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Abstract
A foreign function interface (FFI) is a classical abstraction
used for interfacing a programming language with another
foreign language to reuse its libraries. This interface is im-
portant for a new (or non prevailing) language because it
lacks libraries and thus needs to borrow libraries written in
a foreign language when the programmer develops a prac-
tical application in that new language. However, a modern
library often exploits unique language mechanisms of the
implementation language. This makes the use of the library
difficult through a simple function call from that new lan-
guage. This paper presents our approach to this problem.
We use an embedded domain specific language (DSL), which
is designed to resemble the foreign language, and migrate
the DSL code to access to the library written in the foreign
language. This paper also presents our framework Yadriggy
for developing the DSL from Ruby to a foreign language
environment. The framework supports DSL-specific syntax
checking for the migrated DSL code.

CCS Concepts • Software and its engineering→ Run-
time environments; Domain specific languages.

Keywords foreign function interface, polyglot program-
ming, library, Ruby, Python
ACM Reference Format:
Shigeru Chiba. 2019. Foreign Language Interfaces by Code Migra-
tion. In Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Generative Programming: Concepts and Experiences (GPCE
’19), October 21–22, 2019, Athens, Greece. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3357765.3359521

1 Introduction
A programming language without a rich set of libraries will
not be used for practical application development. Providing
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a wide range of libraries is a significant issue for program-
ming language developers whowant to make their languages
practical. Hence some programming languages such as Java,
Python, and Ruby provide a mechanism for calling library
functions written in the C language. Since there are a wide
variety of C libraries and operating system services are often
provided through C libraries, bridging to C functions is a
cost-effective approach to widening the coverage of libraries.
Furthermore, the C language is relatively simple compared to
modern languages and a function call in C is an abstraction
available in most programming languages. A function-based
bridging mechanism to C, which is often called a foreign
function interface (FFI), can be seamlessly embedded in those
languages. Although passing a pointer value as an argument
needs a somewhat complex trick to implement, Proxy pattern
[12] using reflection [35] is a well known solution.
A number of useful libraries are, however, being imple-

mented in other languages than the C language. For example,
Python is a popular language today when implementing a li-
brary for machine learning and scientific computing. Tensor-
Flow [16], PyTorch [1], and Matplotlib [20] are examples of
popular Python libraries. Since the application programming
interfaces (API) of these libraries exploit language features
unique to Python, the client code of those libraries is aware
of these features. This fact is a hindrance when using the
libraries from a different language since its FFI has to support
Python-like function/method calls but these calls might not
be naturally expressed in that different language.

This paper presents that code migration is an appropriate
abstraction for the interfaces to foreign-language libraries.
When accessing a library written in a foreign language in our
approach, a host language program sends a code block to the
foreign language, which executes the code block accessing
the library and returns the result back to the host language
program. The host language program does not access the
library through a function call. The migrated code block is
written in a domain-specific language (DSL) embedded in the
host language. It borrows the syntax from the host language
but it is semantically more similar to the foreign language.
This DSL allows accesses to the unique features of the foreign
language while it also manages to pass data between the
host and foreign languages. The DSL helps the programmers
avoid several pitfalls that they may encounter when they
access a foreign-language library according to the library’s
tutorial written for the foreign-language programmers.
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To explore this approach, we have developed Yadriggy1,
a framework in the Ruby language. It is used to implement
an interfacing system from Ruby to the libraries written in a
foreign language, such as Python. Our challenge is to realize
the approach without modifying Ruby or its programming
environment. With this aim, the framework assumes that the
syntax of the DSL is a subset of Ruby and only its semantics
is uniquely designed. The DSL will be regarded as a variant
of Ruby extended with foreign-language features, in other
words, as a language borrowing the syntax from Ruby but
the semantics from the foreign language. The framework
provides a facility for dynamically extracting an abstract
syntax tree (AST) for a code block given in the form of lambda
expression or method object. The framework also provides
a syntax checker to examine the extracted AST consists of
only the selected syntactic forms for the DSL. It is a key
component to deal with a code block in a language with
complex syntax like Ruby. The developer of the interfacing
system would have to write tedious error-check code if the
syntax checker is not available. Restricting the available
syntax in the DSL would also reduce the amount of work by
the developer. Furthermore, the syntax checker is used to
tag a particular shape of subtree of the AST. This tag can be
used later, for example, during code generation.

In the rest of this paper, Section 2 presents our motivating
examples. Section 3 proposes our framework and Section 4
shows how the framework is used. Section 5 presents related
work and Section 6 concludes this paper.

2 Are Foreign Function Interfaces
Adequate?

Ruby is a programming language that is popular for de-
veloping web services [15]. Python is popular for scientific
computing and machine learning and hence there are several
well-known mature libraries in those application domains,
such as TensorFlow [16] and Matplotlib [20]. Thus, it seems
a good idea to enable Ruby programs to access these Python
libraries through a foreign function interface (FFI). In Ruby,
PyCall [22] is available as an FFI library bridging between
Ruby and Python. PyCall is a Ruby port of the library with
the same name for the Julia language [37].

With PyCall, we can write the following Ruby code:

1 plt = PyCall.import_module('matplotlib.pyplot')
2 plt.plot([1, 3, 2, 5])
3 plt.show()

This draws a line graph by using the Matplotlib library in
Python. The variable plt refers to a proxy object. The call
to the plot method on plt results in the remote method
invocation on the matplotlib.pyplot module in Python.
Here, remote means the outside of the Ruby virtual machine.

1Available from https://github.com/csg-tokyo/yadriggy or Zenodo [5].

The call to show on plt also results in the remote invocation
of show. The code above is equivalent to this Python code:

1 import matplotlib.pyplot as plt
2 plt.plot([1, 3, 2, 5])
3 plt.show()

The two code snippets look very similar. Only the difference
is that plt in Python is a shorthand of the module name
matplotlib.pyplot.
PyCall is an FFI library with elaborate design. It exploits

the syntactical similarity between Ruby and Python and en-
ables Ruby programmers to naturally call a Python function.
They can call a Python function mostly by just copying a
code snippet written in Python from the tutorial.
However, a few blog posts point out its pitfalls [8, 30].

Suppose that we want to write the following Python code:

1 from collections import deque
2 dq = deque([2, 3, 5])

The second line might look like a function call but it is a
constructor call; it creates a new instance of the deque class.
In Ruby with PyCall, hence, we must write the following
code:

1 pyfrom 'collections', import: :deque
2 dq = deque.([2, 3, 5])

Note that the dot operator follows deque. Alternatively, we
can write:

1 pyfrom 'collections', import: :deque
2 dq = deque.new([2, 3, 5])

Now the second line calls the newmethod on the deque class
so that an instance will be created. If we are aware that deque
in Python is a constructor call, we would be able to correctly
write the corresponding Ruby code above. However, if we
are careless, we might forget to write the dot or new operator
after deque and encounter a runtime error.

Another example is a keyword argument in Python. Sup-
pose that we want to pass the keyword argument lw (line
width) to the plot function. In Python, we would write:

1 import matplotlib.pyplot as plt
2 plt.plot([1, 3, 2, 5], lw=5)
3 plt.show()

If we execute the second line in Ruby with PyCall, the ar-
gument lw=5 is interpreted by the Ruby interpreter as the
assignment to the variable lw. The arguments are evaluated
in the context of Ruby and only the resulting values are sent
to Python by PyCall. Hence, the Python interpreter attempts
to execute the call plt.plot([1, 3, 2, 5], 5) and then
we will see a runtime error. To avoid this misinterpretation,
we must write the following code in Ruby:

1 plt = PyCall.import_module('matplotlib.pyplot')
2 plt.plot([1, 3, 2, 5], lw: 5)
3 plt.show()
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In Ruby with PyCall, we must use the Ruby syntax for key-
word arguments, lw:5. Again, if we are aware of the differ-
ence between Python and Ruby with respect to keyword
arguments, we would not make such a mistake. However,
we cannot use a Python library from Ruby by just copying a
code snippet from the tutorial of that library although the
code snippet looks syntactically correct in Ruby as well as
Python.
The final example is a dictionary. The following Python

program is a simple example for running TensorFlow.
1 import tensorflow as tf
2 sess = tf.Session()
3 x_data = tf.placeholder(tf.float32)
4 expr = tf.multiply(x_data, x_data)
5 r = sess.run(expr, feed_dict={x_data: 2.0})

The second line is a constructor call and the last line is a
call with a keyword argument. Hence the following Ruby
program might seem to correctly work:

1 tf = PyCall.import_module('tensorflow')
2 sess = tf.Session.new()
3 x_data = tf.placeholder(tf.float32)
4 expr = tf.multiply(x_data, x_data)
5 r = sess.run(expr, feed_dict: {x_data: 2.0})

Unfortunately, this raises a runtime error because the inter-
pretation of the dictionary literal {x_data: 2.0} is different
between Python and Ruby. In Python, x_data is regarded as
an expression and thus the created dictionary maps the value
of the variable x_data to 2.0. In Ruby, x_data is regarded
as a symbol and thus the created dictionary maps "x_data"
to 2.0. To fix this problem, the last line must be as follows:

5 r = sess.run(expr, feed_dict: {x_data => 2.0})

The literal {x_data => 2.0} in Ruby is equivalent to {x_data:
2.0} in Python.
The direct causes of these pitfalls are minor differences

between Python and Ruby. The first example is due to the
syntactic difference in constructor calls. The second one is
due to the syntax of keyword arguments. The third one is
due to the syntax of dictionaries. The programmers might
not make a mistake due to these rather minor differences if
they are sufficiently careful when writing foreign function
calls between Ruby and Python. A function call is, however,
an abstraction that tends to provoke such a mistake. The
called function is executed in Python through PyCall but its
function name and its arguments are computed in Ruby.

As we mentioned above, the following Ruby code causes
a runtime error because no dot or .new follows deque:

1 pyfrom 'collections', import: :deque
2 dq = deque([2, 3, 5])

Although we might want to consider the second line as the
Python code embedded in Ruby code, the function name
deque is first evaluated as Ruby code. It has to result in a
Ruby object representing the Python deque class. The object
may receive .() and .new() but not () as a message. For

the other examples, we observe similar error-prone code
boundaries between Ruby and Python. We might want to
consider the following lines:

2 plt.plot([1, 3, 2, 5], lw=5)

5 r = sess.run(expr, feed_dict: {x_data: 2.0})

as embedded Python code, but the arguments are evaluated
in Ruby. Only the bodies of plot and run are executed in
Python.
PyCall also allows a Ruby program to access a Python

library by string embedding as well as a foreign function call.
In this approach, the whole Python source code is encoded as
a string object in Ruby and it is passed to PyCall for execution.
For example,

1 lst = [2, 3, 5]
2 dq = PyCall::eval("deque(#{lst})")

it first constructs Python source code as a string object by
string interpolation (or formatting). lst is evaluated by Ruby
and the resulting value is embedded. Then the string object
is given to eval to be executed by the Python interpreter. In
this approach, the code boundary between Ruby and Python
is more explicit than in a foreign function call. The code
surrounded with double quotes is Python code except the
Ruby code within #{ and }. We do not need to add an extra
dot or .new after deque.
However, the string-embedding approach is still error-

prone [9]. Syntax highlighting will not be applied to the
source code encoded as a string literal. The string interpo-
lation composes the source code on a lexical level and thus
it often leads to syntax errors or security holes such as SQL
injection and cross-site scripting attacks. The programmers
must be still aware of the code boundaries between the lan-
guages.

3 Code Migration Substitutes for Foreign
Function Interfaces

To give an alternative to the interface based on function calls,
we discuss an approach based on migrating code block to a
foreign environment, for example, from the Ruby interpreter
to the Python interpreter (or between the virtual machines).
Although string embedding is one of the techniques for this
approach, we present another technique to mitigate draw-
backs of string embedding. We also present Yadriggy, our
new framework for Ruby, which provides a basic facility for
implementing our technique in Ruby.

3.1 Overview
Yadriggy provides a basic facility for implementing an inter-
facing system to access a library written in another language
from Ruby. We below call this interfacing system a foreign
language interface because its interface is not a function-call
basis. This term is also seen in the Prolog family [39].
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The foreign language interface built on Yadriggy takes
a code block in the form of lambda expression or method
object. Then it migrates the whole code block to the foreign
language environment for execution as the string-embedding
approach does. For example, the interfacing system would
be used as the following:

1 lst = [2, 3, 5]
2 dq = run_python { deque(lst) }

In Ruby, the code block surrounded with { and } is regarded
as a lambda expression (or a Proc object).2 It is passed to
run_python, which is a method provided by the interfac-
ing system. The code boundary between Ruby and Python
is much simpler than a function-call basis interfacing sys-
tem. Note that a dot or .new does not follow deque. Since
run_python migrates the whole expression deque(lst) to
the Python interpreter, the expression is interpreted as a
constructor call.
To migrate the code block, run_python first obtains an

abstract syntax tree (AST) for the source code of that code
block. Obtaining an AST is supported by Yadriggy. Then
run_python generates the Python code sent to Python. It
identifies free variables in the code block and sends their
values to Python aswell as the code. For example, the variable
lst is a free variable and it refers to a Ruby array denoted
as [2, 3, 5]. Sending a copy of this array to Python is the
responsibility of run_python, the interfacing system, so that
the migrated code can access that array. The programmer
does not have to manually embed the array into the migrated
code by string interpolation. This wouldmake the interfacing
system less error-prone than the string-embedding approach.

Our idea is to use a normal lambda expression for express-
ing a code block passed to the foreign language environment.
We do not allow syntax extensions for describing the code
block. The programmers cannot enjoy domain-specific syn-
tax but they can work with a normal Ruby programming
environment since we do not modify the normal Ruby inter-
preter, which does not enable user-defined syntax extension
[9, 18, 26] or reader macros [36].
We believe the use of only Ruby’s syntax is not a seri-

ous problem. Ruby’s syntactic flexibility allows us to write
Ruby code that looks like foreign language code or closely
resembles it. For example, as we have seen, the expression
{x_data: 2.0} in Python is valid Ruby code except the se-
mantics. Slice notation in Python such as a[i:j] is not valid
syntax in Ruby. In this case, we can pick similar valid syn-
tax in Ruby such as a[i..j] and implement the interfacing
system so that it will map a[i..j] to a[i:j]. The program-
mer must be concerned about this syntactic difference, but
we believe that she would not be badly confused since slice

2Similar syntax is also seen in Scala.

notation is not available in Ruby.3 A problematic case is only
the syntax valid in both languages with different semantics.
Note that the migrated code block is written in normal

Ruby but it does not have to be interpreted with Ruby’s orig-
inal semantics. It can be interpreted as Python code or the
code written in an original DSL, which is embedded in Ruby
but borrows only its syntax. Furthermore, the language for
the migrated code does not have to support the full set of
Ruby’s syntax. The language’s syntax is designed by restrict-
ing Ruby’s rich syntax, not by defining the new syntax from
scratch.

3.2 Extracting a Syntax Tree
To extract an AST for the given code block as a lambda
expression, Yadriggy provides the reify method. It takes a
lambda expression as an argument, finds the source-code
location where the lambda expression was constructed, and
returns an AST for the source code of that lambda expression.
The reify method can also take a Method object and return
an AST for the method declaration. A Method object is a
metaobject representing a method. It is part of the standard
Ruby.

The reifymethod is similar to classic Lisp macro systems
[7, 36, 38] or compile-time reflection [4] but reify does
not perform preprocessing or macro expansion at its call
site. It rather constructs an AST of the source code located
somewhere far from the call site to reify. Therefore, the
entry point of the foreign language interface built on our
framework, such as run_python shown above, is not a macro
function, either; it is a normal method.
If run_python were a macro function, the code block

given to it would be transformed into anASTwhere run_python
was called, for example, at this call site:

2 dq = run_python { deque(lst) }

Then run_python would return source code to lexically re-
place the original macro call. Finally, the returned source
code would be executed. The definition of the macro function
would be something like this:

1 def_macro run_python(ast)
2 code = generate_python_code_from(ast)
3 return "PyCall::eval('#{code}')"
4 end

Note that this is pseudo code since Ruby does not support
macro functions.
On the other hand, run_python using our framework

would be defined as follows:
1 def run_python(&block)
2 ast = reify(block)
3 code = generate_python_code_from(ast)

3In Ruby, i..j makes a Range object representing an interval from i to
j. So a[i..j] in Ruby is also semantically similar to a[i:j] in Python
although we have to write a[i...j] (not two but three dots) in Ruby to
get the same result as a[i:j].
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4 return PyCall::eval(code)
5 end

The parameter block is bound to the lambda expression4
representing the block argument { deque(lst) }. The AST
for this block argument is constructed when reify is called,
not when run_python is called. Then run_python gener-
ates Python code, migrates, and executes it by the Python
interpreter. Finally, run_python returns the resulting value.
Constructing an AST for a lambda expression is an ad-

vantage of the reify method against macro functions. This
design is useful because the programmer can define her own
method to extend run_python. For example,

1 def run_python_with_logging(&block)
2 puts "begin Python"
3 result = run_python(&block)
4 puts "end"
5 return result
6 end

This method prints a log message and passes the given block
argument to the run_python method. If run_python is a
macro function, run_python_with_loggingwould be also a
macro function and its body would include a redundant copy
of the body of run_python or it would have to perform error-
prone string concatenation before nested macro-expansion
by run_python.

The AST constructed by the reify method provides sup-
ports for the foreign language interface when identifying a
free variable and its value. The AST consists of tree-node
objects connected by bidirectional links. Each node object
has the value method, which returns a runtime value repre-
sented by that node. The valuemethod onmost node objects
returns Undef (undefined). However, if the tree node repre-
sents a literal or a free variable name, it returns the value of
that literal or variable. Since the reify method constructs
an AST at runtime, it also captures the binding environment
for the lambda expression or the method. The valuemethod
accesses this environment to obtain the runtime value. For
example,

1 lst = [2, 3, 5]
2 dq = run_python { deque(lst) }

When the reify method constructs an AST for the block
argument { deque(lst) }, it captures the binding environ-
ment for that block argument (i.e. a lambda expression). Fig-
ure 1 illustrates this AST. The AST recognizes that the free
variable lst refers to an array denoted as [2, 3, 5] and
the value method returns this array when it is called on
the Identifier node representing lst. On the other hand,
the value method returns Undef when it is called on the
Identifier node representing deque. This is because deque
is an undefined name in Ruby. If deque referred to a Ruby
4More precisely, block is bound to a Proc object. Although Proc is not
equivalent to a lambda expression, we treat them as interchangeable for
brevity.

Block

Call

Identifier
Array

name
args

body

name: “deque”
value: Undef

name: “lst”
value: [2, 3, 4]

Identifier

Figure 1. The abstract syntax tree

method visible from the block argument, the value method
would return that method.

The current implementation of the reify method calls
the source_locationmethod on the Proc or Method object
given to reify. source_location is part of the standard
Ruby. Since source_location returns the source file name,
the line number, and the column position, the reifymethod
first parses the source file and extracts the AST for that Proc
or Method object. Because the ripper parser used by the
reifymethod provides incomplete information on the token
locations, the reify method may fail to extract a correct
AST when multiple lambda expressions appear in the same
line. To address this limitation, we have to reimplement the
reifymethod by using the RubyVM::AbstractSyntaxTree
module newly introduced by Ruby 2.6.

3.3 Syntax Checking
The foreign language interface built on Yadriggy should
check the migrated code is syntactically valid or not before it
executes the migration. Since the migrated code is a lambda
expression passed to the reify method and it is written in
the normal Ruby syntax, if the migrated code includes a
syntax error, the Ruby interpreter will detect it when con-
structing the lambda expression before running the foreign
language interface.
However, the migrated code will be written in not full-

featured Ruby but its subset, or a DSL consisting of only
selected forms of expression from Ruby’s. For example, the
foreign language interface from Ruby to Python would sup-
port only the forms compatible with Python’s. The migration
of some forms of expression might have not been imple-
mented and thus these forms might need to be unavailable
in that DSL.
To check whether the migrated code includes only the

supported forms of expression, Yadriggy provides a syntax
checker for the ASTs as well as the reify method. Since the
reifymethod constructs an AST for the migrated code even
when the code includes unsupported forms of expression (as
far as it is valid Ruby code), the syntax checker examines
that the shape of the AST consists of only the supported
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forms of expression. It helps implement the foreign language
interface because the implementation can assume that the
obtained AST always has a valid shape after the checking.

The valid shapes of ASTs are specified in our DSL, which
is also built on Yadriggy. For example,

1 syn = define_syntax do
2 Binary <= {op: :+ | :-, left: expr,right: expr}
3 expr <= Binary | Number
4 Block <= { body: expr }
5 end
6 ast = ...
7 puts syn.check(ast) # true if ast is a valid AST

define_syntax is a method provided by Yadriggy. The do ...
end block5 is passed to define_syntax as a lambda expres-
sion. The capitalized names Binary and Block are the class
names for AST nodes. The second line reads that a Binary
node in the AST has :+ or :- (+ or - symbol6) for op (opera-
tor) and an expr node for left operand and right operand,
respectively. Here, op, left, and right are accessor meth-
ods in the Binary class. expr is a user-defined node type.
It is defined in the third line; it is either Binary or Number.
The forth line reads that a Block node has an expr node for
body. Note that | is an ordered choice. The define_syntax
method creates a syntax checker and the check method on
this checker examines whether the given AST satisfies the
rules given to define_syntax.
We can regard this checking as syntax checking because

the rules indirectly specify the syntax of the code represented
by the AST. The rules above correspond to the following
syntax rules in PEG-like notation [10]:

1 binary : expr '+ ' expr | expr '-' expr
2 expr : binary | number
3 block : expr

Note that | is an ordered choice. A difference is that each
operand of rule is named as left, right, and so forth, in
our framework. The order of the operands is not specified in
our framework since the program has been already parsed
according to the normal Ruby syntax.
Each rule given to define_syntax takes the following

form:
type_name <= constraint

The left operand of <= is a type name of AST node. It is either
a Ruby class or an arbitrary identifier7, which is recognized
as a user-defined node type. The rule specifies that the AST
nodes of this type satisfy the constraint on the right hand
side. The syntax checker first visits the root node of the given
AST. It attempts to find the rule for the node type. When it
does not find the rule, it next attempts to find the rule for

5do ... end is equivalent to {...} for making a block argument (i.e. a lambda
expression passed as an argument).
6In Ruby, a name starting with a colon is a symbol. :id is a symbol named
id.
7A name starting with a lowercase letter. In Ruby, a class name starts with
an uppercase letter.

the super type. If no rule is found, the checker reports the
AST is valid. Otherwise, it checks whether the node satisfies
the constraint in the found rule.

The constraints available in the rules are listed in Table 1.
If the constraint is a type name, the AST node has to be of
that type and also satisfy the rule for that type. The syntax
checker recursively finds the rule and checks the constraint.
If the constraint is a hash literal such as { body: expr }, the
checker checks that the attributes of the AST node satisfy
the attribute constraints in Table 2.

When the following hash literal is given:
{ key1: value1, key2: value2, ..., keyn: valuen }

for each pair of keyi and valuei , the checker checks that
the value of the attribute named keyi matches the attribute
constraint valuei . The value of the attribute keyi is obtained
by calling the method named keyi on the AST node. An
attribute of the AST node is not tested when the hash literal
does not contain the attribute’s name as a key. When the
attribute constraint is a type name, the checker examines that
the attribute’s value is an object of that type and it satisfies
the constraint for that type, if any.

The attribute constraint may be an array literal. It specifies
that the attribute’s value is an array satisfying the constraint.
The constraints for arrays are listed in Table 3. In this table,
c, c0, c1, and c2 are attribute constraints.

When the given AST node matches a user-defined type, it
is tagged as that user-defined type. The tag can be used to
identify a particular shape of tree during the tree walking
mentioned later. For example, the following rules identify a
method-call expression to the this method:

1 expr <= this_variable | VariableCall
2 this_variable <= VariableCall + { name: "this" }

Since | is an ordered choice, the syntax checker first attempts
this_variable. The second rule specifies that this_variable
is an node object of the VariableCall class and its name
attribute is a string "this". Since the most specific user-
defined type is attached to the AST node, the AST repre-
senting a method call to this is tagged as this_variable.
Otherwise, an AST node of the type VariableCall is tagged
as expr. This would be useful to implement the foreign lan-
guage interface to C++. Note that this is not a reserved
keyword in Ruby but it is regarded as a method-call expres-
sion on self without arguments, self.this().
The rules for the syntax checker of Yadriggy is also used

to show the specification of the ASTs obtained by the reify
method of Yadriggy. The source code of Yadriggy is dis-
tributed with the rule sets that match any ASTs obtained
by the reify method. They are the reference manual that
shows the class names for the AST nodes and their attribute
names. See Appendix A for the details of the rule sets.
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Table 1. Constraints

constraint specification
nil The AST node is not valid.
type name The AST nodes is an object of that type and it satisfies the constraint for that type.
hash literal The attributes of the AST node satisfies the given constraints.
c1 + c2 Both constraints c1 and c2 are satisfied. (+ has higher precedence than |.)
c1 | c2 Ordered choice. Either c1 or c2 is satisfied.

Table 2. Constraints for node attributes

hash value specification
nil The attribute is nil or an empty array.
type name The attribute is a value of that type.
string literal The value of the attribute matches that string.
symbol literal The value of the attribute matches that symbol.
array literal The attribute is an array and the elements match the constraint.
( c ) The attribute constraint c is optional. The attribute is nil or satisfies c.
c1 | c2 Ordered choice. The attribute satisfies either the attribute constraint c1 or c2.

Table 3. Constraints for arrays

array literal specification
c The array contains a single element. It matches c.

[] An empty array.
[ c ] All the array elements match the attribute constraint.
[ c0, c1 ] The first element matches c0 and the rest of the elements match c1.
[ c0, c1, c2 ] The first two elements match c0 and c1, respectively. The rest of the elements match c2.
[ c0 * c1 ] Each array element is an array with two AST nodes.

The first element of each array element matches c1 and the second element matches c2.

3.4 Tree Walker
Yadriggy also provides a DSL for traversing AST nodes. It
is used to walk on the AST from node to node. This helps
implement a code generator and a type checker.

To implement a treewalker, we define a subclass of Checker.
Checker is a class provided by Yadriggy. Suppose that we
deal with ASTs satisfying the following syntax:

1 syn = define_syntax do
2 Binary <= { left: expr, right: expr }
3 expr <= Binary | Number | Name
4 end

Then we can define a tree walker for these ASTs:

1 class SimpleChecker < Checker
2 rule(Number) do
3 'number'
4 end
5
6 rule(Name) do
7 'name'
8 end
9
10 rule(Binary) do
11 v1 = check(ast.left)

12 v2 = check(ast.right)
13 "#{v1}#{ast.op}#{v2}"
14 end
15 end

A rule such as rule(Number) do ... end in line 2 to 4 specifies
the action when the tree walker visits a node of the given
type such as Number. When a variable tree refers to the AST
for the source code a + b - 3, then:

SimpleChecker.new.check(tree)

returns "name+name-number".
The rules may return arbitrary values as their results. In

the bodies of the rules, a special variable ast is available.
Precisely, it is a method call without arguments to the ast
method. ast refers to the AST node currently visited. Its
type matches the type that the rule specifies for.

A rule can be defined for a user-defined type such as expr.
If such a rule is included in the tree walker, the AST has
to be checked by the syntax checker before running the
tree walker so that AST nodes will be properly tagged. For
example, the normal Ruby parser recognizes the following

7
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form of lambda expression as a method-call expression to
the lambda method:

lambda {|x| x + 1 }

Thus the root node of the AST obtained by the reifymethod
is a Call object representing a method call. If this is incon-
venient, we can define a user-defined type lambda_call
for the syntax checker and then use that type during the
tree traversal to deal with lambda expressions separately
from method-call expressions. The following rules define
lambda_call:

1 lambda_name = { name: "lambda" }
2 lambda_call = Call + { receiver: nil, op: nil,
3 name: lambda_name,
4 args: nil, block_arg: nil,
5 block: Block }

It is defined as a method-call expression with a block argu-
ment but no receiver or arguments.

When the check method is invoked on the tree walker, it
first attempts to find a rule for the user-defined type attached
to the AST node passed to check. If the rule is not found, the
check method attempts to find a rule for the most specific
class for that AST node. It next attempts to find a rule for
the superclass of the most specific class, and so forth. If no
rule is finally found, the check method raises an exception.
We can also define a subclass of SimpleChecker, which

is a subclass of the Checker class shown above. All the rules
are inherited from the super class SimpleChecker. When a
rule overrides the rule defined in the super class, the over-
ridden rule can be invoked by calling the proceed method.
Its parameter is the currently visited AST.

3.5 Applicability and Limitations
To access a foreign-language library, our approach migrates
a code block written in a DSL embedded in the host language.
The DSL borrows the host syntax although it interprets its
code for a different semantics. Therefore, a host language
with flexible syntax, such as Ruby, is appropriate to our
approach. Static typing narrows down the design space of
the DSL since the migrated code block has to be valid with
respect to not only the syntax but also the types of the host
language. Our approach, however, is also applicable to a host
language with static typing and simple syntax, for example,
the C language. The DSL embedded in that host language
would be far different from the foreign language but it would
be rather less confusing to the programmers. According to
our observation, a DSL is confusing when the syntactically
same expression is interpreted differently between the DSL
and the foreign language. A very different DSL does not
allow such a confusing expression although learning the
DSL may require efforts.
The frameworks for our approach have to provide the

reify method. The host language has to enable its imple-
mentation. It is crucial that reify extracts an AST for a

lambda expression as well as a method/function body. In
Python, extracting an AST for a function body by using an @
decorator is a common technique. However, if reify only
extracts an AST for a function body, the programmers have
to write a separate function whenever they write the mi-
grated code in the DSL. This is as inconvenient as writing
an anonymous class in Java instead of a lambda expression.
Furthermore, reify extracts an AST for an arbitrary lambda
expression. The programmers do not need to annotate the
lambda expression, for example, by an @ decorator in Python,
when they construct it.

The host language also has to enable to capture the run-
time value of a free variable included in the migrated code
block. Ruby’s reflection ability allows reify to access the
execution environment of a lambda expression. The reify
method can obtain a variable name and its runtime value in
that environment.

In our approach, the DSL interpreter has to report a syntax
error when the migrated code is syntactically valid as the
host-language code but not as the DSL code. A host language
with highly flexible syntax enables a DSL with complex syn-
tax. It is tedious to checking a syntax error in such a DSL.
The frameworks for our approach should support the imple-
mentation of the syntax checker for such a DSL.

4 Case Studies
This section presents application examples of our framework,
Yadriggy.

4.1 Syntax Checker
The syntax checker provided by Yadriggy is an application
of Yadriggy itself. The DSL for the syntax checker could
be implemented in the deep embedding style since most
operators in Ruby are method calls and their method defini-
tions are modifiable. Its implementation might not need our
framework but it would be badly complicated. For example,

Binary <= { left: Number, right: Number }

This rule could be made available without our framework.
Binary and Number are constants. They are class objects
representing the classes Binary and Number, respectively. If
we define the <=method for Binary, the expression above is
executed as a method call to the <= method on Binary with
a hash table as an argument:

Binary.<= ( { left: Number, right: Number } )

Since the rule is executed as a method call, we can properly
implement the <= method so that the DSL will be imple-
mented in the deep embedding style [21, 32, 34]. However,
this technique does not work for user-defined types. When
executing the following rule:

expr <= Binary | Number

it will throw an exception because expr is an undefined local
variable. If we change the operator from <= to = and define
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Listing 1. The DSL for the syntax checker
1 nil_value <= Reserved + { name: 'nil' }
2
3 ArrayLiteral <= { elements: [ array_elem ] }
4 array_elem <= Binary + {op: :*,left: array_elem,
5 right: or_constraint } | or_constraint
6 Paren <= { expression: or_constraint }
7 constraint <= Const | IdentifierOrCall | Paren |
8 ArrayLiteral | StringLiteral |
9 SymbolLiteral | nil_value
10 or_constraint <= Binary +
11 { op: :|, left: or_constraint,
12 right: constraint } | constraint
13 HashLiteral <= {pairs: [ Label * or_constraint]}
14
15 operand <= Const | IdentifierOrCall |
16 HashLiteral | nil_value
17 add_expr <= Binary + { op: :+, left: add_expr,
18 right: operand } | operand
19 expr <= Binary + { op: :|, left: expr,
20 right: add_expr } | add_expr
21
22 rule <= Binary + {left: Const| IdentifierOrCall,
23 op: :'=' | :'<=', right: expr }
24 Exprs <= { expressions: [ rule ] }
25 Parameters <= { params: [],
26 optionals: [],
27 rest_of_params: nil,
28 params_after_rest: [],
29 keywords: [],
30 rest_of_keywords: nil,
31 block_param: nil }
32 Block <= Parameters + { body: nil | rule | Exprs}

the |method on Binary, the rule will not throw an exception
when it is executed. This solution unfortunately causes a
problem for this rule:

Binary = { left: Number, right: Number }

This re-initializes the constant Binary. After the re-initialization,
Binary is not a class name. We do not know a technique for
addressing this problem.

Our framework enables us to give the DSL code a different
semantics fromRuby; we can avoid the problem shown above.
The define_syntax method provided by Yadriggy receives
a lambda expression including the rules and it constructs a
syntax checker without executing the body of that lambda
expression. The AST constructed from the lambda expression
matches the syntax rules in Listing 1. The syntax checker can
be regarded as a foreign-language interpreter independent of
Ruby. If so, the define_syntaxmethod is a foreign language
interface for migrating the code block written in the DSL for
the syntax checker.

4.2 Python
We have implemented a foreign language interface to Python.
When the code block is migrated to Python, copies of method
definitions and variables are also migrated if the migrated
code refers to them but they are outside the code. Those
method definitions and variables are recognized by calling

the value method on AST node objects obtained by the
reify method.

The lower-level implementation of our interfacing system
to Python relies on PyCall [22]. A reference to a Ruby object
is copied by PyCall to Python as a remote reference, and vice
versa. Primitive-type values and their arrays are passed by
copying into Python. The Python code generated from the
migrated code written in Ruby is also passed by PyCall to
the Python interpreter.

The code migrated to Python is written in the DSL borrow-
ing the syntax from Ruby. Our design goal for this DSL was
to avoid that the programmers make a careless mistake due
to minor differences between Ruby and Python, in particular,
when the programmers are writing the migrated code based
on Python tutorials. We assume that the programmers are
familiar with Ruby but not Python.
When designing the DSL, we mapped Ruby’s syntax to

Python’s language features in the following scheme. For each
syntactic form in Python, if the same form is:

• available in Ruby
– with the same semantics:
Use as is.

– with different semantics:
Change Ruby’s semantics so that this syntactic form
will have the same semantics as in Python. For ex-
ample, True in the DSL is mapped to True in Python
although True does not mean a true value in normal
Ruby. It is an undefined constant.

Furthermore, if a different syntactic form in Ruby
has that semantics in Python, use this form as well.
For example, since true means a true value in Ruby,
not only True but also true in the DSL are mapped
to True in Python.

• unavailable in Ruby:
– if a different syntactic form in Ruby has the same
semantics:
Use this form in Ruby. For example, a lambda ex-
pression in Ruby is syntactically different from one
in Python but the Ruby-style lambda expression is
used in the DSL.

– otherwise:
Use similar looking code in Ruby as the syntactic
form in Python. We used this approach for list com-
prehension in Python.

A function definition in Python is expressed as a method
definition in Ruby. It has to include a return statement al-
though it can be omitted in normal Ruby since the result
of the expression evaluated last is implicitly returned in
Ruby. Our current implementation only supports required
arguments; the default arguments, keyword arguments, or
variable number of arguments are not supported for function
definitions.

9
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List comprehension is not available in Ruby. Hence we
use a for statement enclosed by [] as a list comprehension.
For example, [for i in range(0, 3) do i end] in the
DSL is mapped to [i for i in range(0, 3)] in Python.
Tuples are neither available in Ruby. tuple(), tuple(1,),
and tuple(1, 2) in the DSL are mapped to (), (1,), and
(1, 2) in Python, respectively.

The with statement is not available in Ruby, either. We
express the with statement as follows:

1 with open('foo.txt') => f do
2 print(f.read())
3 end

In Ruby, this is recognized as a method call to the with
method with a hash argument open(’foo.txt’) => f and
a block argument do...end. This is mapped to this Python
code:

1 with open('foo.txt') as f:
2 print(f.read())

To support this mapping, the method call to with in Ruby is
tagged as with_call by the following syntax rule:

1 with_name = { name: "with" }
2 with_call = Call + { receiver: nil, op: nil,
3 name: with_name,
4 args: HashLiteral,
5 block_arg: nil, block: Block }

Only a hash literal is allowed for the argument.
The syntactic form for a keyword argument in a func-

tion call uses the = operator as in Python. It has a different
meaning in Ruby. The syntactic form for a dictionary literal,
such as {x_data: 2.0}, is differently interpreted between
Ruby and Python. The DSL adopts Python’s interpretation.
Table 4 partly lists the syntactic mapping between the DSL
and Python.
Listing 2 shows a Ruby program8 using our framework

for accessing the Python library, matplotlib. The draw_pie
method from line 1 to 8 and the code block in line 15 and 16
are migrated to Python. The values of labels and sizes are
also copied to Python. The Python program corresponding
to Listing 2 is shown in Listing 3. Only line 15 in Listing 2
and line 14 in Listing 3 are fundamentally different.

5 Related Work
Our framework Yadriggy is similar to Lisp macro systems [7,
36, 38]. However, Yadriggy’s reify method extracts an AST
for the given lambda expression or a method object whereas
a macro system extracts an AST for the macro argument. A
macro system cannot extract an AST from a first-class value
like a lambda expression. A macro function can deal with
the extracted AST only at macro-expansion time and it has
to return a modified AST, which will be executed instead of
the original one. Furthermore, the reify method deals with
8This was taken from the matplotlib tutorial: https://matplotlib.org/gallery/
pie_and_polar_charts/pie_features.html

Table 4. The DSL for the foreign language interface to
Python

DSL Python example
true True b = true
false False b = false
True True b = True
False False b = False
nil None x = nil
None None x = None
! not !true
&& and x > 3 && y > 2
|| or x > 3 || y > 2
.in in x x.in [1, 2, 3]

x.in([1, 2, 3])
.not_in not in x .not_in [1, 2, 3]
.idiv // x .idiv 3
i..j range(i,j) for i in 0..n do sum += i end
range(i,j) range(i,j) for i in range(0, n) do sum += i end
? : if else x > 0 ? x + 1 : -x + 1

Listing 2. Use of matplotlib from Ruby
1 def draw_pie(labels, sizes, explode)
2 fig1, ax1 = plt.subplots()
3 ax1.pie(sizes, explode=explode, labels=labels,
4 autopct='%1.1f%%', shadow=True,
5 startangle=90)
6 ax1.axis('equal')
7 plt.show()
8 end
9
10 def run()
11 import_py('matplotlib.pyplot').as(:plt)
12 labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
13 sizes = [15, 30, 45, 10]
14 run_python do
15 ex = tuple(0, 0.1, 0, 0)
16 draw_pie(labels, sizes, ex)
17 end
18 end
19
20 run

the complex syntax of Ruby whereas a Lisp macro system
deals with simple S-expressions. To deal with the complex
syntax, Yadriggy provides a syntax checker.
A number of macro-like systems for programming lan-

guages withmore complex syntax have been proposed. Squid
[29] is a code rewriting system for Scala. It combines code
rewriting and staged computing for user-defined optimiza-
tion. We could tweak Squid to use for developing a foreign
language interface but we would have to write a number of
rewriting rules since Squid is not designed for that purpose.
The rewriting rules would transform the code to construct
an AST in the deep embedding style.
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Listing 3. The corresponding Python program
1 import matplotlib.pyplot as plt
2
3 def draw_pie(labels, sizes, explode):
4 fig1, ax1 = plt.subplots()
5 ax1.pie(sizes, explode=explode, labels=labels,
6 autopct='%1.1f%%', shadow=True,
7 startangle=90)
8 ax1.axis('equal')
9 plt.show()
10
11 def run():
12 labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
13 sizes = [15, 30, 45, 10]
14 ex = (0, 0.1, 0, 0)
15 draw_pie(labels, sizes, ex)
16
17 run()

SugarJ [9] extends Java to enable a library that provides
a user-defined syntax. The extended syntax is transformed
into the syntax of regular Java. The library defines this trans-
formation by several rewriting rules for concrete syntax. It
does not use ASTs. TSL Wyvern [26] allows user-defined
syntax only within a type-directed scope. ProteaJ2 [19] also
allows user-defined syntax in a type-directed scheme. For
execution, the new syntax is not transformed into the host-
language syntax; instead, it is treated as a call to the function
associated with that syntax. Recaf [3] allows a new syntactic
form starting with a user-defined keyword. The new form is
also treated as a call on its semantic object. To run in unmod-
ified Ruby, Yadriggy does not enable syntax extensions by
the users. It lets the users reuse existing syntax in Ruby by
rather limiting available forms of syntax. A syntax checker
is provided for this purpose.

There have been several systems for constructing an IR (In-
termediate Representation) for the given code block. Lancet
[33] extracts the IR for Java bytecode during runtime from
the Graal VM [27, 28]. It uses their IR for customizing JIT
compilation in Java. Their IR is not designed for changing
the semantics or the interpretation of the original code block
although Yadriggy’s ASTs are for changing the semantics
so that the code block can be regarded as foreign language
code. Numba [23] also extracts the IR for Python by decom-
piling Python bytecode at runtime. It also uses the IR for JIT
compilation by LLVM.
Like Yadriggy, our previous work Bytespresso [6] con-

structs the AST for a lambda expression. This system con-
structs the AST by decompiling Java bytecode during run-
time and uses it for migrating Java code to GPU. However,
this system is for Java, a statically typed language, and thus
does not radically change the semantics or interpretation
of the Java code. It would be difficult to radically change
the semantics while keeping the code correctly typed. On
the other hand, Yadriggy exploits the fact that Ruby is dy-
namically typed and Ruby programs do not include explicit

type declarations. Yadriggy provides a syntax checker for
mitigating the complexity of the ASTs.

Deep embedding is a technique widely used for construct-
ing an AST for a method-call chain to a fluent interface
[11, 13, 14, 40]. Scala LMS [32] exploits Scala’s type system
to easily construct an AST for deeply embedded code and
enable staged computing. Scala-Virtualized [24, 31] gives
more natural presentation to that embedded code. Unlike
these deep embedding systems, Yadriggy directly constructs
an AST from the source code. The user programmers do not
have towrite client code in the deep embedding style. A draw-
back of deep embedding against quotation-based macros is
also discussed in [25]. Besides, Yadriggy does not require that
the host language is statically typed or supports an advanced
type system like Scala’s.
PyHyp [2] is a hybrid interpreter of PHP and Python. It

can run a PHP program including Python code and vice versa.
Like our approach, PHP and Python code can call a function
and also access a variable in the other language. However,
the PyHyp programmers have to use a dedicated source-code
editor Eco, which performs source-level transformation and
generates PHP code where Python code is embedded as a
string literal. Our approach allows us to use normal Ruby
and Python interpreters and their normal editors since it
provides an embedded DSL for accessing Python from Ruby.

Although our work mainly focuses on foreign language in-
terface, the idea of migrating a code block to somewhere dif-
ferent has been actively studied in the context of distributed
computing. Remote procedure calls (RPCs) are prevalent
communication abstracts based on function calls but they
imply non-trivial performance penalties. Remote batch invo-
cation (RBI) [17] is one of the solutions. It is a mechanism for
sending code to a remote site as a batch and executing it in a
single round-trip. The original RBI system was proposed for
a single-language environment based on Java. Yadriggy can
be used to implement RBI in a heterogeneous environment
involving different languages.

6 Conclusion
This paper presented that the interface based on code migra-
tion is an alternative to traditional foreign function interfaces.
The contributions of this paper are the following. First, it
showed that a function call is not always an appropriate
abstraction for accessing a library written in a foreign lan-
guage, in particular, a modern programming language such
as Python. Another contribution is that the paper proposed
a new framework Yadriggy for implementing a foreign lan-
guage interface based on code migration. The framework
works in Ruby. It provides a facility to extract an AST from a
code block given as a lambda expression or a method object.
It also provides a syntax checker for processing a code block
written in a language with complex syntax.
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Listing 4. The syntax rules for Ruby
1 expr <= Name | Number | Super | Binary | Unary |
2 SymbolLiteral | ConstPathRef |
3 StringLiteral | StringInterpolation |
4 ArrayLiteral | Paren | Call | ArrayRef |
5 HashLiteral | Return | ForLoop | Loop |
6 Conditional | Break | Lambda | BeginEnd |
7 Def | ModuleDef
8 exprs <= Exprs | expr
9 Name <= { name: String }
10 Number <= { value: Numeric }
11 Super <= {}
12 Identifier <= Name
13 SymbolLiteral <= { name: String }
14 VariableCall <= Name
15 InstanceVariable <= Name
16 GlobalVariable <= Name
17 Label <= Name
18 Reserved <= Name
19 Const <= Name
20 Binary <= { left: expr, op: Symbol, right: expr}
21 ArrayRef <= { array: expr, indexes: [ expr ] }
22 ArrayRefField <= ArrayRef
23 Assign <= { left: [expr] | expr, op: Symbol,
24 right: [expr] | expr }
25 Dots <= Binary
26 Unary <= { op: Symbol, operand: expr }
27 ConstPathRef <= { scope: (ConstPathRef | Const),
28 name: Const }
29 ConstPathField <= ConstPathRef
30 StringLiteral <= { value: String }
31 StringInterpolation <= { contents: [ exprs ] }
32 ArrayLiteral <= { elements: [ expr ] }
33 Paren <= { expression: expr }
34 HashLiteral <= { pairs: [ expr * expr ] }
35 Return <= { values: [ expr ] }
36 ForLoop <= { vars: [ Identifier ], set: expr,
37 body: exprs }
38 Loop <= { op: Symbol, cond: expr, body: exprs }
39 Conditional <= { op: Symbol, cond: expr,
40 then: exprs, all_elsif: [expr * exprs],
41 else: (exprs) }
42 Parameters <= { params: [ Identifier ],
43 optionals: [ Identifier * expr ],
44 rest_of_params: (Identifier),
45 params_after_rest: [ Identifier ],
46 keywords: [ Label * expr ],
47 rest_of_keywords: (Identifier),
48 block_param: (Identifier) }
49 Block <= Parameters + { body: exprs }
50 Lambda <= Block
51 Call <= { receiver: (expr), op: (Symbol),
52 name: (Identifier), args: [ expr ],
53 block_arg: (expr), block: (Block) }
54 Command <= Call
55 Exprs <= { expressions: [ expr ] }
56 Rescue <= { types: [ Const | ConstPathRef ],
57 parameter: (Identifier),
58 body: (exprs), nested_rescue: (Rescue),
59 else: (exprs), ensure: (exprs) }
60 BeginEnd <= { body: exprs, rescue: (Rescue) }
61 Def <= Parameters +
62 { singular: (expr), name: Identifier,
63 body: exprs, rescue: (Rescue) }
64 ModuleDef <= { name: Const | ConstPathRef,
65 body: exprs, rescue: (Rescue) }
66 ClassDef <= ModuleDef +
67 { superclass: (Const | ConstPathRef) }
68 SingularClassDef <= { name: expr, body: exprs,
69 rescue: (Rescue) }
70 Program <= { elements: exprs }

A The AST Obtained by reify
The specification of the ASTs obtained by the reify method
is described by the syntax rules in Listing 4.
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