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Abstract

We propose call-trail dependent inline caching to improve the method dispatch perfor-
mance of Method Seals. Method Seals is a class extension mechanism that allows users
to manually control the effective range of class extensions. It provides better safety than
existing class extension mechanisms. However, the absence of inline method cache renders
Method Seals’ runtime performance unsatisfactory. To enable inline caching on Method
Seals, we added call-trail dependency to the conventional inline caching mechanism. To
that end, we introduced the notion of call-trails, which represent sets of classes along a
call path. We use fixed-length bitsets for representing the current call-trail and a method
definition’s unsealed package list. Also, we relaxed Method Seals’ semantic constraints ac-
cordingly in order to implement our proposal. We also implemented the proposed call-trail
dependent inline caching on top of Method Seals and benchmarked its performance.
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Chapter 1

Introduction

Writing maintainable, modular code is emphasized in modern software development. One
reason is that no projects with even a moderate scale can be built individually. Taking
advantage of libraries or code written by someone else is inevitable, and it requires code
to be written with modularity and extensibility in mind. The use of third-party code and
library can reduce the maintenance cost and improve the productivity of the development
cycle. However, it is rare that the third-party code or library we use meet our needs
perfectly. More often than not, it is necessary to modify the code we are using to suit our
purpose. It is a challenging task trying to modify the third-party code directly. For one,
it will completely break the modularity of regarding the third-party code as a black box
and also cause the burden of maintenance effort on the user. By modifying third-party
code directly, the user will also lose the advantage of receiving updates of the code from
the original maintainers. Therefore, what we really want is a mechanism that allows us
to modify third-party code or library without touching the original code base.

Conventionally, in object-oriented programming, we design and implement programs
using well-crafted class hierarchy and design patterns hoping to achieve the goal of mod-
ularity. However, it often backfires as the project gets larger, and the relations between
classes become too complex to comprehend. In a lesser modular world, however, program-
mers can use class extensions [4] to destructively change the behavior of an existing class.
For example, the Ruby programming language [10] provides open class, a class extension
mechanism, for modifying and adding methods to an existing class.

Using class extensions to modify existing classes is convenient and enjoys high modu-
larity, but the scopes where a class extension is effective can cause serious concerns. We
have to keep in mind that the development of any project involves many different par-
ties. If the library code modified by one user is also being used or modified by others,
conflicts or unintended behavior will occur. To resolve the problem, scoping mechanisms
for deploying class extensions are extremely necessary.

A number of class extension mechanisms has been proposed, such as selector names-
pace [20], Classbox [6], Method Shelters [5] and Method Shells [19]. Also, programming
paradigms like aspect-oriented programming [15] and context-oriented programming [13]
have also been studied over the years. All of these proposals can be regarded to aim to
come up with scoping mechanisms programmers can use to apply class extensions. Ap-
proaches these research take are similar. They introduce well-designed, specific rules and
semantics, with which the scopes of class extensions’ effect range are implicitly decided.

Implicitly deciding class extensions’ scope with predefined rules makes class extensions
relatively safer to use, but still does not eliminate the problem of potential scoping risks.
When the number of class extensions deployed gets large, the programmer can hardly
understand the relations and interactions between the class extensions. Method Seals
[11] was proposed to address this problem. Method Seals lets programmers to explicitly
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specify the effective range of class extensions, by providing the callpaths on which class
extensions are activated. The deployment of class extensions on a list of classes is called
“unsealing” these classes for the class extension in Method Seals’ terminology. By default,
on the contrary, all class extensions are deactivated, or all classes are “sealed” for the class
extension.

Explicit control over class extensions’ scopes is a flexible feature Method Seals provides.
However, naive implementation of Method Seals will suffer from poor performance during
method dispatch, the reason being, conventional inline caching does not suffice Method
Seals’ semantic requirements. Inline caching is a technique to provide faster method
dispatching for programming languages that have dynamic method dispatching. In a
usual scenario, the method dispatched at a given call site will remain the same as long
as the class hierarchy and the receiver stay the same. With Method Seals, however,
method dispatching is dependent on the callpath along which this method is invoked.
To resolve the issue, the original implementation of Method Seals disabled inline caching
for all method dispatch. This ensured the correctness of method dispatching, since a full
method lookup is performed at every callsite. But also due to the absence of inline method
cache, the implementation showed a performance significantly slower than the MRI, the
original implementation of Ruby in C.

Our goal is to enable inline method caching mechanism for Method Seals. To do so, it is
necessary for inline caching to be aware of callpath information during runtime and is also
required to associate each method definition to its unsealed areas. It it not a easy task to
achieve this goal. There are three challenges in front of us. First, efficient representation
of runtime callpath information and unsealed classes is necessary. When the callpath
information is represented naively (e.g. with arrays), the performance overhead induced
can overshot the performance gain from inline caching. Second, original Method Seals
semantics allow users to deploy class extensions at any scopes. To support this semantics,
it is needed to record multiple callpath information for each class extension deployment.
Third and last, validation procedures for inline caching at each callsite have to be fast and
efficient. Therefore, our representation of the context information also needs to support
this.

We propose a call-trail dependent inline caching mechanism that can be applied to
Method Seals. Our contributions are as follows. First, we relaxed the semantics of
Method Seals to require top-level unsealed package lists. This greatly improves the ef-
ficiency of our caching mechanism and also addresses the problem of recording multiple
callpath information discussed above. Second, We propose the use of fixed-length bitset
data structure, specifically call-trail bitsets and unsealed bitsets, to represent the current
call-trails and a method’s unsealed packages, respectively. We also designed the cache val-
idation procedures to work together with our proposed bitset structures. The design and
implementation of call-trail dependent inline caching is efficient for both representation
of callpath information and also validation of each inline cache. Third, we implemented
our proposal using the Ruby programming language. Ruby has built-in support for class
extensions and it is well-known techniques among Ruby programmers. Implementation
on Ruby allows us to compare our approach to the built-in Ruby class extension mech-
anism. Lastly, we benchmarked the performance of our implementation. Specifically,
we measured method dispatch performance of method calls under different conditions.
Furthermore, we benchmarked our implementation using Ruby on Rails, a popular web
framework, to provide some insights under a more practical settings. The result shows
performance boost compared to the standard Method Seals implementation.

The remainder of this thesis is structured as follows: In Chapter 2, we introduce the
background and related work of our study. We will discuss the rationale of using class ex-
tensions as well as existing class extension mechanisms. We will demonstrate how Method



Seals works in detail and also discuss the performance issue induced. Besides, we will in-
troduce the idea behind inline method caching and also existing inline caching techniques.
In Chapter 3, we present our proposal of call-trail dependent inline caching in detail. We
also discuss limitations of the current proposal. In Chapter 4, we introduce our imple-
mentation of proposed call-trail dependent inline caching with the Ruby programming
language. We also discuss the limitations of the current implementation. In Chapter 5,
we introduce the results of our benchmarks — a micro-benchmark and a larger one with
Ruby on Rails. Finally, we wrap up the thesis in Chapter 6.



Chapter 2

Call-trail dependent class extension and
its performance

Class extensions in object-oriented languages provide means for extending and modifying
existing programs without modifying the existing code base. Class extensions are available
and are widely used in programming languages such as Smalltalk [12], Objective-C [17]
and Ruby [10]. Compared to traditional approaches for extending classes’ functionalities,
such as inheritance, class extensions are much more expressive and maintainable.

Existing class extension mechanisms suffer from various shortcomings. One biggest
problem is that it is difficult to control the scope where class extensions are made effective.
Call-path dependent class extensions, as known as Method Seals [11], was proposed to limit
the effective scope of class extensions to user-defined callpaths. It provides a good balance
between safeness and flexibility. However, our observation shows nave implementation of
callpath dependent class extensions can cause large overhead during method dispatch.

However, the lack of support of inline caching on Method Seals causes serious per-
formance drop during method dispatching. Conventional inline caching is not aware of
runtime callpath information, which Method Seals depends on. To add support for inline
caching on Method Seals, there are several challenges we need to overcome, which we will
discuss in detail in this chapter.

In this chapter, we will introduce existing class extension mechanisms. We will also
discuss the reason causing the large overhead during method dispatch when using call-
path dependent class extensions. Lastly, we will discuss the performance issue of Method
Seals and challenges supporting inline caching for method seals.

2.1 Class extensions

Class extensions provide a convenient mechanism for adding and modifying existing
classes” behavior. On the other hand, existing designs of class extensions are rather
difficult to control the scope where extensions are made effective. In this section, we will
first discuss the usage of class extensions. We will also introduce existing designs of class
extensions and their defects.

2.1.1 Usage of class extensions

Modification of existing codes’ behavior is often inevitable, especially when using programs
written by others or third-party libraries. The feature of modifying existing programs
without modifications of existing code base is called destructive extensions [5]. In order
to write more modular and maintainable code, many programming languages provide such
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puts 2.minutes # => NoMethodError

class Fixnum
def minutes
self x 60
end
end

Nelo ol NG I ANOUN O

puts 2.minutes # => 120

Fig. 2.1. Ruby’s open class

3.to_s # = "3"

class Fixnum
def to_s
# procedure to convert to Roman number
end
end

OO U W+~

3.to_s # = "III"

Fig. 2.2. Ruby’s open class (Redefine an existing method)

mechanism and language constructs. In aspect-oriented programming [16], it is possible to
pack up cross-cutting concerns (i.e. behaviors spread across multiple classes) into a single
module. In object-oriented programming languages, destructive extensions are called class
extensions, as they are used to extend the behavior of existing classes.

In object-oriented programming, it is impossible to write certain code in a modular
fashion with usual OO features. Especially when a feature or concern is spreading across
multiple classes. One typical example is logging. Logging is often needed in multiple
places across various classes. With usual OO approaches, logging cannot be implemented
in a modular way. With destructive extensions, we can group all logging functionalities
into same modules and thus enhance the modularity of our code.

Figure 2.1 shows an example of using class extensions in programming language Ruby.
In Ruby, class extensions are called open class. Open class is widely used in large com-
munity projects such as Ruby on Rails. In this example, we are adding a new convenient
method minutes to the built-in Fixnum class, which represents integers. The new minutes
method calculates the number of seconds within the number of minutes the integer rep-
resents. Usage of open class is shown between line 37. The way of adding a new method
definition using open class is similar to new class definition. We “re-open” an exisiting
class, Fixnum, then append a new method to it.

Figure 2.2 demonstrates the other way of using Ruby’s open class. In this example,
we are redefining an already existing method to_s, which converts an object to its string
representation. When we invoke to_s method on an ordinary integer object, it returns
its usual string representation in arabic numerals. We can redefine the to_s method to
convert a number into roman numeral representation. After the redefinition, to_s will
return the integer’s roman numeral representation in strings.
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1 class String
2 def valid_email?
3 self =" # valid email regex
4 end
5 end
6
7 class EmailValidator
8 def validate_email
9 S = prompt_user_email
10 if (s.valid_email?)
11 puts "Valid_email™
12 else
13 puts "Invalid_email,._try._.again"
14 end
15 end
16 end
Fig. 2.3. Open class example
1 class StringWithEmailValidation < String
2 def valid_email?
3 self =" # valid email regex
4 end
5 end
6
7 class EmailValidator
8 def validate_email
9 S = prompt_user_email
10 if (s.valid_email?) # NoMethodError
11 puts "Valid._email"
12 else
13 puts "Invalid_.email, .try.again"
14 end
15 end
16 end

Fig. 2.4. Inheritance example

2.1.2 Advantages of using class extensions

The foremost advantage of using class extensions is that users’ modifications to the classes
are accessible from within the original classes. Take Figure 2.3 as an example. By using
open class, we can easily add a convenient method for checking whether a string is a legal
email address. In class EmailValidator, we first prompt user for her email address. The
type of prompted string is of course the built-in String. Since we have already added
valid_email? method to the built-in String class, we can invoke valid_email? on s.

Figure 2.4 shows the same example with only inheritance. Although by inheriting from
String class, we can very well adding email validation method to a subclass of String,
the user input s, which is a String object, cannot access its subclass’ method. We have
no luck but to either create another email validator class, or define our email validation
method elsewhere.

Ruby’s open class is a typical showcase of the convenience provided by class extensions.
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1 class Clock

2 def display_hour

3 puts current_hour

4 end

5 end

6

7 Clock.new.display_hour # = "10"
8

9 class Fixnum

10 def to_s

11 # procedure to convert to Roman number
12 end

13 end

14

15 Clock.new.display_hour # = "X"

Fig. 2.5. Global scope of Ruby’s open class

As a matter of fact, open class is frequently used for adding convenient methods, operator
redefinition and monkey patching.

2.2 Potential risks of using class extensions

As we have noted, various object-oriented programming languages support class exten-
sions. However, class extensions supported by these languages come in different flavors,
and their scopes of effect also vary. In this section, we introduce some typical class exten-
sions supported in popular programming languages. We will also discuss the risks behind
the usage of these class extensions.

2.2.1 Existing class extension mechanisms

Various class extension mechanisms can be found in popular programming languages.
Here we will introduce several typical class extension mechanisms in detail.

Ruby's open class
As we have presented in Section 2.1.1, Ruby’s open class mechanism supports defining
new methods to, or modifying existing methods’ behavior within a existing class.

The scope of open class’ effect is global, which means once we modified a class’ behavior,
the change takes effect on all existing instances of this class. An example of open class’
scope is shown in.

However, global effect of open class can at times cause unintended side-effects or break-
ing unintended parts of programs. For example, in Figure 2.5, we have a Clock class
that displays the current hour in arabic numerals. After we use open class to redefine the
to_s method of the Fixnum class, which is not intended to be used by the Clock class,
the behavior of Clock’s display_hour method is changed too.

Ruby's refinement

Ruby introduced a new class extension mechanism, refinement, since version 2.0. The aim

of refinement is to make the scope of class extensions more controllable and safer to use.
Refinements are applied within lexical scope, so that it’s convenient for programmers

to take control of class extensions’ effect range. Figure 2.6 shows the same example as
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1 module RomanInteger

2 refine Fixnum do

3 def to_s

4 # procedure to convert to Roman number
5 end

6 end

7 end

8

9 class RomanClock

10 def display_hour

11 using RomanInteger

12 puts current_hour

13 end

14 end

15

16 Clock.new.display_hour # = "10"
17 RomanClock.new.display_hour # => "X"

Fig. 2.6. Lexical scope of Ruby’s refinement

Figure 2.5, but since we are using refinements to define our Romanized to_s method for
the Fixnum class, we can only apply the effect within the scope we intended, i.e. within
the display_hour method of our RomanClock class. The original Clock is left unchanged.

Refinements have their disadvantages, too. In fact, it is not possible to use refinements
to apply a class extension for an indirect method invocation through another scope. Re-
finements are also deactivated if a method in another file is called.

Classboxes

Classboxes [7] is a class exntension mechanism, with which programmers can modify ex-
isiting code and libraries without affecting other programs using the code. Classboxes
provides a module mechanism called classboxr, which groups up newly defined class ex-
tensions. A classbox can also import class extensions defined in other classboxes, thus it
is possible to use classboxes to enable class extensions visible between multiple scopes.
Besides, it is possible to override the behavior of methods of imported classboxes; this
property is called local rebinding property. Therefore, classboxes work differenly from both
Ruby’s open class and refinements.

However, problems occur when a classbox tries to import from two classboxes that
define the same methods at the same time. Figure 2.7 shows an example of this issue. In
classbox CB1, we have the definition of the builtin Integer class that contains a toString
method that returns the arabic numeral representation of the integer. In classbox CB2, we
import the Integer class from CB1, and modifies the behavior of its toString method to
return a Roman numeral repretation. In turn, the modified version of Integer’s toString
method is used by the RomanClock class to give a Roman numeral representation of the
current hour. In CB2, we import from both CB1 and CB2. This leads to a method conflict
of Integer’s toString method as both CB1 and CB2 are trying to define it.

Context-oriented programming

Context-oriented programming (COP) [13] takes the current context into account during
method dispatching. That is to say, the behavior of a method depends on the context
within which it is invoked. Definitions of class extensions are grouped into modules named
layers, which can be enabled and disabled by programmers.
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CB1
Integer
toString: return arabic N
numerals CB2
\ Integer
| toString: return Roman
numerals
RomanClock
cB2 currentHour: return current hour in
/ Roman numerals using Integer’s
Integer toString method
toString: return arabic
numerals
RomanClock |

currentHour: return current hour in
Roman numerals using Integer's
toString method

Fig. 2.7. Example of method conflicts using Classboxes

Figure 2.8 shows an implementation of our Romanized clock example using ContextJ,
a Java implementation of COP. In class Integer, we define a layer Romanized, and
redefine the toString method within it. In class Clock, since we are not turning on any
layer, the original toString method is invoked. In class RomanClock, however, we activate
the “Romanized” layer using with construct, and the refined version of toString is invoked,
returning the Roman numeral representation of the integer.

2.2.2 Drawbacks of existing class extension mechanisms
Scopes of existing class extension mechanisms can be categorized as follows:

1. Global scope (Ruby’s open class)

2. Lexical scope (Ruby’s refinement)

3. Dynamic scope (COP)

4. Scope with local rebinding properties (Classboxes)

Although each of these class extension mechanisms has its advantages and applications,
all of them are difficult for programmers to control their effective ranges. Global scope
is good for its convenience of use but would easily lead to overwriting unintended code.
Lexical scope, on the other hand, is too restrictive to be used for a more flexible scope
even if the user intends to do so. The rest of the mechanisms resolve the issues to a certain
extent but still does not eliminate potential method conflicts.
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1 class Integer {

2 /] ...

3 String toString() {

4 // return Arabic numerals

5 }

6

7 layer Romanized {

8 String toString() {

9 // return Roman numerals
10 }

11 }

12 }

13

14 class Clock {

15 Integer hour;

16 // ...

17 void currentHour () {

18 System.out.printlnChour); // — "10"
19 }

20 }

21

22 class RomanClock {

23 Integer hour;

24 /] ...

25 void currentHour () {

26 with (Romanized) {

27 System.out.printlnChour); // —> "X"
28 }

29 }

30 }

Fig. 2.8. Example of context-oriented programming

2.3 Callpath dependent class extensions (Method Seals)

A new category of class extension mechanisms, called callpath-dependent class extensions,
was introduced with the aim of letting programmers to apply class extensions to only
“intended areas”, that is, specified callpaths. The first callpath-dependent class extension
mechanism proposed was Method Seals [11]. In this section, we will introduce callpath-
dependent class extensions in detail and also discuss the implementation of Method Seals.

2.3.1 Callpath dependent class extensions

As we have discussed in previous sections, existing class extension mechanisms all have
various drawbacks that make it difficult for programmers to control the scopes of effect
of class extensions. Callpath dependent class extensions empower programmers to do
exactly that.

Callpath dependent class extensions allow programmers to explicitly specify callpaths
on which the class extensions are effective. Callpaths are the traces of classes which lead
to the invocation of current methods. By specifying effective callpaths, programmers are
in full control of the intended range of effect of class extensions.

The scope of callpath dependent class extensions is not any of the scopes discussed in
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1 rows = []

2 rows << [’One’, 1]
3 rows << ['Two’, 2]
4 rows << [’Three’, 3]
5 table = Terminal::Table.new :rows => rows
6

7 # > puts table

8 #

9 # + + +

10 # | One | 1]

11 # | Two | 2 |

12 # | Three | 3 |

13 # +—~————— —t

Fig. 2.9. An example output of Terminal Table

the previous section since it is completely manually controlled by users’ specifications.
There are both advantages and disadvantages to this approach. The obvious advantage
of callpath dependent class extensions is that users are in complete control of the effective
range of class extensions used. This reduces the chance of bugs that are due to unintended
change of code by class extensions. On the other hand, using callpath dependent class
extensions requires a thorough understanding of not only users’ own code but also library
code that she intends to modify. This can be a difficult task when the number of libraries
used is large or the code to be modified is hard to comprehend.

2.3.2 Method Seals

Fukumuro et al. proposed Method Seals [11], a class extension mechanism that allows ex-
plicit control over its effective scope. It takes a different approach from conventional class
extension mechanisms, which implicitly decide the scope of class extensions by predefined
semantic rules. Instead, Method Seals asks programmers to explicitly declare the scope
in which class extensions are activated. This allows safer use of class extensions while
keeping its usability.

Method Seals limits the effect of class extensions to the part of code which programmers
have read and understood. This can reduce the chance of unintended class extension
activation. Method Seals introduced the concept of a package, which is equivalent to
either a class, a module or a method. The basic actions with Method Seals are sealing and
unsealing. A package p is said to be sealed for a class extension e when e is inactivated on
p. Likewise, a package p is said to be unsealed for a class extension e when e is activated on
p. By default, all packages are sealed upon all class extensions, which are only activated in
a package where a user explicitly unseals. In the current implementation of Method Seals,
the granularity of packages is at class-level (i.e. only classes are supported as packages).

We demonstrate the usage of Method Seals with an example from the original Method
Seals paper by Fukumuro et al [11]. We use an implementation of Method Seals on the
Ruby programming language provided by the original authors. Figure 2.9 shows the use
of Terminal Table, a Ruby library that prints out collections of data in human-readable
formatting. Terminal Table works well with Roman alphabets, but does not work property
with full-width Japanese letters (at version 1.5.2). The reason being is that Terminal Table
caculates the lengths of strings by invoking the builtin length method in String class.
It does not take full-width characters into account.

To address this issue with Method Seals, we refine the length method in String class
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1 module FullWidthLength
2 refine String do
3 def length
4 # Returns total width of str taking
b # full—-width chars into account.
6 end
7 end
8 end
Fig. 2.10. A class extension adding full-width letter support to String’s length method
1 using FullWidthLength,[Class, Terminal::Table,
2 Array, Integer]
3 table = Terminal::Table.new :rows => rows
4 puts table

Fig. 2.11. Unsealing the FullWidthLength extension

as shown in Figure 2.10. The way we refine a method with Method Seals is the same
as with Ruby’s refinements, simply rewrite the length method taking full-width letters
into account and pack it up in a module FullWidthLength. We use the using method as
shown in Figure 2.11 to deploy a class extension upon a list of unsealed packages (classes,
modules or methods). What’s different from the usage of using with Ruby’s refinements
is that here we are providing some extra information, an non-empty list of packages. We
call this list of packages an unsealed package list. Note that this list should be non-empty.
On line 1 of Figure 2.11, we are deploying FullWidthLength upon the classes provided
in the unsealed package list: Class, Terminal: :Table, Array, and Integer.

The reason to unseal all these classes is because Method Seals will activate a class
extension only if all classes along the call path are unsealed. If the call path contains a
class that is not in the unsealed list, the class extension will not be activated. Here, Class,
Array, and Integer class are unsealed because the calculation of string widths happen
in the constructor of Terminal: :Table, whose call path goes though the aforementioned
classes.

One thing to note is that although Method Seals is very similar to Ruby’s refinements,
the way they work isn’t. While Ruby’s refinements limits class extensions to the lexi-
cal scope of their activations, Method Seals let programmers decide the intended scope
through call paths. The example in Figure 2.11 will not work with Ruby’s refinements
because the place where Terminal Table invokes String’s length method is outside the
lexical scope of our using.

2.4 Inline caching

Dynamic-typed object-oriented programming languages are slower in method dispatch
(or message passing) than statically-typed ones. This is due to the lack of runtime type
information during compile time, which can largely reduce method lookup overhead by
deciding methods to be dispatched during compile time. Often, this issue is addressed by
the use of an optimization technique called inline method caches, or inline caching, which
stores the previous lookup result in a cache at each call site, and dispatches the cached
result as long as it is valid. In this section, we will discuss the basic idea of inline caching,
as well as a number of variations. We will also demonstrate its unavailability in Method
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|al

a := Array new:100.
a at:50 put:’fifty’.
a inspect.

T W N -

Fig. 2.12. Object creation and message passing in Smalltalk

S empty Method lookup routine
o 1inspect. /E
save up lookup result
Call site Inline cache

Fig. 2.13. Conventional inline method caching

Seals due to the semantics requirements.

2.4.1 Conventional inline method caching

The idea of inline method caches was first introduced in an early Smalltalk-80 system [9].
Smalltalk is an object-oriented programming language invented by Goldberg and Kay at
Xerox PARC [12]. Smalltalk uses the analogy of message passing. Objects in Smalltalk
are capable of doing three operations:

1. Referencing to other objects.
2. Receiving a message from itself or other objects.
3. Sending a message to itself or othre objects.

In Smalltalk’s analogy, method invocation is imagined as objects sending messages to
each other, telling each other what actions to perform. Just as ordinary object-oriented
languages, an object has a number of actions it can perform, which are either defined
by its own class or inherited from its super classes. Figure 2.12 shows an example of
creating an object and passing messages to it. On line 1, we declare an variable a; there
is not type information because Smalltalk is a dynamically-typed language. On line 3, we
are sending the message new, together with argument 100, to class Array. The result is
an array object with length 100. It is assigned to a. Then, we put string *£fifty’ into the
array at index 50 by sending the at and put messages. Finally, we inspect the contents
of the array by sending message inspect to it.

However, sending a dynamic-bound message exhibits a significantly larger overhead
than calling a statically-bound procedure albeit simple inheritance rules of the Smalltalk
language. It is because the program needs to locate the correct method definition accord-
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Fig. 2.14. Conventional inline caching validation

ing to the receiver type during runtime and also the inheritance hierarchy. For example,
in Figure 2.12, call sites such as on line 3, 4 or 5 have no way to decide which exact
methods to dispatch during compile time because the type of a or the definition of these
methods could change when they are repeatedly invoked.

Inline method caches largely mitigate the problem by caching the most recently looked-
up result. When sending a message (or invoking a method), the program first checks the
cache at the call site. If the cache is empty, the program has to perform a full method
lookup routine, and stores the result into the cache (see Figure 2.13). If the cache is not
empty, the program has to validate the cache. Validation procedure of conventional inline
caching mechanisms is demonstrated in Figure 2.14. The validity of a cache depends on
that the receiver type, the method invoked stays the same. And the overall class hierarchy
of the program is unchanged. If a cache not valid, the program performs an expensive
lookup routine and replace the cache with the new result. The MRI adopts this idea by
placing inline method caches at each method callsite.

2.4.2 Polymorphic inline caching

Polymorphic Inline Caches [14] was proposed to reduce the overhead of polymorphic mes-
sage sends. It extends the ordinary inline caches to include multiple cached lookup results
at each call site. Each cache entry stores a method lookup result of a receiver type used
at the call site, thus subsequent message sends at the call site by these recoreded receiver
types will not trigger a full method lookup.

An example is shown in Figure 2.15. When a call message is sent, the program does
not perform a full method lookup at a cache miss. Instead, it goes to a PIC stub, which
consults the type of the receiver, and checks the polymorphic inline caches for a cached
entry for that type.

As future work, we plan to integrate the idea of polymorphic inline caching into our
inline caching mechanism to mitigate the performance issue demonstrated in Chapter 3.

2.4.3 Fine-grained state tracking for inline caching invalidation

Zakirov et al. proposed fine-grained state tracking [21] for the validation of inline method
caches. It aims at reducing inline cache misses in Ruby under the condition that frequent
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Fig. 2.16. Fine-grained state tracking (referenced from Figure 4 in [21])

mixin operations are performed.

The proposal introduces the notion of state objects. Instead of using a global state
counter representing the programs’ overall inheritance hierarchy, state objects are associ-
ated to each method lookup path. During mixin operations or when class hierarchy has
changed, the state objects can help to track which lookup path need to be invalidated. An
example in shown in Figure 2.16. The £ methods along the same inheritance tree shares
the same state object. When a mixin is performed on one of the classes along the inher-
itance tree, a new state object with a different value is created, and all subclasses’ state
objects will also have this new value. State objects for other methods will not change. At
method dispatch, the state value of cached entry is compared with the current state value
of the method. The cache is valid as long as the state value equals.

Although this proposal looks similar to ours, they are not the same thing. This fine-
grained state tracking aims to decrease the number of caches voided each time a mixin
operation is performed. Our aim is to provide inline caching to class extension mechanisms
that have call-trail dependency. In future work, we plan to combine this proposal together
with our proposal.
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Table 2.1. The method call performance with class extensions

iterations/sec  standard deviation
Open class 9.16 x 10° 0.9%
Refinements 9.22 x 108 1.9%
Method seals(unsealed) 4.63 x 10° 0.3%
Method seals(sealed) 7.10 x 108 0.4%

2.5 Lack of support for inline caching on Method Seals

Naive implementation of Method Seals can lead to severe performance drop. The reason
is the lack of inline caching during method dispatching. In this section, we discuss the
performance benchmark of the original Method Seals implementation and the reasons
behind the unsatisfactory results. Also, we will discuss a number of challenges when
trying to add support for inline caching on Method Seals.

2.5.1 Performance issue of Method Seals and its causes

Method Seals provides a mechanism for safely using class extensions. However, without a
good runtime performance, it will not be very useful. Table 2.1 is the benchmark results
of Method Seals’ runtime performance appeared in the original paper by Fukumuro et al
[11]. As the result shows, the performance of Method Seals is close to that of the MRI
when no class extensions are deployed. However, when class extensions are deployed, that
is, applied upon certain call paths, the performance of Method Seals drops to around half
of that of MRI.

According to our experiments, we conclude that the reason causing the performance
issue of Method Seals is the lack of support for inline caching. Conventional inline method
caching cannot work with Method Seals because the cache validation does not suffice the
semantics of Method Seals. With Method Seals, the actual method dispatched at a call
site of a method refined by a class extension depends on where the call path is coming
from. For example, in Figure 2.17, we have a call site of bark method on some dog. The
method bark has multiple class extensions: v1, v2, v3, deployed on different call paths
CP1, CP2 and CP3 accordingly. In this case, if one invocation of this method has one
of these versions of bark stored in the cache, next invocation of the same method will
lead to the dispatch of the cached method as long as the class hierarchy and the variable’s
type have not changed. But with Method Seals, this is not an expected behavior. We
need to decide which method to dispatch based on the current call path, but obviously
conventional inline cache does not take that into account.

2.5.2 Challenges of supporting inline caching on Method Seals

The main goal of our work is to support inline method caching on Method Seals in order
to improve its method dispatching performance. However, this not an easy task. There
are several challenges to be overcome.

Firstly, we need to come up with an efficient representation of runtime callpath infor-
mation as well as unsealed packages of a method definition. At its essence, both callpath
information and unsealed package information are sets of classes. If we naively keep track
of these information with arrays, at each method dispatch, we need to loop through the
runtime callpath array and also unsealed package array in order to decide whether the
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Fig. 2.17. A call site of method refined with Method Seals

method definition can be dispatched. This approach induces a very large overhead dur-
ing method dispatching. Therefore, an efficient representation of these runtime context
information is necessary.

Secondly, original Method Seals semantics allow programmers to deploy class extensions
from within any classes. Method dispatching of a method refined by any class extension de-
pends on only callpath information beyond its deployment. This requires us to keep track
of multiple callpath information for each deployment of a class extension. Figure 2.18
demonstrates this issue. It uses the same example we demnostrated in previous sections.
With original Method Seals, it is possible to deploy our class extension on Fixnum class in
the scope of RomanClock class. Here FixnumStub is deployed with a single unsealed class
RomanClock, thus method dispatch of the method of Fixnum class that is refined by us is
dependent on only callpath beyond the calling of methods in RomanClock class. In other
words, the part of callpath before RomanClock, such as App, should be ignored. In order
to achieve this, we have to keep multiple callpaths, one for each deployment of a class
extension. However, the number of callpaths needed to be tracked grows as the number
of class extensions increases. It causes severe overhead during method dispatching.

Finally, our representation of callpaths and unsealed packages has to also be efficient
for validation of inline caches. During validation procedures of inline caching, we need to
check that the current callpath is contained within the unsealed packages of the method
definition in the cache. The performance gain will also not be tangible if this comparison
is slow.



18 Chapter 2 Call-trail dependent class extension and its performance

.
Fixnum %[App ,RomanClock, Fixnum] [RomanClock,Fi xnum]é
|
RomanClock |  [App,RomanClock] [RomanClock]
using ‘ |
FixnumStub, ;
[RomanClgck] App § [App] []
( J
[Top-level] [
. J T
call stack callpath

Fig. 2.18. Tracking multiple callpaths for each deployment of class extensions
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Chapter 3

Call-trail dependent inline method
caching

As discussed in the previous chapter, Method Seals shows a significant performance issue
due to absence of inline caching. In this chapter, we introduce our relaxed Method Seals
semantics, and a call-trail dependent inline caching mechanism exploiting that relaxation.
We also show example of using our proposed mechanism.

3.1 Relaxed version of Method Seals

To provide better performance, we relaxed some of Method Seals semantics constraints.
Specifically, we now require users to specify a top-level unsealed package list. Also, we
introduced a new tracked method to let users specify the packages of concern. In this
section, we discuss this two changes in detail.

3.1.1 tracked keyword

With Method Seals, a user is required to specify unsealed packages when deploying a class
extension. A Method Seals package is either a class, a module or a method, for a class
extension. The class extension is only activated on method calls that route within the
unsealed packages. It is tedious to list out all classes on our potential call paths, especially
when built-in classes are involved. Take Figure 2.11, Class, Array and Integer are all
Ruby’s built-in classes, and we are listing out these classes in our unsealed path solely
because they are involved in Terminal Table’s initialization procedures. It is not only
frustrating for users to dig out all the nuts and bolts, but also inefficient for Method Seals
to perform checking on the call paths. What we really need is a method for users to pick
out the packages of their concern.

In our revised version of Method Seals, we introduced a new keyword tracked, which is
used for explicitly declaring the packages that Method Seals needs to be concerned about.
In other words, only packages listed with tracked will affect the method dispatch. Let’s go
back to the previous example. With the tracked keyword, we can rewrite Figure 2.11 as
Figure 3.1. On line 1 we declare that only class Terminal: :table should be concerned.
Therefore on line 3, we no longer need to put all the other classes into the unsealed list.
Method calls passing through untracked classes behave as if they never passed through
those class at all. Simply speaking, what Method Seals really concerns now is whether
the call path passed by a tracked package that is not unsealed. If the answer is yes, the
class extension is not activated. Vice versa. The implication of the new tracked keyword
is that we no longer need to keep track of many classes we are not interested in, and



20 Chapter 3 Call-trail dependent inline method caching

tracked [Terminal::Table]

using FullWidthLength, [Terminal::Table]
table = Terminal::Table.new :rows => rows
puts table

T W

Fig. 3.1. Unsealing (activating) the FullWidthLength extension with “tracked” keyword

optimizations can be made under this premise.

We illustrate the effect of tracked with a more visual example. In Figure 3.2, we
have four classes A, B, C and Dog. A calls a method of B, which in turn calls a method of
C. C eventually calls bark method on Dog. Also, the bark method is refined by a class
extension defined in module BarkV1, which is deployed with Method Seals on unsealed
package list [A, B]. When we finally invoke a method on A, the result shows that the class
extension is not active on this call path. This result is expected because C is not unsealed.
See Figure 3.4. By default, all packages are sealed, so a sealed class C will cause the class
extension to be deactivated. With the tracked keyword, we can explicitly specify the
packages to be sealed by default. We use tracked as shown in Figure 3.3. By specify A,
B to be tracked, C is unsealed to all class extensions by default. Therefore, call paths go
through C will not lead to deactivation of a deployed class extension (see Figure 3.4).

Using tracked keyword can reduce the number of classes the user needs to be concerned
about, including built-in classes, which we are usually not interested in when deploying a
class extension.

3.1.2 Top-level unsealed package list

In the original Method Seals, unsealed package lists only needs to contain packages to be
unsealed beyond where the class extension is deployed (i.e. where using is called). We
relaxed this part of semantics to require all unsealed package lists to specify all unsealed
packages starting from the top-level.

We demonstrate the change with an example. The mechanism of unsealing in original
Method Seals works as shown in Figure 3.5. Here we have a call path starting from
top-level to class D, passing by A, B and C. A method d in class D is refined by some class
extension deployed in class B. Since original Method Seals only requires unsealed packages
beyond the deployment, we only need to unsealed packages in the dotted line. Packages
on the call path before the package of deployment is irrelevant. Our top-level unsealed
package list requires users to specify all the possible packages needed to be unsealed
starting from the top-level. As shown in Figure 3.6, class A needs to be included in the
unsealed package list.

With this relaxation, we give the knowledge of all possible unsealed call paths to each
class extension. This empowers us to associate the unsealed package information with a
class extension to be stored in a method cache. The relaxation also eliminates the need to
keep track of multiple callpaths for each class extension deployment. We now only need
to keep track of a single callpath starting from the top-level.

3.2 Call-trail dependent inline caching

We propose an inline method cache mechanism with dependency on call-trails to improve
the performance of Method Seals. Cache validation of standard inline caching does not
suffice Method Seals (as we have discussed in previous chapter), and it imposes a significant
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1 class Dog
2 def bark
3 puts "Woo"
4 end
5 end
6
7 class A
8 def a
9 B.new.b
10 end
11 end
12
13 class B
14 def b
15 C.new.c
16 end
17 end
18
19 class C
20 def c
21 Dog.new.bark
22 end
23 end
24
25 module BarkVl
26 refine Dog do
27 def bark
28 puts "Hoo"
29 end
30 end
31 end
32
33 using BarkV1l, [A, B]
34 A.new.a # => "Woo"
Fig. 3.2. Method Seals without tracked
1 tracked [A, B]
2 using BarkVl, [A, B]
3 A.new.a # => "Hoo"

Fig. 3.3. Method Seals with tracked

overhead during method dispatch. Our call-trail dependent inline caching works well with
Method Seals, and also eliminates the large overhead. We introduce fixed-length bitsets
for representing call-trails and unsealed packages, and exploits the relaxed semantics of
Method Seals.

3.2.1 Call-trails

First, we introduce the idea of a call-trail. An observation is that the order of packages
along a call path is irrelevant in Method Seals. Suppose a class extension e is unsealed
upon unsealed package list [ = [A, B, C]. Call paths with any permutation of one or
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using BarkVl, [A, B]
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Fig. 3.4. Illustration of ”tracked” effect

more element from [ is a valid call path (e.g. A-B, B-B-C, C-A-B are all valid call paths).
Neither the order nor the repetition of packages on a call path has significance in Method
Seals. A conclusion can be drawn from the observation:

In a program with a tracked package list [;. A class extension deployed with unsealed
package list [,, is activated iff this condition holds: for all package p along the call path,
pElorpé€El,.

Put simply, the only information we are concerned about any call path is the unordered
set of packages along it. We use the term call-trails to refer to the unordered set of packages
along a call path. As for a simple example, Figure 3.7 shows a call path D-A-B-A. The
call-trail for this call path is [A, B, D].

3.2.2 Call-trail bitsets and unsealed bitsets

The core task is to find a data structure to represent call-trails. Also, the data structure
needs to be economic in its memory usage. And since we need to validate a cache by
checking the relation between two sets of classes, the data structure needs to be fast to
compare against. We propose the use of bit sets, which meets both criteria. Each bit in
the bit set represents a Method Seals package. For example, suppose we have a bit set
A, which represents our call-trail. Class Foo is represented by the 2nd bit of A, noted as
as. When ao has value 1, it suggests that Foo is on the call-trail. On the contrary, 0 on
as suggests the absence of Foo on the call-trail. We refer to the bit set representing our
current call-trail as a call-trail bitset.

Likewise, bit sets can also be used for representing unsealed package lists. When a class
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top-level
A B C D
a() | b0 <) d()

deploy class extension refining d() of D

unsealed packages

Fig. 3.5. Unsealed packages in original Method Seals

extension is unsealed on a list of packages, methods being modified by the class extension
are associated with a bit set with bits representing those packages flipped to 1. We refer
to a bit set representing an unsealed package lists, which a class extension is deployed on,
as an unsealed bitset. A call-trail bitset should have the same length as an unsealed bitset,
and the bit representing a package should have same indices in both bitsets.

Assigning positions (i.e. indices) within a bit set to newly-defined classes is straight-
forward. We keep a monolithic global counter of classes, starting from 0, and assign
each class with this number. We call the number assigned to the class its tracking id.
The tracking id of a class is essentially the index of the bit representing this class in our
bitsets.

Figure 3.8 demonstrates this mechanism. The program has 6 defined classes and each
of them has its distinct tracking id. The current call path goes by D, A and B, whose
tracking ids are 5, 1, 4, respectively. The call-trail bitset is therefore with all bits being 0
except for the first, fourth and fifth bits flipped to 1.

One potential risk is running out of bits in our bit sets. On the one hand, a bit vector
with moderate length can work efficiently, but might not accommodate all classes; On the
other hand, a variable-length bit vector is able to support infinite number of classes, but
would become sluggish as the number of classes grows.

The tracked keyword introduced in our revised version of Method Seals mitigates this
problem, as we only need to assign tracking ids to those classes declared to be tracked.
Take a look at Figure 3.9. Four classes out of total six are declared to be tracked.
Therefore, only four indices in the bit set are allocated to the tracked classes. The other
two classes’ tracking id are unavailable.
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top-level
A B C D
a() b() c() d()

deploy class extension refining d() of D

unsealed packages

Fig. 3.6. Top-level unsealed packages in Method Seals

Call trail [A , B , D]

Fig. 3.7. Call-trails

3.2.3 Invariants of a valid call-trail

For our call-trail dependent inline caching to support Method Seals, we need to ensure
the validation of a cached method entry. The cache validation procedure of conventional
inline caching checks two things: whether the receiver type has changed; and whether the
class hierarchy is altered. The assumption goes: if the class hierarchy of a program has
not changed and the receiver type remains the same, then the dispatched method should
be the same as the last lookup result, which is in the cache. For our purpose, we need to
check one more factor besides the two, that is, whether our current call-trail is a subset
of that of the cached method entry.

We have discussed in previous subsection that our relaxed semantics of Method Seals
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Fig. 3.8. Call-trail bitset
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Fig. 3.9. Assigning tracking ids with tracked keyword

asks users to specify unsealed path taken into account all classes on the call-trail starting
from the top-level. Therefore, verifying the current call-trail against a cached method
entry’s call-trail is sufficient for validation. Suppose our current call-trail bitset is C', and
the cached method entry e has an unsealed bitset T' (T" # 0). To validate e, if the class
hierarchy and receiver type are valid, C' validates T iff C' C T. This is verified by checking
bitwise or of C' and T equals T' (given that 7' # 0). In other words, the call-trail of a
inline cache is validated as follows:

CCT <= CcuT=T, T#0

What happens when T is 07 An empty 7 implies that the corresponding method
definition is either a normal method definition (not class extension) or a class extension
definition with an empty unsealed package list. Either way, a 0-valued unsealed bitset
should be validated by any call-trails. First, if it’s a normal method definition, then it is
only invalidated by change in the class hierarchy or the receiver type, which have already
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1 module RomanFixnum

2 refine Fixnum do

3 def to_s

4 # returns a Roman numeral representation
5 end

6 end

7 end

8

9 class RomanClock

10 def current_hour
11 puts currentHour
12 end

13 end

14

15 class ArabicClock

16 def current_hour
17 puts currentHour
18 end

19 end

Fig. 3.10. Refining to_s method of Fixnum class for RomanClock

been dealt with. The second case should not occur because an empty unsealed package
list is not allowed.

One edge case occurs when a normal method definition, say m, is refined by class
extension m.. m, is deployed with an unsealed package list .. Suppose a callsite of m
first dispatched the normal method definition. The inline method cache will have the
normal definition of m, which has an empty unsealed package list. According to the
algorithm, this will be validated by any call-trails and prevent m. to be ever dispatched.
However, Ruby sets special flags on any method definition refined by class extensions,
and will perform a check of the existence of class extensions when any flagged method
definition is about to be dispatched. Therefore, there is no risk of the occurring of the
above situation.

3.3 Example

We demonstrate the usage of our version of Method Seals with the same clock example
presented in the previous chapter. Suppose we are building a RomanClock class that
prints the current hour in its roman numeral representation, as well as a ArabicClock
class that prints the current hour in Arabic numeral representation. Each of these classes
maintain current hour in the builtin Fixnum type, which is a integer. Both clocks have a
currentHour method that prints out the current hour by calling puts, a built-in printing
method that calls to_s method on its target. We want to achieve the effect by refining the
built-in integer class’s to_s method, which return the string representation of the object.
Our class extension, ArabicClock class and RomanClock class are defined as shown in
Figure 3.10.

Suppose there is a Main class, which is the class using our RomanClock’s current_hour
method (Figure 3.11). To use the class extension, we unseal the class extension as
shown on line 8 of Figure 3.11. Note that on line 7, we declare Main, ArabicClock
and RomanClock to be tracked. Because these three classes are all to our concern when
deploying the class extension on Fixnum. However, we only include Main and RomanClock



27

3.3 Example
1 class Main
2 def main
3 RomanClock.new.hour
4 end
5 end
6
7 tracked [Main, RomanClock, ArabicClock]
8 wusing RomanFixnum, [Main, RomanClock]

Fig. 3.11. Unsealing RomanInteger class extension for RomanClock
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hour.to_s

| tracked packages
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Fig. 3.12. Tracked and unsealed packages in the clock example

to be unsealed when we deploy the class extension because we do not intend to affect how
Fixnum works with ArabicClock. The overview of the tracked packages and unsealed

packages is shown in Figure 3.12.

After first invocation, the callsite on line 11 in Figure 3.10 will have our refined to_s
method cached up. Subsequent calling of the current_hour method will validate the
inline method cache first during method dispatch. As long as the method is invoked from
Main class, the cached entry will be dispatched, thus the costly full method lookup is

avoided.
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3.4 Limitations

Our proposed call-trail dependent inline caching has several limitations. In this section,
we discuss the limitations and possible ways to mitigate them.

3.4.1 Fixed length of bit sets

A call-trail bitset with length n can only track at most n packages. Currently, we use
tracked method to manually specify the packages of our concern. However, as a project
grows, the number of class need to be tracked might exceed n, causing undefined behavior
of inline method caches. Therefore, the number of n need to be carefully chosen. However,
if n exceeds a word on the host operating system, validation of call-trail will take more
than a bitwise or instruction and even cancel out the performance advantage of the inline
cache. In our current implementation, we specify n as 64, a word on a 64-bit architecture
operating system. Using of tracked keyword requires the user to have a clear under-
standing over the relations among class extensions. It is possible to cause more work on
the user’s side, but we consider it improves the security of the use of class extensions.

It is possible to resolve the problem of fixed length of bit sets by using a variable-length
bit set instead. However, the procedure of enlarging or shrinking the length of bit sets
could induce some overhead.

Also, in our implementation, the tracked keyword is expected to be called only once.
This can be difficult to use when the project grows. A tracked mechanism that supports
adding and deleting concerned packages might be a good option.

3.4.2 Top-level unsealed package lists

We relaxed the semantics of original Method Seals to require unsealed package lists to
specify all unsealed packages along the path from top-level. The benefit of this is faster
validation of a cache entry’s unsealed bitset, in particular, when multiple class extensions
are deployed, because it eliminates the need to keep track of the position along a call path
where they are deployed. However, it requires more effort from users when deploying a
class extension, as a user of a library might need to analyze the source code and modify
accordingly to include all unsealed packages from top-level. On the other hand, however,
it will let users to have a more thorough understanding of code they are using.

3.4.3 Altered semantics caused by the introduction of tracked keyword

The new tracked keyword used for explicitly declaring classes of concern gives subtle
changes to the semantics of Method Seals, which might cause confusion on its correct
usage. With tracked, classes now belong two either of the three categories: untracked,
sealed or unsealed. In other words, only classes explicitly declared tracked will have
an impact on method dispatching. Untracked classes along a callpath will be ignored.
Therefore, untracked classes can be considered unsealed to any class extensions by default.

tracked keyword is expected to be used right after the definition of the classes to be
tracked and before method calls going past these classes. Ideally, users should declare
tracked classes at the entry point of the program (e.g. main method).
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Chapter 4

Implementation

We implemented our proposed call-trail dependent inline method cache and relaxed se-
mantics on top of Method Seals with the Ruby programming language. The base Ruby
interpreter we used is the most widely used implementation, MRI (Matz’ Ruby Imple-
mentation) [18]. The version number is Ruby 2.1.4, which is the one Method Seals was
originally implemented on. MRI adopts a two-level caching mechanism: inline method
caches and a global method cache. Our implementation only uses inline caching. In this
chapter, we introduce our implementation of call-trail dependent inline caching and the
cache validation procedure in detail.

4.1 MRI(YARV)

Ruby has various implementations, such as JRuby [3] or IronRuby [2]. We implemented
our proposed call-trail dependent inline caching on top of MRI (Matz’ Ruby Implemen-
tation), the official Ruby implementation. MRI is implemented in the C programming
language. The workflow of MRI is shown in Figure 4.1. When executing a Ruby script,
MRI first performs lexical and semantical analysis on the source code. The lexer and
parser MRI uses is generated with Bison [1], a parser generator. The result of this pro-
cess is an abstract syntax tree (AST), which represents all the semantic information of
the source program. This AST is transformed into bytecode of Ruby’s virtual machine,
YARV (Yet Another Ruby VM). The YARV bytecode is eventually interpreted by YARV.
Prior to version 1.9, Ruby does not have a virtual machine and evaluates the AST directly.
YARYV largely improved the performance of execution of Ruby programs.

YARV is a stack-based virtual machine. Internally, YARV maintains a runtime instruc-
tion stack as well as a call stack of current running program. New stack frames are pushed
on to the call stack at method invocation. This is shown in Figure 4.2. A C structure
rb_control frame_t is constructed when a new stack frame is pushed onto the stack. In-
formation of this method call is stored in this structure. The virtual machine keeps track
of the current control frame with a pointer, cfp. Our implementation takes advantage of
this call stack to obtain information of the current call-trail.

4.2 Implementation

We implemented the relaxed Method Seals mechanism and call-trail dependent inline
method cache discussed in previous chapter. In this section, we introduce the details of
changes we made to the Ruby virtual machine. We also introduce the detailed cache
validation procedure of our call-trail dependent inline caching mechanism
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Fig. 4.1. An overview of MRI’s workflow

4.2.1 Initialization steps on Ruby virtual machine

We modified the Ruby virtual machine (MRI) to add support for our call-trail dependent
inline caching mechanism. By default, MRI uses a two-layer method caching mechanism:
inline caching at each callsite and a global fallback cache. In our implementation, we use
only the inline method caches. The global fallback cache is turned off.

To begin with, we defined our bitset data structures as shown in Figure 4.3. The type
of our unsealed bitsets and call-trail bitsets is unsigned long long, which has 64 bits.
Line 3-6 shows our operations on our bitsets. These operations are defined as C macros
for better performance. The most critical operation is RB_PATH MATCH, on line 6, which
checks whether call-trail p is an element of call-trail q.

Method callsites are represented as a C structure named rb_call _info_t, as shown in
Figure 4.4. At each method invocation, a rb_call_info_t is created to take record of
related information regarding this method call. MRI performs inline caching by saving
a pointer of previous method lookup result (line 10). Related information such as the
class hierarchy (line 4) and the receiver type (line 6) is also stored in this structure. We
modified this structure to include the unsealed bitset of this cached method entry as
shown on line 7. When validating this cache, we compare the current call-trail against
this unseal_path. We will introduce this in detail in the following subsection.

All class definitions have a default track id value 0. When the user specifies tracked
classes using the tracked function, these classes’ track ids will be updated to distinct
integer values. This is achived by defining a new built-in function name tracked as
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typedef unsigned long long rb_method_entry_path_t;

#define RB_PATH_CLEAR(p) ((p) = 0)

#define RB_PATH_SET(p, i) ((p) |= (1 << (i—1)))
#define RB_PATH_UNSET(p, i) ((p) "= (1 << (i—1)))
#define RB_PATH_MATCH(p, q) (((p) \ (q)) == (q))

S Ui W N~

Fig. 4.3. Definiiton of our bitsets and related macros

shown in Figure 4.5. This function receives a list of classes and assigns new integer ids
to them. Note that this function is supposed to be used only at the top-level and for once
only.

All method definitions, regardless of normal method definitions or class extensions,
have their own unsealed bitsets, initialized to 0. Unsealed bitsets of normal method
definitions will remain 0 thereafter; those of class extensions will be updated at the time
of deployment. When the user deploys a class extension, all method definitions in the
class extension will update their unsealed bitsets to reflect the unsealed package list.

4.2.2 Cache validation procedure
The validation procedure of an inline method cache entry can be summarized as follows:

Step.1 Check if the cache is empty. If yes, go to Step.2, otherwise go to Step.3.
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typedef struct rb_call info struct {

/] ...
/* inline cache: keys x/
rb_serial_t method_state;
rb_serial_t class_serial;
VALUE klass;
rb_method_entry_path_t unseal_path;

OO0 Uk W+~

/* inline cache: values x/
10 const rb_method_entry_t xme;
11 VALUE defined_class;

12 // ...

13 } rb_call_ info_t;

Fig. 4.4. Callinfo structure

1 static VALUE

2 top_tracked(int argc, VALUE xargv, VALUE self)

3

4 VALUE tracked_classes, klass;

5 int 1i;

6 rb_check_arity(argc, 1, 1);

7

8 tracked_classes = argv[0];

9

10 for (i = ®; i < RARRAY_LEN(tracked_classes); i++) {
11 klass = RARRAY_AREF (tracked_classes, 1i);

12 RCLASS_TRACK_ID(klass) = NEW_VM_CLASS_TRACK_ID();
13 }

14 }

Fig. 4.5. Definition of tracked function

Step.2 Perform a full method lookup, store the resulting method definition (who
keeps its own unsealed bitset) in the inline method cache, then go to Step.4.
Step.3 The cache is not empty, validate the cache as follows:
a. Check whether the program’s class hierarchy or the receiver’s type has
changed. If yes, go to Step.2. Otherwise, proceed.
b. If this cached method definition’s unsealed bitset is 0 (a normal method
definition), go to Step.4.
c. Check whether this cached method’s unsealed bitset T' contains the current
call-trail bitset C' by taking a bitwise or. If yes, go to Step.4. Otherwise,
Step.2.
Step.4 Dispatch the method.

Figure 4.6 shows the detailed workflow of cache validation using call-trail dependent
inline caching.

4.3 Limitations of the implementation

As discussed in Section 3, the length of two types of bit sets (call-trail bitset and unsealed
bitset) needs to be carefully chosen in order to achieve the best performance. We chose
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bit sets with length 64, which is the word length of the host machine we performed bench-
mark on. Thus the bitwise or operation between current call-trail bitset and a method
definition’s unsealed bitset can be performed with one machine instruction, providing
best performance. However, it is an undefined behavior in the current implementation to
declare more than 64 tracked packages.

Besides, due to limitation of the implementation, our current implementation can only
correctly run with Ruby’s garbage collector turned off. The implementation also does not
provide support for multi-threading.
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Benchmark

We benchmarked our implementation of relaxed version of Method Seals and call-trail
dependent inline method cache. The environment on which we performed the experiments
is Linux Mint 18.1 Cinnamon 64-bit on dual Intel Core i7-6600U 2.60GHz CPUs with
memory of 16 GiB. Note that we use “MS” to refer to Method Seals, and “IC” to refer
to “inline method cache” in the result tables to save space.

5.1 Method invocation with no class extensions

First we measured the overhead of call-trail dependent inline method cache with no class
extensions used. The benchmark program repeatedly invoke an empty method and cal-
culate the average speed of method dispatch. The result is listed in Figure 5.1. The
original Method Seals implementation with no inline method cache support is around
48.8% slower than the standard MRI. The overhead is blamed on full method lookup
at every method dispatch. With our support of call-trail dependent inline caching, the
overhead has decreased to around 7%.

5.2 Method invocation using Method Seals

We measured the performance of the original and our implementation of Method Seals
during method invocation using Method Seals. We applied two class extensions on distinct
unsealed package lists, and measured the average speed of method dispatch when the
modified methods are invoked repeatedly. Results in Figure 5.2 shows that our call-trail
dependent inline caching is almost as fast as the standard MRI and is 57.1% faster than
the original Method Seals. We can safely conclude that the performance gain accredits to
the use of inline caching.

5.3 Method invocation alternating between sealed and unsealed

call-trails

Due to the design of our call-trail dependent inline method cache, only one method def-
inition can be cached at each call site. Previous benchmarks proved the usefulness of
our inline cache when a method is invoked repeatedly from the same call-trail. When a
method is invoked alternately from inside and outside a deployed class extension’s un-
sealed package lists, however, induces a performance drop. This is because the cache
is always invalidated at each method call, forcing full method lookups at each method
call. Inline caching does not work at all in this situation. Figure 5.3 is the bench-
mark program we use to measure the performance under this setting. Here we define a
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TargetClass which is the class to be modified with a class extension. The other two
classes, Foo and Bar, make method calls to the method of TargetClass. On line 32 and
33, we declare Foo and Bar to be tracked and deploy the class extension with class Foo
unsealed. Then we repeatedly calling Foo and Bar’s methods. Call-trails from Foo to the
callstie of target _method should lead to the dispatch of the class extension method, while
as call-trails from Bar should dispatch the original method definition. Figure 5.4 shows
that both original Method Seals and our implementation slow down significantly compared
to previous benchmark results. This is because the inline cache is always invalidated by
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# This is the target class to be refined with a class extension
class TargetClass

def target_method

end
end

# This is a class extension modifying the behavior of TargetClass
module TargetClassExtension
refine TargetClass do
def target_method
end
end
end

# Foo and Bar are two classes calling the same method of Target(Class
class Foo
@@target = TargetClass.new
def foo
@@target.target_method
end
end

class Bar
@@target = TargetClass.new
def bar
@@target.target_method
end
end

# Deploying the class extension on unsealed package
# Foo with Foo and Bar tracked

tracked [Foo, Bar]

using TargetClassExtension, [Foo]

Foo.new
Bar.new

foo
bar

# Repeatedly calling the target method from two different call—trails
run_bench do

foo. foo

bar.bar
end

Fig. 5.3. Benchmark code for measuring method invocation performance when call-trails

alternating between sealed and unsealed areas

call-trails alternately going in and out of the unsealed ranges. Our implementation is
somewhat slower than the original Method Seals. This is because our implementation
suffers the overhead for inline caching procedures, even though inline caching does not
work at all in this situation.
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5.4 Benchmark on Ruby on Rails

To examine the performance of our implementation under more realistic settings, we car-
ried out benchmark with Ruby on Rails [8], a popular Ruby framework for developing
web applications. Ruby on Rails is famous for its use of Ruby’s open class to provide con-
venient methods to built-in classes. We took a convenient method in_time_zone for the
built-in String class out from Rails’ ActiveSupport library, and put it into a class exten-
sion, StringZonesModule, defined in a standalone file (Figure 5.5). We then deployed
this class extension as shown in Figure 5.6. The code defines three classes: Foo, Bar
and ApplicationController, the entry point of the web app. Our app invokes method
hello in ApplicationController by sending a request to Rails. hello in turn calls foo
method of Foo, which calls bar method of Bar, which finally repeatedly invokes our con-
venient method on String. We deploy the class extension with an unsealed package list
[Foo, Bar], so call-trails from these packages will activate the class extension. We ignored
ApplicationController in both tracked package list and unsealed package list because
it is not to our concern.

We deployed this Rails app on WEBrick, a web server written in Ruby. We then
requested actions on hello method 1000 times through ApacheBench and measured re-
sponse speed.

We observe a 15% performance boost over the original Method Seals implementation.
The speed improvement grows as the number of invoking the same method (line 10 in
Figure 5.6) increases.
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1 require ’'active_support/core_ext/string/conversions’
2 require ’'active_support/core_ext/time/zones’
3
4 module StringZonesModule
5 refine String do
6 # Converts String to a TimeWithZone in the current zone
7 # 1if Time.zone or Time.zone_default is set, otherwise
8 # converts String to a Time via String#to_time
9 def in_time_zone(zone = ::Time.zone)
10 if zone
11 ::Time.find_zone! (zone).parse(self)
12 else
13 to_time
14 end
15 end
16 end
17 end
Fig. 5.5. A class extension to built-in String class
class Foo
def foo
Bar.new.bar
end
end
class Bar
using StringZonesModule, [Foo, Bar]
def bar

DO = = = s e e
QSOOI U R W OO UULR WD -

N DN
DN =

1500. times do
"2017—-07—-26.00:00:00".in_time_zone
end
end
end

tracked [Foo, Bar]

class ApplicationController < ActionController::Base
def hello
render html: Foo.new. foo
end
end

Fig. 5.6. Deployment of a class extension to String on RoR
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Conclusion and future work

6.1 Conclusion

We propose call-trail dependent inline caching to improve the method dispatch perfor-
mance of Method Seals. Class extensions are mechanisms that allow programmers add
and modify the behavior of existing classes. Class extensions can improve modularity of
code when the development involves multiple parties. Method Seals is a scoping mecha-
nism for safely deploying class extensions. Without proper scoping of class extensions, the
modified behavior of a class might alter or override the existing behavior of the class and
lead to unintended results. For example, open class of the Ruby programming language
change a class behavior globally. Other parts of the code that are also using this class
may depend on the default behavior of the class, thus globally changing the behavior
of a class cannot be considered safe to use. With Method Seals, however, programmers
are able to explicitly specify callpaths on which a class extension is deployed on. This
gives programmers better control over the effective range of a class extension and makes
class extensions safer to use. However, due to the semantics of Method Seals, method
dispatch at a callsite is dependent on callpath information during runtime. Because of
this, conventional inline caching techniques cannot be applied to Method Seals directly.
The lack of inline caching forces full method lookup at each method invocation, inducing
large overhead.

To improve method dispatch performance of Method Seals, we propose call-trail depen-
dent inline caching, an improved version of inline caching which can work with Method
Seals. Adding support for inline caching on Method Seals is challenging. It’s not only
necessary to design a data structure for efficiently representing runtime callpath informa-
tion and unsealed package information, but the data structure also needs to support fast
comparison against each other. Besides, it is necessary to keep track of multiple callpath
information for each deployment of class extension to support the original Method Seals
semantics. We introduced the notion of call-trails, which represent sets of classes along
a call path. Tracking call-trails is more straight-forward but is sufficient for the seman-
tics of Method Seals. We introduced call-trail bitsets and unsealed bitsets, which uses
fixed-length bitsets for representing the current call-trail and a method definition’s un-
sealed package list, respectively. To eliminate the needs of tracking multiple callpaths, we
relaxed Method Seals’ semantic requirements to require top-level unsealed package lists.

We implemented the proposed call-trail dependent inline caching on top of Method Seals
using the Ruby programming language. To measure and compare the performance of our
implementation, we designed and implemented micro-benchmark programs and also a
benchmark with Ruby on Rails. We benchmarked the performance of our implementation
under different settings and it shows a performance boost.
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6.2 Future work

As for next steps, it is necessary to verify the usefulness of the proposal. Polymorphic
inline caching and fine-grained state tracking can also bring potential performance boost
to the implementation. Current Method Seals semantics are subject to change for better
performance and user-friendliness. Furthermore, it is necessary to address the issues
discussed in Section 3.4.
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