thanks to our

union type system, variable x can be well typed

as Str ∨ Int.

4. 3 Expressions

In the following subsection, we will investigate

how expressions in the source code are typed in

order to better understand how our designed type

system can typecheck programs. Here an expres-

sion is defined as typed if the checker evaluates or

infers it into a type that is neither type error nor

the unknown type ?. For instance, an expression

of type Int is judged as typed ; type (? → Float)

∨ ? is typed ; ? is not typed.

The expressions we will evaluate are all Python

expressions recognized by a parser. As a tiny ex-

ample to show how count the expressions, consider

the following piece of code

1 def fib(n):
2 if n == 0:
3 return 0
4 elif n == 1:
5 return 1
6 else:
7 return fib(n−1) + fib(n−2)

which shows the definition of a function computing

the Fibonacci number. The number of expressions

inside the body of fib is counted as 16. Part of the

expressions can be n, 1, n-1, fib(n-1) and so on

at line 5.

The results show that there are totally 14,966,689

expressions in all repositories. 12,333,335 (82.4%)

of the expressions are typed. The remaining ex-

pressions are 409,524 detected errors (1.4%) and

2,223,830 the unknown type ? (14.9%). The re-

sults reveal that most of the expressions in the

real-world Python programs can be well typed with

static types under a gradual type system. Since

our system is still under development, the detected

static errors are believed to be false positive ones,

which are errors convicted by the checker but being

innocent at runtime.

4. 4 Categorizing Unions

Here we want to focus on how many expressions

are evaluated as union type according to our type

system. As shown in Fig. 1, the majority, totally

452,840, of the union types has the size of 2, which

is 95.7% over all the union types. Additionally,

only 0.19% (896 over 473,312) of the union types

have the size larger than 10 and the largest union

size reaches 49. These results suggest that most of

the objects can be handled with simple data types

such as union type with commputable sizes and the

programs can be reasonably typed by a union type

system.

Fig.1 Distribution graph of the union types

over size. The horizontal axis shows the size of

the union type; The vertical axis shows the

number

4. 4. 1 Optional Type

According to our data, 5.06% (22,896 over

452,840) of the union types of size 2 are optional

types. Optional type is a quite common polymor-

phic type that can represents encapsulation of an

optional value avaiable in many programming lan-

guages. In Python, a value of type Option[T] refers

to a value which may result in of type T or None.

As comparison, the number of union type of size 3,

which is the second most union type of all sizes, is

14,005, which indicates that optional type is more

than other union types larger than 2. The discov-

ery reveals that optional type is rather practical in

real-world Python programs.

4. 4. 2 Large Unions

We randomly sampled the larger unions to fig-

ure out what kinds of code snippets result in such

large unions. Surprisingly, all such unions point to

the same object unittest.TestCase.assertEqual,

even those we sampled are from different repos-

itories. assertEqual is a method in the class

TestCase defined in the builtin library unittest,

which is unit test framework for constructing and

running tests. The method is called to check for

an expected result and its “ground truth” signature

can be roughly written as T → T → Bool, where T

is type variable defined by T = TypeVar(‘T’). The

scenario is that users heavily apply this function

to test equality for diverse objects of many types

T1, ..., Tn. Since our type inferencer blindly

merges all types into one union for tested func-

tions, multiple invocations of the same function

at the test phase will be traced and therefore

the type of unittest.TestCase.assertEqual will

be inferred into type (T1 ∨ ... ∨ Tn) → (T1 ∨
... ∨ Tn) → Bool, whose argument types are

unions with many components.

Such observation can lead us to two meaningful

discussions. First, union type can handle most of

Python objects. Larger unions only corresponds to

a smalle part of the whole and the vast majority

of them are the same object from a builtin library.

Namely, user defined objects tend to be of literal

types or smaller unions like optional type, which

indicates that such a union type system can type-

check most of the Python programs within bounds.

Second, a slightly enhanced type inference algo-

rithm can fluently bring higher accuracy to type

checking. Since the large unions all point to the

same object, or large unions are caused by a partic-

ular scenario, we can apply additional ad-hoc typ-

ing rules upon our type system. A special typing

rule can be, for example, unions of size larger than,

i.e. 10, are replaced with type parameters so that

we can well type highly generic functions.

5 Related Works

There has been enough attempts of static typing

for dynamic languages. In this section we will in-

troduce some of them that are targeted at Python.

Mypy [5] is probably the best known static type

checker for Python based on gradual typing. It can

lift Python programs to a statical level and type

check your code by adding type annotations. By

distributing type annotations with the program-

mer’s will, Mypy can smoothly mix dynamic and

static typing in the program. Our approach is

based on type inference so it does not force type

annotation.

There exists other works at type checking Python

programs with pure inference instead of requiring

type annotations. One of the celebrated is Py-

type [7], which uses type inference instead of grad-

ual typing. Pytype generates ‘false-positive’ er-

rors such as a late attribute initialization in a class

definition, which from the perspective of the type

checker are, but from a programmer’s view are not.

Alternatively, Pytype allows users to inject spe-

cific comments to slicent such warning. Our de-

sign employs gradual typing and emphasizes that a

light-weight type inferencer can handle most of the

Python programs.

6 Conclusion

In this paper we argued that a simple, well de-

signed type system that can mostly type Python

programs. An empirical study on the static type

checking in Python was given to show a prelimi-

nary evident to support our statement. Our analy-

sis quantitatively revealed the potency of a simple,

union type system typing real-world Python pro-

grams.

Though our research have made progressive ac-

complishment, more investigation should be carried

out to strengthen our statement. Designed as a test

bed, it is imperative to investigate how other type

systems are qualified for Python programs. Be-

sides, the amount of the dataset is not large enough

so that our current assessmemt is not highly convin-

cible. It is also beneficial to explore what specific

pieces of code the type sytem is not able to type.

All of those studies are our central future work.

参 考 文 献

[1] DeMillo, R., Lipton, R. J., and Sayward, F.:

Hints on Test Data Selection: Help for the Practic-

ing Programmer, Computer, Vol. 11(1978), pp. 34–

41.

[2] Frisch, A., Castagna, G., and Benzaken, V.: Se-

mantic Subtyping: Dealing Set-Theoretically with

Function, Union, Intersection, and Negation Types,

J. ACM, Vol. 55, No. 4(2008).

[3] Garcia, R., Clark, A. M., and Tanter, E.: Ab-

stracting Gradual Typing, SIGPLAN Not., Vol. 51,

No. 1(2016), pp. 429–442.

[4] MonkeyType: https://github.com/Instagram/MonkeyType.

[5] mypy: http://mypy-lang.org.

[6] pytest: https://docs.pytest.org/en/stable/.

[7] pytype: https://github.com/google/pytype.

[8] Siek, J. and Taha, W.: Gradual Typing for Ob-

jects, 08 2007, pp. 2–27.

[9] Siek, J. G.: Gradual Typing for Functional Lan-

guages, 2006.

