
Cross-language clone detection by
learning over abstract syntax trees

1st Daniel Perez*
Imperial College London

London, United Kingdom
daniel.perez@imperial.ac.uk

2nd Shigeru Chiba
The University of Tokyo

Tokyo, Japan
chiba@acm.org

Abstract—Clone detection across programs written in the
same programming language has been studied extensively in the
literature. On the contrary, the task of detecting clones across
multiple programming languages has not been studied as much,
and approaches based on comparison cannot be directly applied.
In this paper, we present a clone detection method based on
semi-supervised machine learning designed to detect clones across
programming languages with similar syntax. Our method uses
an unsupervised learning approach to learn token-level vector
representations and an LSTM-based neural network to predict
whether two code fragments are clones. To train our network,
we present a cross-language code clone dataset — which is to
the best of our knowledge the first of its kind — containing
around 45,000 code fragments written in Java and Python. We
evaluate our approach on the dataset we created and show that
our method gives promising results when detecting similarities
between code fragments written in Java and Python.

Index Terms—clone detection, machine learning, source code
representation

I. INTRODUCTION

Code clones are fragments of code, in single or multiple
programs, which are similar to each other. Code duplication
can decrease the maintainability of a program, as it becomes
necessary to fix an error in all the places where the code was
duplicated. Detecting these code clones is a difficult task and
has been extensively researched in the literature [1]–[3]. Some
systems focus on finding clones inside a single project, while
other systems try to detect clones in larger ecosystems [3],
[4]. While there is a very large number of tools that have
been developed for the task of clone detection, most of these
have been developed to detect clones in programs written in
the same programming language, and the task of detecting
code clones for programs written in different languages has
not been studied as much in the literature.

Although systems written in multiple programming lan-
guages have always existed, they have now become the rule
rather than the exception [5]. A common case of systems
written in multiple programming languages is systems follow-
ing the microservice architecture [6], which have gained a
large adoption as a scalable architecture for web applications.
While this architecture by itself does not imply using different
programming languages, developers often use the language

*Work done while at The University of Tokyo

which is best suited for a task [7], resulting in the use of mul-
tiple languages. Many large companies such as Facebook [8],
Uber [9] or Netflix [7], followed by many others [10], use
such an architecture and have code bases written in a variety
of programming languages.

In this paper, we present a semi-supervised machine learn-
ing based system capable of finding code clones across
programming languages with similar syntax. We make the
following contributions.

• We present a cross-language clone detection method
and provide a prototype implementation supporting clone
detection across Java and Python

• We create a cross-language code clones dataset containing
around 45,000 files written in Java and Python with
annotations about which of the files are code clones

We make the source code of our code clone detection system
as well as all the datasets we created for the experiments
publicly available1.

II. BACKGROUND

Previous works have shown that code clone detection can
help to refactor and improve the maintainability of large code
bases [11]. However, previous works focus almost only on
clone detection within a single programming language.

In systems following the microservice architecture, which is
widely adopted for web applications, services are often written
by different teams. This makes it hard for developers to track
code and functionality duplication across different services.
Furthermore, as these services can be written in different pro-
gramming languages, current clone detection approaches are
not applicable to detect duplication automatically. However,
there are some classes of code clones that may negatively
affect the maintainability of a system and which code clone
detection tools could help to prevent.

For example, a common reason for the appearance of clones
in a microservice context is when a service breaks the single-
responsibility principle [12]. For example, a service which is
responsible for managing the user posts, may at some point
implement some authorization logic. Then, another service
responsible for managing comments will also implement a

1https://www.csg.ci.i.u-tokyo.ac.jp/projects/clone/

https://www.csg.ci.i.u-tokyo.ac.jp/projects/clone/
Shigeru Chiba
presented at MSR 2019, pp. 518-528



1 def group_posts(posts):
2 res = {}
3 for post in posts:
4 bucket = res.setdefault(post.owner , [])
5 bucket.append(post)
6 return res

Listing 1. group_posts function in Python

1 public Map <String , List <Post >> groupPosts(
2 List <Post > posts) {
3 Map <String , List <Post >> grouped =
4 new HashMap <>();
5 for (Post post: posts) {
6 if (! grouped.containsKey(post.getOwner ())) {
7 grouped.put(post.getOwner (),
8 new ArrayList <Post >());
9 }

10 grouped.get(post.getOwner ()).add(post);
11 }
12 return grouped;
13 }

Listing 2. groupPosts method in Java

similar authorization logic, resulting in duplicated function-
ality.

Although all classes of cross-language clones are not trivial
to refactor, there are some patterns that can be used to reduce
such duplication. The system can be re-designed to extract
functionality into a new micro-service which other services can
reuse. Another common approach is to add the functionality
to a service that is already consumed by the services with the
duplicated code.

We show a simple example of a duplicated functionality
implemented in Python in Listing 1 and Java in Listing 2.
Although the two code snippets are written in different lan-
guages, we see a clear correspondence between their control
structures. Their Abstract Syntax Trees (AST) also present
some similarities. For example, both the body of the Python
function and the body of the Java method contain three
children — an assignment, a for loop and a return statement.
We show the relevant part of each AST in figures 1 and 2.

We see the possibility to detect AST resemblance but the
existing approaches are not effective for this use case. Both
snippets only share very few tokens in common, making token
based clone detection methods such as [4] ineffective. The
AST of the fragments, although sharing some similarities, are
too different for approaches such as [13] or [14] which directly
compare ASTs to be applied.

The kind of AST resemblance described above does not fit
well the commonly used taxonomy of code clones [1]. Type
III clones are often assumed to come from copied fragments
while type IV clones do not assume anything on the structure
of the clone ASTs. The two fragments above could potentially
be seen as weakly Type III using the definition given in [15]
— syntactically similar with less than 50% similarity at the
statement level — although the syntactic similarity is not
straightforward due to the cross-language nature of the clones.

Fig. 1. Java groupPosts method AST

Fig. 2. Python group_posts function AST

We discuss issues with the current taxonomy further in IV-C.
One of the main challenges in detecting such clones is

to map AST subtrees between programming languages. In
the above example, the assignment in Python is a simple
Assign node with two children while the Java assignment is
much more complex, starting with an ExpressionStmt and
containing nodes to declare a generic HashMap as well as
nodes to instantiate a new object. Furthermore, some idioms
can differ even more between languages. For example, the
setdefault at line 4 of the Python example is replaced by an
if statement in Java. Manually creating and maintaining such
rules for multiple languages seems almost impossible and we,
therefore, want a way to learn such mappings automatically.

III. PROPOSAL

In this work, we propose a semi-supervised machine learn-
ing based system which is capable of detecting code clones
across programming languages with similar syntax. A key
component of this system is our token-level vectors generation
algorithm, tree-based skip-gram, which generates a seman-
tically meaningful mapping from a token to a point in a
vector space. In the context of cross-language clone detection,
assigning a meaningful vector representation to each token is
particularly important as it makes it easier for the rest of the
model to map subtrees — such as the HashMap constructor
and the dictionary literal in the previous example — across
languages.

We will first give a general overview of our system, then
give details about our tree-based skip-gram algorithm and
finally describe our clone detection model.

A. System overview

Our system trains a clone detection model and uses it to
discover clones. It is mostly composed of a token-level vector
generation step which is described in depth in III-B, a training
step in which we use the cross-language clones dataset we
created to train the model, and finally, a clone detection step,
both described in III-C.



During the token-level vector generation step, the system
generates a fixed-size vocabulary for each target programming
language, as well as a vector representation of every token in
the vocabulary. This step is unsupervised and simply requires a
large amount of code for each targeted programming language.
Details about vocabulary and token-level vector generation
using our tree-based skip-gram algorithm are given in III-B.

Once the token-level vectors are generated, the next step
is to train our clone detection model. The model being
supervised, this step requires to have an annotated dataset
containing information about code clones written in the tar-
geted programming languages. The model uses the token-level
vectors, computed in the previous step, to transform each node
in the ASTs into vectors. It simultaneously learns to encode
a whole AST into a large vector, and to classify whether the
two vectors are clones or not, using the labels in the dataset
provided. Details about the model and the training process are
given in III-C.

The last step is the actual code clone detection. To perform
clone detection, our system uses the vocabulary and token-
level vectors, as well as the clone detection model generated
in the previous steps. Using these, the system first vectorizes
all the code fragments for which clone detection should be
performed and then runs the classifier trained in the previous
step on each pair of fragments to search for clones. This step
is detailed further in III-D2.

B. Token-level vectors generation

Our token-level vectors generation algorithm, tree-based
skip-gram, is based on the skip-gram algorithm [16] but uses
the structure of the AST to compute a vector representation of
each token in a target programming language. While the skip-
gram algorithm treats its input as a sequence and generates
the context of a particular target using the tokens around it,
tree-based skip-gram uses the tree structure to generate the
context for a particular target. Tree-based skip-gram is a base
technique which can be used to help to find particular shapes
of subtrees or compare subtrees in multiple ASTs.

The process for generating token-level vectors using tree-
based skip-gram for a target programming language L is the
following.

1) Collect a large amount of source code written in L
2) Parse the code to generate AST representation
3) Generate a vocabulary from the collected source code
4) Generate target and context pairs using the parsed ASTs
5) Train a skip-gram model with the generated target and

context pairs
We show an overview of the token-level vectors generation
process in Figure 3. We will describe the algorithms to
generate the vocabulary and generate the data to train the skip-
gram model, and give details about how we train the model.
We will provide more details about the source code collection
in Section IV.

1) Vocabulary generation: To be able to learn token-level
vectors for the target programming language, we first generate
a finite set of tokens: the vocabulary. Each token has a type,

GitHub

Code fetcher
source code

AST generator
ASTs

Vocabulary
generator

vocabulary

training data
skipgram model

token embedding

Skipgram data
generator

Input

Output

Fig. 3. Token-level vectors generation overview

Algorithm 1 Vocabulary generation algorithm
1: function GENERATEVOCABULARY(files, includeValues, maxSize)
2: tokensCount ← empty map
3: for file in files do
4: ast ← generate_ast(file)
5: for token in ast do
6: if (token.type, null) /∈ tokensCount then
7: tokensCount[(token.type, null)] ← 0
8: Increment tokensCount[(token.type, null)]
9: if includeValues ∧ token.value 6= null then

10: if (token.type, token.value) /∈ tokensCount then
11: tokensCount[(token.type, token.value)] ← 0
12: Increment tokensCount[(token.type, token.value)]

13: tokensCount ← reverse_sort(tokensCount)
14: vocabulary ← first maxSize keys of tokensCount
15: return vocabulary

for example, ForStmt or NameExpr and may have a value
which is usually an identifier name and is often application
specific. While the number of token types is finite, the number
of token values is infinite — it could be any user-defined
identifier. This means that we must put a threshold on the
size of the vocabulary and when using our vocabulary, it will
not contain all possible tokens. In most NLP applications,
tokens not present in the vocabulary are replaced by a unique
“unknown” token. However, in the context of programming
languages, the probability of running into unknown values is
much higher than in NLP and we, therefore, want to avoid
using a generic “unknown” token. Instead, we choose to keep
the type information of the token and only replace the token
value by null when no token with the same type and value is
found in the vocabulary. This allows us to at least keep some
semantic information about the token so that, for example,
a string literal and an identifier can be distinguished even if
their value was not found in the dictionary. We show how we
generate the vocabulary V in Algorithm 1. In order to be able
to fall back to the type as described above, when generating
V , we want the following property to hold.

Property 1. Given A the set of token types in programming
language L and P the set of programs used to generate
vocabulary V , if |A| ≤ |V | then

∀a ∈ A, a ∈ P → (a, null) ∈ V

However, property 1 might not hold if reverse_sort



function, used at line 13 of Algorithm 1, is defined to only
order with respect to the number of appearances of a token.
To overcome this issue, given vt the value of a token and
ct its number of appearances in the vocabulary, we use the
following order ≤ on the tokens to perform the sort.

t1 ≤ t2 =


false if vt1 = null ∧ vt2 6= null

true if vt1 6= null ∧ vt2 = null

ct1 ≤ ct2 otherwise
(1)

Using the order defined in equation 1, the vocabulary produced
by Algorithm 1 respects property 1.

Proof. If a token of type a is included in P , then an entry
(a, null) will be created. As the order described above ensures
that all entries where the value is null are greater than other
values, a reverse sort will ensure that these will appear before
other tokens. Therefore, if maxSize is equal or greater to the
number of type token created, they will all be included in the
vocabulary.

As the vocabulary is typically generated from a large corpus,
we can almost be sure that all token types of programming
language L will be included in the set of programs P . By
putting this together with property 1, we can conclude that for
all token types in L, a pair (a, null) will be included in the
vocabulary. Using this property, we can define our vocabulary
lookup function very easily. If the pair of the token type and
its value is in the vocabulary, we return its index. Otherwise,
we return the index of the pair defined by the token type and
null — (a, null).

2) Skip-gram data generation: After generating the vocab-
ulary, we generate data to train a skip-gram model. In the
context of natural language processing, the input is usually
considered as a sequence, and the context of a particular word
is the words before and after this word in the sequence of
words used for training. Furthermore, the distance between the
word and its context is normally parameterized by a single
window size hyperparameter. In our tree-based skip-gram
algorithm we take advantage of the topological information
contained by the AST instead of working on a simple sequence
of tokens. Therefore, we need to define the context of a token
differently than for a sequence.

In the context of an AST, a node is directly connected to
its parent and its children. Hence, we can define parents and
children to be the context of a node. Depending on the use
case, the siblings of a node could also be viewed as viable
candidates for its context. A single window size parameter
could be used to control how deep upward and downward
should the context of a node be. However, although a node
will only have a single parent, yet it can have any number
of children. Therefore, having a window size of 3 for the
ancestors would only generate 3 nodes in the context, but if
every descendant of a node had 5 children, a window size
of 3 would generate 53 = 125 nodes in the context. This
would probably generate more noise than signal when trying
to train the model. Therefore, we use two different parameters

Algorithm 2 Data generation for skip-gram model
1: function GENERATESKIPGRAMDATA(files, vocabulary, params)
2: skipgramData ← {}
3: for file in files do
4: ast ← GenerateAST(file)
5: for node in ast do
6: nodeIndex ← LookupTokenIndex(node)
7: contextNodes ← GenerateContext(node, params)
8: for contextNode in contextNodes do
9: contextIndex ← LookupTokenIndex(contextNode)

10: skipgramData.add((nodeIndex, contextIndex))

11: return skipgramData

Algorithm 3 Context generation for an AST node
1: function GENERATECONTEXT(node, params)
2: contextNodes← FindDescendants(node, params.descendantWS,

0)
3: parent ← node.parent
4: n ← 0
5: while parent is defined ∧ n < params.ancestorWS do
6: contextNodes.add(parent)
7: parent ← parent.parent
8: n ← n + 1
9: if params.includeSiblings ∧ node.parent is defined then

10: for sibling in node.parent.children do
11: contextNodes.add(sibling)

12: return contextNodes

to control the window size of the ancestors and the window
size of the descendant when generating the data to train our
skip-gram model. When we do include siblings in the context,
we currently use the direct siblings of the nodes and not the
siblings of the ancestors, although this could also be another
parameter of the algorithm. In algorithms 2, 3 and 4, we
describe the process we use to generate the data to train a
skip-gram model.

Algorithm 2 takes as input a list of files written in the
programming language for which we want to generate token-
level vectors, the vocabulary extracted for this programming
language and the parameters described above. It loops over
all the nodes in the file, uses algorithms 3 and 4 to find all
nodes in the context of the current node, and returns a list of
pair of indexes where each pair represent a target node and
a node in its context. Algorithm 3 takes as input a node and
the parameters described above and returns the set of nodes
in the context of the given node. It first uses Algorithm 4
to find all the descendants of the node in the window given
by the passed parameters, then finds all the ancestors in the
given window and finally adds the siblings to the set of results
if necessary. Algorithm 4 takes a node, the maximum depth
up to which descendants should be populated and the current
depth — which will initially be set to 0 — and returns the
set of descendants up to the passed maximum depth for the
node. It first adds all the children of the current node to the
set of descendants, then recurses through all the children until
the current depth is equal to the maximum depth for which to
generate descendants.

3) Training the skip-gram model: Once the data is gen-
erated using algorithms 2, 3 and 4, the last step needed to
generate token-level vectors is to actually train a skip-gram



Algorithm 4 Find descendants for a node until given depth
1: function FINDDESCENDANTS(node, maxDepth, depth)
2: if depth ≥ maxDepth then
3: return {}
4: result ← node.children
5: for child in node.children do
6: descendants ← FindDescendants(child, maxDepth, depth+1)
7: result ← result ∪ descendants
8: return children

AST 
transformer

Token
embedding

layer

LSTM
encoder

Classifier

code
fragment

AST

clone
prediction

AST 
transformer

Token
embedding

layer
LSTM

encoder

code
fragment

AST
Hash
layer

Hash
layer

Fig. 4. Clone detection model overview

model using the generated data. Algorithm 2 generates pairs
of indexes which can be directly fed to a neural network, and
therefore, there is no need for further pre-processing. To train
the model, the vocabulary used is the same as the one used
to generate the skip-gram data and the size of the vectors is a
hyperparameter of the model. The model is trained using the
negative sampling objective as given in [16].

C. Clone detection model

Our clone detection model is based on the Siamese archi-
tecture [17], which has been popularized in face recognition
tasks [18] and has also been used for many Natural Language
Processing tasks such as sentence similarity [19]. A major
difference between our network and usual Siamese networks is
that Siamese networks take their inputs from the same domain
— for example, two images or two English sentences. On the
other hand, our model takes inputs from different domains:
code fragments written in different programming languages.
Therefore, unlike regular Siamese networks, we do not share
the weights used to encode the inputs. To allow our model
to learn efficiently even without sharing weights, we use the
token-level vectors precomputed using our tree-based skip-
gram algorithm presented in III-B. We show an overview of
our model in Figure 4.

Our model is composed of two encoders, which transform
each AST into a single vector, and a classifier which outputs
a similarity score between the two encoded ASTs. In our
implementation, we use the following components.

• AST transformer — Transforms an AST into a vector
where each element of the vector is the index of the AST
node in the vocabulary. The AST is linearized by ordering
its nodes in depth-first order.

• Token embedding layer — Maps each index to its vector
representation computed using our tree-based skip-gram
model trained by our token-level vectors generation. This
is the most unique component proposed in this paper.

• LSTM (Long short-term memory [20]) encoder — Trans-
forms the AST matrix (number of tokens × vector

representation dimension) into a single vector in a
high-dimensional space. We use a stacked bidirectional
LSTM [21].

• Hash layer — Reduces the dimension of the AST vector
outputted by the LSTM. We use a linear layer with no
activation function, which weights are trained with the
rest of the model.

• Classifier — We use a feed-forward neural network with
a sigmoid output layer and therefore get a similarity score
between 0 and 1.

We use a binary cross entropy loss to train our model. We give
more details about how we choose the code fragments pairs
used as input in III-D

The clone detection step uses the trained model. Code
fragments are first encoded into vectors, using the encoder part
of the model shown in Figure 4. The similarity between the
encoded vectors is then computed using the classifier. A pair
of code fragments is considered to be a clone if its similarity
score is above 0.5. The closer to 1, the most likely it is to be
a clone.

D. Implementation details

Our system uses several implementation techniques to im-
prove its speed and precision. We present the most important
ones here.

1) Negative clone samples selection: When training our
model, we feed it with pairs of code fragments. To create
these pairs, we first select a code fragment, which we call
the anchor fragment, and then select a positive and n negative
samples, where n is a hyperparameter. The number of available
clones is relatively small, so to select the positive sample, we
randomly select a code fragment in the set of code clones
of the current anchor fragment. However, randomly selecting
the negative code fragment would likely result in feeding
the model with two very different code fragments and the
model would therefore only learn to distinguish between code
fragments which are very different. To allow the model to
distinguish between code fragments which are more similar,
we select negative samples that are currently hard for the
model to distinguish. This is close to what is done for face
recognition in DeepFace [22]. Ideally, we would like to find
the code fragments for which the model is the most mistaken
— where the predictions between the negative samples and
the anchor are the closest to 1. However, this would require
to run all the code fragments through our model for each
anchor fragment, which is not realistic, performance wise. To
work around this, we randomly select m candidate fragments
for each anchor, where m is a hyperparameter of the model,
usually set to 8 or 16 in our experiments, and run our model
on all the candidates. We then sort the candidates using the
similarity scores outputted by our model and select the n
candidates with the highest similarity score — the n candidates
on which the model is the most mistaken — as negative
samples for the current anchor.

2) Pre-computing AST vectors: During training, our model
takes two code fragments as input and emits a similarity score



between the two code fragments. The model is designed to
take pairs of code fragments, this means that to detect clones
in n fragments, we need to run the model on all combinations
of fragments, resulting in O

(
n2
)

runs. Running the whole
model, especially the LSTM, is an expensive task and therefore
running it O

(
n2
)

times would scale very poorly. To work
around this issue, we first precompute the output vectors for all
the code fragments and therefore only run our LSTM n times.
When checking if two code fragments are clones or not, we
only need to get the precomputed vector representation of the
two fragments and run them through our classifier. Although
we still need to run our classifier O

(
n2
)

times, it is an order
of magnitude cheaper than running the whole model.

IV. EXPERIMENTS AND RESULTS

In our experiments, we answer the two following research
questions.

RQ1 Can our system learn similarities between programs
written in Java and Python?

RQ2 Can the vector representation generated by our tree-
based skip-gram algorithm improve the ability to
learn similarities?

A. Dataset

1) Token-level vectors generation dataset: Tree-based skip-
gram being an unsupervised algorithm, to train the model for
a particular programming language, the only thing we need is
a large quantity of code written in this given language. The
code should also be as much as possible diverse so we can
generate a representative vocabulary. For Java, we chose to use
all the projects written in Java and belonging to The Apache
Software Foundation2 which contain a very wide variety of
projects. For Python, as we could not find any organization
with a sufficient amount of source code, we chose projects on
GitHub which fulfilled the following conditions.

• Size between 100KB and 100MB
• Non-viral license (e.g. MIT, BSD) — to avoid copyright

issues when distributing the dataset
• Not forks
We ordered the results by the number of stars as a proxy

of the popularity of the project and kept all the files which
contained more than 10 tokens and less than 10000 tokens.
Although our AST generation tool supports both Python 2
and Python 3, as the produced AST may vary slightly, we
decided to use only Python 3 for this experiment. We show
some metrics of our dataset in Table I. Although the number
of projects is vastly larger for Java, results for both languages
were satisfying enough, and thus we did not try to collect more
data for Python.

2) Code clones dataset: As our clone detection system is
supervised, we need a labeled dataset to be able to train it. In
particular, the dataset needs to fulfill the following properties.

1) The dataset should contain code fragments written in at
least 2 programming languages

2http://www.apache.org/

TABLE I
TOKEN-LEVEL VECTORS GENERATION DATASET METRICS

Java Python

Projects count 1,027 879
Files count 476,685 131,506

Lines count 80,367,840 55,796,594
Tokens count 301,930,231 89,757,436

2) Information on whether two code fragments are clones
or not should be available

To the best of our knowledge, no dataset currently avail-
able fulfills the necessary properties for our experiments and
therefore, we created our own dataset.

We found that competitive programming websites mostly
fulfill the above properties. The solution to a single problem
is implemented by a large number of persons in many differ-
ent languages. Furthermore, multiple solutions to a problem
are always implemented by different users, which makes
our dataset closer to the motivating example we presented
in Section II. All the solutions to a single problem must
implement exactly the same functionality, therefore, we are
assured that all source codes implementing a solution to the
same problem are type IV code clones. Multiple solutions
may implement the same problem using different algorithms
making two code fragments marked as clones not having any
syntactical similarity. However, the easier the problem is, the
higher the probability of code fragments implementing the
solution to the same problem has to be very similar to each
other, and to therefore be closer to type III clones.

To create the dataset, we used code from a famous com-
petitive programming website3. The website we used has two
types of contests, regular contests and beginner contests, where
beginner contests contain mostly straightforward problems. To
increase the probability that the implemented solutions use the
same algorithm, and therefore have some syntactical similar-
ities, we used only the code from the beginner contests of
the website, which usually have a straightforward solution. As
our implementation currently only supports Java and Python,
we fetched data for these two programming languages. We
restricted the data only to programs that were accepted by the
website judging system — meaning that the programs actually
implemented the solution to the given problem — in order to
reduce noise. We collected code for a total of 576 different
problems and give some metrics about the dataset in Table II.

In our experiments, we use each file as a single input to
our model. In our dataset, the number of lines per file is of
46 for Java programs and 13 for Python programs. Although
this is above the usual size of a single function or method in
real-world programs [23], it is still relatively close.

B. Experiments and Results

We performed three different experiments to evaluate our
prototype. First, we used our token-level vector generation

3https://atcoder.jp

http://www.apache.org/
https://atcoder.jp


TABLE II
CLONE DETECTION DATASET METRICS

Java Python

Number of problems 576
Avg. solutions / problem 36 41

Files count 20,828 23,792
Avg. lines / file 46 13

Avg. tokens / file 324 76

TABLE III
TOKEN-LEVEL VECTOR GENERATION FINAL SETTINGS

Parameter Value

Ancestors window size 2
Descendants window size 1
Siblings included no
Output vector dimension 50

algorithm to generate token-level vectors for Java and Python.
We then trained our model on the dataset we created and
tuned its hyperparameters. Finally, we used the trained model
to perform clone detection with files in our dataset which were
not used for training in the previous step.

We run our experiments on a 12 cores Linux machine with
64GB of memory and an Nvidia Quadro P6000 GPU with
24GB of memory.

1) Token-level vectors generation: In order to train our
model, we first need to generate token-level vectors using our
tree-based skip-gram algorithm. For both Java and Python, we
generated two different kinds of vocabularies:

1) Vocabulary without token values
2) Vocabulary of 10000 tokens with values

The vocabulary without token values only contains the
type of each token, for example, ImportStmt in Java, or
FunctionDef in Python, while the one with values also
contains identifiers information.

We tried to learn the representation using a large set of
values for the different hyperparameters we had. We tried
window sizes from 0 to 5 for the ancestors, from 0 to 4 for
the descendants, we tried to use siblings and we tried output
dimensions of 10, 20, 50, 100 and 200. At this point, we only
qualitatively evaluate the vector-representation by plotting a
number of points on a 2D plane and looking if semantically
similar nodes were close or not. If increasing the size of
the representation did not present any significant benefit, we
kept the smaller size. In Figure 5, we show a subset of some
points plotted in 2D and clustered using k-means [24]. We can
see that statements, expressions, and declarations are correctly
clustered and semantics are somewhat preserved. For example,
ForStmt and WhileStmt are exactly at the same point and
literals are close in the vector space.

In Table III, we show the parameters we found to work best
for generating token-level vector representations and which we
actually used for the clone detection experiment.

Fig. 5. Java token-level vectors projection in 2D

Increasing the window size too much seems to create too
much noise, and did not yield better results. Likewise, we
suspect that including the siblings generated more noise than
signal when training our model.

2) Model training and testing: To evaluate our clone detec-
tion model, and see how our token-level representation affects
its performance, we perform experiments on both the single-
language clone detection task, where two input programs are
written in Java, and the cross-language clone detection task
where a program is written in Java and the other in Python.

It is worth noting that most clones being at best weakly type
III, the dataset is difficult in nature and we did not manage to
obtain a recall higher than 0.1 on Java clone detection using
SourcererCC [4].

We prepared the dataset to train our model by splitting
the dataset we described above into training set containing
80% of the data, the cross-validation set used to tune our
hyperparameters containing 10% of the data, and finally, the
test set used to give a final evaluation of our model. For both
training, cross-validation, and test, we treat files implementing
a solution to the same problem as clones and randomly choose
n samples from files implementing a solution to a different
problem to use as negative inputs to our model. We choose
samples with a number of tokens close to the positive one,
to make sure our model is not too biased by the input length.
We make the number of negative samples vary during training
but fix this number to 4 samples — giving us a dataset with
20% of clones — for cross-validation, in order to be able to
compare the performance of the different models on the same
input data. Below, we give more details about the different
models we trained during the experiments.

Baseline. To show the importance of the AST structure when
training the model, we create a baseline model which treats



TABLE IV
MODEL HYPERPARAMETERS

Name Value

Token vector dimension 100
Encoder layer bidirectional LSTM, stacked with 2 layers

layer dimensions: 100 and 50
Classifier single hidden layer, 64 units

Optimizer RMSprop [25]
Epochs 50

source code as a sequential input for both token-level vector
generation and clone detection. Concretely, the model used
for clone detection in this baseline is the same as the one
shown in Figure 4, but instead of using the AST transformer
we simply feed the tokens in the source code sequentially,
and the token-level vectors are learned by using the regular
sequential skip-gram algorithm on tokens sequences.

Pre-trained token vectors. In this experiment, we use the
model described in Section III and we initialized the weights
of the embedding layer using the token-level vectors represen-
tation learned using our tree-based skip-gram algorithm.

Randomly initialized token vectors. In order to show the
effect of the token-level vectors we learned using tree-based
skip-gram, we use exactly the same model as the previous
experiment but replace the learned representation by randomly
initialized vectors and let our model learn the representation.

Pre-trained token vectors, no values. To see how the values
of the tokens — the identifiers in the programs — influence the
clone detection ability, we trained a model with a vocabulary
containing only the token types, which means that the system
cannot distinguish an identifier x from an identifier y. This
reduces the size of the vocabulary to around 100.

In all our experiments, except the one where we exclude
the values of the token, we used a vocabulary size of 10000
as increasing the size further did not significantly improve the
results. This means that most identifiers which do not come up
in the first 10000 tokens would not come up often enough in
our dataset to be useful to our model. Other hyperparameters
were also chosen experimentally, and we trained all the model
described above with the same set of hyperparameters to
ensure that the results were not influenced by other factors.
We present the set of hyperparameters we used for training
in Table IV and use these hyperparameters to measure the
performance of our model on our test set. We show the results
we obtained for cross-language clone classification in Table V
and the results for Java clone classification in Table VI. Using
our pre-trained vectors, we obtain an F1-score of 0.66 on
the Java/Python clone classification task. This shows that our
model is able to learn similarities between Java and Python
programs, which responds positively to RQ1.

Our results show that for both cross-language and single-
language clone detection, our model using pre-trained token
vectors performs the best. Using the AST structure gives
us around 12% F1-score and 15% precision improvement

TABLE V
JAVA/PYTHON CLONE CLASSIFICATION RESULTS

Model F1-score Precision Recall

Baseline 0.53 0.41 0.74
Pre-trained token vectors, no values 0.51 0.40 0.71
Randomly initialized token vectors 0.61 0.49 0.82
Pre-trained token vectors 0.66 0.55 0.83

TABLE VI
JAVA/JAVA CLONE CLASSIFICATION RESULTS

Model F1-score Precision Recall

Baseline 0.65 0.50 0.92
Pre-trained token vectors, no values 0.69 0.56 0.90
Randomly initialized token vectors 0.74 0.65 0.85
Pre-trained token vectors 0.77 0.67 0.92

compared to our sequential model baseline. Using our token
vectors pre-trained with our tree-based skip-gram algorithm
gives us a 5% improvement on the F1-score for the cross-
language task, and 3% improvement on the single-language
task, which responds positively to RQ2. We assume that the
improvement is greater for cross-language because it is simpler
for the model to map tokens for code written in the same
programming language, so there is less need for pre-training.
Another important point about the benefit of our pre-trained
vectors which is not reflected in these results is the time for
which the model needs to be trained before converging. For
example, in our Java/Python experiment, after only 10 epochs,
our model using pre-trained vectors already has an F1-score of
about 0.6 while the model using randomly initialized vectors
have an F1-score of about 0.45. Finally, the results for the
model not using token value is interesting because we get
only an 8% decrease in the F1-score on the single-language
clone detection task, while we get a 15% decrease on the cross-
language detection task. The reason for this difference is likely
that the model can more easily map the structure of the ASTs
in a single-language context, making the need for the values
of the tokens less important than in a cross-language context.

3) Clone detection experiment: In the previous experiment,
we evaluated the similarity between the given code fragment
and only five samples including one code clone. In this exper-
iment, we evaluated the similarity among all the combinations
of the given set of code fragments. We use our model to find
clones in that set, which is how clone detection tools usually
work. We use 500 randomly sampled files from our test set. As
our system currently accepts only pairs of code fragments, it
takes O(n2) — where n is the number of input files — runs to
perform clone detection we must run it on all the pairs of input
files. To speed up the computation, we first precompute the
vectors for all the input files, as described in III-D2 and then
run the classifier part of our model on each pair of vectorized
ASTs. We present the results we obtained in Table VII.

The recall results are as good as the one we obtained
when testing our model, but the precision is an order of



TABLE VII
CROSS-LANGUAGE CLONE DETECTION RESULTS

Metric Result

F1-score 0.32
Precision 0.19

Recall 0.90

magnitude lower than our previous results. As during the
training phase we had only 4 negative samples per clone,
we suspect that we did not manage to provide enough hard
examples to train our model. To detect clone, we compare
each code fragment to all the others, and the model therefore
probably run in harder cases than the one it has seen during
training time, thus increasing the number of false-positives.
Further improvements to the negative sample selection process
described in III-D1 should help improve the precision.

Overall, 90% of all the clones all correctly marked as
positive but only 1 out of 5 of the clones marked as positive
are actually clones. As a final response to RQ1, we conclude
that although our prototype is able to learn similarities between
programs written in Java and Python, it does not do it precisely
enough for practical use yet.

C. Discussion

As briefly discussed in Section II, our system is mostly
designed to detect cross-language clones where ASTs can be
very fuzzily matched. Using our approach, we are able to
detect clones across languages, such as the one presented in
listings 1 and 2 — our system predicts these two programs
are clones with 75% of confidence. On the other hand, as
we are learning to match patterns in the structure of the
programs, our system tends to mark programs with similar
structures as clones, which negatively affects the precision
score reported. For example, the programs in Listing 3 are
an example of a false-positive we got when inspecting the
results of our experiments. Although these two code fragments
do not enter the type IV clone as defined in the literature,
the codes do share many traits: reading a value from the
standard input, initializing a variable to hold a temporary
result, updating the result in a loop, and finally outputting a
string conditionally depending on the value of the temporary
result. Whether finding such patterns could really be helpful
to help refactoring, or not, is an open question and would need
a more thorough investigation to be answered.

More generally, the current literature about clone detection
does not provide a clear taxonomy for cross-language clone
detection. Types I to type III define clones by the similar-
ities in the structure of the program. Even more granular
classifications such as strongly and weakly type III [15] only
really make sense in a single-language context for the same
reason. This means that we have no way to classify cross-
language clones as they all enter the type IV category of
functional clones. There are at least a few points that we
think are important to classify cross-language clone detection.

1 import java.util .*;
2

3 public class Main{
4 public static void main(String [] args){
5 Scanner sc = new Scanner(System.in);
6 int A = sc.nextInt (), B = sc.nextInt (), C =

sc.nextInt ();
7 boolean isFlag = false;
8 for(int i = 0; i < B ; i++){
9 if ( (A * i) % B == C){

10 isFlag = true;
11 }
12 }
13

14 if(isFlag){
15 System.out.println("YES");
16 } else{
17 System.out.println("NO");
18 }
19 }
20 }

1 N = int(input ())
2 a = list(map(int , input ().split()))
3

4 count2 = 0
5 count4 = 0
6

7 for ai in a:
8 if ai % 4 == 0:
9 count4 += 1

10 elif ai % 2 == 0:
11 count2 += 1
12

13 if count4 *2 + count2 >= N or (count4 *2+1) >= N:
14 print("Yes")
15 else:
16 print("No")

Listing 3. Clone pair false positive

First, do the code fragments implement the same algorithm?
Two code fragments implementing the same functionality with
different algorithms should be the weakest possible type of
clone. Second, to what extent can the statements of the code
fragments be matched. For example, in listings 1 and 2, the
last print statements can be mapped directly, while the for

loop statement is more ambiguous, although both loops do
depend on some value read from the standard input. How to
combine these properties needs further analysis, but is worth
investigating, as we think improving this taxonomy will help
to reason better about cross-language clones.

V. THREATS OF VALIDITY

The main threat of validity is that the data we used to
test our model is vastly different from the data we could
expect in a real-world system. As detailed in IV-A, we used
data from competitive programming problems to train and test
our model. Although the number of lines per code fragment
in our dataset is relatively close to the one of a typical
function, competitive programming has some particularities.
For example, variable names are often less meaningful that
in production code. Furthermore, the tasks solved by the
program being extremely well-defined, it is easier for two



programs solving the same problem to look very similar than
two functions in a typical code base. However, having different
training and test datasets is more than common in machine
learning and there are many solutions to this issue [26].
A possible solution could be to manually annotate a much
smaller dataset and use it fine-tune the classifier of our model.

VI. RELATED WORKS

In this section, we will discuss related work in two dif-
ferent categories: first, clone detection approaches for single-
language and cross-language clone detection, then some other
approaches to vector representation generation methods.

A. Clone detection approaches

Clone detection has been studied a lot in the literature,
although most of the effort has been put into single-language
clone detection. CCFinder [3] and more recently Sourcer-
erCC [4] present token-based techniques to detect code clones.
These techniques work especially well for type III copy-paste
induced code clones and are able to scale very well, as shown
in [27]. Some other methods such as [28] also use somewhat
similar approaches to detect plagiarism between programs.
However, although the methods used are language agnostic in
the sense they could be used for any programming language,
they are not designed to work across programming languages,
making their scope different from our work.

Deckard [13] presents a scalable AST based approach to
clone detection, where a hash value is generated for subtrees
in the AST and locality-sensitive hashing [29] is then applied
to cluster code clones. The vector generation approach in
this work is designed to work with programs written in the
same language, and finding one which would work across
programming languages is a research problem in itself.

In recent years, some clone detection work using deep
learning techniques have emerged. In [30], the authors propose
the RvNN model, which helps them improve the AST rep-
resentation to achieve better performance for clone detection.
In [31], the authors propose an alternative model which is built
on tree-LSTMs [32] to represent ASTs for clone detection.
Both works focus on Java clone detection and are mostly
orthogonal to our work, as we could try to replace the encoder
layer in our model by one of the proposed models.

Some approaches to cross-language clone detection have
also been proposed but assume some sort of common inter-
mediate representation between languages. In [33], the authors
propose a system capable of detecting clones between C# and
Visual Basic.NET by using CodeDOM4 as an intermediate
representation. The system is therefore not designed to perform
clone detection across arbitrary languages such as Java and
Python. Another approach, which is not directly designed for
cross-language clone detection, is the one presented in [34],
where clones are detected directly from the executable format.
Although this approach would not work for our Java and
Python example, it could potentially work across multiple

4https://msdn.microsoft.com/library/system.codedom.aspx

programming languages if the same compiler backend (e.g.
LLVM) were used to produce the binary.

B. Vector representation generation approaches

Many different approaches have been proposed in the lit-
erature to generate vector representation, either for words,
tokens or nodes. The closest work to our tree-based skip-
gram is the original skip-gram [16] algorithm, on which we
based our method. As explained in Section III, while the skip-
gram algorithm works sequentially on words in a sentence, our
algorithm uses the structure of the tree to generate the context
tokens of a particular target.

There also exist several approaches which are able to
generate token-level representations for nodes in an arbitrary
graph structure. node2vec [35] uses a custom of random
walk mixing breadth-first search and depth-first search, while
subgraph2vec [36] uses Weisfeiler-Lehman graph kernels [37]
and an extension of the skip-gram algorithm to learn vector
representations of rooted subgraphs. An important difference
with our tree-based skip-gram is that our method focuses
on learning vector representations in a tree topology. This
allows us to have a clear distinction between ancestors and
descendants, which is significant in the context of an AST.
Some early work to learn token vector representations from
ASTs can be found in [38], but this work only focuses on
learning representations for the types of the nodes in the AST.
As in our pre-trained token vectors with no values experiment,
an identifier x and an identifier y are represented by the same
token. Whether the same approach can be used when including
identifiers is not clear.

VII. CONCLUSION

In this paper, we presented our cross-language clone de-
tection method based on semi-supervised machine learning.
For the unsupervised learning phase, we introduced the tree-
based skip-gram algorithm to learn semantically meaningful
representations of the program tokens. We also created a
cross-language code clone dataset and used it to train and
evaluate our model. We showed that our system is able to
find interesting patterns across programs written in Java and
Python.

Although our system is not yet designed to perform large
scale clone detection, combining techniques such as deep
hashing [39] and fast nearest neighbors search [40] should
improve its speed enough to run at scale. The next step is to
put this engineering effort into our system and to evaluate it
empirically on real-world code bases to see to what extent it
can be used to refactor large systems.

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” SCHOOL OF COMPUTING TR 2007-541, QUEEN’S UNI-
VERSITY, vol. 115, 2007.

[2] B. S. Baker, “A program for identifying duplicated code,” Computing
Science and Statistics, 1992.

[3] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2002.
[Online]. Available: http://dx.doi.org/10.1109/TSE.2002.1019480

https://msdn.microsoft.com/library/system.codedom.aspx
http://dx.doi.org/10.1109/TSE.2002.1019480


[4] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 1157–1168.
[Online]. Available: http://doi.acm.org/10.1145/2884781.2884877

[5] P. Mayer, M. Kirsch, and M. A. Le, “On multi-language software
development, cross-language links and accompanying tools: a survey
of professional software developers,” Journal of Software Engineering
Research and Development, vol. 5, no. 1, p. 1, Apr 2017. [Online].
Available: https://doi.org/10.1186/s40411-017-0035-z

[6] M. Flower, “Microservices — a definition of this new architectural
term,” https://martinfowler.com/articles/microservices.html, 2014, [On-
line; accessed 04-August-2018].

[7] B. Ed, M. Brian, and M. Mike, “How We Build Code at Netflix,”
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-
c5d9bd727f15, 2016, [Online; accessed 04-August-2018].

[8] E. Letuchy, “Facebook Chat,” https://www.facebook.com/note.php?
note_id=14218138919, 2008, [Online; accessed 04-August-2018].

[9] E. Reinhold, “Rewriting Uber Engineering: The Opportunities Microser-
vices Provide,” https://eng.uber.com/building-tincup/, 2016, [Online; ac-
cessed 04-August-2018].

[10] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and
Tomorrow. Cham: Springer International Publishing, 2017, pp. 195–
216. [Online]. Available: https://doi.org/10.1007/978-3-319-67425-4_12

[11] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Refactoring support
based on code clone analysis,” in Product Focused Software Process
Improvement, F. Bomarius and H. Iida, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 220–233.

[12] R. C. Martin, Agile software development: principles, patterns, and
practices. Prentice Hall, 2002.

[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the
29th International Conference on Software Engineering, ser. ICSE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 96–105.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2007.30

[14] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in Proceedings of the
International Conference on Software Maintenance, ser. ICSM ’98.
Washington, DC, USA: IEEE Computer Society, 1998, pp. 368–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=850947.853341

[15] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution, Sept 2014, pp. 476–480.

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” CoRR,
vol. abs/1310.4546, 2013. [Online]. Available: http://arxiv.org/abs/1310.
4546

[17] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah,
“Signature verification using a "siamese" time delay neural network,” in
Proceedings of the 6th International Conference on Neural Information
Processing Systems, ser. NIPS’93. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, pp. 737–744. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2987189.2987282

[18] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, vol. 1. IEEE, 2005, pp. 539–546.

[19] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity.” 2016.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645–6649.

[22] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in 2014 IEEE
Conference on Computer Vision and Pattern Recognition, June 2014,
pp. 1701–1708.

[23] W. M. Ulrich and P. Newcomb, Information systems transformation:
architecture-driven modernization case studies. Morgan Kaufmann,
2010.

[24] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu, “An efficient k-means clustering
algorithm: Analysis and implementation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 7, pp. 881–892, Jul. 2002. [Online].
Available: http://dx.doi.org/10.1109/TPAMI.2002.1017616

[25] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, 2012.

[26] M. Sugiyama, N. D. Lawrence, A. Schwaighofer et al., Dataset shift in
machine learning, 2017.

[27] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny,
H. Sajnani, and J. Vitek, “DéjàVu: a map of code duplicates on
GitHub,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, pp. 1–28, oct 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3152284.3133908

[28] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes, “Language-
independent clone detection applied to plagiarism detection,” in Source
Code Analysis and Manipulation (SCAM), 2010 10th IEEE Working
Conference on. IEEE, 2010, pp. 77–86.

[29] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of
the Twentieth Annual Symposium on Computational Geometry, ser.
SCG ’04. New York, NY, USA: ACM, 2004, pp. 253–262. [Online].
Available: http://doi.acm.org/10.1145/997817.997857

[30] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016, pp. 87–
98. [Online]. Available: http://doi.acm.org/10.1145/2970276.2970326

[31] M. L. Huihui Wei, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 3034–3040.
[Online]. Available: https://doi.org/10.24963/ijcai.2017/423

[32] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term memory networks,”
CoRR, vol. abs/1503.00075, 2015. [Online]. Available: http://arxiv.org/
abs/1503.00075

[33] N. A. Kraft, B. W. Bonds, and R. K. Smith, “Cross-language clone
detection.” in SEKE, 2008, pp. 54–59.

[34] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting
code clones in binary executables,” in Proceedings of the eighteenth
international symposium on Software testing and analysis - ISSTA ’09.
New York, New York, USA: ACM Press, 2009, p. 117. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1572272.1572287

[35] A. Grover and J. Leskovec, “Node2Vec: Scalable Feature Learning for
Networks,” in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16.
New York, NY, USA: ACM, 2016, pp. 855–864. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939754

[36] A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Saminathan,
“subgraph2vec: Learning Distributed Representations of Rooted
Sub-graphs from Large Graphs,” jun 2016. [Online]. Available:
http://arxiv.org/abs/1606.08928

[37] N. Shervashidze NINOSHERVASHIDZE, P. Schweitzer PASCAL,
E. Jan van Leeuwen EJVANLEEUWEN, K. Mehlhorn MEHLHORN,
and K. M. Borgwardt KARSTENBORGWARDT, “Weisfeiler-Lehman
Graph Kernels,” Journal of Machine Learning Research, vol. 12,
pp. 2539–2561, 2011. [Online]. Available: http://www.jmlr.org/papers/
volume12/shervashidze11a/shervashidze11a.pdf

[38] L. Mou, G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and L. Zhang,
“Building Program Vector Representations for Deep Learning,” sep
2014. [Online]. Available: http://arxiv.org/abs/1409.3358

[39] H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep Hashing Network
for Efficient Similarity Retrieval,” in Proceedings of the Thirtieth
{AAAI} Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, {USA.}, 2016, pp. 2415–2421. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12039

[40] V. Hyvönen, T. Pitkänen, S. Tasoulis, E. Jääsaari, R. Tuomainen,
L. Wang, J. Corander, and T. Roos, “Fast k-NN search,” sep 2015.
[Online]. Available: http://arxiv.org/abs/1509.06957

http://doi.acm.org/10.1145/2884781.2884877
https://doi.org/10.1186/s40411-017-0035-z
https://martinfowler.com/articles/microservices.html
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://www.facebook.com/note.php?note_id=14218138919
https://www.facebook.com/note.php?note_id=14218138919
https://eng.uber.com/building-tincup/
https://doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1109/ICSE.2007.30
http://dl.acm.org/citation.cfm?id=850947.853341
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://dl.acm.org/citation.cfm?id=2987189.2987282
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dl.acm.org/citation.cfm?doid=3152284.3133908
http://doi.acm.org/10.1145/997817.997857
http://doi.acm.org/10.1145/2970276.2970326
https://doi.org/10.24963/ijcai.2017/423
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1503.00075
http://portal.acm.org/citation.cfm?doid=1572272.1572287
http://doi.acm.org/10.1145/2939672.2939754
http://arxiv.org/abs/1606.08928
http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf
http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf
http://arxiv.org/abs/1409.3358
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12039
http://arxiv.org/abs/1509.06957

	Introduction
	Background
	Proposal
	System overview
	Token-level vectors generation
	Vocabulary generation
	Skip-gram data generation
	Training the skip-gram model

	Clone detection model
	Implementation details
	Negative clone samples selection
	Pre-computing AST vectors


	Experiments and results
	Dataset
	Token-level vectors generation dataset
	Code clones dataset

	Experiments and Results
	Token-level vectors generation
	Model training and testing
	Clone detection experiment

	Discussion

	Threats of validity
	Related works
	Clone detection approaches
	Vector representation generation approaches

	Conclusion
	References

