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Abstract
This thesis presents Silverchain, a tool that generates a fluent embedded domain-specific

language (EDSL) from a BNF-style grammar. A fluent EDSL is a class library that
allows its users to embed domain-specific sentences into a program written in a general-
purpose language by method chaining. A generated EDSL is designed so that its users can
find syntactic errors from thrown type errors and make effective use of method chaining
in various situations. The first feature is realized by setting the return type of each
method based on which methods may be invoked next, and the second feature is achieved
by providing subchaining APIs besides regular chaining APIs. The contribution of this
thesis is the development of a translation method from a grammar to such an EDSL.
Our translation method is modeled as the construction of a set of single-state real-time
deterministic pushdown automata (RPAs). A fluent EDSL is obtained by encoding those
RPAs into class definitions. In the construction of RPAs, Silverchain does not add or
remove any non-terminal from the given grammar. This constraint is required to generate
subchaining APIs as specified in the grammar.
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概要
本研究では, BNF 形式の文法から fluent な内部ドメイン特化言語 (fluent embedded

domain-specific language, fluent EDSL) を生成するツール Silverchain を提案する. Fluent
EDSL とは, ドメイン固有言語の文を汎用言語中にメソッドチェインとして埋め込むことを可
能にするクラスライブラリのことである. 生成される fluent EDSL は, 不正な構文を型エラー
として検出でき, 状況に応じてメソッドチェインを効果的に使えるように設計されている. 第
一の特徴は各メソッドの型を次に呼べるメソッドに応じて設定することで実現され, 第二の特
徴は通常のチェイン API に合わせてサブチェイン API を提供することで達成される. 本研
究の貢献は, BNF 形式の文法を前述の 2つの特徴を持つ fluent EDSL に変換する手法を開発
したことである. 提案する変換は single-state real-time deterministic pushdown automata
(RPA) の構築としてモデル化される. Fluent EDSL は, それらの RPAをクラス定義にエン
コードすることによって得られる. 本研究で用いる RPAの構築手法では, 与えられた文法へ
非終端子を追加または削除をしない. この制限は, サブチェイン API を文法で定義された通り
に生成するために必要な条件である.
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Chapter 1

Introduction

Domain-specific languages (DSLs) have been gaining popularity among both the program-
mers in industry and the researchers in software engineering. A DSL is a programming
language that is designed to write the solutions or the expressions in its specific domain
as simply as possible. Many DSLs are used in practice such as regular expressions for
searching patterns in text documents, SQL [9] for handling relational data, and DOT [10]
for drawing graphs. The simplicity achieved by DSLs lets programmers read and write
code quickly and improves their productivity. This advantage is becoming more impor-
tant these days because programmers need to be highly productive as the scale and the
complexity of a software application gets larger and higher.

Many technologies to embed a DSL into a general-purpose language (GPL) has been
proposed these decades. A GPL is a programming language that is not specialized to any
specific domain such as C, Java, and Python. Since a DSL has the features and the syntax
only for its specific domain, most of software applications can not be built only with DSLs.
A GPL usually accounts for a large part of a software application, and DSLs are used to
write code for relatively smaller parts of the application. The easiest embedding method
is to write a DSL sentence as a string literal of a GPL and pass the literal to the execution
system of the DSL as follows:

executeQuery("SELECT * FROM user WHERE id = 1");

This way of embedding works but does not provide good user experiences because the
system causes runtime errors when passing invalid DSL sentences. Many embedding
technologies have been proposed to address this issue of safety.

Creating an embedded DSL (EDSL) is one of the most popular technologies that allows
programmers to use a DSL inside GPL program in a safer way [19]. An EDSL is a
class library of a host GPL that makes it possible to emulate DSL sentences in a GPL
program. Since an EDSL is just a library, its users do not have to learn new syntax and
can get support from existing tools for the host GPL such as an integrated development
environment (IDE). The developers of an EDSL also receive benefits. They do not need
to create a compiler nor an editor just for a DSL. By embedding a DSL as an EDSL,
the productivity improvement in application development is achieved with small overhead
costs.

Method chaining has been drawing attention as a way of designing EDSLs. By using
method chaining, sentences of a DSL can be embedded into a GPL program without
changing the basic syntax of the DSL. For example, an SQL query is embedded into a
Java program by chaining method calls as follows:

// SELECT * FROM user WHERE id = 1;
select("*").from("user").where ().col("id").eq().val (1);
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An API is often called a fluent API when it is designed to emulate sentences of a language
as shown in the example above [12]. In this thesis, we refer to a class library emulating a
DSL by method chaining as a fluent embedded DSL (fluent EDSL). jOOQ [14] and j2html
[22] are examples of fluent EDSLs in Java that a number of programmers use in practice.

Several techniques have been studied to detect syntactic errors of embedded sentences
as type errors of the host language [12, 2, 34]. Such errors indicate an arrangement of
method calls is incorrect from the viewpoint of the grammar of a DSL, for example as
follows:

// Missing FROM clause
select("*").where ().col("year").eq().val (2018);

The detection is implemented by setting the return type of each method based on which
methods the users can invoke next. The syntactic error above is detected by setting the
return type of select(String) to a type that does not accept where(). This design of
EDSLs improves user experiences especially when the host GPL has a static type system.
Its users can find misuses of an EDSL from thrown type errors at compile-time, and
method-completion of an IDE can show the list of necessary and sufficient candidates
because it usually uses type information to narrow down that list.

Implementing such syntax-checking is a tedious task for the developers of a fluent EDSL.
The developers need to define a large number of classes and relate them by choosing an
appropriate return type for each method. This task is almost impossible to accomplish
by hand because the number of required classes is often more than a hundred even when
the grammar seems relatively simple. In many widely-used EDSLs, the developers relax
syntactic rules to reduce the number of required classes, but this workaround worsens the
user experiences. The users may accidentally compose a syntactically incorrect sentence,
and method-completion provides unnecessary or insufficient candidates.

To solve the developers’ side of the problem, we present Silverchain, a tool that trans-
lates a BNF-style grammar into a fluent EDSL. Silverchain differs from existing translators
in that a generated EDSL supports subchaining APIs in addition to regular chaining (or
non-subchaining) APIs. A subchaining API is a chaining API for building a domain-
specific sentence from fragments as follows:

Condition c = col("year").eq().val (2018);
select("*").from("book").where (). condition(c);

Although this API introduces redundant parts that do not appear in the original sentence
(condition in this case), it provides good user experiences that can not be achieved
through regular chaining API, especially when composing a complex sentence or changing
a part of a sentence dynamically.

The contribution of this thesis is the development of a translation method from a BNF-
style grammar to a fluent EDSL with both the syntax-checking and the multi-style APIs.
Our translation method is modeled as the construction of a set of deterministic pushdown
automata without ϵ-transitions called single-state real-time deterministic pushdown au-
tomata (RPAs). The class definitions of a fluent EDSL are generated by encoding those
RPAs. Our RPAs construction method is different from known ones [18, 29] in that it
does not add or remove non-terminals from given grammar. This constraint on the con-
struction is required to generate subchaining APIs as specified in the grammar. With our
method, any context-free grammar can be translated into a fluent EDSL, but the EDSLs
generated from some grammars require subchaining APIs – which introduce redundant
parts to an embedded sentence – to compose certain parts of sentences. This limitation
is due to our construction method of RPAs.
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The organization of this thesis is as follows. We first explain background topics, the
motivation, and related work of our research in Chapter 2. Chapter 3 presents Silverchain,
the tool we developed to generate a fluent EDSL from a BNF-style grammar. Use cases of
Silverchain are shown in Chapter 4. We also discuss the practical applicability of our tool
qualitatively in Chapter 4. Chapter 5 summarizes our contribution and discusses possible
directions of further research.
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Chapter 2

Background

A DSL is a language specialized to its specific domain. It helps programmers keep code
easy to understand and reduces the development cost of a software application. However,
it imposes overhead costs on both its developers and users. The developers need to create
the DSL and its support tools, ant the users have to learn how to use them. An EDSL,
particularly one with a fluent interface, is a popular solution to reduce those overhead
costs. However, creating a fluent EDSL still costs a lot though it is much easier than
creating a stand-alone language. In the past few years, many translation methods have
been proposed to generate a fluent EDSL from a BNF-style grammar but they have
problems from the viewpoint of practice.

2.1 Fundamental Background Topics
We describe fundamental topics on DSLs in this section before proceeding to the expla-
nation of our motivation and related work.

2.1.1 Domain-Specific Language

A DSL is a language designed to deal with the problems in its domain as simply as possible.
Regular expressions are a well-known example of such languages, which aims at searching
string patterns from a text document. The following regular expression matches a string
made of zero or more consecutive occurrences of letter “a” and one or more consecutive
occurrences of letter “b”:

// Matches strings such as ab, aabbb , and bbb
a* b+

SQL is another well-known example of DSLs for handling relational data. The following
shows example SQL queries (SQL sentences) that retrieves records from the database
named users:

SELECT * FROM users WHERE id = 1;
SELECT * FROM users WHERE age > 20;

Every DSL has their own syntax specialized to its domain. For example, in regular
expressions, * and + indicate the repeated occurrences of the preceding letter while they
are used to denote multiplication and addition in most GPLs. This reflects the fact
that numeric calculation is not necessary when searching patterns in a text. In SQL,
a query expresses what to be retrieved and does not describe how to retrieve records.
This reflects that most operations on relational data can be described simply by such
declarative notations.
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def match_a_star_b_plus(text):
prev = None
for c in text:

if prev is None:
if prev not in (’a’, ’b’):

return False
prev = c

elif prev == ’a’:
if prev not in (’a’, ’b’):

return False
prev = c

elif prev == ’b’:
if c == ’b’:

prev = c
else:

return False

if prev != ’b’:
return False

else:
return True

Fig. 2.1: Searching patterns using Python

To show the effect of using DSLs in more detail, consider using Python, an example of
GPLs, to search string patterns in a text document. Figure 2.1 shows the Python code
that checks if a given text document contains the pattern shown above by the regular
expression. The code shown in the figure is obviously longer and more complex than the
single line regular expression. When a pattern is more complicated, it is almost impossible
to implement a matching function only with a GPL. The situation is the same in SQL.
Programmers need to write many lines to do the same as a single SQL query.

Using a DSL affects not only the readability but also the speed of program execution
because the DSL compiler can optimize users’ code by using the domain knowledge. In
contrast, the GPL compiler can only optimize the code in general way when a program is
written in GPL. SQL is a good example of DSLs that executes user queries with highly
developed optimization. It achieves fairly good performance even when handling relational
data that contains millions of records.

Although a DSL reduces the cost to read and write application code, it requires two
overhead costs of both its users and its developers. The first overhead is the learning cost
imposed on its users. The users have to spend a certain amount of time since the syntax
is often unique and much different from the one of a GPL. The situation gets worse when
a building application uses multiple DSLs. Frequent language switching would worsen
the productivity. The second overhead is the development cost of a DSL. To make a
DSL actually work, a lot of effort needs to be made such as building a parser and a
compiler. Further, the developers often need to write detailed documents and create
many support tools such as syntax-highlighting and debugger to let programmers use the
DSL in practice.
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// SELECT * FROM user WHERE id = 1;
User.findById (1);

// UPDATE user SET name = "John" WHERE id = 1;
User u = User.findById (1);
u.set("name", "John");
u.saveIt ();

// DELETE FROM user WHERE id = 1;
User u = User.findById (1);
u.delete ();

Fig. 2.2: Usage examples of ActiveJDBC

2.1.2 Embedded Domain-Specific Language

An EDSL is a form of DSLs that is implemented as a library of a GPL. ActiveJDBC [30]
is an example of EDSLs that is used to emulate SQL queries in Java. Unlike ActiveJDBC,
Some EDSLs do not have any external DSLs and works completely inside a GPL such
as jMock [23] for creating mock objects and Hamcrest [17] for testing values and objects.
The line between ordinal libraries and EDSLs is not clear yet but many libraries can be
regarded as an EDSL, an internal language for a certain domain. Writing a DSL sentence
as a string literal is an embedding method that works without any overhead costs but this
method is not safe:

String.format("SELECT * FROM users WHERE id = %d", userId );
String.format("SELECT WHERE id = %d", userId ); // Incorrect query

The users can write syntactically incorrect sentences and occasionally make an application
causes runtime errors. By creating EDSLs, the developers can control what can be written
by the users and prevent runtime errors.

An EDSL provides more benefits to both its users and its developers compared to a DSL
that is implemented as a stand-alone external language. Users can use a DSL without
learning new syntax or how to use new tools and editors since an EDSL is just a library.
Developers can create a DSL with smaller amount of efforts. They can use the type system
of the host GPL so they do not need to re-define basic types such as integers. They do not
have to develop new tools such as new editors just for that DSL. Further, the developers’
work would be reduced by the support of the debuggers and the optimizers for the host
GPL.

The interface design is important when creating an EDSL. The API of an EDSL should
keep the domain-specific syntax because the syntax of a DSL is designed to fit its domain.
Figure 2.2 shows usage examples of ActiveJDBC. As seen in the figure, the appearance
of the expression is different from its original queries. This way of emulation might be
acceptable, but often confuses programmers who know much about original SQL espe-
cially when programmers need to write more complicated queries. They need to read
the documentation of an EDSL to use the EDSL even when they know how to write an
expression in the original DSL.
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<list > -> "begin" (<text > <list >?)+ "end";
<text > :: String; // <text > is a double -quoted string.

Fig. 2.3: Grammar*1of example DSL

begin
"Item 1"

begin
"Item 1.1"
"Item 1.2"

end
"Item 2"

begin
"Item 2.1"
"Item 2.2"

end
end

(a) Usage Example

begin()
.text("Item 1")

.begin()
.text("Item 1.1")
.text("Item 1.2")

.end()
.text("Item 2")

.begin()
.text("Item 2.1")
.text("Item 2.2")

.end()
.end();

(b) Fluent EDSL

List list = new List ();
list.addText("Item 1");
List subls1 = new List ();
subls1.addText("Item 1.1");
subls1.addText("Item 1.2");
list.addList(subls1 );

list.addText("Item 2");
List sublis2 = new List ();
subls2.addText("Item 2.1");
subls2.addText("Item 2.2");
list.addList(subls2 );

(c) Non-fluent EDSL

"begin
\"Item 1\"

begin
\"Item 1.1\"
\"Item 1.2\"

end
\"Item 2\"

begin
\"Item 2.1\"
\"Item 2.2\"

end
end"

(d) String literal

Fig. 2.4: Usage example and three embedded forms into Java

2.2 Motivation
Using a fluent EDSL, sentences of a DSL can be emulated nicely by using method chain-
ing inside programs written in a GPL. As an example, consider a simple DSL for writing
itemized documents whose syntax is defined by the grammar shown in Figure 2.3. Figure
2.4a shows a usage example of this DSL, and Figures 2.4b, 2.4c, and 2.4d show three em-

*1 We use * for zero or more occurrences of the preceding element, + for one or more occurrences, ?
for zero or one occurrences, and () to group elements.
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List listA = begin (). text("Item A").end();
List listB = begin (). text("Item B").end();
begin (). text("Item").list(useA? listA : listB).end();

(a) With subchaining

IncompleteChain1 c1 = begin (). text("Item");
IncompleteChain2 c2;
if (useA) {

c2 = c1.begin (). text("Item A").end();
} else {

c2 = c1.begin (). text("Item B").end();
}
List list = c2.end();

(b) Without subchaining

Fig. 2.5: Changing a part of a chain dynamically

bedded forms of that example into Java. In Figure 2.4b, that usage example is embedded
using method chaining without changing the basic syntax of the original sentence. Since
the syntax of a DSL is designed to simplify expressions in the domain, keeping the basic
syntax helps programmers make effective use of a DSL. On the other hand, the same
example is embedded without method chaining in Figure 2.4c. This form does not resem-
ble the original sentence, and the code tends to contain more intermediate variables. In
Figure 2.4d, our example is written as a string literal. Although this form keeps the basic
syntax, embedded sentences become hard to read when they contain escape sequences.
Furthermore, no checking is applied to embedded sentences at compile-time unless pro-
grammers use special IDE plugins [25]. Extending the host syntax is another technique to
embed DSL sentences into a GPL program. By extending Java syntax, programmers can
compose a DSL sentence in Java as it is, but introducing such an extension mechanism is
still a research topic [11, 21]. Fluent EDSLs can be activated quickly by importing them
since they are just class libraries.

The syntax of embedded sentences can be statically checked by setting the return type
of each method based on which methods are allowed to invoke next. For example, the
following syntactic error can be detected by making begin() return a type that does not
accept end():

// Empty list is not allowed according to the grammar.
begin ().end();

This design of EDSLs improves user experiences in two ways. Firstly, users can find
misuses at compile-time because incorrectly chained calls cause a type error. Secondly,
IDE method-completion can provide necessary and sufficient candidate methods because
it usually uses type information to narrow down the list of candidates. Users can easily
compose a syntactically correct sentence by following provided hints, and they do not have
to pay attention to syntactic errors. In other words, an existing IDE for a host language
also serves as an IDE for the DSL.

To take advantage of method chaining in various situations, a fluent EDSL should
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// Each method corresponds
// to a token of the DSL.
begin()

.text("1")
.begin ()

.text("1.1")
.begin ()

.text("1.1.1")
.end()

.end()
.end ();

(a) Without subchaining

// "list" does not appear
// in the original sentence.
begin()

.text("1").list(
begin()

.text("1.1").list(
begin()

.text("1.1.1")
.end())

.end())
.end();

(b) With subchaining

Fig. 2.6: Simple itemization

provide subchaining APIs besides regular chaining APIs. A subchaining API allows the
users to group semantically related calls into a chain as follows:

List sublist = begin (). text("Item 1.1").end();
begin (). text("Item 1").list(sublist ).end();

This API helps its users keep code easy to understand especially when changing a part
of a sentence dynamically as shown in Figure 2.5a. Without subchaining, intermediate
variables tend to be meaningless, and users cannot make good use of method chaining
as shown in Figure 2.5b. Subchaining API, however, introduces redundant parts that do
not appear in original sentences of a DSL. This prevents programmers from composing
short or simple sentences briefly as it originally is. Figure 2.6a and 2.6b shows the chains
representing the same document but the chain without subchaining resembles more the
original sentence. As demonstrated, the style of chaining API that should be applied
depends on the situation. Fluent EDSLs with only subchaining APIs (or only regular
chaining APIs) prevent their users from making effective use of method chaining.

However, creating a well-designed fluent EDSL (a fluent EDSL with the syntax-checking
and the multi-style chaining APIs) is a burdensome task for the developers of the EDSL.
For syntax-checking, developers need to define a number of classes and choose the return
type of each method carefully. Although the number of required classes varies depending
on the grammar, it exceeds several hundreds in the grammar of most practical DSLs.
Furthermore, each class definition gets larger when making fluent EDSLs support both
regular chaining APIs and subchaining APIs. To ease that burden, the developers of many
widely-used EDSLs relax the rules to follow and reduce the number of classes to define.
This workaround, however, allows the users of an EDSL to compose syntactically incorrect
sentences. For instance, the following sentences written with popular fluent EDSLs are
accepted by Java type checker, but those should be rejected from the viewpoint of the
grammar of the DSLs:

// "SELECT * ORDER BY book.id" with jOOQ
// (Missing ‘FROM’ clause)
select (). orderBy(BOOK.id). getSQL ();

// "<div src=‘./image.png ’></div >" with j2html
// (Incorrect attribute ‘src ’)
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div(). withSrc("./image.png"). render ();

Such incomplete checking is not only unsafe but also allows method-completion to suggest
unnecessary or insufficient methods for hints. The checking should be complete so that
the users can use EDSLs at ease even when they do not know much about the original
DSLs.

2.3 Related Work
This section summarizes existing tools and algorithms that generate fluent EDSLs and
discusses their problems in terms of practical use. In addition, we also describe the
advantage of EDSLs compared to syntax extension mechanisms.

2.3.1 Algorithm of Gil et al.

Gil et al. proposed an algorithm to translate a BNF-style grammar to a fluent EDSL
with the syntax-checking feature although it does not support subchaining APIs [13, 27].
The algorithm generates such an EDSL by encoding a jump-stack single-state real-time
deterministic pushdown automaton (JRPA) into class definitions. Since a JRPA can
recognize deterministic context-free languages [7] and this class of languages is larger
than the class that RPAs can recognize [18], the algorithm of Gil et al. can generate
non-subchaining APIs for grammars that Silverchain cannot generate them for.

However, with an EDSL generated by the algorithm of Gil et al., the compilation time
of a method chain grows exponentially to the length of the chain in the worst case. This
is caused by the exponential growth of the size of the type at the end of a chain, as Gil
et al. showed in their experiment using Java 8. Here, the size of a type is defined by the
number of type names in the textual representation of the type. The size of G<T, S> is
three for example.

To investigate the results shown in the paper by Gil et al., we performed the same
experiment as theirs using Java 8, Java 9, and C++. Two versions of Java were used in
our experiments since Java 9 has a new type-checking strategy [8, 32]. Figure 2.7 shows
the class definitions and example chains used in our experiments. Exp is a worst-case
model of generic types used in a fluent EDSL generated by the algorithm of Gil et al.
(Exp in Java is actually from the experiment in their paper.) Type size produced by
repeated calls of m() is larger than any other types produced by a fluent EDSL by Gil
et al. The time for the code in Figure 2.7 is measured as the result of a 1-sized chain.
Our experiments are performed on a machine with Intel Core i7 3.3 GHz processor and
16 GB memory, using javac 1.8.0 114, javac 9 and clang 900.0.39.2. We used javac
-verbose to compile chains and extracted total compilation time from its output. We also
used clang -ftime-report to compile chains and extracted total compilation time from
the output.

Figure 2.8 shows the results of our experiment. We measured the time 25 times for each
length of a chain, and the averages are shown in the figures. As seen the figures on the left,
the exponential growth of compilation time occurs not only in Java 8 but also in Java 9
and C++. The figures on the right show the same result with the different horizontal axis.
These figures experimentally show that compilation time increases linearly to the size of
the type at the end of a chain. (Repeated calls of m() produces a type of size 2n+2 − 1
in an n-sized method chain.) Although Gil et al. concluded that the exponential growth
is caused by “a design flaw in the compiler” in their paper [13], we observe that, from
the exponential growth in C++ and Java 9, checking an extremely large type essentially
takes a long time. The improvement of compiler implementation is unlikely to solve this
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class Exp <T,S> {
Exp <Exp <T,S>,Exp <T,S>> m() { return null; }

}

class Main {
public static void main(String [] args) {

Exp <Exp <Object ,Object >,Exp <Object ,Object >> exp
= new Exp <Object ,Object >().m();

}
}

(a) In Java

template <class T, class S> class Exp {
Exp <Exp <T, S>, Exp <T, S> > *m() { return NULL; }

};

int main(int argc , const char * argv []) {
(new Exp <X, X>())->m();
return 0;

}

(b) In C++

Fig. 2.7: Source code used in experiments

Table 2.1: Fitted parameters in y = ax+ b

a b

Java 8 1.73× 10−4 ± 1.63× 10−6 (±0.944%) 1.78× 10−1 ± 4.73× 10−4 (±0.266%)

Java 9 1.78× 10−4 ± 1.87× 10−6 (±1.051%) 2.66× 10−1 ± 5.41× 10−4 (±0.203%)

C++ 4.14× 10−4 ± 2.92× 10−6 (±0.722%) 2.15× 10−1 ± 8.44× 10−4 (±0.393%)

problem, but further investigation on the compiler implementation should be performed
to find out the real cause of this problem.

To show that our encoding scheme does not cause the exponential growth, we performed
the same experiment using Lin shown in Figure 2.9. Lin is a worst-case model of generic
types used in a fluent EDSL generated by our method. Figure 2.10 shows the results of
this experiment. The blue line in each figure is the linear regression line of data recorded
in Lin. Fitted parameters are summarized in Table 2.1. As seen in these figures, the
compilation time in Lin is much shorter than the time in Exp. Since repeated calls of
Lin.m() produce a type of the size n+2 in an n-sized method chain, the compilation time
increases linearly to chain sizes in Lin. This indicates that, with an EDSL generated by
Silverchain, the size of the type at the end of a chain grows linearly even in the worst
case, and the compilation time grows at most linearly to the length of a chain.
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Fig. 2.8: Result of experiments using Exp

class Lin <T> {
Lin <Lin <T>> m() { return null; }

}

Fig. 2.9: Model of our encoding scheme



2.3 Related Work 13

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0  50  100  150  200  250  300  350  400  450  500

C
o

m
p

ila
ti
o

n
 t

im
e

 (
s
)

Chain length

(a) Java 8

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0  50  100  150  200  250  300  350  400  450  500

C
o

m
p

ila
ti
o

n
 t

im
e

 (
s
)

Chain length

(b) Java 9

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  50  100  150  200  250  300  350  400  450  500

C
o

m
p

ila
ti
o

n
 t

im
e

 (
s
)

Chain length

(c) C++

Fig. 2.10: Result of experiments using Lin
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2.3.2 Theoretical Results

In principle, an EDSL with only non-subchaining APIs can be built for any grammar
(including grammars that are not context-free) if the EDSL is implemented in a language
with a Turing-complete type system such as Java [16] and C++ [37]. For instance, if given
grammar is context-free, such an EDSL can be built by creating a CYK parser [5, 40, 24]
implemented by a Turing machine emulated on a type system [16]. However, using a
Turing machine on the back is overly complex for most DSLs and often causes practical
problems. For example, javac throws a StackOverflowError even for a small chain of two
or three methods with an EDSL generated by Grigore’s algorithm.

2.3.3 EDSL Generators

ScaLALR [20] generates an EDSL only with non-subchaining APIs in Scala from a gram-
mar by encoding an LALR parser into class definitions. With an EDSL generated by
ScaLALR, the size of the type at the end of a chain does not grow exponentially to the
length of the chain even in the worst case but that the EDSL internally uses uncommon
features such as implicit classes and implicit conversions to avoid the exponential growth.
Therefore, the technique used in ScaLALR is not portable to other languages such as Java
and C++. On the other hand, the technique used in Silverchain is relatively simple and
is portable to languages whose type system has generic classes.

EriLex [39] is a tool to generate an EDSL only with non-subchaining APIs from a given
grammar by encoding an RPA into class definitions. The encoding method in EriLex is
similar to the one in Silverchain and is portable to other languages. The drawback of
EriLex is that input grammar needs to be LL(1) in Greibach normal form [15], which is
a form that most of manually written grammars do not follow. Since the users of EriLex
need to rewrite grammar into that form, EriLex cannot generate a subchaining style API
for each non-terminal. Furthermore, there is no algorithm to rewrite grammar into the
form required by EriLex as far as we know. Whether given grammar can be rewritten into
that form is undecidable [33]. There are several tools known as fluent API generators such
as CLARA [2], TS4J [3], and fluflu [38]. These tools, however, generate only subchaining
APIs.

The role of type parameters in Silverchain differs from ones in manually written fluent
APIs such as AssertJ [6], jOOQ [14], and j2html [22]. In those manually written fluent
APIs, type parameters are used to eliminate boilerplate code in classes for APIs. For
example in AssertJ, type parameters are used to store the type of this in Java [26] and
help the developers to implement methods that have the same signature but a different
return type. On the other hand, Silverchain uses type parameters to express an infinite
number of states that are produced from CFG. The algorithm of Gil et al. and EriLex
also use type parameters in the same way as the one of Silverchain.

2.3.4 Syntax Extension Mechanism

SugarJ [11] is a syntax extension mechanism of Java and allows programmers to write
DSL sentences as they originally are. The appearance of a written sentence is much
better compared to the emulation by method chaining, but the cost of introducing SugarJ
is higher than introducing EDSLs. Further, the parsing time gets longer when using
SugarJ since it converts written DSL sentences into plain Java sentences before compiling
a program. Such a problem does not occur with EDSLs since EDSLs are just Java libraries
as we mentioned earlier.
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ProteaJ [21], Wyvern [28], and Honu [31] are programming languages that natively sup-
port syntax extension. However, their powerful features are realized by their underlying
language mechanism such as type systems so it is hard to introduce similar system to
a language that is currently used in practice. A fluent EDSL, on the other hand, is a
technique that can be applied to a number of general-purpose languages.

2.4 Summary
As we have described in Section 2.1, DSLs are indispensable to build a software application
with as little effort as possible. Particularly, fluent EDSLs have been gathering attentions
as a way of implementing DSLs with relatively smaller costs compared to implementing
DSLs as external stand-alone languages. Creating well-designed fluent EDSLs, however,
still requires a lot of developers’ effort. To provide the syntax-checking feature using the
host type system, the developers need to a number of classes.

Many translation method from a BNF-style grammar to a fluent EDSL has been pro-
posed to ease that developers’ task, but none of them generates a fluent EDSL that
provides the multi-style APIs. As we have demonstrated in Section 2.2, both regular
chaining APIs and subchaining APIs should be provided in a single fluent EDSL to let
EDSL users to write code in a way that fits their situation. Silverchain, the tool we pro-
pose and describe in the next chapter, generates a fluent EDSL with the multi-style APIs
and the syntax-checking feature.
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Chapter 3

Silverchain

Figure 3.1 shows the overview of our translation method. Silverchain first constructs a set
of RPAs, each of which corresponds to a non-terminal of a given grammar. For example,
Silverchain constructs one RPA for <list> from the grammar in Figure 2.3. A con-
structed RPA accepts sequences consisting of terminals and non-terminals produced from
its corresponding non-terminal. For instance, the RPA for <list> accepts the following
sequences:

// Direct productions
begin <text > end
begin <text > <list > end
// Indirect productions
begin <text > begin <text > end end
begin <text > begin <text > <list > end end

The set of accepted sequences contains ones produced not only directly but also indirectly
from the non-terminal. A direct production of a non-terminal is a sequence that matches
the regular expression on the right-hand side of the production rule for that non-terminal.
An indirect production is a sequence derived by inlining a non-terminal occurrence of a
direct production with a production of that non-terminal.

Silverchain then encodes those RPAs into class definitions in a way that a sequence
is emulated by chaining methods of the generated classes. The sequences in the above

n1 RPA for n1 Class Defs

n2 RPA for n2 Class Defs

...
...

...

nk RPA for nk Class Defs

Grammar Set of RPA Classes for fluent EDSL

Construction of RPA Encoding to Class Defs

Translation

Fig. 3.1: Overview of our translation method. (ni is a non-terminal.)
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example are emulated by the following chains using the classes generated from the RPA
for <list>:

// Direct productions
begin (). text("Str").end();
begin (). text("Str").list (...). end();
// Indirect productions
begin (). text("S"). begin (). text("S").end().end();
begin (). text("S"). begin (). text("S").list (...). end().end();

In our encoding scheme, a non-terminal in a sequence is encoded into a method that takes
an argument. The argument is an instance of the type specified on the right-hand side of
the rule if the non-terminal has a rule with :: such as <text>. Otherwise, the argument
is a subchain that emulates a production of that non-terminal as follows:

begin (). text("Str").list(
begin (). text("Str").text("Str").end()

).end();

As we mentioned earlier, the return type of every method only has methods that may
be invoked next so that a syntactic error causes a type error. In addition, the return
type of the last method in a chain inherits the class corresponding to the source non-
terminal if the chain represents a syntactically correct sequence. For example, the last
method returns a type inheriting List, the class corresponding to <list>, only when a
chain emulates a production of <list>:

// No type error
List list1 = begin (). text("Str").end();
// Type error on assignment
List list2 = begin (). text("Str");

This design helps the type checker to find syntactic errors in subchains. For example, the
following chain causes a type error by setting the argument type of list method to List:

// Type error on passing argument to list(List)
begin (). text("Str").list(begin (). text("Str")).end();

In Section 3.1, we describe RPAs and our encoding scheme in more detail using the table
representation of RPAs.

Silverchain constructs the set of RPAs by modifying a set of RPAs each accepts only
the direct productions of a non-terminal. This way of constructing RPAs does not add
or remove a non-terminal from a given grammar. This property lets Silverchain users
(i.e., the developers of an EDSL) specify where the users of a generated EDSL can use
subchaining APIs. Suppose that Silverchain rewrites the grammar in Figure 2.3 as follows:

<list > -> "begin" <n>;
<n> -> (<text > <list >?)+ "end"; // Added non -terminal
<text > :: String;

From this grammar, our encoding scheme generates n(N), which is a method corresponding
to <n>:

begin ().n(text("Str").end ());
begin ().n(text("Str").begin ().n(text("Str").end ()). end ());
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start

(begin, q0) → q1q4

(begin, q2) → q1q3

(<text>, q1) → q2

(<text>, q2) → q2

(<text>, q3) → q2

(<list>, q2) → q3

(end, q2) → ϵ

(end, q3) → ϵ

($list, q4) → ϵ

(a) State diagram of RPA for <list>

q0

q1
q4

q2
q4

q1
q3
q4

q2
q3
q4

q3
q4 q4

begin <text> begin <text> end end

(b) Example stack transition

Fig. 3.2: State diagram and example stack transition

As seen above, adding a non-terminal adds an unexpected subchaining API to the gener-
ated EDSL. Removing a non-terminal, on the other hand, removes expected subchaining
API from the EDSL. We explain our RPAs construction method in Section 3.2.

As we mentioned, Section 3.1 describes an RPA and its encoding into class definitions
and Section 3.2 describes our RPAs construction method. Section 3.3 describes the prepro-
cessing that is applied before the construction of RPAs. The preprocessing is implemented
because our RPAs construction method works correctly only when a grammar satisfies
several uncommon conditions. The preprocessing rewrites a given grammar so that the
grammar satisfies those conditions as much as possible, without adding or removing any
non-terminal. Section 3.4 discusses the limitation of Silverchain, which is different from
the limitation of our RPAs construction method because of the preprocessing.

3.1 RPA and Its Encoding
An RPA, single-state real-time deterministic pushdown automaton, is a deterministic
pushdown automaton that has only one state and no ϵ-transitions. Figure 3.2a shows
the state diagram of the RPA for <list>. At every step, an RPA takes an action that
consumes one input symbol, pops the top of its stack, and pushes zero or more elements
into its stack. We denote each action as (s, q) → Q, where s is an input symbol to
consume, q is the top of the stack to pop, and Q is a sequence of stack elements to push.
All possible actions of the RPA for <list> are listed on the right half of Figure 3.2a.
When pushing elements, the rightmost element of Q is pushed into the stack first. ϵ on
the right-hand side indicates that no element is pushed into the stack on that action. At
the beginning, the stack is filled with only one element. In the RPA for <list>, the stack
is filled with q0 at the beginning.
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Table 3.1: Table representation of RPA. (“-” indicates an undefined action.)

list

q0 q1 q2 q3 q4

beginLst q1q4 - q1q3 - -

<text> - q2 q2 q2 -

<list> - - q3 - -

endLst - - ϵ ϵ -

$list - - - - ϵ

Figure 3.2b shows how the content of the stack changes at each step when the input
sequence is as follows:

begin <text > begin <text > end end

The RPA for a non-terminal n stops when it consumes all input symbols and the end-of-
input symbol $n, or when it become unable to consume an input symbol anymore with its
defined actions. An input sequence is accepted if the stack becomes empty by consuming
$n. A sequence is, on the other hand, rejected if the RPA stops before consuming $n. The
example sequence above is accepted because the stack is filled with q4 after consuming
the second end and the stack will become empty by taking the action that consumes $list
and pops q4 on the stack top.

An RPA can be described by a table. Table 3.1 is the table representation of the RPA
for <list>. In the table representation, all possible input symbols (including $n) and all
stack elements are enumerated across the rows and the columns, respectively. A defined
action (s, q) → Q is represented by placing Q in row s of column q. The initial stack
element is indicated by adding the non-terminal name on the column top of that element.

A fluent EDSL is obtained by encoding the table into a set of class definitions. Figure
3.3 shows the classes generated from Table 3.1. The generated classes are categorized into
two. One is a set of classes each corresponds to a column of the table. The classes named
Qn in the figure belong to this category. A class in this category has one type parameter
except the class corresponding to the initial stack element. The other category consists of
two auxiliary classes: the class corresponding to a non-terminal and the class representing
the stack bottom. In Figure 3.3, List and Bottom belong to this category. We describe
the usage of these auxiliary classes in the next paragraph.

Each method in a generated class corresponds to a table cell. A method is defined in
the class corresponding to column q when the method corresponds to a cell in column q.
For example, the method of Q1 on Line 7 corresponds to the cell in row <text> of column
q1. A method is modified with static if the owner class corresponds to the initial stack
element. By adding static, the users of the EDSL can invoke the first method of a chain
directly without writing the receiver class using static import. Instead of encoding a cell
in column $n into a method, the cell is encoded into an extend clause. In the case of the
example, Q4 inherits List as shown on Line 22 because column q4 has a value in column
$list. By this special encoding, a chain representing a syntactically correct sequence can
be assigned to a variable whose type is the class corresponding to the source non-terminal.

The return type of a method is determined by the corresponding cell value. A method
returns a nested generics if the cell value is not ϵ. Classes are nested in a way that the
leftmost element of the value is the outermost class of the nested generic. The innermost
class is Bottom if the method is modified with static. Otherwise, the innermost class is
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1 // A set of classes each corresponds to a row
2 class Q0 {
3 static Q1 <Q4 <Bottom >> begin() { ... }
4 }
5
6 class Q1<T> {
7 Q2 <T> text(String text) { ... }
8 }
9
10 class Q2<T> {
11 Q1 <Q3<T>> begin() { ... }
12 Q2<T> text(String text) { ... }
13 Q3<T> list(List list) { ... }
14 T end() { ... }
15 }
16
17 class Q3<T> {
18 Q2<T> text(String text) { ... }
19 T end() { ... }
20 }
21
22 class Q4<T> extends List {}
23
24 // Auxiliary classes
25 class List {} // Class corresponding to <list >
26 class Bottom {} // Class for the stack bottom

Fig. 3.3: Class definitions generated from Table 3.1

the type parameter of the owner class. For example, q1q4 in column q0 is encoded into
Q1<Q4<Bottom>> as shown on Line 3. A method returns just the type parameter if the
cell is filled with ϵ such as the method on Line 14. The argument of a method depends
on the kind of the input symbol on the column of the corresponding cell. A method
takes no argument if the symbol on the column is a terminal, and takes one argument
otherwise. As we mentioned earlier, the type of that argument is determined by how the
non-terminal is defined in the given grammar. The argument type is as specified on the
right of :: if the symbol has a rule with ::. The type is the class corresponding to the
symbol such as List otherwise. In Figure 3.3, the method bodies are omitted, but they
are also generated by Silverchain. We describe them later in Section 3.5.

With the classes in Figure 3.3, programmers can compose a syntactically correct se-
quence as shown in Figure 3.4. Each comment on the right shows the return type of the
method invocation. As seen from the comparison of Figure 3.2b and 3.4, the return type
of each method represents the content of the RPA stack at that time.

3.2 RPA Construction
Our method first constructs RPAs each accepts only direct productions, then modifies
them so that they can also accept indirect productions. In the example case, it first
constructs an RPA accepting the direct production of <list>, then modifies the RPA into
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import static Q0.begin;

List ls = begin() // Q1<Q4<Bottom >>
.text("Item 1") // Q2<Q4<Bottom >>
.begin () // Q1<Q3<Q4<Bottom >>>
.text("Item 1.1") // Q2<Q3<Q4<Bottom >>>
.end() // Q3<Q4<Bottom >>
.end (); // Q4<Bottom > extends List

Fig. 3.4: Example chain using classes in Figure 3.3

q0start q1 q2 q3 q4
begin <text>

<list>

<text>

<text>

end

end

Fig. 3.5: State diagram of DFA for <list>

Table 3.2: Table constructed from Figure 3.5

list

q0 q1 q2 q3 q4

begin q1 - - - -

<text> - q2 q2 q2 -

<list> - - q3 - -

end - - q4 q4 -

$list - - - - ϵ

the one accepting both the direct and indirect productions. Such RPAs accepting only
direct productions can be constructed easily from a given grammar by the following steps:

(1) Construct a set of deterministic finite automata (DFAs) by converting the regular
expression on the right-hand side of each production rule. (Several conversion algo-
rithms are known such as Brzozowski’s [4] and Thompson’s [36].) Each DFA accepts
the direct productions of the corresponding non-terminal since a direct production
is a sequence that matches the regular expression. In the example case, this step
constructs the DFA shown in Figure 3.5, which accepts the direct productions of
<list>.

(2) Convert each constructed DFA to an equivalent RPA by the following steps. This
step constructs Table 3.2, which represents an RPA accepting the direct productions,
by converting the DFA in Figure 3.5.
(2a) Enumerate all possible input symbols (including $n) and all states of the DFA

across the rows and the columns, respectively. A state of the DFA is converted
to a stack element of the RPA.

(2b) Put a non-terminal name n on the top of the column whose header is the initial
state of the DFA. The initial state of the DFA is converted to the initial stack
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Table 3.3: Modifications made in Step (3) and (4)

(a) At Step (3)

list

q0 q1 q2 q3 q4

begin q1 - q1q3 - -

<text> - q2 q2 q2 -

<list> - - q3 - -

end - - q4 q4 -

$list - - - - ϵ

(b) At Step (4)

list

q0 q1 q2 q3 q4

begin q1q4 - q1q3 - -

<text> - q2 q2 q2 -

<list> - - q3 - -

end - - ϵ ϵ -

$list - - - - ϵ

element of the RPA.
(2c) Put qi in row s of column qj if the DFA can transition from qj to qi by consuming

s. A transition of the DFA from qj to qi is converted to an action of the RPA
that pops qj and pushes qi into the stack.

(2d) Put ϵ in row $n of a column whose header is an accepting state of the DFA. An
accepting state of the DFA is converted to an element that allows RPA to make
its stack empty by consuming $n

Step (1) constructs a set of DFAs from any grammar since a regular expression can always
be converted into the DFA. Step (2) can always convert a DFA into an RPA since a DFA
can be regarded as an RPA whose stack depth is limited to one.

Our modification of RPAs is modeled as the update on the table constructed by Step
(1) and (2). Recall that an indirect production is a sequence derived by inlining a non-
terminal’s occurrence of a direct production with a production of a non-terminal. This
implies that, for RPAs to accept indirect productions, the modification should be made
so that those RPAs can consume a production of n when they can consume n. To this
end, our method updates the table obtained at Step (2) as follows:

(3) Add new actions so that RPAs can start consuming a production of n when they can
consume n:
(3a) Collect actions that consume n and let the collection be Cn. In the case where

n is <list>, Cn is {(<list>, q2) → q3}.
(3b) Collect actions that pop the initial stack element for n and let the collection be

Pn. Pn is {(begin, q0) → q1} in the example case.
(3c) For each ((∗, qi) → qj , (s, ∗) → qk) ∈ Cn×Pn, put qkqj in row s of column qi. In

the example case, this step adds (begin, q2) → q1q3 as shown in Table 3.3a.
Since s is a symbol that may appear first in a production of n, RPAs become able
to consume the first symbol of an inlined sequence by the modification at Step (3c).
Furthermore, they can also consume the second and subsequent symbols since those
added actions push qk, the element that allows RPAs to consume the second symbol,
on the stack top. The second pushed symbol qj represents the element that should
be on the stack top after consuming all symbols of an inlined sequence. We explain
the usage of qj in the next step.

(4) Modify existing actions so that RPAs can consume symbols following an inlined se-
quence of n as specified in the grammar:
(4a) Find an element whose column contains ϵ in row $n and let the element be en.

en is q4 in the example case.
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<doc > -> "beginDoc" <list >* "endDoc";
<list > -> "beginLst" (<text > <list >?)+ "endLst";
<text > :: String;

Fig. 3.6: Example grammar containing multiple non-terminals

(4b) Replace all occurrences of en with ϵ. In the example case, this step replaces all
occurrences of q4 with ϵ as shown in Table 3.3b.

(4c) Append en to cell values in the column of the initial stack element for n. This
step appends q4 to the value in row begin of column q0 as shown in Table 3.3b.

By the update in Step (4b), the stack top gets back to qj , which is pushed into
the stack when starting an inlined sequence, after consuming the last symbol of an
inlined sequence. This allows RPAs to consume symbols following the inlined sequence
as specified in the grammar. Step (4c) is modification that fixes the side effect caused
by Step (4b). The stack of the RPA for n becomes empty before consuming $n since
en is replaced with ϵ at Step (4b). By the update in Step (4c), the RPA for n becomes
able to make its stack empty by consuming $n at the end of input sequence.

Table 3.3b is exactly the same as Table 3.1, which represents the RPA accepting both
direct and indirect productions of <list>.

To show how our method works when an input grammar contains multiple non-
terminals, consider a new example grammar shown in Figure 3.6. From the grammar,
our method first constructs Table 3.4a by Step (1) and (2). In Table 3.4a, two RPA for
<doc> and <list> are described as one table, but the representation is the same as the
case where the table describes only one RPA. In Step (3) and (4), our method defines
Cn, Pn, and en as follows:

Cdoc = ϕ,

Clist = {(<list>, q1) → q1, (<list>, q5) → q6} ,
Pdoc = {(beginDoc, q0) → q1} ,
Plist = {(beginLst, q3) → q4} ,
edoc = q2,

elist = q7,

where ϕ denotes the empty set. At Step (3c), our methods adds two actions
(beginLst, q1) → q4q1 and (beginLst, q5) → q4q6, which are derived from Clist × Plist.
(No new actions are derived from Cdoc × Pdoc because Cdoc × Pdoc is ϕ.) At Step (4b),
q2 and q7 are replaced with ϵ. Step (4c) appends q2 and q7 to cell values in column q0
and q3, respectively. Table 3.4b is the table representation of two RPAs for <doc> and
<list>, which is obtained by updating Table 3.4a with Step (3) and (4).

Limitation of RPA Construction

Our method constructs RPAs correctly when the table obtained at Step (2) satisfies the
following conditions:

(a) No value exists in row s of column q for all ((∗, q) → ∗, (s, ∗) → ∗) ∈ Cn × Pn.
(b) A column containing ϵ does not contain any other values.

In the following two paragraphs, we describe how the violation of Condition (a) and (b)
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Table 3.4: Tables appearing in RPAs construction when input grammar is Figure 3.6

(a) Table constructed from Figure 3.6

doc list

q0 q1 q2 q3 q4 q5 q6 q7

beginDoc q1 - - - - - - -

beginLst - - - q4 - - - -

<text> - - - - q5 q5 q5 -

<list> - q1 - - - q6 - -

endLst - - - - - q7 q7 -

endDoc - q2 - - - - - -

$doc - - ϵ - - - - -

$list - - - - - - - ϵ

(b) Table obtained by updating Table 3.4a

doc list

q0 q1 q2 q3 q4 q5 q6 q7

beginDoc q1q2 - - - - - - -

beginLst - q4q1 - q4q7 - q4q6 - -

<text> - - - - q5 q5 q5 -

<list> - q1 - - - q6 - -

endLst - - - - - ϵ ϵ -

endDoc - ϵ - - - - - -

$doc - - ϵ - - - - -

$list - - - - - - - ϵ

affect our RPAs construction.
If a table obtained at Step (2) does not satisfy Condition (a), Step (3) cannot put a

value into the cell in row s of column q. Table 3.5 is an example of such tables, which is
constructed from the following grammar:

<list > -> "begin" (<text > | <text -list >)+ "end";
<text -list > -> <text > <list >;

From Table 3.5, Step (3a) and (3b) constructs Ctext−list and Ptext−list as follows:

Ctext−list = {(<text-list>, q1) → q2, (<text-list>, q2) → q2} ,
Ptext−list = {(<text>, q4) → q5} .

Step (3c) then tries to put q5q2 to the cell in row text of column q1 and q2 but cannot
put them since q2 has already existed in that cell.

Table 3.6a is an example table that does not satisfy Condition (b), which is constructed
from the following grammar:
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Table 3.5: Table violating Condition (a)

list text-list

q0 q1 q2 q3 q4 q5 q6

begin q1 - - - - - -

<text> - q2 q2 - q5 - -

<list> - - - - - q6 -

<text-list> - q2 q2 - - - -

end - - q3 - - - -

$list - - - ϵ - - -

$text−list - - - - - - ϵ

<doc > -> "beginDoc" <list >* "endDoc";
<list > -> "beginLst" <item >+ "endLst";
<item > -> <text > <list >?;

(a) Example grammar

<doc > -> "beginDoc" <list >* "endDoc";
<list > -> "beginLst" (<item > | <text > <list >?)+ "endLst";
<item > -> <text > <list >?;

(b) Rewritten grammar

Fig. 3.7: Grammar rewriting performed in our preprocessing

<list > -> "begin" <item >+ "end";
<item > -> <text > <list >*;

Step (3) updates Table 3.6a as shown in Table 3.6b, and Step (4) updates Table 3.6c. In
this case, all updating processes are made without problems, but the constructed RPAs
do not accept sequences as specified in the grammar. For example, the RPA for <list>
in Table 3.6c does not accept the following sequence:

begin <text > <list > end

This incorrect construction occurs because our method uses the stack to store the element
to be on the top after consuming an inlined sequence.

Note that Condition (a) and (b) describe the limitation of our RPAs construction
method. Silverchain can translate the example grammars shown above into fluent EDSLs
as expected because it preprocesses those grammars as described in Section 3.3. The
limitation of Silverchain is discussed in Section 3.4 after describing the preprocessing.
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Table 3.6: Table violating Condition (b) and its modification

(a) Table constructed at Step (2)

list item

q0 q1 q2 q3 q4 q5

begin q1 - - - - -

<item> - q2 q2 - - -

<text> - q2 q2 - q5 -

<list> - - - - - q5

end - - q3 - - -

$list - - - ϵ - -

$item - - - - - ϵ

(b) Table updated from Table 3.6a by Step (3)

list item

q0 q1 q2 q3 q4 q5

begin q1 - - - - -

<item> - q2 q2 - - -

<text> - q5q2 q5q2 - q5 -

<list> - - - - - q5

end - - q3 - - -

$list - - - ϵ - -

$item - - - - - ϵ

(c) Table updated from Table 3.6b by Step (4)

list item

q0 q1 q2 q3 q4 q5

begin q1q3 - - - - -

<item> - q2 q2 - - -

<text> - q2 q2 - q5 -

<list> - - - - - ϵ

end - - q3 - - -

$list - - - ϵ - -

$item - - - - - ϵ
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Table 3.7: Table constructed from rewritten grammar

doc list item

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

beginDoc q1 - - - - - - - - - -

beginLst - - - q4 - - - - - - -

<list> - q2 q2 - - q6 - - - q10 -

<text> - - - - q5 q5 q5 - q9 - -

<item> - - - - q6 q6 q6 - - - -

endLst - - - - - q7 q7 - - - -

endDoc - - q3 - - - - - - - -

$doc - - - ϵ - - - - - - -

$list - - - - - - ϵ ϵ - - -

$item - - - - - - - - - ϵ ϵ

<doc> <list> <item>

Fig. 3.8: The initial reference relation graph

3.3 Preprocessing
Silverchain preprocesses an input grammar so that the grammar satisfies Condition (a)
and (b) as much as possible. As an example, consider the grammar shown in Figure 3.7a.
Our preprocessing rewrites the grammar as shown in Figure 3.7b. As demonstrated in
Figure 3.7, our preprocessing replaces a non-terminal occurrence with the union of that
non-terminal and its production rule. Note that this inline-expansion does not add or
remove any non-terminals from the grammar. Replaced occurrences of non-terminals are
ignored when building Cn at Step (3a) since those occurrences have already been inlined
by the preprocessing. For example, Step (1) and (2) construct Table 3.7 from the rewritten
grammar. Step (3a) builds the set of actions as follows:

Clist = {(<list>, q1) → q2, (<list>, q2) → q2} ,
Ctext = {(<text>, q4) → q5, (<text>, q5) → q5, (<text>, q6) → q5} ,
Citem = ϕ.

Citem is ϕ since <item> on the right-hand side of <list> is ignored at Step (3a) as we
described above. By ignoring the inlined occurrences, the problem described in Condition
(b) does not occur at Step (3c).

Our preprocessing does not inline expand all every non-terminal occurrence since infinite
regression will occur when a non-terminal is defined recursively. It selects non-terminals to
be expanded by examining reference relations among non-terminals. A reference relation
from a non-terminal ns to a non-terminal nd indicates that the rule for ns contains one or
more un-expanded nd on its right-hand side. For example, the example grammar contains



28 Chapter 3 Silverchain

<doc> <list> <item>

(a) Examining (<doc>, <list>). This edge
is not selected since the SCC containing
<list> consists of two nodes.

<doc> <list> <item>

(b) Examining (<list>, <item>). This edge
is selected since the SCC containing <item>
consists only of one node without a self-loop.

Fig. 3.9: Selecting an edge for inline expansion. (A red circle indicates a SCC.)

<doc> <list> <item>

Fig. 3.10: The updated graph after expanding <item> in the rule for <list>

three references from <doc> to <list>, from <list> to <item>, and from <item> to <list>.
Our preprocessing is described as follows:

(i) Create a graph G. A node in G represents a non-terminal in a given grammar. An
edge (ns, nd) in G represents a relation from ns to nd. Figure 3.8 shows a graph
created from the example grammar.

(ii) Find an edge (ns, nd) such that the following subprocess returns true:
(ii-a) Create a subgraph G′ of G by removing ns and the edges with ns on their

source or destination.
(ii-b) Decompose G′ into strongly connected components (SCCs) and let the com-

ponent containing nd be C [35].
(ii-c) Return true if C consists of a single node without a self-loop, and false other-

wise.
In the case of G in Figure 3.8, Silverchain selects (<list>, <item>) through the
subprocesses shown in Figure 3.9.

(iii) Apply inline expansion to the production rule for ns. All the occurrences of nd in
the rule are expanded. For example, when ns is <list> and nd is <item>, then the
rule for <list> will be expanded into the following as we have seen before:

"beginLst" (<item > | <text > <list >?)+ "endLst";

(iv) Update G to reflect the inline expansion at (iii). The selected edge (ns, nd) is
removed from G and new edges are added to G to represent reference relations
in the expanded production rule. G is updated to the graph in Figure 3.10 when
(<list>, <item>) is selected for expansion.

Our preprocessing repeats from Step (i) to Step (iv) until no edges found in Step (ii). It
examines edges in the order that an edge further from the node for the start symbol is
examined earlier. (Silverchain regards the first non-terminal of an input grammar as the
start symbol.)

Decomposition into SCCs in Step (ii) is required to avoid an infinite regression of inline
expansion caused by mutual recursion in the given grammar. Suppose that the edge
(<doc>, <list>) in Figure 3.8 is selected for expansion. The dotted edge is removed
and the red edge is added as shown in Figure 3.11a. Then the edge (<doc>, <item>) in
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<doc> <list> <item>

(a) Expanding (<doc>, <list>)

<doc> <list> <item>

(b) Expanding (<doc>, <item>)

Fig. 3.11: Without decomposition into SCCs

Figure 3.11a is selected for expansion and the graph is updated to Figure 3.11b, where the
dotted edge is removed and the red edge is added. Figure 3.11b is equivalent to Figure 3.8.
Further inline expansion will cause infinite regression. By the decomposition, Silverchain
selects an edge composing a mutual-recursion cycle earlier than other edges. Such an edge
is expanded, and the cycle is transformed into non-cyclic edges and self-loops. Which edge
is first selected among cyclic edges does not matter to resolve infinite regression.

3.4 Limitation
Flat chaining (non-subchaining) APIs are not always supported in a fluent EDSL gen-
erated by Silverchain. This is because our translation method fails to construct RPAs
correctly as described in Section 3.2. Our translation method skips Step (3) and (4) if the
table obtained at Step (2) does not satisfy Condition (a) and (b). Since Step (3) and (4)
are the process to make RPAs accept indirect productions, RPAs remain to accept only
direct productions. This results that generated fluent EDSL allows its users to use only
subchaining APIs for certain parts of a chain. For example, consider encoding Table 3.6a
into class definitions by the encoding scheme in Section 3.1. Figure 3.12 shows the classes
generated from the table and the EDSL users can write the following chains:

begin (). item(text("Item")).end();
begin (). item(

text("Item"). begin (). item(text("Item")).end()
).end();

However, the users cannot write the following chains that use flat chaining APIs:

begin (). text("Item").end();
begin (). text("Item").begin (). text("Item").end().end();

This limitation is problematic from the viewpoint of DSL emulation since subchaining
APIs introduce redundant parts into a chain.

Silverchain can generate flat chaining APIs for all parts when every recursively defined
non-terminal has explicit symbols that begin/end a nesting structure. If-else syntax with
dangling-else is a common syntax component that does not have such explicit symbols:

<if-else > -> "if" <cond > <stmts > ("else" <stmts>)?;
<stmts > -> (<if-else > | <stmt >)*;

Try-catch-finally syntax with dangling-finally is also an example of such a syntax compo-
nent:

<TCF > -> "try" <stmts > "catch" <err > ("finally" <stmts>)?;
<stmts > -> (<TCF > | <stmt >)*;
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1 class Q0 {
2 static Q1 <Bottom > begin() { ... }
3 }
4
5 class Q1<T> {
6 Q2 <T> item(Item item) { ... }
7 }
8
9 class Q2<T> {
10 Q2<T> item(Item item) { ... }
11 Q3<T> end() { ... }
12 }
13
14 class Q3<T> extends List {}
15
16 class Q4 {
17 Q5<Bottom > text(String text) { ... }
18 }
19
20 class Q5 <T> extends Item {
21 Q6<T> list(List list) { ... }
22 Q1<Q6<T>> begin () { ... }
23 }
24
25 class Q6<T> extends Item {}
26
27 class List {}
28
29 class Item {}
30
31 class Bottom {}

Fig. 3.12: Class definitions

Silverchain fails to generate non-subchaining APIs since our method constructs an RPA
so that it can push an element when a new nesting begins, and pops an element when the
current nesting ends. A recursive non-terminal without explicit ending symbols introduces
conflicts when popping an element at the end of an inlined sequence.

When given grammar represents a visibly pushdown language [1] (VPL), the cases
Silverchain cannot generate non-subchaining API will not happen. This is because a VPL
has explicit unique symbols to begin/end a nesting structure. However, further formal
discussion and proof are necessary to posit this claim.

3.5 Details of Encoding
Silverchain generates method bodies that build a list of invoked method. Figure 3.13 shows
the generated code for Q2 including the bodies of methods. Each method first appends
a Method instance, an object that packs the name and the argument, to the list. Line
11 in Figure 3.13 is the line that appends such packed information. A method appends
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1 class Q2<T> {
2 ArrayList <Method > methodList;
3 Stack <Class <?>> classStack;
4
5 Q2(ArrayList <Method > list , Stack <Class <?>> stack) {
6 methodList = list;
7 classStack = stack;
8 }
9
10 Q1<Q3<T>> begin() {
11 methodList.add(new Method("begin", null ));
12 classStack.push(Q3.class );
13 return new Q3 <>(methodList , classStack );
14 }
15
16 Q2<T> text(String text , String ... textArray) {
17 methodList.add(new Method("text", text ));
18 for (String t: textArray) {
19 methodList.add(new Method("text", t));
20 }
21 return new Q2 <>(methodList , classStack );
22 }
23
24 Q3<T> list(List list) {
25 methodList.addAll(list.methodList );
26 return new Q3 <>(methodList , classStack );
27 }
28
29 T end() {
30 methodList.add(new Method("end", null ));
31 try {
32 return (T) classStack.pop()
33 .getDeclaredConstructor(
34 ArrayList.class ,
35 Stack.class
36 ). newInstance(methodList , classStack );
37 } catch (Exception e) {
38 }
39 }
40 }

Fig. 3.13: Definition of Q2
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multiple Method instances at once when it takes a subchain as its argument as shown on
Line 25. A method then creates and return an instance that is used as the receiver of
the next method invocation. The list of invoked methods are shared by passing it as the
argument of the constructor as shown on Line 13. We need a little trick for generated
methods to return a nested parametric type as shown from Line 30 to Line 39. Instead of
executing new T(), Silverchain calls newInstance on a class object representing T. Since a
type parameter is not a first-class entity in Java, the generated EDSL uses the reflection
API and explicitly passes a type parameter as a class object.

As a manually developed fluent API often provides several convenience methods, Silver-
chain also generates convenience methods. The method on Line 16 is such a convenience
method and takes multiple String objects as its arguments. The following lines show the
example usage of that convenience method:

begin (). text( // begin()
"Item 1", // .text("Item 1")
"Item 2", // .text("Item 2")
"Item 3" // .text("Item 3")

).end(); // .end();

Silverchain generates such a method with variable length arguments when it finds two
actions (s, qi) → qj and (s, qj) → qj .

We show the generated code only for Q2, but the method bodies of other classes are
very similar to the ones in Q2. For example, the body of text(String) in Q1 is exactly the
same as the one in Q2. There is only one difference in the body of Q0.begin(). Since the
method is modified with static and invoked at the beginning of a chain, it does not have
a context to be passed. Therefore, it has to create a new list to record invoked methods
and a stack to store classes:

static Q1<Q4<Bottom >> begin() {
ArrayList <Method > methodList = new ArrayList <>();
methodList.add(new Method("begin", null ));

Stack <Class <?>> classStack = new Stack <>();
classStack.push(Q4.class)

return new Q1 <>(methodList , classStack );
}

To add semantic actions to the generated fluent EDSL, Silverchain users have only to
implement an evaluation method, a method that interprets a written chain. Figure 3.14
shows an example implementation that constructs an itemized document in TEX from a
written chain. By fitting all semantic actions into one method, Silverchain users can avoid
implementing method bodies that are scattered over the generated code. However, this
implementation of semantic actions is tedious when building actions for a DSL that does
not have an external execution system. If the EDSL is just an embedded interface to an
external DSL such as SQL and TEX, the implementation is much easier since Silverchain
users have only to convert a method into a token of that external DSL.



3.5 Details of Encoding 33

String toTeX () {
Sttring tex = "";
for (Method m: this.methodList ()) {

if (m.name == "begin") {
tex += "\begin{itemize}";

} else if (m.name == "end") {
tex += "\end{itemize}";

} else if (m.name == "text") {
tex += "\item " + m.argument;

}
}
return tex;

}

Fig. 3.14: Example implementation of EDSL semantics
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Chapter 4

Use Cases

In this chapter, we compare fluent EDSLs generated by Silverchain and popular hand-
written EDSLs, using LINQ*1 and DOT*2 as examples. LINQ is a DSL for operating
collection data, and DOT is a DSL for describing graphs. We chose coollection*3 as a
popular EDSL for LINQ and graphviz-java*4 as one for DOT. Table 4.1 summarizes the
numbers of classes and methods generated from the grammars of those DSLs. The first
and second columns in the table show the numbers of unique symbols and non-terminals
in the grammar, respectively. The third and forth columns show the numbers of generated
classes and methods, respectively. The grammars of those languages are relatively simple,
but the numbers of generated definitions are too large to handle by hand.

Figure 4.1 and 4.2 show example sentences and their embedded versions of LINQ and
DOT, respectively. As seen from these examples, the code written with the generated
EDSLs are similar to the one written with hand-written EDSLs in most parts. Figure
4.1c is similar to Figure 4.1b, and Figure 4.2c and 4.2d are similar to Figure 4.2b.

The first drawback is that code written with the generated EDSLs tends to contain re-
dundant method calls. For instance, from().collection(...) in Figure 4.1c is expressed
in a shorter way by from(...) in Figure 4.1b. Similarly, beginGraph() in Figure 4.2c is
omitted in Figure 4.2b. These redundant methods are generated because our translation
method encodes every token of a DSL into a method. Those methods can be omitted
by using information obtained from the table representation of RPAs. A method can
be omitted if it is the only transition that exists between states and no ambiguity arises
after omitting that transition. However, if such automatic omission is applied naively, a
method chain with the generated EDSLs might be unreadable for programmers. Some re-
dundant symbols in a DSL are necessary for programmers to read and understand written
sentences. To avoid this problem, Silverchain does not apply that automatic omission.

Another drawback is that programmers can hardly edit those classes to make APIs
better because generated EDSLs use mechanically named classes such as Q1 and Q2. The

Table 4.1: Number of classes and methods generated by Silverchain

#Symbols #Non-terminals #Classes #Methods

LINQ 32 17 132 323

DOT 40 15 389 1687

*1 http://programminglinq.info/tag/bnf/
*2 http://www.graphviz.org/content/dot-language
*3 https://github.com/19WAS85/coollection
*4 https://github.com/nidi3/graphviz-java
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from u in users
where u.age > 2
orderby u.age descending
select u;

(a) Example sentence

from(users)
.where("age", gt(2))
.orderBy("age", Order.DESC)
.all();

(b) With coollection

from (). collection(users)
.where (). field("age").gt(). value (2)
.orderBy("age"). descending ()
.select ();

(c) With generated EDSL

Fig. 4.1: Comparison in LINQ

APIs of coollection and graphviz-java are designed using the domain-specific knowledge
that is not represented in the grammar. For instance, coollection uses enum to specify
the order as shown in Figure 4.1b and graphviz-java uses enum to specify attributes of a
node as shown in Figure 4.2e. However, to add such methods reflecting domain-specific
knowledge, the developers of an EDSL need to fix scattered parts of generated classes. The
generation of such methods is difficult because our translation method naively encodes
every token of a sentence into a method. Finding a smarter way of encoding is important
future work to put Silverchain into practical use.

As another use case, we gave the grammar of the DSL used by Silverchain for describing
input grammar. The generated EDSL is a fluent EDSL that can be used to define fluent
EDSLs. Using this EDSL, the grammar in Figure 3.7a can be written as shown in Figure
4.3. Figure 4.3a shows a chain that expresses the grammar without subchaining. Figure
4.3b shows a chain that uses subchaining to group semantically related method calls. The
users of this EDSL can use any style that suits their usage.
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digraph G {
A -> B
B -> C
C -> A

}

(a) Example sentence

graph("G"). directed (). with(
node("A").link(node("B")),
node("B").link(node("C")),
node("C").link(node("A"))

);

(b) Using graphviz-java

digraph ().id("G"). beginGraph (). edge(
node("A"). arrow (). node("B"),
node("B"). arrow (). node("C"),
node("C"). arrow (). node("A")

). endGraph ();

(c) Using generated EDSL with subchaining

digraph ().id("G"). beginGraph ()
.node("A"). arrow (). node("B")
.node("B"). arrow (). node("C")
.node("C"). arrow (). node("A")

.endGraph ();

(d) Using generated EDSL without subchaining

// With graphviz -java
node("X").with(

Shape.RECTANGLE ,
Style.FILLED

);

// With generated EDSL
node("X"). beginAttr ()

.shape ().eq(). rectangle ()

.style ().eq(). filled ()
.endAttr ();

(e) Difference between generated EDSL and graphviz-java

Fig. 4.2: Comparison in DOT
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String src = grammar ()

.nsym("doc").arrow (). tsym("beginDoc").nsym("list").star (). tsym("endDoc")

.nsym("list").arrow (). tsym("beginLst").nsym("item").plus (). tsym("endLst")

.nsym("item").arrow (). nsym("text").nsym("list")

.nsym("text").is(). type("String")

.toJavaSrc ();

(a) Without subchaining

Rule doc =
nsym("doc"). arrow (). tsym("beginDoc").nsym("list").star (). tsym("endDoc");

Rule list =
nsym("list").arrow (). tsym("beginLst").nsym("item").plus (). tsym("endLst");

Rule item = nsym("item").arrow (). nsym("text").nsym("list");

Rule text = nsym("text").is(). type("String");

String src = grammar (). rule(doc , list , item , text). toJavaSrc ();

(b) With subchaining

Fig. 4.3: Usage example of generated EDSL for EDSLc
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Chapter 5

Conclusion

5.1 Summary
This paper presented Silverchain, a tool that generates fluent EDSLs from a given gram-
mar. Silverchain differs from existing tools in that a generated EDSL have the following
two properties. Firstly, it throws a type error when a built chain represents a syntactically
incorrect sentence of the original DSL. This is realized by setting the return type of each
method based on which methods can be invoked next. The problem on the developers’
side, the burdensome task to achieve the syntax-checking feature, is the primary reason
why we proposed a fluent EDSL generator. Secondly, the generated EDSL supports sub-
chaining APIs in addition to regular chaining APIs. This helps programmers express their
solutions in writing style fitting the situation. Silverchain can generate fluent EDSLs for
existing practical DSLs as we showed in Chapter 4.

Our translation method is modeled as the RPAs construction as we explained in Chapter
3. The construction method is different from known ones in that our method keeps a given
grammatical structure by avoiding addition and removal of non-terminals. This constraint
is required to let Silverchain users specify where subchaining APIs are available. Our
construction method is described as the construction of the table representation of RPAs
and the update on that table. More specifically, it first constructs a set of RPAs accepting
only direct productions and then modifies them into the ones accepting both direct and
indirect productions.

Since our construction method is limited to a grammar that satisfies the uncommon
conditions described in Section 3.2, Silverchain rewrites a given grammar to make it sat-
isfy the conditions as much as possible. This makes our translation method complicated
but fairly widen the range of grammars that Silverchain can translate. Our translation
method is designed to be portable to other object-oriented languages although Silverchain
currently supports only Java as its output general-purpose language. Other output lan-
guages can be supported by adding the encoders to class definitions in those languages.

5.2 Future Work
Silverchain fails to generate regular chaining APIs for some grammars as we mentioned in
Section 3.4. Future work is to clarify the range of grammars that our current translation
method can handle and to find its relation to well-known classes of grammars. Finding
a better translation method that handles a wider range of grammars but does not cause
the exponential growth of compilation time is also future work.

Another possible direction for further research is to improve the way of emulating DSLs
by using the mechanism in the host language. For example, DSL sentences are currently
emulated only by method chaining, but they could be emulated in a better way by using
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another syntax such as operator overloading. The properties of an emulated DSL other
than syntactic rules could also be statically checked if the DSL’s type system or name
binding system is also mapped to its host language mechanism.
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