
Buffered Garbage Collection for Self-Reflective Customization
Tetsuro Yamazaki

The University of Tokyo
yamazaki@csg.ci.i.u-tokyo.ac.jp

Shigeru Chiba
The University of Tokyo

chiba@acm.org

ABSTRACT
This paper proposes a new garbage-collection (GC) algorithm,
named Buffered garbage collection. It allows customizing a garbage
collector through computational self-reflection. Although self-reflection
seems a promising approach, self-reflection has not been well in-
vestigated for garbage collection as far as we know. Our buffered
garbage collector collects garbage objects while avoiding both infi-
nite regression and unacceptable memory consumption. We imple-
mented a Scheme-subset interpreter supporting Buffered garbage
collection and evaluated its memory efficiency.

CCS CONCEPTS
• Software and its engineering→ Garbage collection;

KEYWORDS
computational self-reflection, garbage collection

ACM Reference Format:
Tetsuro Yamazaki and Shigeru Chiba. 2018. Buffered Garbage Collection
for Self-Reflective Customization. In SAC 2018: SAC 2018: Symposium on
Applied Computing , April 9–13, 2018, Pau, France. ACM, New York, NY, USA,
Article 4, 4 pages. https://doi.org/10.1145/3167132.3167416

1 INTRODUCTION
A garbage collector (GC) is a runtime component that is often cus-
tomized for heap analysis [7, 9] or runtime object evolution [2, 12].
The customization is however not a simple task since developers
have to modify a low-level implementation of the GC component,
and most implementations do not provide clean programming in-
terfaces for such customization.

GC customization via computational self-reflection [11] is a
promising approach, although self-reflection has not been well
investigated for garbage collection as far as we know. Suppose
that we run a program in a language Lbase supporting garbage
collection. A reflective programming interface for customizing the
garbage collector allows developers to modify the behavior of that
collector via a program written in the base language Lbase instead
of the language the collector is implemented in. That program can
intercept the garbage collection during collection time and run as
if it is part of the implementation of the garbage collector. For clar-
ification, we call such a program a meta program from this point
on.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167416

A design problem of such a reflection interface for garbage col-
lectors is how to manage objects created by a meta program. Since
a meta program is a normal program, it may create objects and
also turn them into garbage during runtime. The garbage collector
customized by the meta program should also collect these garbage
objects, but naive implementation may cause infinite regression.
Note that a meta program may create an object that will substitute
another live (base-level) object when it implements object evolu-
tion. Hence an object created by a meta program should not be
distinguished from normal (base-level) objects.

One possible approach is to allocate some special heap memory
that only a meta program can use. Then we can separately collect
garbage in that heap memory by a dedicated collector. However,
this approach does not satisfy our motivating requirement. The cus-
tomized garbage collector never collects the objects created by the
collector itself. A different, uncustomized collector c2 collects them.
We could customize that different collector just like the original one.
However, the customization would introduce the third heap space
to place objects created by the second customized collector c2 and
the third space is managed by the third collector c3 that uses the
fourth heap space. Thus, this approach causes infinite regression.

Another approach would be to let a meta program allocate ob-
jects in the regular heap memory where the garbage collector is
concurrently collecting garbage. It seems promising but its heap
memory consumption would be a problem. If placing an object into
the heap, the collector has to traverse the whole heap later to test
whether the object is alive or dead. Thus, if a meta program allo-
cates objects in the regular heap, these objects will not be collected
during the current GC cycle. Since a meta program may create a
large number of objects when a live object is found and copied, the
meta program may create more objects in total than the existing
ones in the heap. Such huge memory consumption is unacceptable.

This paper proposes a novel algorithm for reflective garbage
collection, buffered garbage collection. This algorithm allows a meta
program customizing a garbage collector to create objects that are
also collected by that customized collector while avoiding infinite
regression of garbage collection. Buffered garbage collection is
based on copying garbage collection [1, 5] but it manages the third
space named buffer to buffer objects created by a meta program.
The buffer space is similar to the nursery space of the generational
algorithm. An advantage of this algorithm is that it will consume a
smaller amount of heap memory than other approaches. Through
a reflection interface, a program can register a callback function
that is invoked whenever an object in the old heap is copied to the
new heap during GC time. This callback function can customize
the collector as it is a meta program in our algorithm. The objects
created by the meta program are stored in the buffer space and ef-
fectively collected by the customized collector. Since our algorithm
introduces staged collection, those objects are not collected until

1256

https://doi.org/10.1145/3167132.3167416
https://doi.org/10.1145/3167132.3167416

1 (define intern-table
2 (make-hashtable string-hash
3 string =?))
4
5 (define intern (lambda (str)
6 (if (hashtable-contains?
7 intern-table str)
8 (hashtable-ref intern-table str)
9 (begin (hashtable-set! str str)
10 str))))
11
12 (define string-deduplication-callback
13 (lambda (obj)
14 (if (string? obj) (intern obj)
15 obj)))
16
17 (register-on-copy
18 string-deduplication-callback)

Figure 1: String deduplication implemented with reflection

the garbage collection moves into a stable state. We have imple-
mented an interpreter for a subset of Scheme with the proposed
garbage collector.

2 BUFFERED GARBAGE COLLECTION
In this section we propose an algorithm for garbage collection,
Buffered garbage collection, which enables computational self-reflection
on garbage collection while keeping extra memory consumption
within a practical amount. Buffered garbage collection is based
on Cheney’s copying garbage collection [1] and it enables meta
programs to create objects while avoiding both infinite regression
and unacceptable memory consumption.

The reflection mechanism of Buffered garbage collection is sim-
ple; it only provides a copy-time callback function. Once a callback
function is registered, the collector invokes it instead of the regular
copy function to copy a live object into new space. The callback
function can read/write to the given copied object and the global
environment. It can also create new objects. The callback function
can also replace the copied object by returning the replacement. The
callback function is written in the same language that an application
program is written in. For example, string deduplication [6] can be
implemented as a copy-time callback function. Figure 1 shows an
example implementation of string deduplication by using the copy-
time callback. String deduplication is a technique to save memory
by replacing duplicated string objects with a representative string
object when they are immutable. Note that this callback function
may create objects when registering a representative string object
into a hash table intern-table.

In our algorithm, the objects created by the callback function
are allocated in a dedicated small memory region, called buffer.
The garbage in the buffer space is frequently collected by minor
copying collection between the buffer space and the new space.
Those objects in the buffer space are copied into the new space if
they are alive when the garbage collector reaches a certain safe
point, for example, when each invocation of the callback function
finishes. Since all the live objects created by the callback function

buffer

newold

white yellow

white yellow

red silver

grey black

Figure 2: The colors of objects and the three memory spaces

are moved into the new space, they are processed by the callback
function at the next major collection between the new and old
spaces. The next major collection will copy them as it copies other
normal objects if they are alive.

2.1 The colors of objects
Before presenting our algorithm, we introduce several states for
objects. These states are based on the tri-color marking abstraction
[4], but we use more colors. The tri-color marking abstraction
categorizes objects into three groups: white, black, and grey, but
for Buffered garbage collection we add yellow, silver, and red (see
Figure 2). Yellow denotes that the object is already copied into the
new region, it contains a forward pointer to the copy, and it may
be destroyed. Silver denotes that the object may contain pointers
to the buffer region. Red is a special color to detect cyclic object
replacements and prevent infinite recursion during the GC.

Since our algorithm is an extension to copying collection, the
memory space is divided into three regions: old, new, and buffer.
At the beginning, objects are in the old space. They are white and
their liveness is uncertain. When the garbage collector finds a live
white object, it makes a copy of that object in the new space. The
copy is colored grey. The grey objects become black if they do not
contain any references to white or yellow objects. After making
the copy, the collector modifies the copied white object to contain
a forward pointer to the copy. We assign the color yellow to the
object containing a forward pointer.

Some objects are created by a copy-time callback function and
allocated in the buffer space. At first, these objects are white. Our
algorithm performs copying collection from the buffer space to the
new space as well as one from old to new. Hence a copy made in
the new space may contain a reference to an object in the buffer
space. Such an object is colored silver. A silver object may contain
a reference to the old space.

Finally, we assign the color red to an object in the old space
while it is processed by a callback function. This is for avoiding an
infinite loop in our algorithm.

2.2 The algorithm
Buffered garbage collection splits memory space into three regions:
old, new, and buffer. An object newly created is allocated in the
old space. When the garbage collection starts running, the objects

1257

in the old space are moved to the new space if they are alive. The
collection continues until all live objects have been moved.

First, the collector colors all objects white in the old space. Then,
it makes a copy of every root object in the new space. The copy is
colored grey. The references in the root set are updated to point
to the copies. The original object in the old space is changed into
yellow to contain a forward pointer to its copy. Before making
a copy, the collector invokes a callback function. Details of this
procedure named callback-and-copy are described in section 2.2.1.

The collector examines all grey objects to find a reference to a
white or yellow object in the old space. If the object is white, a copy
of the object is created in the new space by callback-and-copy. The
resulting copy is (usually) a grey object. The reference is modified
to refer to this grey object. If the reference points to a yellow object,
it is modified to refer to the object that the forwarding pointer in
the yellow object points to. After this examination, the object is
turned into black since it does not contain a reference to a white or
yellow object.

The garbage collection finishes when all the objects in the new
space become black. Then the old space is cleared and the roles
of the old and new spaces are swapped. The program execution is
resumed.

2.2.1 Procedure callback-and-copy. callback-and-copy makes a
copy of a live white object in the old space. The copy is stored
in the new space. Then, the garbage collector invokes a callback
function if it is registered. The white object being copied is passed
to the function as an argument. The callback function can access
any objects except yellow since yellow objects are already copied
and may be destroyed. To avoid accesses to yellow, the algorithm
introduces read barriers. When it creates a new object, the object is
allocated in the buffer space and colored white. callback-and-copy
finishes by returning any object except yellow ones. The returned
object may be in either the old, new, or buffer space.

When the callback function finishes, the procedure named flush-
buffer is executed (its detailed are described in section 2.2.2). It
performs copying collection from the buffer space to the new space.
After the execution of flush-buffer, there exist no references to an
object in the buffer space. If the callback function returns the given
white object as is, the collector makes a new copy of that white
object. The copy is created in the new space and colored grey. If the
callback function returns a white object different from the given
white one, the collector recursively invokes callback-and-copy to
make a copy of that different white object. Otherwise, if the object
returned by the callback function is grey or black, the returned
object is regarded as a new copy that this invocation of callback-
and-copy is supposed to make. In either case, the collector finally
gives the yellow color to the white object passed to the callback
function. It modifies the white object to contain a forward pointer
to the copy of that object created by callback-and-copy.

As shown above, callback-and-copy may recursively invoke it-
self. To avoid infinite regression, the white object being copied is
changed into red before being passed to the callback function. If
callback-and-copy is invoked later to make a copy of a red object,
the collector throws an error.

2.2.2 Procedure flush-buffer. flush-buffer performs copying col-
lection from the buffer space to the new space. We call this minor

�
%(
�)��
��	
�%�	
�
(�
��(
%�)�
%%�
%
	

��
��
%�
	�

�
(�
)�
�
��

)
)
)

�51!�#9(5� ���

08
"5

1#
8

�4
� �

�

� %��(

#B335##�&9$8 B$�71"2175�3 ��53$9 �
#B335##�&9$8�71"2175�3 ��53$9 �

�5� "'�5"" "

�51!�#9(5� ���

�9
(5

�
6�2

B6
65

"�#
!1

35
� �

'$
5�

� %��(

Figure 3: Bi-gram counting with the buffered garbage collec-
tor (top) andwith the normal copying garbage collector (bot-
tom)

collection. The buffer space contains the objects created by the call-
back function. flush-buffer does not invoke the callback function
when it copies a live object from the buffer space to the new space.

Since flush-buffer is invoked after the callback function finishes,
flush-buffer does not consider stack frames as the root set. The
root set for this copying collection is only the remembered set
constructed by the write barriers. The reference value returned by
the callback function is included in the root set. Hence, if it points
to an object in the buffer space, it will be updated to a reference to
an object in the new space after the minor collection.

During this minor collection, a copy of an object in the buffer
space is made in the new space. The copy is at first colored silver.
The minor collector modifies a reference in the silver object only if
the reference points to an object in the buffer space. A copy of this
object is made in the new space and the reference is updated to point
to that copy. This modification is repeated until all the references
into the buffer space are updated. A silver object containing no
reference into the buffer space is changed into a grey object, which
may contain a reference into the old space.

1258

3 EXPERIMENT
To evaluate Buffered garbage collection, we implemented an inter-
preter for a simple Scheme-like language in C++. The interpreter
supports not only the Buffered garbage collector but also the normal
copying collector, where the objects created by a copy-time call-
back function are allocated directly in the new space. The garbage
collection is initiated when the memory consumption exceeds the
preset threshold. In this Scheme-like language, a symbol value is
not unique (the same-looking symbols may not be identical), nu-
meric values are not unboxed, and every stack frame is allocated as
an object in the heap memory.

We ran a micro benchmark program on this interpreter and
examined whether the Buffered garbage collector could run with
a smaller amount of memory than the normal copying collector
when a copy-time callback function was registered. The benchmark
program counted bi-gram frequencies in a long character string.
This character string contained 10240 letters randomly selected
among four letters: a, b, c, and d. The copy-time callback function
implemented string deduplication and its code was shown in Fig-
ure 1. The interpreter was run on a machine with the Intel® Core
i7-4770S processor (eight 3.10 GHz cores) and 16 GB of memory.
Its operating system was Ubuntu16.04 LTS. We used GNU gcc 5.4.0
for compiling the interpreter.

Figure 3 shows the results of the experiments with the buffered
garbage collector and the normal copying collector, respectively.
Each column represents the total heap size excluding the buffer
space. The rows in the upper chart of Figure 3 represents the size of
the buffer space in Bytes (not KBytes). The rows in the lower chart
of Figure 3 represents the threshold when the garbage collection is
initiated. Since the interpreter needs an extra margin in the heap
memory to run a copy-time callback function with the normal col-
lector, we examined different thresholds. For the buffered collector,
we chose 100% for the threshold. The color of each cell shows the
result of executing our micro-benchmark program. Black cells de-
note a heap memory shortage and the failure of execution. White
cells denote that no heap memory shortage or garbage collection
happened. Gray cells denote a successful execution with garbage
collection and string deduplication.

The results of our experiments reveal that our collector could run
the micro benchmark with a smaller amount of heap memory than
the normal copying collector.Whenmore than 2 KBwas given to the
buffer space, the Buffered garbage collector could run the program
with only 4 MB of heap memory (the total heap size including the
buffer space was 8194 KB). The normal copying collector could not
run the program with this amount of heap memory; it needed at
least 12 MB. Note that the interpreter with this size of heap memory
did not have to perform garbage collection. The garbage collection
was initiated when the threshold was set from 20 to 40%. Under
this configuration, however, the normal copying collector required
more than 16 MB of heap memory.

4 RELATEDWORK
Buffered garbage collection can be regarded as a variant of the
generational collection [10]. Like the generational collection, the
minor collection from the buffer space to the new space exploits
the fact that most objects created by the callback function are

garbage when the function finishes. Buffered garbage collection
uses the buffer space to identify such short-lived objects. On the
other hand, the generational collection exploits the fact that most
of the recently created objects are short-lived. It does not provide
multiple regions where objects are initially allocated. All objects are
initially allocated in the young space and they are equally treated.

We see a similarity to the regional garbage collection [3, 8] in
the fact that objects are initially allocated in two regions, the old
space or the buffer space, and that they are separately scavenged.
Although our aim is not to reduce the pause time related to garbage
collection, it would be possible to emulate our algorithm by cus-
tomizing a regional collector. The customized collector would use
one region as the buffer space and, at the first time, scavenge that
region without invoking a copy-time callback function. Then that
region would be changed into part of the normal space where the
callback function does not create objects. When that region is scav-
enged next time, the collector invokes the callback function. The
collector uses another fresh region as the buffer space where the
invoked callback creates objects.

5 CONCLUSION
This paper proposed Buffered garbage collection, which allows us to
customize a garbage collector via computational self-reflection. The
experiment showed that the buffered garbage collector could run
our benchmark program without consuming unacceptable huge
memory. A limitation is that our garbage collection is based on
copying algorithm. Therefore, the collector stops the world during
garbage collection and only the half of an available memory space
is used. To avoid these problems, applying our idea to regional
collectors is a future work.

REFERENCES
[1] C. J. Cheney. 1970. A Nonrecursive List Compacting Algorithm. Commun. ACM

13, 11 (Nov. 1970), 677–678.
[2] Tal Cohen and Joseph (Yossi) Gil. 2009. Three Approaches to Object Evolution.

In Proceedings of the 7th International Conference on Principles and Practice of
Programming in Java (PPPJ ’09). ACM, 57–66.

[3] David Detlefs et al. 2004. Garbage-first Garbage Collection. In Proceedings of the
4th International Symposium on Memory Management (ISMM ’04). ACM, 37–48.

[4] Edsger W. Dijkstra et al. 1978. On-the-fly Garbage Collection: An Exercise in
Cooperation. Commun. ACM 21, 11 (Nov. 1978), 966–975.

[5] Robert R. Fenichel and Jerome C. Yochelson. 1969. A LISP Garbage-collector for
Virtual-memory Computer Systems. Commun. ACM 12, 11 (Nov. 1969), 611–612.

[6] Michihiro Horie et al. 2014. In Proceedings of the 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’14). ACM, 177–
188.

[7] Maria Jump and Kathryn S. McKinley. 2007. Cork: Dynamic Memory Leak
Detection for Garbage-collected Languages. In Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’07). ACM, 31–38.

[8] Felix S. Klock, II andWilliam D. Clinger. 2011. Bounded-latency Regional Garbage
Collection. In Proceedings of the 7th Symposium on Dynamic Languages (DLS ’11).
ACM, 73–84.

[9] Du Li andWitawas Srisa-an. 2011. Quarantine: A Framework to Mitigate Memory
Errors in JNI Applications. In Proceedings of the 9th International Conference on
Principles and Practice of Programming in Java (PPPJ ’11). ACM, 1–10.

[10] Henry Lieberman and Carl Hewitt. 1983. A Real-time Garbage Collector Based
on the Lifetimes of Objects. Commun. ACM 26, 6 (June 1983), 419–429.

[11] Brian Cantwell Smith. 1984. Reflection and Semantics in LISP. In Proceedings
of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL ’84). ACM, 23–35.

[12] Thomas Würthinger et al. 2010. Dynamic Code Evolution for Java. In Proceedings
of the 8th International Conference on the Principles and Practice of Programming
in Java (PPPJ ’10). ACM, 10–19.

1259

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryList_V1
 qi2base

