
Department of Creative Informatics
Graduate School of Information Science and Technology

THE UNIVERSITY OF TOKYO

Master Thesis

A study of machine learning approaches to
cross-language code clone detection

言語間でのコードクローン検出のための
機械学習的な手法についての研究

Daniel PEREZ HERNANDEZ
ペレズヘルナンデズ ダニエル

Supervisor: Professor Shigeru Chiba

January 2018





i

Abstract
While clone detection across programs written in the same programming language has been

studied extensively in the literature, the task of detecting clones across multiple programming
languages is not covered as well, and approaches based on comparison cannot be directly applied.
In this thesis, we present a clone detection method based on supervised machine learning able to
detect clone across programming languages. Our method uses an unsupervised learning approach
to learn token-level vector representations and an LSTM-based neural network to predict if two
code fragments are clones. To train our network, we present a cross-language code clone dataset
— which is to the best of our knowledge the first of its kind — containing more than 50000 code
fragments written in Python and Java. We show that our method can detect code clones between
Python and Java with high accuracy. We also compare our method to state-of-the-art tools in
single-language clone detection and show that we achieve similar accuracy.
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概要

同一の言語でのクローン検出はよく研究されているものの、複数の言語間でのクローン
検出を行う研究は少ない。またトークンや構文木の比較を用いた手法が直接利用できない。
本研究では、教師あり機械学習を用いて言語間でのクローンを検出する方法を提案する。本手
法では、教師なし学習を用いてトークンのベクトル表現を計算した上で、LSTMベースのニュー
ラルネットワークで２つのプログラムがクローンであるかどうかを判定する。ネットワークを
学習させるために、５万以上のプログラムを含む複数の言語間でのコードクローンのデータセ
ットを作成した。JavaとPython間のコードクローンを高い精度で検出できることを示す。
また、同一言語間でのクローン検出の精度を既存のツールと比較する。
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Chapter 1

Introduction

Code clones are fragments of code, in a single or multiple programs, which are similar to each
other. Code clones can emerge for various reasons, such as copy-pasting or implementing the same
functionality as another developer. Code clones can decrease the maintainability of a program,
as it becomes necessary to fix an error in all the places where the code was copied. However,
detecting these code clones — which is often referred to as the task of code clone detection —
is a difficult task and has been extensively researched in the literature. Some systems focus on
finding clones inside a single project, while other task try to detect clones in larger ecosystem,
by for example trying to detect clones in open-source development websites such as GitHub.
With the variety of tools and approaches proposed for clone detection, the task of code clone
detection has also found various applications, such as helping for code search, malware detection,
copyright infringement detection, and many others. However, although there is a very large
amount of tools that have been developed for the task of clone detection, most of these have been
developed to detect clones in programs written in the same programming language, and the task
of detecting code clones for programs written in different languages has not been studied as well
in the literature.

In recent years, the number of programming languages typically used by a developer has
increased [1], and developers tend to switch between programming languages much more often
than a decade ago. There are many possible explanations to this phenomenon. One reason is
that many companies use different languages for prototyping and production, and programmers
therefore tend to use a scripting language such as Python to develop a prototype and a faster
language such as C++ for the production code. Another explanation is that native applications
often need to be written in different programming languages: iOS applications can be written in
Swift or Objective C, Android applications require a language running on the JVM, such as Java
or Kotlin, and application running in the browser need to be written in JavaScript. Yet another
potential reason for this proliferation of languages is the democratization of micro services. As
multiple parts of a single system often run in total isolation from each other in their own process
or container, the need to write everything in a single language is not as high as it used to be with
monolithic applications and teams therefore tend to choose the programming language the most
adapted for a given task, and having a system with a websocket server running JavaScript code
and another server performing machine learning tasks using Python is not rare.
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Given such a context, where it is common for a system to be implemented using different
programming languages, code clones between part of the systems implemented in different pro-
gramming languages will eventually emerge, causing the same kind of maintainability issues as
code clones in a program written in the same programming language. To help improving this
situation, the question of whether we can detect code clones in programs written in different
programming languages is therefore important.

In this thesis, our goal is to find a method to detect code clones written in different pro-
gramming languages. Given the variety of languages and the potential difference between them,
rule-based comparison approaches seem challenging to apply in this context. We therefore de-
cided to focus on machine learning based techniques to perform this task. We design a system
to perform this task, collect data to train the system, and evaluate our system to see how well it
performs. In this thesis, we present two main contributions.

• We present a system based on supervised machine learning capable of detecting clones
across programming languages. We train and evaluate our model using programs written in
Python and Java, and obtain promising results in terms of precision and recall. Our system
being language agnostic, the only requirement for being able to support new programming
languages is to be able to collect code clones data written in the desired language.

• We present a cross-language code clones dataset containing about 50000 files written in
Java and Python. Although code clones dataset exist for programming languages such as
Java, this is to the best of our knowledge the first dataset with cross-language code clones.
We collected the data for this dataset by scraping competitive programming websites and
used the data provided by the websites to extract code clones.

We also present in detail how we transform the programs to be able to feed them to a machine
learning model and show how applying natural language processing methods can improve our
results.

The rest of this thesis is organized as follow. In Chapter 2, we give some background about
the task we are trying to solve by presenting the necessary concepts, giving motivating examples
and discussing the related work in this area. In Chapter 3, we give details about our proposal,
we describe the different parts of our system and explain how our machine learning model works
and how we train it. In Chapter 4, we describe the different experiments we performed, show and
discuss the results we obtained. Finally, in Chapter 5, we summarize what we have presented in
this thesis and give some directions for future work in this area.
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Chapter 2

Background

2.1 Source code representation
The way we represent source code is very important in code clone detection, as it affects greatly
the algorithms that may be used to detect clones.k In this section, we will explain the different
ways in which source codes can be represented.

2.1.1 String representation
The most common representation for a program is its string representation. It is the representa-
tion that developer actually uses when editing a program, and is therefore the easiest to obtain,
as it is simply the raw program. Listing 2.1 is a function taking two numbers as input and
returning their sum.

1 int add(int a, int b) {
2 return a + b;
3 }

Listing 2.1. add function

The string representation of the above program would simply be

1 "int␣add(int␣a,␣int␣b)␣{\nreturn␣a␣+␣b;\n}"

2.1.2 Token representation
While the string representation is an array of characters, the token representation is an array of
strings where each string in the array is a token of the program. It is typically the representation
that a lexer would return while processing the source program. The above program would have
the following token representation.

1 ["int", "add", "(", "int", "a", ",", "int", "b",
2 ")", "{", "return", "a", "+", "b", ";", "}"]
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Figure 2.1. Concrete Syntax Tree of add function

Token representation may, or may not keep whitespaces and other formatting characters, but
except for programming languages where whitespaces are significant, such as Python, they are
usually not included in the output.

2.1.3 Tree representation
There are two main tree representations for programs: concrete syntax trees and abstract syntax
trees. We will describe the two different type of trees and there differences.

Concrete Syntax Trees

Concrete syntax trees are concrete in the sense that they keep all the syntactic tokens of the
program, such as commas, semi-colons or parentheses. It therefore contains exactly the same
tokens as the token representation, but the tokens are organized as a tree, where the root is
usually the entry of the program, the nodes are usually statements or expressions and the leaves
are identifiers or literals. Figure 2.1 shows how Listing 2.1 would be represented as a concrete
syntax tree.

Abstract Syntax Trees

Abstract Syntax Trees (AST) are also a tree representation of the source code, but as opposed
to the concrete syntax tree, they do not preserve the host language syntax, such as parentheses,
and instead express these using the structure of the tree. AST are typically the what a parser
returns when processing the source code, and are one of the most common representation for
various tasks on programs, including clone detection. Figure 2.2 shows the AST for Listing 2.1.
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Figure 2.2. Abstract Syntax Tree of add function

2.2 Code clone fundamentals
In this section, we will first describe the different types of code clones that appear in the literature,
and that we will be using in this thesis. We will then view the different approaches to code clone
detection that can be found in the literature.

2.2.1 Types of code clones
It is important to define what is implied when two code fragments are defined as clones. In the
literature, code clones are usually classified into four different types [2], from Type I to Type IV,
where Type I is the “strongest”, meaning here that the two code fragments are the most similar,
while Type IV is the “weakest” — the two code fragments share less in common. We will now
give a more precise definition of each code clone type.

Type I Clones

Type I code clones types are clones where the code fragment are the same, except for some
variations that do not affect the logic, such as differences in whitespaces or comments. In the
literature, Type I clones are sometimes also referred to as exact clones. For example, let us
consider the following code fragment.

1 int fibo(int n) {
2 if (n <= 1) {
3 return n;
4 }
5 return fibo(n - 1) + fibo(n - 2);
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6 }

Listing 2.2. Fibonacci function

The following code fragment is considered to be a Type I clone.

1 int fibo(int n) {
2 if (n <= 1) { return n; } // base case of recursion
3 return fibo(n-1)+
4 fibo(n-2);
5 }

Although, as with the above example, line-by-line comparisons may not always yield correct
results for Type I clones, it is worth noting than if the two fragments are pre-processed with a
lexer, a simple token comparison should normally be enough to detect this type of clones.

Type II Clones

Type II clones include the changes that can be involved in Type I clones, such as layout and
comments, but also include other changes, such as changes in user-defined identifiers — variable
or function names. For example, the following snippet would be a Type II clone for Listing 2.2:

1 int fib(int x) {
2 if (x <= 1) { return x; }
3 return fib(x - 1) + fib(x - 2);
4 }

The function and parameter names, as well as the layout are different, but the logic is exactly
the same.

Type III Clones

Type III clones can have all the changes from type I and type II clones, but may also have
statement insertions, deletions or replacements. Although Type III clones are usually copied
from the same source code, there is no agreement on a threshold on the number of changes to
consider or not two code fragments as type III clones. Some researchers therefore classify type III
code clones in categories such as very strong type III or weakly type III [3]. Here is an example
type III clone for Listing 2.2.

1 int fib(int x) {
2 int a = x;
3 if (a <= 1) {
4 return a;
5 }
6 return fib(a - 1) + fib(a - 2);
7 }
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In the above code fragment, the code is completely copied from Listing 2.2, except for a
change in the identifier names, but the second line has been inserted, making this code fragment
a type III clone.

Type IV Clones

Type IV clones, also referred to as functional code clones, are two code fragments implementing
the same functionality with different approaches. Unlike type I to III clones, type IV clones
are usually not a result of code copying, but rather of two programmers implementing the same
functionality. For example, as opposed to the recursive implementation of Fibonacci in Listing 2.2,
the following iterative implementation could be defined to be a type IV clone.

1 int fib(int n) {
2 int a = 0, b = 1;
3 for (int i = 0; i < n; i++) {
4 int tmp = a + b;
5 a = b;
6 b = tmp;
7 }
8 return a;
9 }

Listing 2.3. Iterative Fibonacci

The two code fragments will return the same result for any n ≥ 0 and are therefore functional
clones. Although the implemented functionality is the same, there are no other common point
in the implementations. Furthermore, Listing 2.2 and Listing 2.3 clearly have different time
complexities, but to the best of our knowledge, there are no established convention to whether
this kind of complexity changes should be taken into account when deciding if two code fragments
are, or not, type IV code clones. In this thesis, we will therefore assume that as long as two code
fragments implement same functionality, they are type IV clones.

2.2.2 Approaches to clone detection
There exist various methods to clone detection, which take advantage of the different source
code representations described in section 2.1. We will present the major approaches found in the
literature.

Text-based detection

Text-based clone detection are based on the string representation of the program source code
described in 2.1.1. While some text-based techniques use the source code almost as is and
perform either line-by-line or global string comparisons to find clones, some techniques do apply
some preprocessing steps [4], such as removing white spaces, before actually passing the source
code to a string matching algorithm.
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Token-based detection

Token-based detection techniques use the token representation of the program described in 2.1.2.
Token-based approach are usually more robust to formatting and layout changes compared to
text-based approaches. Some token-based clone detection tools, such as CCFinder [5] first
normalize the tokens and replace all application specific tokens such as user-defined identifiers.
On the other hand, other tools such as SourcererCC [3] keep this information and use it to detect
if multiple code fragments are clones or not.

Tree-based detection

Tree-based techniques make use of the AST representation of the program described in 2.1.3.
These techniques first use a parser to generate the AST of a program, then the ASTs are searched
for similar sub-trees and similar sub-trees are marked as clones. Searching for similar sub-trees
using normal tree comparisons algorithms takes at least O

(
n3

)
[6], where n is the number of

nodes. Industrial software can have millions of line of codes, and therefore n could be in the
order of 10 million. To avoid this issue, many tree-based clone detection techniques [6, 7] use
hash functions on sub-tress to find clones more efficiently. The idea is to assign each sub-tree
a hash-value, and use this value, usually with bucketing techniques, to quickly search for code
clones.

2.3 Machine learning fundamentals
In this section, we will present the basics of machine learning that will be needed in order to
understand our approach. We will first give a general overview of the learning process of neural
networks, then we will describe the two models we are using as a base to our work in this thesis.
The first model will present is the skipgram model, which is typically used in natural language
processing (NLP) to assign a vector representation to a word. Next, we will give an overview of
recurrent neural networks (RNN), and in particular long-short term memory (LSTM) networks,
which are extensively used in NLP to assign a vector representation to a sentence.

2.3.1 Neural networks
In this subsection, we will show how are neural network composed, and what is the normal
process to train them. Although most of what we explain here apply to most machine learning
algorithms, we will focus on feed-forward neural networks.

Computations of a neural network

A neural network [8] is usually composed of an input layer, which is where the input data is fed,
one or more hidden layers, and an output layer, which represents the value outputted by the
neural network. Each layer in the network is composed by units, also sometimes referred to as
neurons, which are the computing elements of the network. Each unit is usually composed of
two different parts: a first function f , which reduces a vector into a single scalar value, and a
function g, called “activation function” which transforms the result of f and produces the unit
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Figure 2.3. Unit of a neural network
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Figure 2.4. Neural network

output. This function is generally non-linear, otherwise the model ends up to be composed of only
linear function and becomes as well a linear function. A unit of a neural network is illustrated in
figure 2.3. Each layer is connected to the next one by using the output of each unit of the previous
layer as an input for each unit of the next layer. This connection is illustrated in figure 2.4.

The function f is a matrix multiplication where all the weights of this matrix are parameters
of the neural network model. Matrix weights are shared by all the units in a layer. In figure 2.4,
given W (1) ∈ R5×3 is the matrix weights of the hidden layer, Wmn is the value at row m and
column n in this matrix, g1 is the activation function of the hidden layer, and a1, a2 and a3 the
output of each unit in the layer, we will have the following.

a1 = g
(
W

(1)
11 x1 + · · ·+W

(1)
51 x5

)
a2 = g

(
W

(1)
12 x1 + · · ·+W

(1)
52 x5

)
a3 = g

(
W

(1)
13 x1 + · · ·+W

(1)
53 x5

)
In practice, given x = (x1, · · · , x5) and a = (a1, a2, a3), the above is usually computed as follow,
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with a single matrix multiplication and a vectorized implementation of the function g.

a = g
(
xW (1)

)
Finally, given W (2) ∈ R3×1 the weights of the output layer and g2 the activation of the output

layer, the output ŷ of the neural network will be computed as follow.

ŷ = g2

(
g1

(
xW (1)

)
W (2)

)
(2.1)

Training of a neural network

Training a neural network is searching for the optimal weights to approximate the function the
neural network should learn. In the above example, this process consists in searching values for
W (1) and W (2). The “optimal” weights of a neural network are defined with respect to a loss
function representing how far the neural network output is from the expected correct answer,
which is chosen depending on the task. Some common loss functions include mean squared error
(MSE) 2.2 or cross-entropy error (CEE) 2.3. Given a set of outputs Ŷ = {ŷ1, · · · , ŷn} and their
respective expected values Y = {y1, · · · , yn}, the errors are defined as follow.

MSE(Ŷ , Y ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.2)

CEE(Ŷ , Y ) =
1

n

n∑
i=1

yi log ŷi + (1− yi) log(1− ŷi) (2.3)

Mean squared error is typically used when there is an order relation between the possible outputs
while cross-entropy error is mostly used for classification tasks where the output can either be
correct or incorrect.

The most common way to update the weights of the neural network is called the back propaga-
tion algorithm, and consists in computing the derivatives of the loss function with respect to the
weights of the model using the derivative chain rule, and to use these to update the weights with
optimization methods such as the gradient descent. For example, given a loss function L(W ), to
update W (2) in the above network, we would compute the error derivative ∂L(W )/∂W (2), multi-
ply the result with a learning rate α, which is a hyper parameter of the model, and subtract the
result from the current value of W (2). This process is usually repeated until the error converges.

Evaluating a model

When training a neural network, or any kind of machine learning algorithm, we need a way to
know if the model produces the results we expect or not — a way to evaluate the quality of
the model. The error, also called loss, we presented above can be an indicator of how well a
performing but it is unfortunately not easy to interpret as depending on the used function the
range can vary largely and it is difficult to significantly compare the values produced by different
errors functions. We therefore tend to use measures other than the loss to evaluate the quality
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of the model. We will present different measures that are commonly used. We will only present
measures used for binary classification here, but all of these measures can be generalized in some
way to also work for multi-class classification.

To define the different measure we will use, we will first introduce the notions of true positive,
false positive, true negative and false negative.

True positive A sample predicted as true and was actually true

False positive A sample predicted as true but was actually false

True negative A sample predicted as false and was actually false

False negative A sample predicted as false but was actually true

We will assume we have a set of predicted samples S with |S| > 0, and we will note the set
of true positives as Tp, false positives as Fp, true negatives as Tn and false negatives as Fn.

One of the most common and simplest measure to understand is the accuracy of a model.
The accuracy is, as shown in equation 2.4 the number of samples correctly predicted divided by
the total number of samples predicted.

accuracy =
|Tp|+ |Tn|
|S|

(2.4)

The accuracy has a range of [0, 1], and a higher accuracy is better. It is widely used to
evaluate a model, but may have shortcomings depending on the dataset. A common issue with
the accuracy measure is with unbalanced datasets — a dataset with much more negative samples
than positive samples, or vice-versa. For example, given a dataset with 99% of negative samples,
if a model returns a negative result for any sample, it will achieve 99% accuracy but will not be
useful at all.

To be able to get a better understanding of a model performance, especially when the dataset
is unbalanced, the precision and recall measures are often used. The precision of a model, given
by equation 2.5 is the ratio of samples correctly predicted to the total number of samples that
have been evaluated as positive.

precision = P =
|Tp|

|Tp|+ |Fp|
(2.5)

The precision also has a range of [0, 1], with 1 being the best achievable precision, meaning
that all samples predicted as positives were actually positives. However, the precision by itself
may not be enough: if a model predicts a single sample as positive, and the sample actually
turns out to be positive, the precision will be 1 but the model might be missing a lot of other
positive samples. This is why the recall measure is also often used. The recall measure, given by
equation 2.6, is the ratio of correctly predicted samples to the total number of positive samples.

recall = R =
|Tp|

|Tp|+ |Fn|
(2.6)
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The precision also has a range of [0, 1], and 1 is also being the best achievable recall. If a
model predicts all samples to false, as in the example we gave for the accuracy, the recall will
therefore be 0, as obviously there will be no sample in the true positives set. However, the recall
by itself is not enough, as predicting all samples to be positive would be enough to achieve a
recall of 1. The recall and precision are therefore usually used together. To avoid having to look
at two different measures when evaluating a model, the F1-score — which is the harmonic mean
of the recall and the precision as shown in equation 2.7 — is often used.

F1-score =
2

1
P + 1

R

= 2
P ·R
P +R

(2.7)

As the F1-score is the harmonic mean of two measures with a range of [0, 1], it also has
the same range, and as for the precision and recall, a higher F1-score means that the model is
performing better. The main reason for using a harmonic mean instead of arithmetic mean is
that it allows to penalize the score if one of the value is much lower than the other, therefore
forcing both the recall and the precision to be high in order to have a high score.

2.3.2 Skipgram model
As mentioned above, skipgram is used to assign a vector in Rd, known as a word embedding, to a
word, where d is the number of dimensions wanted for each word vector. This algorithm has first
been presented in 2013 by Mikolov & al. [9] and is now used in many natural language processing
tasks as one of the word2vec algorithms.

To understand the motivations behind this algorithm, and other algorithms used to learn
word embeddings, we must first understand how words used to be represented in natural language
processing tasks. The most common approach was to use a finite vocabulary of size |V |, and to
assign an identifier to each word in this vocabulary. For example, the word “network” could have
the id 123, and would be represented as a vector in {0, 1}|V | where only index 123 of the vector
would be 1 and all the other indexes would be 0. This approach has two disadvantages: each
word is represented by a very large and sparse vector, and the representation of each word do
not have any semantic properties, so “network” and “networks” vector representations would not
be any closer than “network” and any other word representation.

The motivation behind skipgram is to address this issue by encoding each word as a vector in
Rd where d is not dependent of |V |, in such a way that each word embedding has some semantic
so that, for example, similar words have a smaller distance in Rd than unrelated words.

We will now describe how the skipgram algorithm actually computes the vector embeddings
for each word. The algorithm works in an unsupervised fashion and usually uses a large amount
of text written in the language of the vocabulary. For each sentence, a set of training samples
composed of a “context” word and a “target” word. The context word is a word in the sentence,
while the target word is a word around the context word, which is distant by at most a predefined
window size. For example, if the window size is 2, and we have the following sentence,

the quick brown fox jumped over the lazy dog

the target words for the context word “fox” will be “quick”, “brown”, “jumped” and “over”. These
samples are used to train a neural network with a single hidden layer. The word embeddings
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Figure 2.5. Unrolled Recurrent Neural Network

are the hidden layer of the network and have dimension R|V |×d. The network is trained by using
the context word index to select a vector from the hidden layer weight and using a cross-entropy
error function so that when the word is a target, the label should be 1 and 0 otherwise. Also
this could be done by using a softmax output, this would require to compute softmax on all the
vocabulary, which can be extremely large. To reduce the computation cost, a common approach
is to used negative sampling. The negative sampling approach only computes the output for the
target word, as well as a predetermined number of noise word — word not in the window of the
context — and uses the sum of these errors to train the model.

2.3.3 Recurrent Neural Networks
While word embeddings work well to represent a single word, and to model the similarities
between words, it is not enough to encode a whole sentence. There are many approaches to
encode a sentence into a vector, and Recurrent Neural Networks (RNN) is one of them. The
main idea of RNNs is to reuse the previous output as an input, as shown in 2.5. Typically, each
xt is a word in the sentence, encoded either as a one-hot vector or as a word embedding. In
its simplest form, a RNN will compute its output using equation 2.8, where W , U and b are
parameters of the model. The parameters are shared across all time steps.

ht = tanh (Wxt + Uht−1 + b) (2.8)

Although this models seems promising, it suffers a major issue — it is very difficult to capture
long-term dependencies because of the vanishing gradients issue [10]. When computing the gra-
dients to back-propagate the error through the network, the gradient for ∂xt with respect to ∂xk,
used in the chain rule, can be expanded as follow.

∂xt
∂xk

=
∏

t≥i>k

∂xi
∂xi−1

(2.9)

The term ∂xi/∂xi−1 in equation 2.9 is less then 1 [10], which means that the value will converge
to 0, and error will not propagate all the way through the network, hence the vanishing gradient
issue.

To overcome this issue, Long Short-Term Memory (LSTM) networks [11] are often used
instead of vanilla RNN described above. Instead of equation 2.8, LSTMs use equations 2.10
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to 2.15 to compute the output value. All W , U and b in the equations are parameters of the
model.

ft = σ
(
W (f)xt + U (f)ht−1 + b(f)

)
(2.10)

it = σ
(
W (i)xt + U (i)ht−1 + b(i)

)
(2.11)

ut = tanh
(
W (u)xt + U (u)ht−1 + b(u)

)
(2.12)

ot = σ
(
W (o)xt + U (o)ht−1 + b(o)

)
(2.13)

ct = it ⊙ ut + ft ⊙ ct−1 (2.14)
ht = ot ⊙ tanh(ct) (2.15)

In the above equations, σ is the sigmoid function defined by equation 2.16,

σ(x) =
1

1 + e−x
(2.16)

and the different values have the following meaning.

ft — forget gate — how much of the previous state should be used

it — input gate — how much of the input should be used

ut — update gate — the value of the current input

ot — output gate — how much of the current result should be outputted

ct — memory cell — the state of the network

ht — hidden layer — the output of the LSTM cell

Given gn(xt, ht−1) = W (n)xt + U (n)ht−1 + b(n), figure 2.6 shows how the inputs flow in equa-
tions 2.10 to 2.15 to generate the outputs of an LSTM cell. In an LSTM network, the state is
not passed through ht as with a plain RNN, but through ct, called the memory cell. Due to the
additive nature of ct, the error will also be propagated in an additive manner when computing
the derivative for ct [11], avoiding the vanishing gradient problem encountered when using plain
RNNs.

2.4 Motivating example
With the proliferation of programming languages, a single project or application is often written
using multiple programming languages. For example, a project having a native client for the web,
Android and iOS will most likely have at least a part of it written in JavaScript, a part written
in Java or Kotlin and another part written in Swift or Objective C. A common issue with such a
project is having a large amount of logic duplicated for each client. In many cases, business logic
for an application with multiple frontends can be extracted to the backend to avoid duplication.
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Figure 2.6. LSTM cell

This issue is difficult to tackle from both an organizational point of view as well as a technical
point of view. From the organizational point of view, a common project development structure
would have a project manager making high level and mostly non-technical decisions, while a
team would be assigned for each component of the project, for example a team would work on
the backend API, a team on the Android application, another team on the iOS application and
finally a team on the web client. Although thorough discussion between the team can help to
mitigate code duplication on the client side up to a certain point, it remains a very tedious issue
to track.

As an example, we will present a simplified version of a case we actually encountered while
building a web service. The frontend user interface, shown in figure 2.7, consists of a page
displaying recent messages grouped by sender.

As the conversation grouping feature was not part of the initial application, and has been
added later on, the API would simply have an HTTP endpoint GET /messages returning a list
of the user messages. Given this restriction on the API side, the frontend clients need to group
the messages by conversation, leading to duplicated code show in listings 2.4, 2.6 and 2.5. All of
these listings implement the following piece of functionality

1. Sort messages from the oldest to the newest

2. Group messages by the ID of the sender

3. Sort each group from the oldest to the newest based on its newest message

4. Return the result as a collection of collections of messages
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Figure 2.7. Study case application user interface

Listing 2.4 is implemented in JavaScript, listing 2.5 is implemented in Java and listing 2.4 is
implemented in Swift which are respectively used for the web client, the Android application and
the iOS application. Although the logic is implemented in exactly the same way, each language
have its particularities and there are therefore some differences in the implementation of each
snippet. It is also worth noting that there are also semantic differences in the different implemen-
tations that can be more tedious to notice at first look. The first step in all the implementations
is to sort the list of messages received as an argument. All three implementations use some sort
implementation available in the standard library of each language, but this creates an impor-
tant semantic difference — Swift implementation does not modify the argument, while Java and
JavaScript implementation modifies it. This side effect can be particularly difficult to notice in
the JavaScript implementation as the return value of the sort method is used, and it is not clear
that the function argument is actually modified without having to search the documentation.
The next step of the implementation is to group all the messages by their senderId. This makes
use of a map-like data structure, which is available as a builtin of all three languages. All snip-
pets loop over all the messages, maps the senderId key to an empty list if it does not already
exist, and adds the current message to the senderId list. All the grouped messages are then
collected in a list of list, using the map values function when available, or looping through the
map otherwise. Finally, the list of list is sorted using the sentAt value of its last message, using
the last method if available and indexing otherwise. These snippets are therefore very similar,
and a decent programmer could immediately tell that they are implementing exactly the same
functionality, but they contain enough differences so that a simple token or tree-level comparison
fail to actually detect the similarity.

Although we have focused our example on frontend clients, this issue is also very common with
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1 function groupMessages(messages) {
2 const sortedMessages = messages.sort((a, b) => a.sentAt - b.sentAt);
3 const grouped = {};
4 for (const message of sortedMessages) {
5 if (!grouped[message.senderId]) {
6 grouped[message.senderId] = [];
7 }
8 grouped[message.senderId].push(message);
9 }

10 const groups = [];
11 for (const key in grouped) {
12 groups.push(grouped[key]);
13 }
14 return groups.sort((a, b) => b[b.length - 1].sentAt - a[a.length - 1].sentAt);
15 }

Listing 2.4. Message grouping logic in JavaScript

1 public static List<List<Message>> groupMessages(List<Message> messages) {
2 Collections.sort(messages, (m1, m2) -> m1.getSentAt() - m2.getSentAt());
3 HashMap<Integer, List<Message>> grouped = new HashMap<>();
4 for (Message m: messages) {
5 if (!grouped.containsKey(m.getSenderId())) {
6 grouped.put(m.getSenderId(), new ArrayList<Message>());
7 }
8 grouped.get(m.getSenderId()).add(m);
9 }

10 List<List<Message>> result = new ArrayList<>(grouped.values());
11 Collections.sort(result, (m1, m2) ->
12 m2.get(m2.size() - 1).getSentAt() - m1.get(m1.size() - 1).getSentAt()
13 );
14 return result;
15 }

Listing 2.5. Message grouping logic in Java

1 func groupMessages(messages: [Message]) -> [[Message]] {
2 let sortedMessages = messages.sorted { (a, b) in a.sentAt <= b.sentAt }
3 var groupedMessages = [Int: [Message]]()
4 for message in sortedMessages {
5 if !groupedMessages.keys.contains(message.senderId) {
6 groupedMessages[message.senderId] = [Message]()
7 }
8 groupedMessages[message.senderId]!.append(message)
9 }

10 return groupedMessages.values.sorted { (a, b) in
11 a.last!.sentAt > b.last!.sentAt
12 }
13 }

Listing 2.6. Message grouping logic in Swift
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any kind of system where multiple actors consume a same source of information. For example,
microservice architecture, where a service can be consumed by a multitude of other services, may
also run into the same kind of issue.

2.5 Related work
Many clone detection systems, such as CCFinder [5], DECKARD [7] or SourcererCC [3] support
multiple languages but are mostly designed to find clones within the same programming languages
and not across them. Some other recent research use deep learning approach for clone detection
such as [12] or [13] use deep learning approaches to detect clones within a single programming
language, but do not discuss the possibility to extend their method to detecting clones across
programming languages. Other approaches such as [14] can work across languages but focus on
classifying programs, rather than on detecting code clones. Token-based clone detection tools
such as SourcererCC [3] are very efficient to find clones which are introduced by copy-pasting, as
these sort of clones are copy-pasted source code share many tokens, but less efficient when clones
are introduced by replication of a same functionality by two different entities. When working
across programming languages, the chances of two code snippets sharing a large amount of tokens
is further reduced, making token comparisons based approaches less likely to detect clones. For
example, when comparing listing 2.4 and listing 2.6, line 2 of both listings declare a map-like
data structure in order to group messages by sender id. However, this is impossible to infer with
simple token comparisons, and would need some encoding about the data types and how they
relate to each other to be possible. Some systems such as [15], which are designed to detect
clones between programming languages, mitigate this issue by converting the source code to a
common AST format, but assumes that the two input languages have a common intermediate
representation, in this case both target the .NET platform. A slightly more complicated example
is the implementation of the sort function at line 14 in listing 2.4 and line 11 in listing 2.6. In
listing 2.4, the access to the last element of the array is done using a[a.length - 1], while in
listing 2.6, the same operation is done by using a.last!. Although an experienced developer
would have no trouble identifying the fact that both codes implement the same functionality,
there is currently, to the best of our knowledge, no system capable of detecting such similarities
in a completely unsupervised fashion. Finally, an even harder similarity to detect is between lines
10 to 13 in listing 2.4 and the first method call of line 10 in listing 2.6. The purpose of both codes
are to get all the values of the map data structure previously created in the form of a list or an
array, but although this can be done using the values property of the dictionary data structure
in Swift, there is no builtin method on the JavaScript object and the same operation therefore
requires to loop over its elements. This is an example of a type IV code clone, which up to now
no system has managed to detect very accurately — all systems presented here report a recall
score close to 0 for type IV clones — and the difference between the languages make this task
even harder. However, to find interesting results given the motivating example above, this is one
of the types of code clones that we would like to become able to detect.
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Chapter 3

Our proposal

In this chapter, we propose a cross-language code clone detection system based on supervised
machine learning. Our system can learn to detect clones across programming languages by
learning from existing code clones pairs, and is language agnostic in the sense that we use a
normalized AST structure which can be generated from any programming language using a
parser into feed our system. We also present how to generate the data that our system accepts
as input to detect clones, and describe the dataset that we created in order to train and evaluate
our system.

3.1 Overview
As discussed in the related works 2.5, current comparison-based approaches to code clone de-
tection do not fit cross-language clone detection, especially when the target languages do not
share a common intermediate representation. To overcome this issue, we propose a supervised
approach to code clone detection where the system is not given directly information about how
code fragments should be compared to each other, but rather uses training data to learn what
kind of code fragments should be, or not, considered as clones.

Our system is composed of the following subsystems, which we will describe more thoroughly
in the following sections.

1. CC-Learner — Supervised ML model to learn and predict code clones

2. bigcode-embeddings — Unsupervised ML model to learn token vector representations

3. bigcode-astgen — Parser modules to transform source code to a common AST format

4. bigcode-ast-tools — Tools to transform with ASTs generated by bigcode-astgen

5. CC-Fetcher — Module to scrape data to train CC-Learner

6. bigcode-fetcher — Module to scrape data to train bigcode-embeddings

Figure 3.1 shows a general overview of how our system works.
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Figure 3.1. Overview of the system

The core of our system is 1, which is an LSTM — presented in 2.3.3 — base supervised
machine learning model which takes two code fragments as an input, and predict if the two code
fragments are code clones. The flow in training mode is to take two code fragments scraped using
the scraper module 5, transform the code pairs to ASTs using the parser modules 3, transform
the ASTs in to vectors using the token representation learned by 2 and finally to feed the result
to our LSTM-based model 1.

In Section 3.2, we will describe in detail the model we used to detect code clones. In Sec-
tion 3.3, we will describe the AST generation in order to be able to work with source code written
in different programming languages and in Section 3.4, we will explain how we assign a vector in
Rd to each token in the source code.

3.2 Code clone detection model
3.2.1 Model overview
The clone detection model, CC-Learner, that we first introduced in Section 3.1 is the main of our
system. Its main role is to actually predict if two code fragments are, or not, clones. The model
is composed of the following components.

1. An AST to vector transformer

2. A token-level embedding layer
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Figure 3.2. CC-Learner code clone detection model

3. An LSTM-based encoder for AST vectors

4. A merge layer to concatenate the two code fragments vectors

5. A feed-forward neural network to make the code clone prediction

Figure 3.2 shows how these parts are connected together. In this section, we will first describe in
details the computations done by the model. We will then explain how we train the model and
how to use the trained model to predict if two code fragments are clones.

3.2.2 Model computations
We will here formalize the computations each component of the model executes to produce the
final prediction.

AST to vector transformer

As input, the model receives an AST, which is a tree structure. The AST to vector transformer
takes this AST and maps it into a vector of integers, where each integer represents the index of
the token in the AST in the vocabulary of the programming language the source code is written
in.

More formally, if we let Tl be the set of all possible ASTs for source code written in program-
ming language l, the AST transformer f l

t will be a function with the following definition.

f l
t : Tl → Nm (3.1)

where m may vary depending on the size of the input tree and the algorithm used for f l
t .

Furthermore, given Vl is the vocabulary of tokens for the programming language l, the following
equation must hold for any implementation of f l

t .

∀t ∈ Tl, n ∈ f l
t(t), n ∈ Vl (3.2)

For CC-Learner, we provide two different instances of this function, and the function which is
used is a hyper parameter of our model. We will use the code snippet 3.1, the AST of figure 3.3
and the vocabulary of table 3.1 to illustrate how both of our instances work.
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1 if (a < 1) {
2 return 0;
3 }

Listing 3.1. Sample code snippet

<

a 1

if

r e t u r n

0

Figure 3.3. Sample AST

Table 3.1. Sample vocabulary

Token Index
if 1

identifier 2
integer 3

< 4
return 5
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The first instance of our AST to vector transformer, ft1 is very simple. The idea is simply to
traverse the tree using a depth-first, pre-order tree traversal. At each node in the tree, we look
up the index of the node token in the vocabulary, and we append the index to the output vector.

In our example above, the algorithm will start at the if node, it will lookup the index of
the node in the vocabulary, which in this case is 1, and append 1 to the output vector. It will
then do the same thing with the other nodes in the following order: <, a, 1, return, 0. After
completion, we will therefore obtain the following vector in N6.(

1 4 2 3 5 3
)

(3.3)

When using this algorithm, the output dimension is always the same as the number of nodes in
the input AST.

Although the first instance of our AST to vector transformer is very simple and straight-
forward, the main disadvantage is that it completely loses information about the topology of
the input tree. To mitigate this issue, we also implemented another function ft2 which tries to
partially preserve the topology of the tree in the output vector. In the above example, if has
two children nodes: < and return, therefore the distance inside the tree topology between if
and both of these nodes is 1. However, in the output vector, the distance between if and < is
1, but the distance between if and return is 4. For such a simple case, the distance is still
short enough for the neural to be able to capture relationship between these elements, but in
more complex cases, a distance of 1 inside the tree topology could easily become extremely large.
This is the main issue we try to tackle with our other instance of the AST to vector transformer
function. The idea is to perform a depth-first, pre-order traversal of the tree and generate the
same vector as in the first instance, but also to traverse the tree once more this time using a
depth-first, pre-order traversal but selecting the nodes from right to left instead of selecting them
from left to right when executing the traversal. Using the above example, this means that in the
second traversal, after visiting if, instead of visiting <, we visit return. The second traversal
order would therefore be if, return, 0, <, 1, a. Once we have finished traversing the AST in
both direction, we concatenate the vectors obtain by each traversal to obtain the final vector for
the AST. For the above example, the final vector will be(

1 4 2 3 5 3 1 5 3 4 3 2
)

As we are concatenating two vectors generated by a full traversal of the tree, and which will
therefore each have the dimension of the number of nodes in the tree, the final output vector will
have twice the dimension of the number of nodes in the tree. Therefore, if there are n nodes in
the tree, the output will be a vector in N2n.

Token-level embedding layer

When we transform an AST in to a vector using the above approach, we obtain a vector of
indexes. As each index cannot be fed directly to the encoder, the two main approaches are to
use a one-hot vector for the index, or to use a distributed vector representation. As using a
distributed vector representation has many advantages [9] over using one-hot vectors, we choose
this approach for our model. We will here assume that we already have the embedding for each
token available, and will describe how we actually compute these embedding in Section 3.4.
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Table 3.2. Sample embedding of dimension 3

Index Embedding
1

(
0.12 −0.43 0.66

)
2

(
−0.81 0.01 0.28

)
3

(
0.91 0.33 0.47

)
4

(
−0.51 −0.27 −0.09

)
5

(
0.17 0.73 −0.56

)

The embedding layer of the model transforms a vector in Nn into a matrix in Rn×dw where
dw is the dimension of the embedding and is a hyper parameter of the model. The embedding
layer for a programming language l is therefore a function f l

w with the following dimensions.

f l
w : Nn → Rn×dw (3.4)

Such embedding are actually represented by a matrix W l which has dimensions of R|V |×dw

where |V | is the size programming language l vocabulary, and dw is the dimension of the em-
bedding. Sample values for embedding of dimension dw = 3 are show in table 3.1. The sample
embedding given in table 3.1 are shown in their matrix form in equation 3.5.

W l =


0.12 −0.43 0.66
−0.81 0.01 0.28
0.91 0.33 0.47
−0.51 −0.27 −0.09
0.17 0.73 −0.56

 (3.5)

Transforming an index i in its vector representation therefore reduces to selecting the ith
index of the matrix W l, and the function fw can therefore be expressed as in equation 3.6, and
is computationally inexpensive. In 3.6, Wi means selecting the ith row of the matrix W .

f l
w(i) = W l

i (3.6)

Given the embedding of dimension dw = 3 given in table 3.2 for the sample vocabulary
presented in table 3.1, the vector of indexes in equation 3.3 will be transformed in the matrix of
equation 3.7. 

0.12 −0.43 0.66
−0.51 −0.27 −0.09
−0.81 0.01 0.28
0.91 0.33 0.47
0.17 0.73 −0.56
0.91 0.33 0.47

 (3.7)
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In the matrix shown in equation 3.7, each row is the embedding of the index in the original
vector.

LSTM-based encoder

As discussed previously, the output of the embedding layer will be a matrix of dimension Rn×dw

where n depends on the size of the input AST and dw is the dimension of the embedding, which
is a hyper-parameter of the model. The purpose of the LSTM-based encoder layer is to transform
this matrix into a vector in de, where de is a hyper-parameter of the model, which captures the
relation between the elements in the input matrix. This task is the equivalent of transforming a
matrix representing a sentence to a vector representing the same sentence for natural language
processing. This layer will therefore be a function f l

e defined as in equation 3.8.

f l
e : Rn×d → Rde (3.8)

An interesting property of this function is that the output dimension is independent of the
input dimension, which makes it possible to easily aggregate inputs which originally had different
dimensions in the next layer of the model.

To achieve this task, we use an LSTM model as described in 2.3.3, and feed it the result of
the embedding layer. de is chosen experimentally, and is usually between 20 and 200 depending
on the other hyper-parameters of the model.

Given the result shown in equation 3.7 and de = 4, equation 3.9 shows a sample output of
the LSTM encoder. (

0.81 −0.12 0.77 −0.45
)

(3.9)

There are also other choices that need to be made when instantiating the LSTM. We first
need to decide if the LSTM will be bi-directional or not. When the LSTM is bi-directional, there
will actually be two LSTMs: an LSTM for the forward direction of the output of the embedding
layer, and an LSTM for the reverse direction. After the two computations run, the result of the
two LSTMs will be concatenated to give the final output. The final dimension of the vector will
therefore be 2de instead of de. Equation 3.10 shows a sample output for equation 3.7 as input
and de = 4 when using a bi-directional LSTM.(

0.81 −0.12 0.77 −0.45 −0.68 0.22 0.94 −0.03
)

(3.10)

Another decision to make for the LSTM-based encoder is whether to use a single LSTM which
works as described in 2.3.3, or to stack multiple LSTMs above one another. When stacking
multiple LSTMs, the first LSTM works exactly a before, however, its output is not directly used
but fed to another LSTM and only the uppermost LSTM result is used for the next step. We try
to use 1 to 3 stacked LSTM and chose the best value for our use case experimentally.

Merge layer

Up to know, we have focused on how to encode a single AST into a vector in Rde . However, our
model takes two inputs, and produces a single output. We therefore need to combine these two
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inputs in some way that allows us to generate a single prediction to whether or not the two given
inputs are code clones or not. This is the role of merge layer in our model. It takes two inputs
and return a single output. The merge layer is therefore defined by a function fm as shown in
equation 3.11, where n normally depends on de.

fm : Rde × Rde → Rn (3.11)

In our model, we define two different types of merge layers which we will describe below.
The first instance of the merge layer, fm1 , is used as a baseline, and is a simple concatenation

operation. We take the vector outputted by the LSTM-based encoder for the two input ASTs,
and concatenate them into a single vector in R2de . In this case, we therefore have n = 2de.
For example, given the LSTM output given in equation 3.9 and another LSTM output given by
equation 3.12, (

0.12 0.86 −0.27 0.33
)

(3.12)

the merge layer would output the following vector.(
0.81 −0.12 0.77 −0.45 0.12 0.86 −0.27 0.33

)
(3.13)

The second instance of the merge layer, fm2 , uses the combination of the angle and the
distance of the two vectors described in [16]. Given hL the output of the encoder for the first
code snippet and hR the output of the encoder for the second code snippet, the output h of the
merge layer is defined by equation 3.14.

h× = hL ⊙ hR (3.14)
h+ = |hL − hR|
h = W (×)h× +W (+)h+

When using this merge strategy, W (×) and W (+) are parameters of the model and are both
matrices with dimension Rdo×de where do is a hyper-parameter of the model. The dimensions of
the different results will therefore be h× ∈ Rde , h+ ∈ Rde and h ∈ Rdo . Using the outputs given
in equations 3.9 and 3.12, we will therefore obtain the following results.

h× =
(
0.0972 −0.1032 −0.2079 −0.1485

)
h+ =

(
0.69 0.98 1.04 0.78

)
h will then be obtain by doing a dot product using the weights of the model and the results
shown above.
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Feed-forward neural network

Once we obtain a single vector containing information about the two input code snippets, we use
a feed-forward neural network to predict if the inputs were code clones or not. The output layer
of our neural network uses a sigmoid function defined as in 2.16, and therefore outputs a real
number between 0 and 1 which can be interpreted as a probability.

The feed-forward neural network can therefore be represented by a function fp defined as
follow.

fp : Rdo → [0, 1] (3.15)

This layer has the usual hyper-parameters found in feed-forward neural networks, for example,
the number of hidden layers, the number of units per layer and the number or the activation
function of the hidden layers. We choose these hyper-parameters experimentally.

Model training

We will now describe how the weights of the model defined using the layers described in this
section can be trained. First, using the function definitions above, we can define our model using
the following functions.

f l
E(x) = (f l

e ◦ f l
w ◦ f l

t)(x) (3.16)

f (l1,l2)(x, y) = fp

(
fm

(
f l1
E (x), f l2

E (y)
))

(3.17)

In 3.17, x is a code snippet AST written in programming language l1 and y is written in pro-
gramming language l2. To be able to train the model, we first need to define a loss function for
our model. As we output a probability, we choose the binary cross entropy loss function defined
as follow.

L(y, ŷ) = y log ŷ + (1− y) log(1− ŷ) (3.18)

In equation 3.18, y is the actual output — 1 if the two input code snippets are clones and 0
otherwise — and ŷ is the value predicted by our model. Our loss for a sample can therefore be
computed using the following equation.

E(x1, x2, y) = L(y, f(x1, x2)) (3.19)

In order to train our model, we compute the gradient of the our error E with respect to
the weights W of the model, ∂E/∂W using back-propagation, and then apply an optimization
algorithm such as gradient descent or Adam [17].

To execute the training, we simply need to have many samples of code pairs, with a label
telling us if the pair is, or not, a code clone. We can then use these sample to feed our model,
back-propagate the error and update the weights of the model as for any other machine learning
model.
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1 def add(a, b):
2 return a + b

Listing 3.2. add function in Python

1 [ { ” id ” : 0 , ” type ” : ”Module” , ” c h i l d r e n ” : [ 1 ] } ,
2 {” id ” : 1 , ” type ” : ” FunctionDef ” , ” va lue ” : ”add” , ” c h i l d r e n ” : [ 2 , 5 ] } ,
3 {” id ” : 2 , ” type ” : ” arguments ” , ” c h i l d r e n ” : [ 3 , 4 ] } ,
4 {” id ” : 3 , ” type ” : ” arg ” , ” va lue ” : ”a” } ,
5 {” id ” : 4 , ” type ” : ” arg ” , ” va lue ” : ”b” } ,
6 {” id ” : 5 , ” type ” : ”body” , ” c h i l d r e n ” : [ 6 ] } ,
7 {” id ” : 6 , ” type ” : ”Return” , ” c h i l d r e n ” : [ 7 ] } ,
8 {” id ” : 7 , ” type ” : ”BinOpAdd” , ” c h i l d r e n ” : [ 8 , 9 ] } ,
9 {” id ” : 8 , ” type ” : ”NameLoad” , ” va lue ” : ”a” } ,

10 {” id ” : 9 , ” type ” : ”NameLoad” , ” va lue ” : ”b” } ]

Listing 3.3. add function JSON AST

3.3 AST generation
In order to be able to work with source code written in different languages, we implemented mul-
tiple AST generation tools which generate ASTs in a common format for different programming
languages. The tool we developed is available on GitHub1 and supports source code written in
Python, Java and JavaScript.

As a common format for ASTs, we chose to use the JSON format described in [18]. A JSON
AST is a JSON array of objects, where each object contains the following properties.

• id (int, required) — unique integer identifying current AST node

• type (string, required) — type of current AST node

• value (string, optional) — value of current AST node if any

• children (list[int], optional) — children ids of current AST node if any

Another thing to note about this format is that the objects in the list follow the order obtained
when doing a pre-order, depth-first search on the AST. Although this is not a constraint, keeping
such an order allow to have a simpler algorithm to reconstruct a real tree-structured AST from
the JSON formatted AST. Depending on the language, we would possible need to have other
properties to express completely the source code, we choose to focus solely on the properties listed
above to avoid keeping language-specific information. To illustrate how the AST is encoded into
JSON, listing 3.2 is a simple Python function that adds two numbers, and listing 3.3 is its JSON
AST representation.

1https://github.com/tuvistavie/bigcode-tools/tree/master/bigcode-astgen

https://github.com/tuvistavie/bigcode-tools/tree/master/bigcode-astgen
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We indented the JSON to make the object more readable, but it is a simple JSON array and
has therefore no indent or nesting property at a structural level. The nesting of the child is done
by having the indexes of the children in the children property of each object.

To generate the ASTs in each language, we used the JavaParser2 library for Java, the ast
module3 for Python and the Acorn 4 library for JavaScript.

To perform most tasks, we need to restore a tree structured from the flat JSON formatted
AST. Algorithm 3.1 describes a recursive algorithm to perform this task.

Algorithm 3.1 Tree-structured AST from JSON formatted AST
1: function CreateAST(jsonArray)
2: return ASTFromJSONObject(jsonArray, 0)
3: end function
4: function ASTFromJSONObject(jsonArray, nodeId)
5: jsonNode ← jsonArray[nodeId]
6: node ← new Node
7: node.id ← jsonNode.id
8: node.type ← jsonNode.type
9: node.value ← jsonNode.value

10: node.children ← []
11: for childId in jsonNode.children do
12: childNode ← ASTFromJSONObject(jsonArray, childId)
13: node.children +← childNode
14: end for
15: return node
16: end function

As mentioned above, we assume the JSON array is generated using a pre-order, depth-first
search. We therefore know that the root of the AST will be the first element of the array.
CreateAST therefore delegates the creation of the AST to ASTFromJSONObject, which will
receives the root and recurse from it to generate the full tree. ASTFromJSONObject will assign
all the properties from the JSON node it received to a new node object, except for the children. It
enumerates on each child id in the JSON node children array, and recursively calls itself, passing
in the child index as its second parameter.

3.4 Token-level vector representation
As discussed previously, we do not feed our model one-hot vector representation of the tokens,
but rather token embedding. In this section, we explain how we generate token-level vector
representation, also known as embedding, for each token in the vocabulary of a programming

2http://javaparser.org/
3https://docs.python.org/3/library/ast.html
4https://github.com/acornjs/acorn

http://javaparser.org/
https://docs.python.org/3/library/ast.html
https://github.com/acornjs/acorn
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Figure 3.4. Embedding generation

language. The process for generating token embedding for a programming language l can be
divided in the following steps.

1. Collect source code written in l

2. Generate the vocabulary of l

3. Generate data to train a skipgram model

4. Train a skipgram model using the data generated in 2.

We show an overview of the token-level embedding generation process in figure 3.4. In the rest
of this section, we will describe the different algorithms to generate the vocabulary, generate the
data to train a skipgram model, as well as the details of the skipgram model. We will leave the
source code collection details for Chapter 4.

3.4.1 Vocabulary generation
To be able to learn embedding for different tokens in a target programming language, we first
generate a finite set of tokens — the vocabulary of the programming language. There are a few
different choices to consider when generating the vocabulary of the language, the main choices
we consider are:
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1 def is_minor(age):
2 if age >= 18:
3 print("you␣are␣major")
4 else:
5 print("you␣are␣minor")

Listing 3.4. is_minor function in Python

1. Should application specific tokens be included in the vocabulary?

2. How large should be the vocabulary?

We define application specific tokens as tokens that can be unique to a program, for example,
identifiers such as variable and method names or values in literals. If we choose to ignore the
application specific tokens, we do not remove the token but rather ignore its value and keep only
its type. We will consider the code snippet in listing 3.4 to explain how we can treat application
specific tokens.

First, given we take all application specific tokens, we will have the following tokens.

def, is_minor, age, if, age, >=, 18, print, "you␣are␣major",
else, "you␣are␣minor"

On the other hand, if we decide to strip all the application specific tokens, we will replace all
the token with a value by their type, and therefore all identifiers will be replaced by a common
<ident> token, all string literals will be replaced by a common <string> token, and only the
following tokens set will remain in the vocabulary.

def, <ident>, if, <binary_op>, <string>, else

If we choose to ignore all application specific tokens, we only keep a predictable number of
tokens that the target programming language defined in its specifications, and we can therefore
ignore the size of the vocabulary issue altogether as the number of tokens we might expect will
always be small enough.

When using application specific tokens, although we could simply use all the tokens as shown
in the example above, all tokens might not be very significant and we therefore need to choose
what tokens we want to keep and what tokens we want to ignore. As many identifiers can be
found across applications, especially the one found in the standard library or well-known libraries
of a programming language, we decide to keep all identifiers. However, we decide not to keep
string literals as these are too rarely shared between different programs. Another issue when
using application specific tokens is the case where a token encountered after having generated
our vocabulary does not exist in the vocabulary, in which case it is not possible to map it directly
to an index in the vocabulary. A common approach to this issue in natural language processing
is to assign a special index which is used for all unknown tokens. However, in our case, each
token has a type and a value, we therefore decide to use the type without its value if the type
and value pair of the token cannot be found in the vocabulary. This means that for every type
in the target programming language, we will have a token representing the type with no value in
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the vocabulary. When looking up the token in the vocabulary, we first look for a token with the
same value and type. If we find one, we use its index, otherwise we fallback to looking for the
token with the same type instead and use its index. As there are only a limited number of token
types in a programming language, we are therefore sure to at least find the matching type.

When using application specific tokens, the number of tokens will increase with the number
of files used to generate the vocabulary, and we therefore need to set a threshold to the number
of tokens we want to use. This threshold is set experimentally, and given n as this threshold,
our vocabulary will be composed of the n most common tokens from the files that we used to
generate the vocabulary.

In algorithm 3.2, we give a high-level overview of our vocabulary generation algorithm and in
algorithm 3.3 we show how we lookup a token in the vocabulary.

Algorithm 3.2 Vocabulary generation algorithm
1: function GenerateVocabulary(sourceFiles, includeValues, maxSize)
2: tokensCount ← empty map
3: for file in sourceFiles do
4: tokens ← tokenize(file)
5: for token in tokens do
6: if (token.type, token.value) /∈ tokensCount then
7: tokensCount[(token.type, token.value)] ← 0
8: end if
9: Increment tokensCount[(token.type, token.value)]

10: if includeValues then
11: if (token.type, null) /∈ tokensCount then
12: tokensCount[(token.type, null)] ← 0
13: end if
14: Increment tokensCount[(token.type, null)]
15: end if
16: end for
17: end for
18: Sort tokensCount by value
19: vocabulary ← first maxSize keys of tokensCount
20: return vocabulary
21: end function

Algorithm 3.3 Token lookup
1: function LookupTokenIndex(vocabulary, token)
2: if (token.type, token.value) ∈ vocabulary then
3: return vocabulary.indexOf((token.type, token.value))
4: end if
5: return vocabulary.indexOf((token.type, null))
6: end function
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In algorithm 3.2, sourceFiles is a list of source code files to use to generate the vocabulary,
includeValues is a boolean that is true if we want to use token values and false if we do
not — i.e. if we do not use anything application specific. maxSize is the maximum number of
tokens in the generated vocabulary. In algorithm 3.3, vocabulary is the vocabulary generated
by GenerateVocabulary and token is the token that needs to be lookup. It is worth noting
that for algorithms relying on this method to work in a reasonable time, indexOf must run in
constant time O(1), and is therefore implemented using a hash.

3.4.2 Generating data to train skipgram model
After generating the vocabulary, we need to generate data to train a skipgram model, presented
in 2.3.2. In the context of natural language processing, the input is usually considered as a
sequence, and the context of a particular word is the words before and after this word in the
sequence of words used for training. Furthermore, the distance between the word and its context
is normally context by a single window size hyper-parameter. We could apply the same approach
by treating a program as a sequence of tokens, but we decide to take advantage of the topological
information contained by the AST, we decide to work on the AST rather than on a simple
sequence of token. We therefore need to define the context of a word, or rather a token in our
case, differently than for a sequence.

In the context of a tree, a node is directly connected to its parent and its children. We can
therefore define parents and children to be the context of a node. Depending on the use case,
the siblings of a node could also be viewed as a viable candidate its context. A single window
size parameter could be used to control how deep upward and downward should the context of
a node be. However, while a node will only have a single parent, it can have any number of
children, and therefore, while having a window size of 3 for the ancestors would only generate
3 nodes in the context, if every descendant of a node had 5 children, a window size of 3 would
generate 53 = 125 nodes in the context, which would probably generate more noise than signal
when trying to train a skipgram model. We therefore decide to use two different parameters to
control the window size of the ancestors and the window size of the descendant when generating
the data to train our skipgram model. When we do include siblings in the context, we decide to
only use the direct siblings of the nodes and not to use the siblings of the ancestors, although
this could also be another parameter of the algorithm. In algorithms 3.4, 3.5 and 3.6, we describe
the algorithms we use to generate the data to train a skipgram model.

Algorithm 3.4 takes as input a list of files written in the programming language for which we
want to generate token embedding, the vocabulary extracted for this programming language and
the parameters described above. It loops over all the nodes in the file, and uses algorithms 3.5
and 3.6 to find all nodes in the context of the current node, and returns a list of pair of indexes
where each pair represent a target node and a node in its context. Algorithm 3.5 takes as input
a node and the parameters described above, and returns the set of nodes in the context of the
given node. It first uses algorithm 3.6 to find all the descendants of the node in the window given
by the passed parameters, then find all the ancestors in the given window and finally add the
siblings to the set of results if necessary. Algorithm 3.6 takes a node, the maximum depth up
to which descendants should be populated and the current depth — which will initially be set
to 0 — and returns the set of descendants up to the passed maximum depth for the node. It
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Algorithm 3.4 Data generation for skipgram model
1: function GenerateSkipgramData(files, vocabulary, params)
2: skipgramData ← {}
3: for file in files do
4: ast ← GenerateAST(file)
5: for node in ast do
6: nodeIndex ← LookupTokenIndex(node)
7: contextNodes ← GenerateContext(node, params)
8: for contextNode in contextNodes do
9: contextNodeIndex ← LookupTokenIndex(contextNode)

10: skipgramData +← (nodeIndex, contextNodeIndex)
11: end for
12: end for
13: end for
14: return skipgramData
15: end function

Algorithm 3.5 Context generation for an AST node
1: function GenerateContext(node, params)
2: contextNodes ← FindDescendants(node, params.descendantWindowSize, 0)
3: parent ← node.parent
4: n ← 0
5: while parent is defined ∧ n < params.ancestorWindowSize do
6: contextNodes +← parent
7: parent ← parent.parent
8: n ← n + 1
9: end while

10: if params.includeSiblings ∧ node.parent is defined then
11: for sibling in node.parent.children do
12: contextNodes +← sibling
13: end for
14: end if
15: return contextNodes
16: end function
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Algorithm 3.6 Find descendants for a node until given depth
1: function FindDescendants(node, maxDepth, currentDepth)
2: if currentDepth ≥ maxDepth then
3: return {}
4: end if
5: descendants ← node.children
6: for child in node.children do
7: childDescendants ← FindDescendants(child, maxDepth, currentDepth+1)
8: descendants ← descendants ∪ childDescendants
9: end for

10: return children
11: end function

first adds all the children of the current node to the set of descendants, then recurses through
all the children until the current depth is equal to the maximum depth for which to generate
descendants.

3.4.3 Training a skipgram model
Once the data is generated using algorithms 3.4, 3.5 and 3.6, the last step needed to generate
embedding is to actually train a skipgram model using the generated data. Algorithm 3.4 gener-
ates pairs of indexes which can be directly fed to a neural network, and there is therefore no need
for further pre-processing. To train the model, the vocabulary used is the same as the one used
to generate the skipgram data and the size of the embedding is a hyper parameter of the model.
The model is trained using a negative sampling objective shown in equation 3.20 as given in [9].

logσ
(
v′wO

T
vwI

)
+

k∑
i=1

Ewi∼Pn(w)

[
logσ

(
v′wi

T
vwI

)]
(3.20)

In equation 3.20, v are the weights of the hidden layer, which will be used as embedding, v′ are
the weights of the output layer, wI is an input token and wO is a token in its context. wi are
the “noise” tokens which are randomly sampled from the vocabulary using a noise distribution
Pn, for which we use a unigram distribution for reasons described in [9]. The dimension of v
is R|V |×d where |V | is the size of the vocabulary and d is the size of the embedding, which is a
hyper-parameter of the model.
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Chapter 4

Experiments

In this chapter, we will describe the experiments we made and present the results we obtained.
In Section 4.1, we will present our experiments about code clone detection, while in Section 4.2
we will describe our experiments to generate token embedding. In both sections we will show
what kind of data we used to train our model and how our model perform with different hyper-
parameters.

To run our experiments, we used the two machines shown in table 4.1. In table 4.2, we show
the software we used to implement and run our machine-learning related experiments and the
version we used.

4.1 Code clone detection
To evaluate our clone detection model, we implemented the model we described in 3.2, we collected
data of programs implementing the same functionality to feed to the model, and we trained and
evaluated our model with different hyper-parameters. In this section, we will give some details
about the data we collected for our experiments and present the different results we obtained
when evaluating our model.

Table 4.1. Machines used for experiments

Machine 1 Machine 2
CPU Intel i7-6850K Intel Xeon E5-2637 v3

CPU frequency 3.60GHz 3.50GHz
Cores count 6 8

Threads count 12 16
Memory 64GB 512GB

GPU Nvidia Quadro P6000 Nvidia Tesla P100
GPU memory 24GB 16GB
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Table 4.2. Software used for experiments

Software Version
Linux 4.14 / 4.4

CUDA 8.0
cuDNN 6.0
Python 3.6.2

Tensorflow 1.3.1
Keras 2.1.2

4.1.1 Code clone detection dataset
As we are using a supervised learning approach to code clone detection, to train our model we
needed data which fulfills the following properties.

1. Multiple code fragments should implement the same functionality

2. Information on whether two code fragments implement the same functionality must be
included

3. Dataset should contain code fragments written in at least 2 programming languages

To the best of our knowledge, no dataset currently available fulfills all the necessary properties
to our experiments, therefore we created our own dataset.

For this dataset, we found that competitive programming websites are an excellent match.
The solution to a single problem is implemented by a large number of persons in many different
languages. All the solutions to a single problem must implement exactly the same functionality,
therefore, we are assured that all source codes implementing a solution to the same problem
are at least type IV code clones. The easier the problem is, the higher the probability of code
fragments implementing the solution to the same problem have to be very similar to each other,
and to therefore be closer to type III clones. Furthermore, multiple solutions to a problem are
always implemented by different users, which makes our dataset closer to the motivating example
we presented in Section 2.4.

To create the dataset, we scraped code from AtCoder1, a famous Japanese competitive pro-
gramming website. As our implementation currently only supports Java and Python, we fetched
data for these two programming languages. We restricted the data to only programs that were
accepted by the website judging system — meaning that the programs actually implemented the
solution to the given problem — in order to have the type IV code clone guarantee. In table 4.3,
we give some statistics about the dataset we created and in table 4.4 we show how the given
statistics are distributed between Python and Java. We show the distribution of the number of
files per problem — which is representative of the number of clones in the dataset — in figure 4.1.

1http://atcoder.jp/
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Table 4.3. Clone detection dataset overview

Measure Value
Problems count 576

Avg. files / problem 77
Files count 44620
Lines count 1270599

Tokens count 8554476

Table 4.4. Clone detection dataset language overview

Python Java
Avg. files / problem 41 36

Files count 23792 20828
Lines count 312353 958246

Tokens count 1810085 6744391

Figure 4.1. Distribution of the number of files per problem
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In order to be able to feed the code to our model, we transform the code we fetched using
bigcode-astgen we presented in Section 3.3 using the commands shown in listing 4.1.

bigcode-astgen-java --batch -f 'src/**/*.java' -o java-asts
bigcode-astgen-py --batch -f 'src/**/*.py' -o python-asts
cat java-asts.json python-asts.json > asts.json
cat java-asts.txt python-asts.txt > asts.txt

Listing 4.1. AST generation using bigcode-astgen

With the first two commands, we generate the ASTs for Python and Java source files, and with
the next we commands we merge the ASTs and the file which maps the index of the AST in the
JSON file to the name of the file in the original dataset.

4.1.2 Code clone detection model hyper-parameters
Our model contains many hyper-parameters that can vastly influence its performances while
detecting clones. In listing 4.2, we show a sample configuration file that we actually use to train
our model. The file is written using in YAML and is loaded by our system when training and
evaluating the model. Although the file we show here is not complete, it contains the main
settings that one might want to change when training a model.

We describe the meaning of each parameter in our configuration file in table 4.5.
Although there is a very large number of hyper-parameters, not all affect our model in the

same way. For example, while the vocabulary we use, or the way we transform the AST into
a vector affects greatly the performance of the model, other parameters such as the optimizer
we use or the batch size do not are not as important. We will explain more in detail how each
section in our configuration is used, and explain some of the decisions to be made when setting
these parameters.

The parameters under each object of the languages section contains the necessary infor-
mation to encode an AST into a vector for the given programming language. The vocabulary
and embedding we pass will determine how each token is encoded into its vector representation.
We will discuss further how these embedding are trained in Section 4.2, but the most important
decision being made for the embedding is if we want to use the values of the tokens or simply
their types, resulting in a small vocabulary in the order of 100 tokens in the first case, or a much
larger vocabulary of thousands of tokens in the second. The input length is the maximum number
of tokens for a single code fragment. We use this limit mainly for performance purpose, as we
pad all the inputs to this size to be able to train our model using batches. Given our current
implementation, removing this limits forces us to train the model a sample at a time, largely
hurting performance. This shortcoming can be mitigated with techniques such as bucketing [19],
but we leave this for future work. The output_dimensions and bidirectional_encoding
parameters control what kind of LSTM network will be used to encode the vectorized AST into
a single vector.

Other parameters under model contain hyper-parameters on how the input vectors should be
merged, as well as what kind of network to use to actually make the prediction. It also contains
information about the optimizer to use, and may have hyper-parameters for the optimizer such
as its learning rate.
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1 references:
2 language_defaults: &language_defaults
3 embeddings_dimension: 50
4 output_dimensions: [30]
5 transformer_class_name: BiDFSTransformer
6 bidirectional_encoding: false
7
8 model:
9 languages:

10 - name: java
11 <<: *language_defaults
12 input_length: 800
13 vocabulary: /path/to/java-vocab.csv
14 embeddings: /path/to/java-embeddings.csv
15 - name: python
16 <<: *language_defaults
17 input_length: 800
18 vocabulary: /path/to/python-vocab.csv
19 embeddings: /path/to/python-embeddings.csv
20
21 merge_mode: bidistance
22 merge_output_dim: 64
23 dense_layers: [64]
24 optimizer:
25 type: rmsprop
26
27 generator:
28 submissions_path: /path/to/submissions.json
29 asts_path: /path/to/asts.json
30 split_ratio: [0.8, 0.1, 0.1]
31 shuffle: true
32 negative_samples: 4
33 negative_sample_distance: 0.2
34 class_weights: {0: 2.0, 1: 1.0}
35
36 trainer:
37 batch_size: 128
38 epochs: 20

Listing 4.2. Model configuration file
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Table 4.5. Clone detection model hyper-parameters

Parameter Notation Description Sample value
transformer_class_name ft The algorithm to used to en-

code the AST into a vector
as described in 3.2.2

DFSTransformer

vocabulary The path to the extracted
vocabulary

vocab.tsv

vocabulary_size |V | The size of the vocabulary 500
embeddings w The path to the trained to-

ken embedding. If this pa-
rameter is not provided, em-
bedding are randomly ini-
tialized

embeddings.pickle

embeddings_dimension dw Dimension of the embedding
for target language

100

output_dimensions de Dimension of the LSTM en-
coder. If the size is greater
than 1, the LSTM will be
stacked and the output di-
mension will be the value of
the last element of the list

[100, 50]

bidirectional_encoding feb Whether or not to use a bidi-
rectional LSTM

true

name The name of the program-
ming language

java

input_length |X| The max. number of tokens
per code fragment. This re-
striction can be avoided at
the cost of a performance
penalty

1000

merge_mode fm Algorithm to use to merge
the two code fragments as
described in 3.2.2

bidistance
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merge_output_dim do Output dimension to use for
the merge layer. Currently
only effective when using equa-
tion 3.14 as the merge layer

50

dense_layers d(fp) The number of hidden layers to
use for the final MLP and their
number of units

[50, 50]

optimizer The optimizer to use to train
the model

rmsprop

submissions_path The path of the submissions
metadata

submissions.json

asts_path The path of the training data
ASTs generated as described
above

asts.json

split_ratio The amount of data to use for
training, hyper-parameter tun-
ing, and testing the model

[0.8, 0.1, 0.1]

shuffle Whether or not to shuffle the
data when training the model

true

negative_samples |Sn| The number of non-clone noise
data — negative sample — to
generate per code clone

4

negative_sample_distance ∆Sn The maximum distance ratio
between the size of the input
and the size of the negative
sample, to avoid the model to
try to detect clones by number
of tokens

0.2

class_weights Lw The weight to assign to posi-
tive and negative samples. The
higher the weight, the more an
error will be penalized

{0: 2.0, 1: 1.0}

batch_size The size of a batch when train-
ing the model

256

epochs The number of epochs to train
the model

10
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Table 4.6. Java/Python clone detection models parameters

n |V | w dw de feb d(fp) ft |Sn| Lw fm ∆Sn

1 10000 p 100 {100, 50} t {64} ft1 4 {1.0, 1.0} fm2 0.2
2 10000 p 100 {50, 50} t {64} ft1 4 {1.0, 1.0} fm2 0.2
3 10000 r 100 {100, 50} t {64} ft1 4 {1.0, 1.0} fm2 0.2
4 10000 p 100 {50} t {64} ft1 4 {1.0, 1.0} fm2 0.2
5 − p 50 {100, 50} t {64} ft1 4 {2.0, 1.0} fm2 0.2

The part under generator contains all the information necessary to generate data to train
the model. submissions_path and asts_path are the paths to the submissions metadata and
their encoded AST and all the data to train and evaluate the model will be loaded from their.
The negative samples related settings as well as the class weights mostly affect the precision-recall
trade-off, which we will discuss more in detail in 4.1.3.

4.1.3 Clone detection experiment
In this section, we will describe the experiments we run to evaluate our clone detection model.
We will here describe the experiment we run, show the results and give an interpretation of the
results we obtained.

First, we prepared the dataset to train our model by splitting the data we described in 4.1.1
into training set containing 80% of the data, the cross-validation set used to tune our hyper
parameters containing 10% of the data, and finally the test set used to give a final evaluation of
our model. For both training, cross-validation and test, we treat files implementing a solution to
the same problem as clones, and randomly choose n samples from files implementing a solution
to a different problem to use as negative inputs to our model. We make the number of samples
vary during training but fix this number to 4 samples for cross-validation, in order to be able to
compare the performance of the different models on the same input data.

We trained models to detect clone between Java and Python source code, as well as models
to perform clone detection between source fragments written in Java. The main motivation
for trying to run clone detection is Java is to be able to compare our results with other clone
detection tools. In tables 4.6 and 4.8, we show the hyper parameters we used for training models
for respectively Java/Python code clone detection and Java/Java code clone detection. Given
the large number of parameters which we tried when training the models, we only show a subset
including models which yielded the best results, as wee as models which we would like to discuss
further in the results interpretation. Our models are sorted using the F1-score. In tables 4.7
and 4.9, we show different metrics for each model when tested on the cross-validation set.

In tables 4.6 and 4.8, having − in the |V | column means that we did not use the values of the
tokens, and we did not have to limit the size of the vocabulary as it was already small enough.
Concretely, the vocabulary size was of 130 for Python and of 75 for Java. The w column shows
what embeddings have been used when training the model. p means that pre-trained embeddings
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Table 4.7. Java/Python clone detection models results

n F1-score Precision Recall Accuracy
1 0.66 0.55 0.83 0.83
2 0.63 0.51 0.80 0.80
3 0.61 0.49 0.82 0.79
4 0.56 0.42 0.82 0.73
5 0.51 0.40 0.71 0.73

Table 4.8. Java/Java clone detection models parameters

n |V | w dw de feb d(fp) ft |Sn| Lw fm ∆Sn

1 10000 p 100 {100, 50} t {64} ft1 4 {1.0, 1.0} fm2 0.2
2 10000 p 100 {50} t {64} ft1 4 {1.0, 1.0} fm2 0.2
3 10000 r 100 {100, 50} t {64} ft1 4 {1.0, 1.0} fm2 0.2
4 10000 p 30 {50} t {64} ft1 4 {1.5, 1.0} fm2 0.2
5 − p 50 {100, 50} t {64} ft1 4 {1.0, 1.0} fm2 0.2

Table 4.9. Java/Java clone detection models results

n F1-score Precision Recall Accuracy
1 0.77 0.67 0.92 0.89
2 0.76 0.67 0.88 0.89
3 0.74 0.65 0.85 0.88
4 0.72 0.64 0.82 0.87
5 0.69 0.56 0.90 0.84
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have been used, while r means that embeddings have been initialized randomly.
In general, our model gives us a high recall but does not manage to get a high precision,

especially for the cross-language classification task. These results can be mitigated by trading
recall for precision, but given the goal of our model to find possible duplicates across systems, we
prefer to keep a high recall and leave the false-positive judgment to the developer. Furthermore,
some source code which are actually not clones do look very similar, and can therefore be difficult
to classify. For example, a code implementing Fibonacci and a code implementing factorial both
contain a main for loop, which does some arithmetic operation and finally return an integer.
Although the codes are not doing exactly the same thing, and are therefore not clones, they
contain enough similarities to possibly be factorized, so the evaluation here could be a little
pessimistic.

From the hyper-parameters point of view, the main conclusion to draw from the results we
obtained is that when we do not include the values of the tokens and try to train our model
with only the types, the resulting model does not contain enough information to be able to
correctly detect clones and we have a large drop in the precision score. However, especially
for the single-language cross detection, the precision is still promising, showing that the model
somehow manages to encode the structure of the AST and is not only mapping identifiers.

We can also see from these results that our pre-trained embeddings gives us a performance im-
provement compared to randomly initialized embeddings, especially in the task of cross-language
clone detection where finding a relation between different tokens is harder for the model.

Another conclusion that we can draw from our results is that increasing the size of the LSTM
encoder improves the performance of the model. Especially for cross-language detection, where
the detection task is more difficult, we get a considerable improvement by using a stacked LSTM
instead of a simple one. On the other hand, using algorithm ft2 , which performs two depth-first
search, for transforming our ASTs into vectors yielded performance much worse that the simple
ft1 which only perform a single one. We suspect that adding the result of the second depth-first
search to the vector encoding added more noise to the encoded data that it added information,
but a more formal conclusion about this result needs further investigation. We did not observe
any significant improvement by changing the size of the output MLP classifier, and therefore
concluded that the model performance was rather dependent on how we encode the AST into a
vector rather the classification of the encoded vectors.

4.1.4 Comparison with existing methods
We chose to compare our method to SourcerCC[3], as it is the tool published the most recently
with its source code publicly available. In the above experiment, we sampled 4 non-clones code
pairs for each clone pair when evaluating our model. However, clone detection tools normally do
not work by taking code pairs but search for clones in a set of code fragments. As we discuss in
Section 5.2, our tool LearnerCC currently only works by taking code fragments pairs as input,
and we therefore need to run O

(
n2

)
comparisons to detect clones in the same way as the tool

we are comparing our results to.
To run our experiment, we used the files from our test dataset, and run our tools using all

the pairs combinations, as well as SourcererCC on the sampled files to detect clones within these
files.
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Table 4.10. Clone detection results

Threshold F1-score Precision Recall
0.1 0.13 0.07 0.98
0.2 0.15 0.08 0.97
0.3 0.17 0.09 0.95
0.4 0.18 0.10 0.92
0.5 0.19 0.11 0.89
0.6 0.21 0.12 0.85
0.7 0.22 0.13 0.77
0.8 0.24 0.14 0.63
0.9 0.22 0.16 0.33

Table 4.11. SourcererCC settings

Parameter Value
MIN_TOKENS 65
MAX_TOKENS 500000

BTSQ_THREADS 4
BTIIQ_THREADS 4

QLQ_THREADS 4
QBQ_THREADS 4
QCQ_THREADS 4
VCQ_THREADS 16
RCQ_THREADS 4

We will first describe the steps and settings we used to run the experiment using our model.
To run the experiment, we select the model which performed the best in the above experiment
according to the results presented in table 4.9. We generate all the possible code pairs of the files
in our test set, and use our model to predict whether each of these pairs were clones or not. Using
our predictions, which are probability-like values between 0 and 1, we set multiple thresholds to
whether the clone pair is a code clone are not. If the threshold is closer to 0, we accept pairs
that are less likely to be clones and therefore trade precision for recall, on the other hand if the
threshold is closer to 0.9, we are stricter for which pairs to accept and therefore trade recall for
precision. We try a range of values for this threshold and compute the F1-score, precision and
recall for each of them. We show our results in table 4.10.

After running the experiment with our model, we use the same dataset to run the experiment
with SourcererCC. We show the parameters we used to run SourcererCC, which are the defaults
at the time of the experiment, in table 4.11.
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Table 4.12. SourcererCC clone detection results

Threshold F1-score Precision Recall
0.3 0.05 0.03 0.29
0.4 0.08 0.05 0.24
0.5 0.12 0.10 0.15
0.6 0.11 0.24 0.07
0.7 0.05 0.63 0.03
0.8 0.02 0.79 0.01
0.9 0.01 1.00 0.00

Table 4.13. Clone detection results comparison

F1-score Precision Recall
Our method 0.21 0.12 0.85
SourcererCC 0.05 0.63 0.03

SourcererCC uses a threshold to decide whether it considers two code fragments to be clones
or not. If the value of the threshold is 0.5, it means that at least 50% of the tokens must be
shared between the code fragments to be considered as clones. The higher the threshold, the more
the code fragments need to be similar to be considered as clones, therefore when the threshold
becomes higher, the precision increases and the recalls drop. We show in table 4.12 the values
we obtained for different values of this threshold.

In table 4.13, we choose the results for each tool which we think might be the most useful for
the tool user — not necessarily the highest F1-score, but at least a good precision or recall —
and compare them. In figure 4.2, we plot the precision-recall curve with the results of both our
methods and SourcererCC. The x-axis is the recall and the y-axis is the precision, which means
that we would like to maximize the area under the curve.

Our method and SourcererCC have very different characteristics and are therefore difficult to
actually compare — our method has a very high recall but a poor precision, while SourcererCC
has a good precision but a low recall. We will here try to give some explanation about the
results we obtained. Our dataset is mostly composed of types IV clones, with probably only a
very small amount of clones which would enter the type III clone category. SourcererCC is a
token-based clone detection tool and is mostly design to detect type III clones, and given the
nature of its algorithm should be particularly efficient for clones generated from copy-pasting.
We believe that the poor results of SourcererCC on this dataset comes from its nature — clones
in the dataset being introduced by different programmers implementing the same functionality,
which generate very different types of clones. We think that the poor precision results with our
approach comes from two different factors. The main important cause for this issue is that our
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Figure 4.2. Precision-recall curve for clone detection experiment

tool is currently only able to predict if two code fragment are clones are not, and to be able to
run this experiment, we therefore need to predict O

(
n2

)
samples. The amount of clones in these

samples is therefore less than 1%, which vastly lower than the 20% of clones we were using when
training the model. This change in the training and test distributions therefore tends to wrongly
predict two code pairs to be code clones. We describe more in detail in Section 5.2 a possible
approach around this issue. Another reason for the precision to be low is the nature of clone
detection itself. We currently mark two code fragments as clones only if they implement the
exact same functionality. However, some code pairs can have a very close structure, which would
make them good candidates for clones, but do not implement the same functionality. We show
such an example in listings 4.3. Both code read an integer from the standard input, declare other
integers, execute some simple arithmetic operations on the declared integer and finally output
the the result. Both codes are therefore doing something quite similar, but do not enter in our
current definition of code clones. However, the code fragments are similar enough to be predicted
as clones by our model, which lowers the precision we obtain.

4.2 Token embedding generation
To generate token vector embedding and evaluate our results, we implemented the model and
tools we described in Section 3.4. All the tools implemented to generated token embedding are
publicly available on GitHub2, and made available through pip when possible3 4.

2https://github.com/tuvistavie/bigcode-tools
3https://pypi.python.org/pypi/bigcode-fetcher
4https://pypi.python.org/pypi/bigcode-embeddings

https://github.com/tuvistavie/bigcode-tools
https://pypi.python.org/pypi/bigcode-fetcher
https://pypi.python.org/pypi/bigcode-embeddings
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1 import java.util.Scanner;
2
3 public class Main{
4 public static void main(String[] args) {
5 Scanner sc = new Scanner(System.in);
6 int n = sc.nextInt();
7 int ans = Integer.MAX_VALUE;
8 for (int i = 1; i <= n; i++) {
9 int j = n / i;

10 ans = Math.min(ans, Math.abs(i - j) + n - i * j);
11
12 }
13 System.out.println(ans);
14 }
15 }

1 import java.util.*;
2
3 class Main {
4 public static void main(String[] args){
5 Scanner read = new Scanner(System.in);
6 int x = Integer.parseInt(read.nextLine());
7 int c = 0;
8 int sum = 0;
9 while (sum < x){

10 c++;
11 sum += c;
12 }
13 System.out.println(c);
14 }
15 }

Listing 4.3. Structurally close code pair classified as clones
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Table 4.14. Embedding generation Java dataset metrics

Metric Value
Projects count 1,027

Files count 476,685
Lines count 80,367,840

Tokens count 301,930,231

4.2.1 Embedding generation dataset
As described in Section 3.4, data generation for token embedding is unsupervised, as opposed
to the approach we take for clone detection. Getting data to train our model is therefore much
easier. To train embedding for a particular programming language, the only thing we need is
a large quantity of code written in this given language. This code should also be as much as
possible diverse so we can capture the tokens of most major libraries and get a descent vector
representation for their tokens.

To generate datasets to train token embedding for Python and Java, we fetched code from
GitHub using our bigcode-embeddings tool, and then generated the ASTs for all the files using
bigcode-astgen. For Java, we chose to use all the projects written in Java and belonging to
The Apache Software Foundation5. For Python, as we could not find any organization with a
sufficient amount of source code, we projects which fulfilled the following conditions.

• Size between 100KB and 100MB

• Non-viral license (e.g. MIT, BSD)

• Not forks

We ordered the results by number of stars as a proxy of the popularity of the project and
kept all the files which contained more than 10 tokens and less than 10000 tokens. Although our
AST generation tool supports both Python 2 and Python 3, the produced AST may vary slightly
and we therefore decided to use only Python 3 for this experiment.

We show some metrics for our Java dataset in table 4.14 and for our Python dataset in
table 4.15.

4.2.2 Vocabulary generation results
As discussed in Section 3.4, the first step when creating token embedding is to generate a vo-
cabulary for the given programming language. We will here present the results for the different
vocabularies we generated. For both Java and Python, we generated 3 different kinds of vocab-
ularies:

5http://www.apache.org/

http://www.apache.org/
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Table 4.15. Embedding generation Python dataset metrics

Metric Value
Projects count 879

Files count 131,506
Lines count 55,796,594

Tokens count 89,757,436

1. Vocabulary without token values

2. Vocabulary of 500 tokens with values

3. Vocabulary of 10000 tokens with values

The vocabulary without token values only contains only the type of each token, for example,
ImportStmt in Java, or FunctionDef in Python. In figures 4.3 to 4.4, we show the relation
between the rank of a token in the vocabulary, and its number of appearances. We use a log
scale for both axes. An interesting property we find is that, when using values of the tokens, this
relation and by extension the distribution of the frequency tokens in a programming language
follows the Zipf’s law [20], in the same way as natural languages do. When we exclude the tokens,
and therefore only use the type of each token to generate the vocabulary, the law seems to hold
only until the few last tokens of each language, which indicates that there is a small number of
types in each language that are almost never used. Regardless of the fact that we use or not
values of each token, the distribution is almost the same for both Python and Java, and the fact
that the curve for Java is above the one for Python comes from the fact that we extracted more
tokens for Java and we did not normalize the results, as it was not needed for the rest of the
embedding generation.

Given the distribution of the token frequency in both programming languages follow closely
the frequency found in natural languages, we can expect that a model such as skipgram which
works well with natural languages to also work here.

4.2.3 Embedding generation experiments
Once we created our vocabulary, we want to assign a vector in Rdw to each token in our vocabulary.
Given the purpose of generating these embedding is to encode a program so that we can detect
clone, the main requirement of our embedding is that tokens which are semantically similar,
such that for example while and for have a small distance, while unrelated tokens have a large
distance.

In table 4.16, we describe the different settings of our experiment. We only show the most
important for the task of generate the embedding and leave out settings such as the batch size,
the optimizer or the learning rate.

Given the unsupervised nature of the model, it is difficult to evaluate quantitatively the qual-
ity of the results. While some methods exist to evaluate word embedding in natural languages
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Figure 4.3. Tokens without value relation between token frequency and rank

Figure 4.4. Tokens with value relation between token frequency and rank
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Table 4.16. Experiment settings for embedding generation

Parameter Description Sample value
vocabulary The vocabulary to use for generating the em-

beddings
no-id.tsv

ancestors_window_size The window size for the number of ancestors 2
descendants_window_size The window size for the number of descendants 1

include_siblings Whether or not to include siblings true
embeddings_size The dimension dw of the embeddings 100

Table 4.17. Embedding experiment optimal settings

Parameter Vocab without values Vocab with values
ancestors_window_size 2 2
descendants_window_size 1 1
include_siblings false false
embeddings_size 50 100

context [21], the technique uses the nature of the language and is therefore not directly appli-
cable to programming languages. We are not aware of such a method to evaluate embedding in
programming languages context. We therefore decided to evaluate quantitatively the results we
obtained for the embedding creation task by manually inspecting the relation between different
tokens, and judging of the quality of the embedding using these relationship. In particular, when
training embedding for vocabulary where token do not have values, we tried to cluster the tokens
using k-means[22] and looked at how much the clusters made sense — for example, are statements
and expressions in different clusters.

We tried to train the embedding using a large set of values for the different parameters we
had. We tried window sizes from 0 to 5 for the ancestors, from 0 to 4 for the descendants, we
tried to use siblings and we tried embedding sizes of 10, 20, 50, 100 and 200. When increasing
the size of the embedding did not present any significant benefit, we kept the smaller size. In
table 4.17, we show the parameters we found to work best for training embedding for vocabulary
containing values and vocabulary with types only.

Increasing the window size too much seems to create too much noise, and did not yield better
results. Likewise, we suspect that including the siblings generated more noise than signal when
training our model. In figure 4.6 and 4.5, we show the results we obtained when projecting the
trained embeddings in a 2 dimensions space using PCA[23]. We only plotted a subset of the
points in the vocabulary to keep the figure readable.

There are a few interesting things to notice in the results we obtained in figures 4.6 and 4.5.
First, the clustering we obtain seems quite close to what we could expect when thinking about the
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Figure 4.5. Java clustered embedding 2D projection for vocabulary without values

Figure 4.6. Python clustered embedding 2D projection for vocabulary without values
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different types of tokens present in the AST. For example, for Java, All the statements are part of
the same cluster, and the only expression which belongs to this cluster is the LambdaExpr, which
was introduced in recent versions of Java and appears way less often than most other tokens,
which could explain why it was not clustered correctly. The expressions are also mostly in the
same cluster, and literal expressions, such as IntegerLiteralExpr and StringLiteralExpr
are close to each other, while other related tokens such as ThisExpr and SuperExpr are in the
same cluster but further away in the vector space. The results are similar for Python, where
most language constructs, such as While or Try are clustered together, while all the comparison
operators are in another cluster. Another interesting point is the difference in the relationship
of the tokens between both programming languages. In particular, while While and For appear
almost at the same point in the vector space for Java, which means that both tokens are very
similar, the same two tokens are much further away in Python. This seems a reasonable result to
obtain as Java’s while and for are indeed interchangeable, while in Python, these two constructs
have different semantics.
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Chapter 5

Conclusion

5.1 Summary
In this thesis, we presented a system capable to detect code clones across programs written in
different programming languages.

We gave some background about the motivations behind cross-language clone detection, and
explained the difficulties that can be encountered when trying to achieve this task. In particular,
we gave some explanation about why many approaches used for clone detection in a single pro-
gramming language cannot be applied directly, and why machine learning seems to be a good fit
for this task.

We then presented a supervised learning based machine approach to detect code clones. We
introduced an LSTM based model which predicts if two programs are clones or not, we gave
details about how we compute token embedding for a particular programming language, and
showed how we can pre-process source code and use these embedding to feed data to our model.

We introduced a novel dataset for cross-language code clone detection composed of programs
written in Java and Python, containing around 50000 files and implementing more than 500 differ-
ent functionalities. We explained the motivation behind the choice of competitive programming
to collect programs for this dataset, and gave details about the methodology used to generate
the dataset.

We then showed the results we obtained when evaluating our trained system using our dataset.
We demonstrated that we are able to obtain a high recall, with scores around 0.7, while keeping
a reasonable precision — with scores in the order of 0.3 to 0.5 — given the motivation of our
system. We also presented the results we obtained when training token-level embedding using a
large set of data we fetched from GitHub, and described how it helps us achieve better results
for our clone detection task.

5.2 Future work
Although we obtained some promising results for the task of cross-language code clone detection
in terms of recall and precision, scalability is a major issue of our current approach. In the current
implementation of our system, our model takes as input two code fragments, and determines if
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they are code clones or not. This works correctly when evaluating our model by feeding it pairs
of clones directly. However, in a real-world use case, this means that the clone detection process
would take O

(
n2

)
, where n is the number of code fragments to evaluate. As code fragments

are most commonly code blocks, and the number can therefore be in the order of 100 millions
in a large enough project, our method as is would not work. We should be able to modify
our system to add a hash-layer as done for example in [12] and use a method such as locality-
sensitive hashing [24] to reduce the order of our system to O(n), making it suitable for real-world
applications.
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