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Abstract

The goal of this research is to achieve a better performance of popular data-intensive

frameworks, for example Hadoop and Spark, with only small modifications when run-

ning on modern supercomputers. Big data analytics applications have been becoming

more important and widely being demanded to process large-scale datasets in both in-

dustry and academia. Compared with developing a new data-intensive application from

scratch, using existing popular data-intensive application frameworks to develop is a

better choice in aspects of productivity and maturity. Supercomputers are potentially

faster than commodity clusters, such as Amazon EC2 cloud, when running data-intensive

applications due to their high-performance and high-cost hardware. However, the cur-

rent supercomputer design focuses more on compute-intensive applications rather than

data-intensive ones, so it is hard to achieve the best performance of the hardware when

running data-intensive applications on supercomputers. This is partly because it is also

important to keep the original data-intensive frameworks’ source code as much as possi-

ble since minimizing the cost of changes in the architecture helps increase productivity

and easily upgrade to newer versions.

We observe two mismatches of the execution environment on a lack of MPI-friendly

dynamic process creation and local disks when running those frameworks on supercom-

puters since they are designed to run on the commodity clusters, but supercomputer

design is di↵erent from commodity clusters. The first mismatch raises a question of how

to provide MPI-compatible fast dynamic process creation for popular data-intensive

frameworks but satisfy the standard way of creating processes on supercomputers. The

second mismatch brings into question of when using in-memory storage to provide vir-

tual local disks as a replacement of physical local disks, how to deploy that in-memory

storage and what deployment strategy is good on supercomputers.

To overcome the first mismatch, we propose HPC-Reuse located between YARN-like and

PBS-like resource managers in order to provide better support of dynamic management

with MPI. YARN, which is a key component of Hadoop, our targeted data-intensive

framework, is responsible for resource management. YARN adopts dynamic manage-

ment for job execution and scheduling. We identify three Ds (3D) dynamic characteris-

tics from YARN-like management: on-Demand (processes created during job execution),

Diverse job, and Detailed (fine-grained allocation). The dynamic management does not

fit into typical resource managers on supercomputers, for example PBS, that are iden-

tified having three Ss (3S) static characteristics: Stationary (no newly created process

during execution), Single job, and Shallow (coarse-grained allocation). Our experimen-

tal results show that HPC-Reuse can reduce execution time of iterative workloads by

26% and speed up data shu✏e up to 10% by using MPI.
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Regarding to the second mismatch, we report our experiments to compare various de-

ployment strategies of memcached-like in-memory storage for our focused Hadoop frame-

work on supercomputers, where each node often does not have a local disk but shares a

slow central disk in order to find the best strategy. For the experiments, we develop our

own memcached-like file system, named SEMem, for Hadoop. Since SEMem is designed

for supercomputers, it uses MPI for communication. SEMem is configurable to adopt

various deployment strategies and our experiments reveal that a good deployment strat-

egy is allocating some nodes that work only for in-memory storage but do not directly

perform MapReduce computation, with up to 10-13% improvement in comparison with

deploying the memcached-like file system on every computation node.
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Chapter 1

Introduction

In the big data era, there is a demand of analyzing large-scale raw data in both academia

and industry that makes data-intensive applications become more important in the roles

of modelling, self-learning, and revealing meaningful information. In general, large-

scale computation is divided mainly into two types of applications including compute-

intensive or data-intensive ones. Compute-intensive term refers to a kind of applications

that requires a lot of computation, such as biomolecular structure modeling [1] and

space weather simulation [2], in which CPU is the most important resource. However,

data-intensive computing focuses on how to process e�ciently large volumes of data

in parallel. In data-intensive applications, storage, memory, and network resources are

more important than the compute one. Many data-intensive workloads, for example,

healthcare data analysis [3], message mining [4], graph processing [5], machine learning

[6], pre-processing of simulation and log data [7][8], and analysis of GenBank [9], are

emerging as challenges.

Developing a data-intensive application from scratch is time-consuming [10][11], hence

in aspects of productivity and maturity, a better choice is using existing popular data-

intensive frameworks. For examples, Hadoop and Spark are the most popular imple-

mentation of MapReduce [12] that is one methodology used widely for analyzing such

large-scale datasets in big data applications. Hadoop [13] and Spark [14] are well sup-

ported and used widely on commodity clusters. While Hadoop is suitable for filtering

or mining terabyte and petabyte-scale datasets, Spark is designed to run iterative appli-

cations (e.g. learning machine algorithms and graph processing) both in memory and

on disks. Those frameworks often have easy-to-use interfaces that allow users write dis-

tributed applications in less than 100 lines of code. Moreover, Hadoop and Spark can be

deployed on thousands of nodes and support fault tolerance in restarting or continuing

failed tasks.

1
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We want to run those existing popular data-intensive application frameworks on modern

supercomputers since those supercomputers are equipped with high-performance and

high-cost hardware and expected to run applications faster than commodity clusters,

such as the Amazon EC2 cloud [15]. A supercomputer is an expensive cluster consisting

of identical computers equipped with multi-core processors and large capacity of main

memory and connected to each other through high-speed networks. In a supercomputer,

each computer is called a compute node. The number of compute nodes is several

thousands. The total number of processor cores is millions in almost all medium size

supercomputers and the total memory size is several hundred terabytes. High-speed

network is designed specially for each supercomputer. It can be Infiniband switches [16]

or Mesh Torus [17].

Since supercomputers are designed to run compute-intensive applications rather than

data-intensive ones, it is hard to exploit the supercomputer hardware in order to achieve

the best performance of those data-intensive frameworks on supercomputers. Build-

ing a balanced data and compute intensive system is not easy, requires more research,

and overcomes existing shortcoming of High performance computing (HPC) systems.

Compute-intensive applications require more computation cores and faster inter-node

communication, whereas data-intensive ones need less CPU resource and faster storage

disk I/O. HPC systems are mainly used in researches and till they are being used widely

in industry, problems related to resource management [18], scheduler [19], and mainte-

nance must be solved. Instead of building appropriate supercomputers for data-intensive

applications, adapting such applications is less expensive and more e�cient. Each su-

percomputer has di↵erent hardware and configuration, data-intensive applications need

to be flexible and easy to configured. Since data is unstructured and variable, those

applications are able to change to suit new properties of data. The requirement from

application viewpoints always change fast, so those applications also need to be changed

themselves in order to speed up software development cycle and reduce costs.

On the other hand, to increase productivity and enable easy maintenance for the data-

intensive frameworks on supercomputers, it is also important to keep the original ar-

chitecture and minimize source code modifications as much as possible. For instance,

Hadoop and Spark, which are the popular data-intensive frameworks, have a huge code-

base, changing their architecture is not easy and might a↵ect the performance later.

Moreover, they are always upgraded with new features and improvement by their large

developer commodity. By keeping the same architecture and source code as much as

possible, it is easy to add new features and update with improvement and maintenance.

To achieve a better performance of running the existing popular data-intensive frame-

works, for example Hadoop, on supercomputers while preserving the original source
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code as much as possible, we observe that we have to resolve two mismatches between

the frameworks and the execution environment. The first mismatch is a lack of MPI-

friendly dynamic process creation, and the second one is a lack of local disks on each

compute node. The two mismatches are caused by the fact that the existing frameworks

are designed mainly for commodity clusters where both dynamic process creation and

local disks are usually available, and thus they assume that the execution environment

must support those two characteristics. However, supercomputers are designed di↵er-

ently from commodity clusters, hence they do not support dynamic process creation

with MPI or provide a local disk on each compute node. The network communication

on supercomputers is considered ten times faster than on commodity clusters, using

well supported communication protocols on supercomputers, for example MPI, is neces-

sary. To minimize the MPI delay and avoid restriction on supercomputers, application

processes should be created simultaneously at the beginning, but they are dynamically

created in the data-intensive frameworks due to simple scheduling and fault tolerance.

Intermediate data in the data-intensive frameworks is typically spilled out to local disks,

but a shared storage on supercomputers. No local disk on each compute node helps avoid

disk failure and complex hardware maintenance, but disk I/O to the shared storage is

expensive.

1.1 Motivation

We describe two mismatches related to the lack of MPI-friendly dynamic process creation

and local disks as our motivation of this research in more details as follows:

The first mismatch. In comparison with commodity clusters, the interconnection of

supercomputers is an order-of-magnitude faster, hence we want to extend Hadoop, a

popular big data analytics framework, to use MPI to speed up data exchange. While

MPI is the de facto communication protocol and highly optimized for the associated

interconnection on supercomputers, socket (TCP) communication is used widely in ap-

plications on commodity clusters.

Hadoop and Spark data-intensive frameworks depend on YARN [20] and Mesos [21]

resource managers to execute their tasks, whereas most supercomputers use PBS [22]

and Slurm [23]. Process management on supercomputers is considered static, whereas

it is dynamic on the resource managers of data-intensive frameworks. There are some

studies on running Hadoop and Spark as typical jobs submitted to the PBS or Slurm’s

job queue [24] [25] [26]. To the best of our knowledge, however, there is no study carried

out to adapt and optimize YARN-like resource managers to ones on supercomputers.
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To increase task diversity and resource utilization, the job execution and scheduling in

YARN follow the dynamic management style. There are three dynamic characteristics

from YARN-like management including on-Demand (creating processes on the fly), Di-

verse job, and Detailed (fine-grained allocation). Dynamic process creation means the

execution process is newly created when a task is available.

The YARN-like dynamic management does not work well with resource managers of

supercomputers, such as PBS and Slurm, that have three static characteristics including

Stationary (all-or-nothing strategy), Single job, and Shallow (coarse-grained allocation).

On the supercomputers, the style of static process management is less flexible, but

more e�cient in the aspect of system administration and maximizing performance of a

job running. Dynamic management on supercomputers is supported partially and not

su�cient to be integrated with YARN-like resource managers. For example, Fujitsu

FX10 supercomputer [27] allows to fork a new process but MPI is not available in

that process, whereas TSUBAME supercomputer [16] provides creating dynamically

processes by using MPI-Spawn command [28], but its performance is slow due to a

collective operator required. MPI-Spawn is a mechanism to spawn new processes on

which MPI connection is still kept.

The challenge is to bridge the gap between dynamic management of the popular data-

intensive frameworks requiring MPI-compatible fast dynamic process creation and static

management on supercomputers adopting the all-or-nothing strategy of process creation.

The popular data-intensive frameworks, for example Hadoop and Spark, want to use MPI

to improve performance on supercomputers and need dynamic process creation in order

to keep their current architecture and minimize source code changes.

The second mismatch. In today’s top supercomputers, each compute node does not

have a local disk or is equipped only with a small size of a solid state drive (SSD) due

to its relative costs and high failure rate. In this thesis, we focus on supercomputers

where the local disk is not available. It makes writing and reading intermediate data

during job execution (e.g. Hadoop jobs) become a bottleneck since those data must be

stored on the distributed central disk whose access time is considered slower five orders

of magnitude than one of main memory [29]. To solve that problem, a natural approach

is using in-memory intermediate data storage in order to avoid spilling to disk. We call

that approach as memcached-like style [30] since in-memory storage could be at either

a local or remote node.

How to deploy memcached-like file systems for the popular data-intensive frameworks on

supercomputers is not an easily answerable question since supercomputers are di↵erent

from typical clusters and the combination of memcached-like in-memory storage and

Hadoop-like data-intensive frameworks is not studied well as far as we know. A feature of



Chapter 1. Introduction 5

supercomputers is that the number of compute nodes are often huge and supercomputer

users submit jobs to a job queue in order to request a number of nodes they need. When

compute nodes are given to users, should we deploy in-memory storage on every node?

should we allocate dedicated nodes from the given nodes for in-memory usage only? or

should we allow using memory of remote nodes?

1.2 Contributions

In this research, we aim to increase performance of the existing popular data-intensive

frameworks, such as Hadoop and Spark, on modern supercomputers and avoid large

source code modifications. The desired result is also to be faster the default deployment

of those frameworks on supercomputers. Moreover, the result running on supercom-

puters should outperform on cloud services, such as Amazon EC2 [15] and Microsoft

Azure [31]. An e↵ective deployment is required to run those data-intensive application

frameworks on supercomputers.

In this thesis, we define the e↵ective deployment term as the standard or typical way of

using something. ”E↵ective deployment of data-intensive frameworks on supercomput-

ers” title means that our proposed deployment achieves as good performance as running

commodity clusters or even faster. In comparison with the default deployment, our

proposed system should be faster as well.

To solve the problem of the lacks of MPI-friendly dynamic process creation and lo-

cal disks, we have proposed HPC-Reuse and SEMem that are considered as para-

virtualization of dynamic process creation and local disks, respectively. HPC-Reuse

enables a process creation mechanism with MPI support and small modification for

data-intensive frameworks and that mechanism is relevant to the static management

on supercomputers. SEMem is about providing e�cient memory-based virtual local

disks instead of using the shared central storage by answering the question of which

deployment strategy of in-memory storage is good and in what context it is good.

First, in order to provide better support of dynamic management with MPI, we have

proposed a virtual layer located between YARN-like and PBS-like resource managers on

supercomputers. It helps avoid process creation, such as MPI-Spawn, and enable MPI

communication over Hadoop processes. We name it HPC-Reuse designed specially for

Hadoop YARN hosting JVM-based applications, such as Hadoop MapReduce, Spark,

and Storm [32] applications, running on supercomputers.

MPI integration on HPC-Reuse also gives other important advantages. For Fujitsu

FX10-like supercomputers that do not allow dynamic process creation on the same node,
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HPC-Reuse enables MPI on Hadoop processes and makes YARN possible to host pure

MPI applications. For TSUBAME-like supercomputers on which MPI-Spawn overhead

is high, HPC-Reuse helps avoid it and also host pure MPI programs more e�ciently in

the aspect of start-up time overhead. By virtue of fine-grained management manner in

YARN, multiple workloads can be scheduled to run simultaneously and more e�ciently.

It allows automated and complex post processing of MapReduce and pure MPI programs.

Furthermore, in such analysis workflows, data copying between MapReduce and pure

MPI programs can be avoided by using in-memory cache provided on HPC-Reuse.

Compared to the original Hadoop, our experimental results show that HPC-Reuse can

reduce execution time of iterative workloads by 26% on FX10 supercomputer. On TSUB-

AME supercomputer, compared to using MPI-Spawn to create new processes, HPC-

Reuse has achieved improvement of 52% on average. In order to show MPI performance,

we have designed a MPI shu✏e engine to speed up data exchange. On TSUBAME and

FX10 supercomputers, it reduces execution time up to 10% by using in-memory storage.

Overall, we have made four contributions for the first issue of virtualizing MPI-friendly

dynamic process creation. We have identified 3D and 3S characteristics and di�cul-

ties when running YARN-like resource managers on supercomputers. 3D characteristics

are used to describe dynamic resource managers, such as YARN and Mesos. We have

designed and implemented HPC-Reuse that is both providing better support dynamic

management on supercomputers and satisfying restrictions on the supercomputer envi-

ronment. Moreover, we have showed that MPI shu✏ing engine is feasible to speed up

data exchange and enabled YARN to host pure MPI applications e�ciently.

Second, we have figured out which deployment strategy of memcached-like file systems

is good on supercomputers by designing experiments of di↵erent in-memory storage

deployment strategies for figuring out which one achieves a good performance when

running data-intensive MapReduce applications on supercomputers. For experiments,

we have designed our own memcached-like file system (or virtual local disk) named SE-

Mem. Since Hadoop and Spark are good choices to run data-intensive applications even

on supercomputers in aspects of productivity and maturity, we integrated our SEMem

with the implementation of Hadoop. The deployment of SEMem is easily configurable

and the intra-communication is through MPI, which is the de facto networking protocol

on supercomputers. We examined the following deployment strategies:

1. SEMem is deployed as RAM disks where data is stored only in local memory.

2. SEMem is deployed on every node and data can be stored in remote memory.

3. SEMem is deployed only on dedicated nodes that are used only for storage.
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Note that the original memcached software [33] is not a file system, does not support

Hadoop directly, and uses TCP socket for data exchange. That is the reason why we

developed SEMem from scratch.

Our experimental results reveal that allocating a group of nodes used only to store data

in memory shows a good result in data-intensive applications with 10-13% improvement

in comparison with deploying the memcached-like file system on every computation

node. The benefit has been achieved in the context in which the ratio of the dedicated

nodes to the total nodes is small. Note that there is no computation task running on

those dedicated nodes. No computation task on memory nodes might give a chance of

allocating bigger memory space to in-memory storage and makes the memory nodes less

busy.

Moreover, our experiments reveal that supercomputer centers can consider in-memory

storage (e.g. SEMem) instead of installing SSD storage for flexible hardware resource

configuration and supercomputer users can choose in-memory storage as an alternative

of SSD. Compared to the central disk and SSD storage on TSUBAME supercomputer

[16], our experimental results show that SEMem reduces execution time by 25% and

5%, respectively, on average when data size is bigger than 128 GB. In this experiment,

SEMem runs on dedicated nodes and for fairness of this experiment, all three configura-

tions use the same total number of nodes. In case of SEMem, some nodes are assigned

to only storing data, whereas they are used for computation in the central-disk and SSD

configurations. That means SEMem uses a smaller number of computation nodes.

In this thesis, our implementation focuses on Hadoop, but our HPC-Reuse and SEMem

can also work with other JVM-based frameworks, such as Spark, DataMPI [11], and

Flink [34], with small changes. Our idea of deployment strategies could be applied to K

MapReduce [10] and Mimir [35] (C++ MapReduce implementation), but we have not

conducted experiments so far.

In summary, our scientific contributions consist of narrowing the gap between dynamic

and static process management on supercomputers and showing that using dedicated

nodes only for in-memory data storage has the potential to achieve a good performance.

Related technical issues solved in HPC-Reuse and SEMem, our technical contributions

are listed as follows:

• We have designed and implemented HPC-Reuse to better support dynamic man-

agement on supercomputers.

• We have showed that MPI shu✏ing engine is faster than socket-based (TPC)

communication.
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• We have enabled YARN to host pure MPI applications e�ciently.

• We have proposed a design of e�cient data copying between Hadoop MapReduce

and pure MPI applications in post processing tasks.

• We have designed SEMem that supports di↵erent deployment strategies.

• We have designed and implemented SEMem that is tightly integrated with Hadoop.

It is possible to be adapted for Spark.

• We have implemented MPI communication in SEMem.

• We have minimized changes in Hadoop by providing para-virtualization implemen-

tation.

1.3 Thesis organization

While this chapter showed our motivation and contributions, the next five chapters will

focus on background knowledge, our proposals, and comparison. The purposes and

contents of each chapter are briefly described as follows:

Chapter 2 will give us the background of data-intensive application frameworks and the

design of top supercomputers. Then, we show reasons why using supercomputers is a

better choice to run data-intensive frameworks. Then, our observation and mismatch

that we have found will be presented. Comparison of the existing solutions will be given

in the end.

In the Chapter 3, we present HPC-Reuse and its implementation in Section 3.1 for

overcoming the first mismatch. Other benefits of HPC-Reuse are discussed in Section

3.2. Section 3.3 is dedicated to providing experimental results. Finally, Section 3.4

provides a review of related work and is followed by brief discussion and conclusion in

Section 3.5.

To solve the second mismatch, in the Chapter 4, we answer the question of which

deployment strategy of in-memory storage is good and in what application type it is good

by designing experiments in Section 4.2. The detailed SEMem architecture and several

implementation issues are described in Section 4.3 and 4.4.3 including communication

protocol and storage size. Section 4.5 is dedicated to show the experimental results.

Finally, we review related work in Section 4.7.

In the Chapter 5, the overall performance gain of our proposals is evaluated by conduct-

ing the experiment of both HPC-Reuse and SEMem. The result will prove if we achieve

our goal mentioned in Section 1.2 or not.
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We conclude our thesis in Chapter 6 by showing a comparison table of our proposal and

the existing solutions. Our proposals’ limitations are given in Section 6.1. Final, the

future work is discussed in Section 6.2.

1.4 Main publications

The contents of Chapter 3 are mainly reproduced from the paper entitled ”HPC-Reuse:

e�cient process creation for running MPI and Hadoop MapReduce on supercomputers”

[36] that was presented at 16th IEEE/ACM International Symposium on Cluster, Cloud

and Grid (CCGrid 2016). I was the first author of this paper and Prof. Chiba was a

co-author.

Chapter 4 is also based on the paper entitled ”SEMem: deployment of MPI-based

in-memory storage for Hadoop on supercomputers” that will be presented at 23rd In-

ternational European Conference on Parallel and Distributed Computing (EURO-PAR

2017). I am the first author of this paper and Prof. Chiba is a co-author.





Chapter 2

Background

Data-intensive application frameworks, supercomputer design, and mismatches when

running data-intensive application frameworks on supercomputers are discussed mainly

in this chapter. Big data analytics applications have been becoming important and

widely used to process large-scale datasets. It is hard to process large-scale datasets

in commodity clusters due to the limitation of storage and computation power, hence

supercomputers and commercial HPC clusters show more advantages to process those

datasets. Since supercomputers are usually equipped with high-performance and high-

cost hardware, they have a potential for running faster than commodity cluster, such as

laboratory servers and the Amazon EC2 cloud. On the other hand, it is important to

keep the original source code of the data-intensive frameworks as much as possible due

to productivity and easily upgrading, even when they run on supercomputers. These

requirements cause mismatches of the execution environment. They are dynamic process

creation and local disks since commodity clusters are the preferred environment of those

frameworks, but the design of supercomputers and commodity clusters is not the same.

In this chapter, first we introduce background knowledge of data-intensive application

frameworks and the design of top supercomputers. We are going to draw a general pic-

ture of those frameworks and supercomputers in order to locate its importance. Then,

the rationale behind choosing supercomputers for processing those data-intensive frame-

works is revealed. Our observations, mismatches, and related work of process manage-

ment and data storage are presented in order to show the challenges that we are going

to solve. Comparison of the existing solutions is presented in the end.

11
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2.1 Data-intensive application frameworks

In the following section, we present typical data-intensive applications and review well

known existing data-intensive frameworks including Hadoop, Spark, and Flink. More-

over, several data-intensive frameworks developed from research labs are also compared.

While the data-intensive application term refers to the real and independent software

that is used directly to process and analyze data, the data-intensive framework describes

the software used to develop applications. In this thesis, frameworks can be development

libraries that enable fast development and platforms used to run applications as well.

Data-intensive (or big data) applications are one part of large-scale scientific comput-

ing. Big data analytics has become important in many scientific computing domains and

MapReduce is one methodology used widely for analyzing such large-scale datasets in big

data applications. Hadoop and Spark are the most popular implementation of MapRe-

duce. Several studies call Hadoop/Spark popular data analytics tools or data processing

frameworks. However, we call them existing data-intensive frameworks. Moreover, in

this thesis, we focus mainly on Hadoop MapReduce as a concrete example of popular

existing data-intensive frameworks.

2.1.1 Data-intensive applications

Research paradigm has been moving to data-intensive science recently that must re-

veal information and knowledge from data. That kind of science is called the fourth

paradigm, the era of data science discovery [37]. The raw data itself is useless since it is

unstructured and does not contain any easy-to-see information. By applying analyses,

such as statistics and machine learning, on the raw data, meaningful trends and interest-

ing patterns can be uncovered. For example, Facebook collects, stores, and analyzes all

user data including 10 billion messages, 350 million uploaded pictures, 4.5 billion liking

and comments on a daily basis. Facebook wants to know user preferences and behavior

[38].

Data is generated and accumulated from di↵erent sources, such as sensors, telescopes,

human genomics, transaction logging, and web pages. The speed of data accumulation

is faster that making sense of those data. The amount of data is double every year and

it makes the data analysis more complex [9]. The more data is accumulated, the more

di�cult storage, processing, and mining become. Those data generated from sensors or

transaction logging are unstructured and most of them are stored as the raw data.
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Data-intensive applications have been identified in broad science and engineering disci-

plines and interdisciplinary researches. Below is the list of data-intensive applications

in di↵erent research fields.

• Genomics: genome and meta-genomic correlations and genome-wide association

[1] are examples of data-intensive applications in which machine learning and sta-

tistical algorithms can be used to decrease computational requirements. GenBank

is a database containing genomics data whose size is double every 18 months.

• Geoscience: large-scale raw geoscience data including observational data from sen-

sors and simulation data needs to be reduced, organized and sorted in order to

produce smaller data sets that is named data mining process [9] and MapReduce

is a typical processing technique used to do such analysis [7]. Data mining helps

convert raw data into meaningful information and a big picture.

• Astronomy: telescopes capture sky pictures, but the challenge is how to combine

those images into a final one that is called co-addition processing when the num-

ber of images is huge. MapReduce and MPI can help distribute and process the

workload in parallel [8].

2.1.2 Hadoop MapReduce

MapReduce [12] is a common programming model that is used to process large-scale

datasets. Its programming paradigm is simple and many algorithms, for example PageR-

ank [39], K cluster, and sorting, can be expressed following this model. The model helps

parallel applications more easily that can be run on thousands of compute nodes by

using a MapReduce frameworks, such as Hadoop. There are two main phases in the

MapReduce flow: mapping and reducing. At the mapping phase, data is processed to

produce (key, value) pairs. Those pairs are sorted by the same key and become input

data of the reducing phase where the desire result is calculated. The two phases are

summarized as follows:

• Map defines how to split data into a couple of (key, value): input data ! list(key,

value)

• Reduce defines what results will be obtained: (key, list(value)) ! desired results

A MapReduce PageRank example is illustrated in Fig. 2.1. It shows how raw data is

processed and what result is summarized. Firstly, input data is spit into lines, then they

continue to be calculated PageRank (PR) by Mapper. After that, (key, value) pairs are
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Input Splitting Mapping Shuffling Reducing Result

PageAà PageB, PageC
PageBà PageC
PageCà PageA, PageB

PageAà PageB, PageC

PageBà PageC

PageCà PageA, PageB

<PageB, 0.5>
<PageC, 0.5>

<PageC, 1>

<PageA, 0.5>
<PageB, 0.5>

<PageA, 0.5>

<PageB, 0.5>
<PageB, 0.5>

<PageC, 0.5>
<PageC, 1>

<PageA, 0.5>

<PageB, 1>

<PageC, 1.5>

PageA 0.5
PageB 1
PageC 1.5

Figure 2.1: Example of how MapReduce works: PageRank algorithm

Shuffling
Done 

automatically 
(Users can 

ignore)

Function Mapper
Input PageA à PageB, PageC
Begin

N = outbound links
For each outbound link
output <Page, 1/N>

End

Function Reducer
Input <PageA, x1>, …<PageA, xn>
Begin

rank = 0
For each item xi

rank += xi
output <PageA, rank>

End

Figure 2.2: Example of how MapReduce works: PageRank pseudocode

shu✏ed to send to Reducer by the same key. At there, the total PR of each page is

calculated. The pseudocode of PageRank algorithm written in the MapReduce style is

shown in Figure 2.2.

Hadoop [13] is the most popular framework of MapReduce implementation that is used

widely in practices and have large developer communities. It is written in Java and

provides users simple usage of writing Map and Reduce functions. Moreover, it is easy

to get started, even for users without parallel processing background. Nevertheless, it is

designed based on TCP-based communication that is not supported well on supercom-

puters where MPI is considered as the de facto one. By using Hadoop MapReduce, a

complex distributed application can be expressed and implemented in a hundred lines of

code, for example PageRank and Breadth-first search, since it provides easy-to-use APIs.

Moreover, it is possible to deploy Hadoop on thousands of nodes with fault tolerance

support [40].

An example of a Hadoop MapReduce program (counting error lines) is shown in Listing

2.1 and 2.2. This example is referenced from a MapReduce tutorial [41]. The program

consists of two classes: Mapping and Reducing. The mapping class is used by mapping

tasks (MapTask) and the reducing class is run on reducing tasks (ReduceTask). The

input data of MapTask is raw data that is split into lines that become the input data
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of the map method. If a line is started with ERROR, one error is counted by calling

context.write(new Text(”ERROR”), one) in order to emit the output.

ReduceTask is responsible for calculating the final sum by fetching the output data

emitted from MapTasks. All (key, value) pairs having the same key will be grouped

and become the input data of the reduce method. The final sum is output by calling

context.write(key, new IntWritable(sum)).

public static class Map extends Mapper <LongWritable , Text , Text , IntWritable > {

private final static IntWritable one = new IntWritable (1);

public void map(LongWritable key , Text value , Mapper.Context context ){

String line = value.toString ();

if (line.startsWith (" ERROR ")){

context.write(new Text(" ERROR"), one);

}

}

}

Listing 2.1: Hadoop MapReduce program example: counting error lines (Mapping

class)

public static class Reduce extends Reducer <Text , IntWritable , Text , IntWritable > {

public void reduce(Text key , Iterable <IntWritable > values , Context context) {

int sum = 0;

for (IntWritable value : values) {

sum += value.get();

}

context.write(key , new IntWritable(sum ));

}

}

Listing 2.2: Hadoop MapReduce program example: counting error lines (Reducing

class)

MapReduce is also used to solve problems of Graph500 [42], a supercomputer benchmark

focusing on data-intensive workloads. We show an example of how BFS can be expressed

in the MapReduce model in Algorithm 1. BFS is one kernel of the Graph500 benchmark.

2.1.3 Spark

Spark is a large-scale data processing framework and widely used in machine learning in

which iterative computation happens, for example K-mean and logistic regression. For

interactive data mining, Spark is also preferred to run multiple queries on the same data.

Spark supports writing applications in Java, Scala, Python, and R and provides specific

libraries for querying structured data, machine learning, graph-parallel computation,
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and scalable fault-tolerant streaming computation. Spark can run on YARN and Mesos

resource managers and support diverse data source, for example Hadoop distributed file

system (HDFS), HBase, and S3 on Amazon web services. Note that YARN and Mesos

are also used as the resource managers of Hadoop.

There is a broad class of scientific algorithms that can be solved using iterative compu-

tation, including graph ranking, clustering, and machine learning training. An iterative

job is run consecutively until it meets a condition or its value converges. Figure 2.3

describes how an iterative job works. The results of previous MapReduce iteration is

used as inputs to the next one. PageRank, a graph algorithm to rank linked documents,

is a common example of iteration computation. At the initial iteration, each document

has an equal rank value, rank
D

= 1. On each next iteration at the mapping step, each

document emits its rank contribution ( r
n

) to each outbound link, where r is its current

rank and n is the number of out-links. At the reducing step, the new rank of a document

is sum of all rank contribution that it received, new rank

D

=
P

c

i

where c

i

is the rank

contribution from an inbound link i. The set of new rank values is kept for next itera-

tion computation. Note that it is possible to implement PageRank using Hadoop that

is already mentioned in the previous section, but we need to write a program running

mapping and reducing phases consecutively. By using Spark, however, the program is

much simpler and shorter.

Spark has solved two challenges including providing explicit operators for more general

data reuse and e�cient fault tolerance. It lets users explicitly control and manipulate

data reuse and also support broad range of applications that is not limited to MapRe-

duce. Since data replication and checkpoint are expensive, it proposed a data model

that helps easily build lost data from the original one.

while distances to all nodes are not di↵erent from infinite do
Mapper input:
(node id distance adjacency list)
Mapper:
for all node id in adjacency list do

emit(node id, distance + 1)
end
Reducer:
Find the minimum of the distances to a given node
Reducer output:
(node id minimum adjacency list)

end
Algorithm 1: Breadth-first search (BFS) using MapReduce with data representation
(node id distance adjacency list)
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Spark proposed Resilient Distributed Dataset (RDD) abstraction used to store and man-

age data. RDD is a read-only and partitioned dataset and has two main aspects including

persistence and partitioning. Persistence describes where data is stored, for example in

memory or local disk. Since RDD is partitioned, partitioning information contains node

addresses in which its data is stored.

Transformations can be applied on RDDs in order to create new RDDs, such as mapping,

filtering, reducing by key, and sampling. All transformations are lazy operations when

defining a new RDD and computation happens when actions are called.

An example of a Spark program (counting error lines) is shown in Listing 2.3. This

example is cited from Spark research papers [43]. The first line reads text files from

HDFS and data is stored in RDDs named lines. A filter is applied on lines in order

to create di↵erent RDDs named errors that contains lines starting with ERROR. error

RDDs are kept in memory by using the persist action. The count action is run on each

RDDs to get the result.

lines = spark.textFile ("hdfs ://...")

errors = lines.filter(_.startsWith (" ERROR "))

errors.persist ()

errors.count()

Listing 2.3: Spark program example: counting error lines

Lost RDD can be built fast from its representing information that makes Spark fault

tolerant. A RDD scheme has a list of its parent RDDs, functions used to compute from

parents, and data partitions.

2.1.4 Flink

Flink is another data-intensive framework that is getting more popular in industry and is

started using in research. Flink’s motivation is similar to Spark that brings all di↵erent
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kinds of processing and computation into a single platform including batch, streaming,

machine learning, graph, and interactive ones. However, Flink is di↵erent from Spark

in aspects of data model, memory management, and implementation.

Flink uses an abstraction named Dataset represented as plans in the runtime. Whereas,

a RDD is represented as a Java object. Such di↵erence enables Dataset to be optimized

before being executed. That advantage is similar to Dataframe API of Spark.

Spark has used Java heap space for caching data, but Flink implemented a custom

memory management located outside the heap space. The independent memory man-

agement helps avoid out of memory issues and garbage collection pauses. Moreover,

resource utilization and I/O performance are improved.

Programming APIs of Flink and Spark are almost similar. While Flink is implemented

using Java, Spark is written in Scala. Listing 2.4 shows an example of Flink program.

Compared to the example of Spark in Listing 2.3, the di↵erence is small and both ex-

amples are written in Scala.

lines = env.fromCollection(data)

errors = lines.filter(s -> s.startsWith (" ERROR "))

errors.collect ()

Listing 2.4: Flink program example: counting error lines

2.1.5 Scratch building frameworks

Almost all common data-intensive frameworks are developed first and then widely used

when they are proved useful and e�cient. Developing a data-intensive framework from

scratch is time-consuming and less generally used. We show two frameworks that are

still being developed.

Regarding MapReduce implementation on supercomputer environments, almost all of

them are under development and designed to a certain specific type of supercomputers.

For example, K MapReduce [10] from Riken is developed to exploit the K supercom-

puter, and MapReduce MPI’s experiments from Sandia [44] had been done on the Cray

supercomputer. Both of them are written in C and using MPI that helps gain benefits

from the beneath supercomputer hardware where Tofu and 3D-Torus interconnection are

set up, respectively. However, such frameworks contain complex structures and require

HPC experts to write applications based on their architecture.
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2.1.5.1 K MapReduce

K MapReduce (KMR) [10] is an implementation of MapReduce programming model

and its targeted supercomputer is K computer or similar descendants. Its motivation is

to run large-scale MapReduce applications on supercomputers by leveraging the super-

computer’s hardware including large amount of memory and fast interconnection on the

K supercomputer. KMR is implemented using MPI that is the de facto communication

on supercomputers. Moreover, it also provided fast file reading by exploiting the a�nity

between compute nodes and the data storage disks.

First, KMR is developed only for the K supercomputer, a supercomputer developed by

Fujitsu using SPARC processor and Tofu interconnection, so it is not easy to deploy

KMR on other supercomputers, such as ones made by Cray and IBM. KMR is opti-

mized to used K supercomputer architecture including data accessing patterns and the

communication protocol that is di↵erent from other vendors’ design.

Second, KMR provided programming Application program interface (API) used to write

a MapReduce program, but it did not follow any MapReduce coding style, such as

Hadoop MapReduce API and Spark or Flink’s API. To write a MapReduce program,

users need to understand KMR’s API and related parameters. Those parameters might

be special configurations on the K supercomputer that users must understand clearly

in order to use them. Moreover, KMR’s documentation and tutorial are not detailed

enough for ordinary users.

An example of a KMR program (word count) is shown in Listing 2.5. This example

is cited from the KMR tutorial [45]. Mapping is done by using kmr map once method

with the input data read from files. The (key, value) pair output stored in kvs0 will

be shu✏ed in order to group the pairs having the same key. Then, kmr reduce is used

to calculate the sum of each word. Note that two methods read words from a file and

sum counts for a word should be written by the users and follow the KMR’s specific

defined syntax. Moreover, API names, such as kmr map once and kmr add kv, are not

self-explanatory.

static int

sum_counts_for_a_word(const struct kmr_kv_box kv[], const long n,

const KMR_KVS *kvs , KMR_KVS *kvo , void *p)

{

long c = 0;

for (long i = 0; i < n; i++) {

c -= kv[i].v.i;

}

struct kmr_kv_box nkv = {

.klen = kv[0].klen ,
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.k.p = kv[0].k.p,

.vlen = sizeof(long),

.v.i = c};

kmr_add_kv(kvo , nkv);

return MPI_SUCCESS;

}

// Mapping

KMR_KVS *kvs0 = kmr_create_kvs(mr, KMR_KV_OPAQUE , KMR_KV_INTEGER );

kmr_map_once(kvs0 , 0, kmr_noopt , 0, read_words_from_a_file );

// Shuffling

KMR_KVS *kvs1 = kmr_create_kvs(mr, KMR_KV_OPAQUE , KMR_KV_INTEGER );

kmr_shuffle(kvs0 , kvs1 , kmr_noopt );

// Reducing

KMR_KVS *kvs2 = kmr_create_kvs(mr, KMR_KV_OPAQUE , KMR_KV_INTEGER );

kmr_reduce(kvs1 , kvs2 , 0, kmr_noopt , sum_counts_for_a_word );

Listing 2.5: KMR program example: word count

2.1.5.2 DataMPI

DataMPI [11] is a communication library used to extend MPI to support Hadoop-like

computing on high performance computing (HPC) clusters. Since there is a lack of

e�cient communication support, for example MPI, for Hadoop-like big data frameworks

including Spark, Dryad, S4, and Twister. DataMPI is developed to provide the first class

communication protocol, MPI, on HPC clusters instead of using traditional techniques,

such as HTTP and RPC.

DataMPI can be easily configured for di↵erent supercomputers, but its programming

API is complex and not intuitive. Although it is a Hadoop-like library, its program-

ming API is not similar to Hadoop MapReduce’s one. In order to develop MapReduce

programs, users need to understand the coding style of DataMPI including how to send

and receive data.

2.2 Supercomputers

As the data size is getting bigger and bigger, the data cannot fit into small and com-

modity clusters in aspects of storage and computation. Supercomputers and commercial

HPC clusters are more relevant to processing those large-scale data. In the following

section, we introduce the general design of supercomputers consisting the first and the

current most powerful ones. Then, the architecture of some well known supercomputers
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is introduced. We also compare commercial HPC clusters, such as Amazon EC2 and

Microsoft Azure.

In this thesis, we define supercomputers having thousands of identical high-performance

nodes and the node allocation and deallocation has been managed by a PBS-like [22]

or Slurm-like [23] resource manager. Most of supercomputers from Cray, IBM, and

Fujitsu fit into our definition. Supercomputers and HPC clusters terms are sometimes

used interchangeably, but a HPC cluster should be smaller than a supercomputer in

aspects of number of nodes and users. Although a HPC cluster is also equipped with

high-speed network and high-performance compute and memory resources, but its scale

is still small. A HPC cluster often has a local disk on each compute node that makes

HPC clusters close to commodity clusters. We focus more on supercomputers in this

research.

2.2.1 Supercomputers versus Commodity clusters

Supercomputer design has a long research and is changed significantly during develop-

ment of microprocessor, RAM technology, network communication, and data storage.

The first supercomputer was developed by Cray [46] in 1964 when vacuum tubes were

mainly used in large computers and its peak performance was 3 million floating point

operations per second (flops). In the TOP500 list, the current fastest supercomputer

has achieved 93 petaflops including more than 10 million processor cores [47]. The

size of supercomputers is also reduced from the first one that can fill four cabinets to

small racks containing thousand of nodes. Performance is the most important motiva-

tion when building a new supercomputer. Since CPU clock is limited, the only way to

increase computation speed is adding more processors and more nodes. It is hard to

combine thousand of compute nodes and it requires careful design of I/O and inter-node

communication.

There are two main di↵erences between supercomputers and commodity clusters: net-

work communication and data storage. Commodity means using low-performance and

low-cost hardware (components) that is typically standardized and manufactured by

multiple vendors. Commodity clusters can be a group of simple personal computers

and hardware on each computer is di↵erent from each other. By contrast, since each

supercomputer is designed with uniqueness in order to achieve targeted performance,

high-cost and identical hardware is used for every compute node.

There are three main components on supercomputers: compute nodes, data storage

servers, and high-speed switches (or I/O nodes). The data storage servers consist of

distributed hard disks and their total size is several petabytes. We call it the central
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disk for later use. Compute nodes and the central disk are connected to each other

through high-speed network and I/O nodes.

Network communication. Both compute- and data-intensive applications require

fast internode communication in order to make parallel tasks faster. Compute nodes

are connected to each other through special connections having high throughput and

low latency, such as 6D Mesh/Torus or QDR Infiniband. By contrast, disk I/O from

compute nodes to the central disk is considered slow since it is piped through I/O devices

and the central disk is a distributed storage consisting of thousand of HDDs.

MPI is the de facto communication protocol on supercomputers and optimized to exploit

the high-speed interconnection of supercomputers. By contrast, commodity clusters use

traditional techniques, such as HTTP, RPC, and TCP. On almost all supercomputers,

Remote Direct Memory Access (RDMA) is supported to enable direct memory copy-

ing without involving of operating system. MPI also leverages RDMA for large data

messages.

Data storage. In today’s top supercomputers, it is typical that there is no local disk

on each compute node, but SSD is sometimes equipped [16]. The size of a local disk is

not scalable and is di�cult to upgrade for all compute nodes. The local disk on each

node can be a point of failure and when it happens, it is di�cult to fix. Moreover, since

physical space is limited on each compute node, equipping a local disk is not feasible.

Instead of using local disks, a central disk (or storage servers) is deployed for the sake of

scalability, fault tolerance, easy maintenance, and compactness. SSD can be integrated

in each compute node or gathered as a shared storage. Note that the integrated SSD

should be a temporary storage where data will be deleted after job execution.

2.2.2 Examples of supercomputers

There are several main supercomputer vendors in the world including Cray, IBM, Fu-

jitsu, NEC/HPE, and Lenovo. In the Top500 List (November 2016) [48], Cray Inc. is the

most popular vendor with four supercomputers in the top ten. In Japan, Fujitsu is the

main vendor that made the K computer and Oakforest-PACS supercomputer. TSUB-

AME is ranked second in the most energy-e�cient supercomputers of the Green500 list

(November 2015).

The general design of supercomputers including compute nodes, data storage servers,

and high-speed switches (or I/O nodes) is the same for almost all vendors, but each

vendor has its own interconnection and data storage design. In this section, we introduce
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two popular supercomputers in Japan: TSUBAME and Fujitsu FX10, and other vendors

including Cray and IBM.

2.2.2.1 TSUBAME supercomputer

At TSUBAME supercomputer [16] of Tokyo Institute of Technology, each compute node

is equipped with Intel Xeon X5670 2.93GHz (12 cores), 54GB memory, and 3 GPU

NVIDIA Tesla K20X. Total memory size of all nodes is 80.55 TB. Regarding perfor-

mance, the peak processing speed is 17 PFlops when combining both CPU and GPU.

It has 1292 compute nodes in total.

Each node is connected with Infiniband device Grid Director 4700 and the maximum

throughput of that interconnection is 80 GB/s. It supports non-blocking and the full

bisectional bandwidth is available. An optimized MPI library is provided for writing

applications.

TSUBAME has a SSD local storage on each compute node, but its size is just 120 GB.

SSD is a temporary storage on each node and any running job on the compute node

can write and read data. Data written during job running should be deleted manually

after the job is finished. It raises security problem if the data is not removed after job

running. Its central disk has six DDN SFA10000 developed by Data Direct Network Inc.

The size of central disk is 7.13 PB in total and the central disk uses Lustre parallel file

system.

2.2.2.2 Fujitsu FX10 supercomputer

PRIMEHPC FX10 (called FX10 for short) is a supercomputer brand of Fujitsu. Its

first generation is K computer that is the fastest supercomputer in 2011 [49] and FX10

supercomputer at The University of Tokyo is the second generation. A FX10 system

includes compute nodes, a central disk, and interactive and login nodes.

At The University of Tokyo, a FX10 node is equipped with SPARC64 IXfx 1.848 GHz

processor (16 cores) and 32GB main memory. It has 50 racks and each rack has 96

compute nodes and 6 I/O nodes. Its peak performance is 1.13 PFlops and there is 150

TB of memory available in total.

Computing nodes are connected with each other through Tofu interconnection developed

by Fujitsu on which MPI’s maximum throughput is 10 GB/s, and they access the central

storage through InfiniBand network. On each compute node, the SPARC processor is



Chapter 2. Background 24

connected directly to a dedicated interconnect controller (ICC). The ICC can be con-

nected to 10 other ICCs. The Tofu interconnect includes Tofu network router (TNR),

Tofu network interface (TNI), and Tofu barrier interface (TBI). TNR is responsible for

packet transferring between ICCs. TNI controls packet communication and also pro-

vides RDMA communication that does not require intervention of the operating system

on the destination node. TBI provides collective communication. Tofu interconnection

is equipped with six-dimensional (6D) mesh/torus network [17]. When users request

compute nodes, they can specify the one-dimensional (1D), 2D, or 3D shape that is

corresponding to the network topology among compute nodes. Communication perfor-

mance can be improved through that configuration. MPI communication is optimized

to used Tofu interconnection.

The FX10 does not have a local disk for each computing node, conversely a central disk

used. The size of central disk is 2.1 PB. Lustre file system is deployed on the central

disk. The supercomputer also provides a temporary disk that is used for job staging.

2.2.2.3 Cray Titan supercomputer

Cray has a long history of building supercomputers and Titan, a Cray XK7 supercom-

puter, is one of them that is located at Oak Ridge National Laboratory [50]. Its peak

performance is more than 20 PFlops that contains 18,688 physical compute nodes. Each

compute node is equipped with a 2.2 GHz AMD Opteron 6274 processor (16 cores) and

32 GB of memory. The total size of memory is 598 TB. Each two compute node uses

one Gemini interconnect router, the Cray custom interconnection. Moreover, each node

contains an GPU NVIDIA Kepler with 6 GB of memory. Titan is currently ranked third

in the top 10 [48].

Titan’s interconnection uses a 3D torus network that is able to handle tens of millions of

MPI messages per second. A compute node is connected to Gemini using HyperTrans-

port 3.9 technology, a direct architecture that avoids PCI bottlenecks that is inherent

in commodity networks. The interconnection’s peak bandwidth is 20 GB/s.

Titan’s compute node does not contain a local disk and it has only a central disk in

which the OLCF’s center-wide Lustre parallel file system is deployed. The storage size

if 32 PB including 20,000 disk drives. The throughput of disk I/O on Titan’s data

storage is 1.4 TB/s considered as the fastest storage in 2013 [51].
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2.2.2.4 IBM Sequoia supercomputer

IBM is also a big vendor of building supercomputer and Sequoia is an example of the

Blue Gene/Q supercomputer constructed by IBM that is located at Lawrence Livermore

National Laboratory (LLNL). It is ranked fourth in top 10 of Top500 list (November

2016) and was the fastest supercomputer in June, 2012 with the LINPACK performance

is 17.17 PFlops. Sequoia has 98,304 compute nodes contained in 96 racks. Each compute

node has a PowerPC A2 processor (16 cores) and 16 GB of DDR3 memory. The total

size of memory is 1.5 PB.

The interconnection of Sequoia is 5D torus topology that contains ten 2-Gbytes/s bidi-

rectional links and one 2-Gbytes/s link for I/O nodes [52]. The interconnection’s peak

bandwidth is 8.75 GB/s. I/O nodes are used to connect compute nodes and the file

system.

There is no local disk on each compute node and Sequoia uses Lustre file system for its

central disk. Its data storage size is 55 PB. There is no SSD integrated on each compute

node.

2.2.3 Commercial HPC clusters

In comparison with academic supercomputers, commercial HPC clusters provided by

Amazon and Microsoft are described in order to show drawback and strong points.

While supercomputers often give users physical compute nodes, users prefer virtual

compute nodes on cloud services. The physical instance is also provided on Amazon

EC2, namely Dedicated Hosts, but its price is more expensive, up to 16 times higher.

2.2.3.1 Amazon HPC cluster

Amazon Web Services (AWS) is a pay-as-you-go cloud computing platforms that pro-

vides both commodity and high performance computing servers. It is flexible to provide

on-demand servers for specific compute-intensive and data-intensive applications. Users

do not need a large capital investment to build a HPC computer since they can use

real physical HPC servers from AWS [53]. Moreover, users are able to scale out their

applications across hundreds of nodes. C3 and C4 instances (4xlarge or 8xlarge) are

considered as high performance compute nodes. C4 instances on AWS is equipped with

Intel Xeon V3 Haswell (18 cores) and up to 60 GB of memory.

AWS network is not as fast as the real supercomputers since its network architecture is

built for both commodity and HPC servers. The maximum throughput is 1.25 GB/s to
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each instance. Moreover, there is no MPI optimization for its network hardware. Each

type of instances has a di↵erent maximum bandwidth and expensive instances, such as

c3.8xlarge and c4.8xlarge , should have a faster network throughput.

The C4 instance is backed by Amazon Elastic Block Store (EBS) that is considered as a

central disk. Users can choose SSD-backed or HDD-backed storage. The size of storage

can be easily scale out or in on demand. SSD storage on Amazon EC2 should be remote

disks and does not locate in the same compute node with the processors and memory

since it helps increase the e�ciency of storage allocation and easy maintenance.

Since running MapReduce on the cloud is demanded, Amazon provides Elastic MapRe-

duce (EMR) that enables easy, fast, and automated deployment of Hadoop clusters.

Users can scale out the cluster on the fly, even when MapReduce applications are run-

ning. Amazon EMR enables the e↵ective deployment in the aspect of fast and easy

cluster deployment.

2.2.3.2 Microsoft Azure HPC cluster

Microsoft Azure is another cloud platform that also supports HPC servers for large-scale

applications by using Microsoft HPC Pack [54]. Users can choose run compute-intensive

and data-intensive applications on Windows of Linux servers. A8/A9 instances of Azure

has up to 16 cores and 112 GB of memory.

Those HPC instances are connected to each other through 5GB/s high-speed network

that provides RDMA technology for MPI applications. Azure provides Microsoft MPI

(M-MPI), a Microsoft implementation of MPI.

HPC instances are backed by Azure storage blobs that is a kind of central disks. The

size of storage can be easily scaled out or in on demand. Users can choose SSD-backed

or HDD-backed storage to run an instance.

In comparison with Amazon EMR, Microsoft provides Azure HDInsight that provisions

Hadoop MapReduce clusters on demand. Azure HDInsight is an elastic platform in

which users can easily monitor performance and cost.

2.2.4 System comparison

Table 2.1 shows the comparison of above introduced systems in aspects of how fast the

interconnection is, if SSD is available or not, how big memory size is, and how easy

to use those systems. Each criterion is rated high (XXX), fair (XX), or low (X). x

denotes not being supported.
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Interconnection SSD-backed Memory size Easy-to-use

TSUBAME XXX XX XXX X

Fujitsu FX10 XXX x XX X

Cray Titan XXX x XX X

IBM Sequoia XXX x XX X

Amazon HPC X XXX XXX XX

Microsoft Azure HPC XX XX XXX XX

Table 2.1: Comparison of the introduced systems

The rating of interconnection on supercomputers is high since they are equipped with

connections having high throughput and low latency, such as Torus or QDR Infiniband.

The Amazon HPC cluster is rated low since the maximum throughput is just 1.25 GB/s.

Microsoft Azure provides a better one with as much as 5GB/s. Most supercomputers do

not have a local disk on each compute node. TSUBAME has SSD storage up to 120 GB.

Commercial HPC clusters o↵er large sizes of SSD storage that could be either local or

remote disks. The memory size on cloud services is also larger than supercomputers’ one,

for example TSUBAME and Fujitsu FX10. In the aspect of ease of use, Amazon EC2

and Microsoft Azure have better interfaces to submit and control jobs. The command

line interface is common on the supercomputer environment.

2.3 Where data-intensive frameworks should be run

A question is that users should use supercomputers or commodity clusters, such as Ama-

zon EC2 and Microsoft Azure, to run their data-intensive applications. Our hypothesis

is that supercomputers are potentially faster than cloud services. Accessing the super-

computer service is becoming easier as cloud ones. While cloud services (e.g. Amazon

EC2 and Microsoft Azure) provide the pay-as-you-go payment model, supercomputers

o↵ers block computations, for example you must buy 3000 computation units for each

payment that costs 129,900 Yen or 1,171 US dollars [55]. Those units is equivalent to

3156 hours of computation.
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2.3.1 Choosing supercomputers

In comparison with commodity clusters, such as the Amazon EC2 or Microsoft Azure

cloud, supercomputers have more advantages in the aspect of first-class hardware equipped

in compute nodes and interconnection, hence choosing supercomputers is better choice.

Compute nodes are connected to each other through special connections having high

throughput and low latency, such as 6D Mesh/Torus or QDR Infiniband. While the

maximum bandwidth on most of top supercomputers is 8 GB/s, the typical network

bandwidth on lab clusters and cloud services is 1 GB/s. Moreover, it is typical that

users can use physical compute nodes on supercomputers, but they are given virtual

ones on Amazon EC2 and Microsoft Azure.

To verify the performance of data-intensive frameworks on supercomputers, we con-

ducted an experiment of a Hadoop MapReduce benchmark, Tera-sort, running on the

TSUBAME supercomputer and Amazon EMR. The size of input dataset is 128 GB and

we keep the problem size unchanged. We change the number of compute nodes and

measure the execution. Every measurement is done twice. On the TSUBAME super-

computer, a compute node has Intel Xeon X5670 2.93 GHz (12 cores), 54 GB memory,

and 120 GB of SSD. The name of Intel CPU microarchitecture on TSUBAME is West-

mere released in 2010 [56]. On Amazon EMR, we choose two instance types: m3.2xlarge

and c3.8xlarge.

The m3.2xlarge instance has 8 vCPUs, 30 GB of memory, and 160 GB of SSD. The

m3 instance can be based on Intel Xeon E5-2670 v2 (Ivy Bridge) or Intel Xeon E5-2670

(Sandy Bridge) processors. Each vCPU on Amazon EC2 is equivalent to a hardware

hyper-thread. The m3 instance is considered to have a balance of CPU, memory, and

network resources [57]. The c3.8xlarge instance has 32 vCPUs, 60 GB of memory, and

640 GB of SSD. The name of Intel CPU microarchitecture of c3.8xlarge is Intel Xeon

E5-2680 v2 (Ivy Bridge). C3 is considered as high performance computing instances.

Moreover, the c3.8xlarge instance is equivalent to a physical node [58].

In the aspect of hardware configuration, the m3.2xlarge instance is a bit weaker than the

TSUBAME compute node, but its CPU microarchitecture, Sandy Bridge, is newer than

the Westmere of TSUBAME nodes. The c3.8xlarge instance is more powerful than the

TSUBAME compute node. While input data is stored in the central disk on TSUBAME,

S3 storage is used on Amazon EMR. SSD storage on Amazon EMR should be located

on the same node with compute and memory resources. However, that SSD storage can

be provisioned from a pool of SSD disks.

Figure 2.4 presents Hadoop MapReduce performance running on the TSUBAME super-

computer and Amazon Elastic MapReduce (EMR). TSUBAME shows faster execution
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Figure 2.4: Hadoop Performance on TSUBAME and Amazon EMR

time when the number of compute nodes is less than 32 nodes. Compared Amazon

EMR m3.2xlarge and c3.8xlarge, the execution on TSUBAME is faster 26% and 10%,

respectively, on average. When there are 64 compute nodes, the performance of all

three test cases is almost the same. The m3.2xlarge is a bit slower since its compute

and memory resources is weaker. The c3.8xlarge cluster is running a little faster since

it is using Ivy Bridge CPU microarchitecture that is newer and faster 17% and 4% than

Westmere and Sandy Bridge, respectively [59]. When the number of compute nodes

increases, the improvement on TSUBAME is small since data size is smaller and the

compute resource on Amazon EMR is stronger. When the size of input data is large,

there might be bottlenecks at S3 storage and remote SSD that make the performance

of Amazon EMR is not fast as TSUBAME where SSD is located in the same node with

compute and memory resources.

To check whether the price of supercomputer service is expensive and a↵ordable or not.

We compare the price of three test cases by hours. On Amazon EC2, users can choose

dedicated on-demand instances that are immediately provisioned and spot instances that

allow to bid spare Amazon EC2 resources. The price of spot instances can be cut up to

90% in comparison with the on-demand instances. The disadvantage of spot instances

is that users might not bid instances or wait longer time to be provisioned. The spot
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Figure 2.5: Compute node price on TSUBAME and Amazon EMR

instances are close to the supercomputer service since users must submit applications

to the supercomputer’s job queue and wait until the requested resource is available.

In the aspect of expense, the TSUBAME supercomputer o↵ers more reasonable hourly

price than Amazon EMR. In Figure 2.5, compared to Amazon EMR m3.2xlarge and

c3.8xlarge instances requested on demand, the hourly price of TSUBAME is cheaper

58% and 83%, respectively. The Amazon EMR m3.2xlarge spot instance is cheaper a

bit than TSUBAME.

2.3.2 Performance is not satisfactory

The first-class hardware on supercomputers does not seem to help achieve the best per-

formance of the popular data-intensive frameworks since the design of supercomputers

aims to serve traditional compute-intensive applications. Although TSUBAME showed

better performance than Amazon EMR m3.2xlarge and c3.8xlarge, but its improvement

is not satisfactory as our expectation.

In this thesis, our targeted supercomputer is a large-scale multiple-node machine with-

out a physical local disk on each compute node. We mention several supercomputers

equipped with local disks, for example Cray CS300 Hadoop [60] and IBM ASC Purple
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[61], in Section 2.3.2.1, but they are di↵erent from our target. Note that the current top’s

supercomputers including Oakforest-PACS, K supercomputer, Cray Titan, and IBM Se-

quoia do not have local disks. The supercomputers described below are small-scale or

already replaced by next generations.

Supercomputers are considered super-fast, but the performance of TSUBAME did not

outperform Amazon EMR in the Figure 2.4, even being slower when using 64 compute

nodes. The TSUBAME supercomputer has a faster interconnection and its central disk

might be faster than S3 storage [62] on Amazon EC2 in which the input and output

data of experiments is stored. Moreover, the SSD storage on TSUBAME is located on

the same node with compute and memory, but on Amazon EC2, SSD storage might be

a remote disk that is provisioned from a pool of SSD disks.

When the central disk is used to store the intermediate data, it is slow on TSUBAME as

shown in Figure 2.6. In order to check the performance of the central disk on TSUBAME,

we conducted an experiment by changing where the intermediate data is stored. Instead

of using SSD as Figure 2.4, the central disk is used. Note that the central disk is a

shared and remote storage. Figure 2.6 shows that it is 2 times slower than the EMR

c3.8xlarge cluster. The reason is that disk I/O to the central disk is slower than using
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the local SSD. The local SSD is not typical on the supercomputing environment and

TSUBAME is a special case. In general, we should consider that the central disk is the

de facto storage on supercomputers.

2.3.2.1 Data-intensive supercomputers

Although most supercomputers are designed to run compute-intensive applications,

there are several ones proposed to run data-intensive applications. Some of them have

local disks on compute nodes, such as the Cray CS300 Hadoop and DASH. However,

local disks are fragile and will be a point of failure. It is hard to maintain local disks

on every compute node, especially in large clusters having up to thousands of nodes.

That reason prevents such clusters from scalability and satisfactory performance. We

describe Cray CS300 Hadoop and DASH clusters in more details as follows:

The Cray CS300 Hadoop [60] provides a fast and optimized cluster served to run Hadoop

applications e�ciently and allows users to combine supercomputing technologies and

data analysis of Hadoop. The Hadoop solution integrated in the CS300 system includes

workload management and storage hierarchy. The Hadoop performance on the opti-

mized CS300 cluster might be faster than on other supercomputers, but the hardware

configuration is more complex and not e�cient, for example in order to avoid using the

central disk, the local disk on each node is equipped. Infiniband is supported on the

cluster, but it is not clear how Hadoop can exploit MPI on such high-speed network.

DASH [29] is a prototype of data-intensive supercomputers that is equipped with SSD

located between main memory and its central disk. SSD helps decrease latency when

spinning to hard disks. However, this storage architecture is not scalable and still a

small-scale prototype. Moreover, it is unknown that Hadoop and Spark can achieve a

good performance on such platform.

2.3.2.2 Hadoop/Spark on supercomputers

There are several studies related to Hadoop deployment on supercomputers, but most

of them are just using the default deployment based on TCP protocol and local disks.

Note that Hadoop is one of the most popular data-intensive frameworks. We survey its

deployments at some supercomputer centers as follows:

The Scaling Spark on HPC [63] paper reported scaling Spark on Cray XC systems. The

paper considered the di�culty of using Lustre to handle the intermediate data due to the

overhead in fopen. Its deployment solved the problem and improved scalability. The
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paper also showed that there is more room to improve performance of data-intensive

frameworks, such as Hadoop, on supercomputers.

Spark4MN [64] deployed Spark on the MareNostrum supercomputer without using

Hadoop YARN or Mesos resource manager. The paper analyzed several deployment

configurations and examined them. Its approach was only to show how to deployment,

but not to exploit advantages of high-speed communication and avoid the central disk.

YARN with Lustre and RDMA [65] proposed a design of YARN that can leverage both

Lustre file system and RDMA on HPC clusters. The paper considered using Lustre

without local disks and RDMA-based data shu✏e of intermediate data. Due to using

the central disk, the overhead of reading and writing is still significant. Moreover, the

existing architecture must be changed much.

HPCHadoop [66] helps run Hadoop workloads on supercomputers, especially on Cray

X-series. The paper raised the problems of resource management handled by PBS [22]

or Slurm [23] and no local data storage on each node. The main goal of the paper

is to deploy Hadoop on supercomputers and it is a naive deployment that does not

consider supercomputing resources and designs, for example how to leverage the high-

speed network and avoid disk I/O to the central disk.

myHadoop [24][67] developed at the San Diego supercomputer center has aimed to de-

ploy a private Hadoop cluster on top of the supercomputer by submitting a job script

to the job queue. The Hadoop cluster is launched on allocated compute nodes. This

is just a naive default deployment of running Hadoop on supercomputers. The Hadoop

applications cannot exploit supercomputing resources, such as network and large mem-

ory. The default deployment still has a performance bottleneck at accessing the central

disk.

2.3.2.3 MPI-based MapReduce frameworks

We survey studies attempting to build MapReduce frameworks on top of MPI as below.

Note that since MapReduce is the widely used parallel programming model in data-

intensive processing, it is worth investigating existing MapReduce frameworks.

Mimir [35] proposed a MPI-based in-memory MapReduce framework running on su-

percomputers. This framework was written in C/C++ and MPI that leverages much

the supercomputing network. It also allows executing workloads in memory that helps

avoid using the central disk and achieve significantly better performance. In the aspect

of execution time performance, Mimir is satisfactory, but users will not satisfy in produc-

tive and mature performance since it does not provide easy-to-use programming APIs.
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Moreover, Mimir was designed to support narrow applications and platforms. Users will

satisfy more if there is an e↵ective deployment of popular data-intensive frameworks,

such as Hadoop and Spark, on supercomputers.

FT-MRMPI [68] is a MapReduce library written in C and MPI supporting fault tol-

erance. As Mimir, it could exploit MPI communication on supercomputers, but it did

not provide any mechanism to avoid using the central disk. FT-MRMPI is considered

di�cult to write applications and it just supports narrow applications and platforms.

2.3.3 Our observations

According to our observation, the major causes of unsatisfactory performance of Hadoop-

like data-intensive frameworks on the supercomputer environment are the lack of MPI-

friendly dynamic process creation and local disks on each compute node. Supercomputer

programs should be run simultaneously in order to minimum the network communication

delay, for example MPI, but the resource manager of the existing popular data-intensive

frameworks require dynamic process creation for simple scheduling and fault tolerance.

However, there is no e�cient dynamic process creation mechanism supporting MPI.

Moreover, disk I/O to the central disk is expensive, but data-intensive applications

require data accessing to the disk in order to store the intermediate data. A lack of

local disks causes compute nodes to heavily access a slow central disk. Note that those

Hadoop-like frameworks can still run properly on our targeted type of supercomputers,

but the performance is not satisfactory due to using TCP communication and a lack of

local disks.

2.4 Mismatch: MPI-friendly dynamic process creation

In this section, we present the first mismatch related to MPI-friendly dynamic process

creation. Our observation is that MPI-compatible fast dynamic process creation re-

quired in the data-intensive frameworks is not supported well and not the first citizen

on supercomputer environment. The data-intensive frameworks, for example Hadoop

and Spark, want to use MPI, the de facto communication protocol on supercomputers,

to improve performance on supercomputers and need dynamic process creation in order

to keep their current architecture and minimize source code changes. The challenge is

to support better dynamic process creation with MPI for the data-intensive frameworks

on the supercomputer environment. The MPI-friendly term means the used mechanism

must be compatible with MPI and fast. MPI-Spawn is an example of MPI-compatible

mechanisms but slow.
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Figure 2.7: TCP vs. MPI throughput on the FX10 supercomputer
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Figure 2.8: TCP vs MPI latency on the FX10 supercomputer

To avoid confusion later between jobs on supercomputers and Hadoop YARN resource

manager, which is the substrate of Hadoop and Spark, we use the job term for ones sub-

mitted to a supercomputer job queue and workload/application term for ones submitted

to Hadoop YARN resource manager.

2.4.1 MPI for data-intensive frameworks on supercomputers

MPI should be used in Hadoop-like data-intensive frameworks to speed data exchange

and node I/O. Socket (TCP) communication is used widely in the popular data-intensive

processing frameworks, for example Hadoop, Spark, and Flink since TCP is the de facto

communication on commodity clusters where those frameworks are typically deployed.

However, TCP communication is slower than MPI.

On the supercomputer environment, MPI implementation is faster socket (TCP) com-

munication. MPI should have a larger throughput and shorter latency than TCP. Figure

2.7 and 2.8 have showed that MPI throughput is 10 times larger than TCP and its la-

tency is shorter than TCP.



Chapter 2. Background 36

As we have already seen, there are several studies related to using MPI to fill the gap

between data-intensive analytics tools and scientific computation. For MapReduce over

MPI approaches, MPI-based data-intensive frameworks can be found in K MapReduce

[10], Mimir [35], and FT-MRMPI [68], but all of them are not popular frameworks. For

the deployment of popular frameworks, such as Hadoop and Spark, high performance

design of YARN [65] proposed how to use remote direct memory access (RDMA) to

speed up data exchange and accelerating Spark with RDMA [69] showed a lot of potential

of using RDMA. Note the RDMA is a lower layer than MPI and turned on automatically

in some MPI configurations.

2.4.2 Hadoop YARN resource manager

In this section, we analyse the behaviour of Hadoop, a popular data-intensive frame-

works, running on YARN resource manager. Note that YARN is also the resource

manager of other data-intensive frameworks, such as Spark and Flink. Hadoop has got

significant performance improvement and more flexible execution when evolving from

version 1.x into 2.x by adopting YARN, a new resource manager and key feature in the

second generation. YARN is responsible for allocating and de-allocating resources, man-

aging and monitoring jobs, invoking execution engine, and ensuring security controls.

We identify three dynamic characteristics from YARN-like management as follows:

on-Demand. Execution processes are created on demand. A job often consists of several

or many e.g. mapping and reducing tasks each of which is run on a separate process

container that is newly created when the task is started. Number of processes and CPU

time are subject to change during job execution that depend on size of input and output

data.

Diverse. It supports running simultaneously multiple jobs with fine-grained scheduling.

Those jobs are scheduled to share resources on the same nodes, such as CPU time

and memory, in order to maximize overall utilization. Job types are not limited to

MapReduce since YARN can host Spark and Storm as well.

Detailed (fine-grained). Resources are managed by number of process containers run-

ning on each node based on amount of memory. The resource manager is responsible

for scheduling, process executing, and handling failures. In MapReduce execution, when

number of mapping and reducing processes is bigger than limitation of allowable con-

tainer number on the cluster, it lets some processes run first, and the remainder must

wait.
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Figure 2.9: MapReduce PageRank running on YARN resource manager with 64 Map-
Tasks and 16 ReduceTasks

Figure 2.9 shows an execution timeline of PageRank running on Hadoop and YARN

resource manager with 64 MapTasks and 16 ReduceTasks: the cluster has 8 nodes; the

maximum simultaneous process on each node is set to 6; reducing processes have longer

running time; and the first process is a master process (namely AppMaster in YARN).

Mapping processes are run first and when the first MapTask finishes, ReduceTasks will

be started. Mapping processes are started at di↵erent timestamps since 42 (our con-

figuration) is the maximum number of processes that can run at once. Each process is

spawned during job execution.

2.4.3 Issue of resource management

There are three Ss (3S) static characteristics of typical resource managers on supercom-

puters that is contrary to the above dynamic management as follows:

Stationary. It is typical to start all necessary processes at the beginning of job running

and there is no newly created process during execution (e.g. MPI programs). The

number of processes and CPU time should be specified at the job submission.

Single. It is typical to run jobs one by one on allocated nodes. Simultaneous jobs can

a↵ect jobs’ performance because resource managers only support coarse-grained manner

in which each job must handle resources that it is using.

Shallow (coarse-grained). Resources are often requested by number of nodes and the

whole resource on a node is allocated to a user’s job. Since the resource manager does
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Figure 2.10: MPI application (Prime count) running on parent processes versus
spawned child processes on Tsubame supercomputer

not control processes running on a node, users decide how many processes run on those

nodes, how they are executed, and how to handle failures.

PBS, Slurm, and their variant are widely used on supercomputers, whereas YARN and

Mesos are common on Hadoop and Spark, popular data-intensive frameworks. For

example, Portable Batch System (PBS) is a popular resource manager that many super-

computer centers use as a base project to develop their own one [18]. Users must create

a PBS script file in which number of nodes, MPI processes (mpi-procs), CPU core num-

ber (ncpus), and maximum memory are typically specified in advance. The PBS-like

resource managers are created to support MPI style models and running coarse-grained

applications. That style of static management is less flexible, but more e�cient in the

aspect of system administration (usage accounting and resource allocation) and maxi-

mizing performance of a job running on the supercomputers.

Dynamic management on supercomputers is supported only partially and not su�cient

to be integrated with resource managers, such as Hadoop YARN. For instance, the fork

mechanism is available to create a new process on FX10 supercomputer, but MPI will be

lost on that process. By contrast, on TSUBAME supercomputer, MPI can be kept when

spawning a new process by using MPI-Spawn call, but it is a collective operator that is

considered slow. MPI-Spawn is a MPI call invoking new processes and MPI connection

is still available in the child processes. FX10 does not allow using MPI-Spawn to spawn

new processes on the same node. Figure 2.10 shows a MPI application, Prime count,

running on 32 Tsubame nodes and using OpenMPI 1.6.5. In the first test case, we run the

application on the COMM WORLD communicator and measure total running time. In
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the second one, we spawn child processes from the COMM WORLD communicator and

run the same program on those processes. It reveals that the spawning time is relatively

long in comparison with total execution time, and it takes 0.5 second to spawn a process.

2.4.4 MPI-friendly dynamic process creation

On the supercomputer environment, MPI-compatible dynamic process creation is not the

first citizen, since it can delay high-speed communication. The mismatch is that MPI-

compatible dynamic process creation is needed in the dynamic management of YARN

and Mesos which are the substrate of Hadoop-like data-intensive frameworks, but it is

not recommended or restricted on the PBS resource manager of some supercomputers.

Processes that are dynamically created on demand is called Dynamic process creation.

Running all processes simultaneously is required in order to minimum communication

delay. It is also called all-or-nothing scheduling strategy. Resources are often requested

by number of nodes and the whole resource on a node is allocated to a user’s job. Since

the resource manager does not control processes running on a node, users decide how

many processes run on those nodes, how they are executed, and how to handle failures.

On several supercomputers, it is restricting resizing running jobs due to scheduling

fairness. It is typical to start all necessary processes at the beginning of job running and

there is no newly created process during execution (e.g. MPI programs). The number

of processes and CPU time should be specified at the job submission. It is typical to

run jobs one by one on allocated nodes. Simultaneous jobs can a↵ect jobs’ performance

because resource managers only support coarse-grained manner in which each job must

handle resources that it is using.

Regarding the mismatch of MPI-compatible dynamic process creation, we survey re-

lated work that is having potential to solve the mismatch or indirect connection. In

Section 2.1.5.1, we introduced K MapReduce that is written in C and MPI and using

MPI-Spawn to create new processes. MPI-Spawn performance is slow and might in-

crease communication delay in MPI. DataMPI mentioned in Section 2.1.5.2 is another

framework implemented in pure MPI that is using both MPI-Spawn and process reusing.

Gerbil [70] showed a design of hosting unmodified MPI applications on YARN in order to

avoid copying data from a cluster dedicated to running Hadoop MapReduce to another

cluster used for pure MPI applications (HPC clusters). Their approach is to start MPI

process containers by using MultiPurpose Daemon [71].

In the Hadoop v1 (without YARN), MapTasks can be executed in a JVM process in

sequence (mapreduce.job.jvm.numtasks) [72]. However, this JVM process is only used
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Figure 2.11: Tera-sort running on TSUBAME supercomputer using its central disk:
shorter running tasks are mappers, the longer ones are reducers.

for a single workload, and it will be terminated when MapTasks finish. Hadoop v1 does

not provide any mechanism to keep that JVM running to execute tasks of other jobs.

2.5 Mismatch: local disk on a compute node

The second mismatch is that data-intensive frameworks depend on local disks to spill out

the intermediate data when its in-memory bu↵er is full, but a local disk is not available

on each compute node in today’s top supercomputers. Instead of using fragile local

disks, a central disk with large capacity is typically equipped to store input, output, and

even intermediate data if the temporary storage is not available. The challenge is to

figure out the best deployment strategy of in-memory storage on supercomputers when

virtual local disks are implemented using memory (DRAM).

2.5.1 Expensive disk I/O

When running Hadoop MapReduce, a popular data-intensive framework, on supercom-

puters, writing/reading intermediate data is a performance bottleneck since it must be

stored on the central disk. There are two main phases in Hadoop MapReduce workflow:

mapping and reducing. Mapping tasks generate intermediate data that is written to a
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node’s local disk and deleted after being sent to reducers. On supercomputers, the cen-

tral disk is used to store that intermediate data instead of local disks. Figure 2.11 shows

execution timeline of tera-sort application on TSUBAME supercomputer consisting of

256 mapping tasks and 128 reducing tasks. It reveals that in mapping tasks, writing

time of intermediate data to the central disk (red color) is relatively long in comparison

with the total execution time. In the figure, mapping tasks have shorter execution time

than reducing ones. Using SSD helps improve writing/reading performance, but it is

not always available.

2.5.2 In-memory approach

In-memory storage is a natural approach that helps avoid disk spilling by keeping in-

termediate data in memory [43] [73][74]. It is well known to implement virtual local

disks by using memory (DRAM). A part of memory is allocated to store data and this

storage can be considered as a virtual local disk on each compute node. That approach

is sometimes called memcached-like style [30]. Memcached [33] is a distributed memory

cache software that is used widely in web applications to speed up database accessing.

A typical deployment of Memcached is installing its daemon on dedicated nodes used

only for in-memory storage.

2.5.2.1 When in-memory storage is useful

First, as mentioned earlier, when I/O to a hard disk or shared storage is expensive and

the size of data is not big, in-memory processing is more e�cient. A shared storage

consists of distributed disks and is considered slow due to overhead of data management

and the bottleneck of connection between the storage and compute resources. Keeping

data in memory requires more handling and processing, but the improvement from

avoiding spilling out data to hard disks is much more that overhead. In the aspect of

expense, the price of DRAM is getting close to SSD.

When a super fast I/O is required, for example in relational database management

system (RDMS) and real-time analytics, in-memory processing has advantages. DASH

paper [29] showed that accessing time of local DRAM memory is five-order-of-magnitude

faster than to hard disks. If SSD is used, DRAM memory is still three-order-of-

magnitude faster. It is not feasible for real-time database and analytics if data is spilled

out to hard disks.

There are many challenges of current in-memory designs including how to deploy in-

memory storage, how to make it scalable, how to fit large-scale datasets into memory,
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and how to use the next storage level when memory is full. M3R [73] is an in-memory

Hadoop implementation, but it requires the input dataset must be fitted into memory

that makes this approach di�cult to scale up. Spark is also an in-memory framework, but

it will spill data to disk when there is not enough memory space. Therefore, performance

can still be degraded when writing to disk happens. How big memory size is allocated to

the memory space and each task process is also another research question. Each process

running tasks should be allocated with big enough memory in order to not slow down

computation. Therefore, the size of the memory space is subject to change when number

of tasks running on a node increases.

2.5.2.2 Examples of in-memory storage implementation

Memcached software [33] is a popular in-memory implementation used widely in web

and database applications. It can be installed as distributed in-memory storage [30].

In the distributed mode, there are memcached servers and clients. Any node can be

a memcached client by deploying the memcached daemon on that node. Memcached

software is using mainly TCP-based communication.

Redis is another in-memory storage implementation and has more features than Mem-

cached. Redis supports complex data structures, whereas it is static and plain data in

Memcached. Redis also provides distributed deployment with master and slave nodes.

When we need powerful features, such as di↵erent data structures and data partition,

Redis is a good choice. By contrast, if we want to keep in-memory organization simple,

Memcached is a better option.

It is possible to manually create an in-memory storage in Linux by using mount ramf-

s/tmpfs [75]. There are two types of RAM disks including ramfs and tmpfs. In the ramfs

file system, the capacity is the same as memory size and out of memory can happen at

any time. By contrast, tmpfs can specify the size of in-memory space and this storage

can be seen as a partition.

2.5.3 Deployment of in-memory storage

It is not easy to figure out the best deployment way of memcached-like file systems on

supercomputers when applications are MapReduce. We focus on MapReduce rather than

other application types since it is widely used in big data analytics. Whether installing

in-memory storage on each compute node a↵ects the performance of computation tasks

or not. Using memory space of other nodes might cause extra overheads of management
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and monitoring. Moreover, if we allocate dedicated nodes for in-memory usage only, is

there any context or configuration in which it shows a good performance?

Deployment of in-memory storage is important since it can a↵ect the performance of

in-memory storage and cause the bottleneck of data movement. Installing distributed

in-memory storage on the same node with computation tasks might slow down the task

performance since the in-memory storage consumes compute and memory resources

that depends on implementation techniques. Our hypothesis is that the overhead of

in-memory storage is significant enough. Moreover, data movement among nodes by

using remote in-memory storage can be also a bottleneck, especially at the nodes whose

in-memory storage is accessed more frequently.

Related to answer the above question, some related work has proposed mechanisms of

how to store in-memory data and choosing preferred locations. Also, there are several

proposals of using in-memory storage in Hadoop, but they did not clearly describe and

evaluate deployment strategies including location of in-memory instances and storage

size. M3R [73] is an in-memory Hadoop engine implemented using X10 programming

language and M3R instances running on each node is responsible for in-memory storage

by providing a shared heap-state. Although X10 supports where data is stored through

places and activities operators, but the paper did not mention it explicitly and also have

any evaluation.

HaLoop [74] provides caching preferences, such as reducer input and output cache and

mapper input cache, but intermediate data is only shared on the same node between jobs

and deployment strategies are not relevant in this context. HaLoop does not provide

in-memory storage since the intermediate data is stored at the local disk by providing

e�cient hash algorithms for reading and writing.

Spark [43] is a data-intensive framework and uses in-memory storage to improve perfor-

mance compared with Hadoop. It proposed a programming model based on Resilient

Distributed Dataset (RDD) and intermediate data is built and generated from RDDs.

It is possible to choose a location for a RDD through preferredLocations() operator, but

there was no evaluation of RDD deployment in the paper. Moreover, it does not provide

deployment strategies in general.
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2.6 Comparison of existing solutions

We have just introduced existing data-intensive frameworks in Section 2.1 and related

work in Section 2.4 and 2.5, but there is no comparison and overview in aspects of mis-

matches. For that purpose, we compare advantages and drawbacks of the existing frame-

works and approaches that are proposed or having potential to solve the mismatches of

dynamic process creation and local disks on supercomputers. First, we define criteria

for comparison as follows:

Dynamic process creation is compared by two aspects:

• Process creation: refers to which process creation mechanism is used in the frame-

works. Process fork() is a system call to create a new process, for example Pro-

cessBuilder in Java and pid t pid = fork() in C. MPI-spawn call helps spawn new

processes at run-time in which MPI connection is kept in those new processes.

JVM reuse is a technique to reuse a process in order to avoid newly created pro-

cesses in Java.

• MPI support: refers to if a framework supports MPI or not and MPI connection

is kept in newly created process or not. Might means that framework is supposed

to have MPI support, but it is not clear or under development.

The local disk mismatch is determined by two factors:

• In-memory storage: refers to whether a framework supports in-memory storage or

not. Note that bu↵ering at data writing to the disk is not considered as in-memory

storage.

• Deployment strategy: refers to if any deployment strategy of in-memory storage

is applied, for example how big in-memory storage size on each node is allocated

and which node in-memory data is stored.

Although dynamic process creation and local disk are two main concerns to compare

related work, there are other criteria used to evaluate whether a framework is good, bad,

or neutral in the general usage in academia and industry as follows:

• Productivity: refers to how easy developers can write applications by using that

framework. Moreover, if the framework follows API coding standards.

• Maturity: refers to how long the framework has been developed so far, how large

the developer community is, and how often the framework is maintained and up-

graded.



Chapter 2. Background 45

• Compatibility: refers to whether the application written by that framework can

run on di↵erent supercomputers and clusters without major installation and mod-

ification or not.

• Scalability: refers to if the framework can be deployed on large clusters and easy

to scale out or not.

Hadoop is written in Java and using ProcessBuilder to spawn new processes. The orig-

inal Hadoop implementation does not support MPI and its process creation mechanism

cannot keep MPI connection. The original Hadoop is not providing in-memory storage

and deployment strategy for caching or storing intermediate data.

For the general usage, its overall rating is good since Hadoop’s productivity and maturity

is high. Hadoop provides ease-to-use MapReduce APIs that enable to write distributed

applications less than a hundred lines of code. The initial release of Hadoop was six year

ago and development status is still active with a large developer community. Hadoop

application is written in Java, so it needs to be compiled once and run anywhere. Hadoop

can be run cloud services, such as Amazon EC2 and Microsoft Azure, laboratory or

company clusters, and supercomputers. Hadoop supports fault tolerance and scaling-

out to thousand of compute node [40].

K MapReduce is written in C and MPI, so MPI Comm spawn is used to spawn new

MPI processes that are able to communicate with parent MPI processes. There is no in-

memory storage and deployment strategy implemented in KMapReduce, so intermediate

data should be written to the central disk.

It is rated bad when KMapReduce is used for the general usage in aspects of productivity

and maturity. K MapReduce is optimized and designed mainly for the K supercomputer

[76] developed by FUJITSU. Therefore, regarding compatibility, the framework might

be fast on the FX10 supercomputer, the second generation of the K supercomputer. The

framework was evaluated on the K supercomputer, so it is scalable.

DataMPI is developed in Java and C with the upper layer having Hadoop-like inter-

faces and the lower layer using JNI in order to connect the upper one to native MPI

libraries. DataMPI is using both MPI-spawn to spawn new processes for a commu-

nicator and process reusing to run di↵erent tasks. MPI communication is available

among all DataMPI processes. There is no in-memory storage and deployment strategy

implemented in DataMPI.

We rate DataMPI as bad as K MapReduce, since its productivity and maturity is low.

DataMPI has a mixture of Java and MPI syntax that is not easy to use. The developer

community of DataMPI is small. Although users can write applications in Java, but in
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order to use MPI, they need to compile mpiJava [77] for their environment. DataMPI

can achieve linear scalability.

Gerbil enables pure MPI applications on YARN and spawns MPI processes by us-

ing MultiPurpose Daemon [71], a MPI-spawn-like mechanism. MPI communication is

available on newly created processes. There is no in-memory storage and deployment

strategy managed by Gerbil.

Gerbil is an extension of the YARN resource manager, so its maturity is high and

compatible with Hadoop, Spark, and Flink. Scalability of MPI applications on Gerbil

has not been evaluated.

Hadoop v1.0 supports running many tasks in the same JVM that is called JVM reuse

technique. However, this JVM process is only used for a single workload, and it will be

terminated when MapTasks finish. There is no MPI communication, in-memory storage,

and deployment strategy available in this version.

Hadoop v1.0 support is still active, so its maturity is high. The syntax of MapReduce

applications in this version is the same as the current Hadoop version, so its productivity

is considered high as well. Hadoop v1.0 does not use any good resource manager, so the

size of the cluster in which Hadoop v.10 can be deployed is limited. Its scalability is

considered neutral. Overall, we rate it neutral as well.

M3R is using JVM reuse technique to run mapping and reducing tasks in the same

JVM. MPI communication is possible in M3R, but it is not clear that how MPI is

supported. M3R is written in X10 and has a Hadoop-like API syntax. M3R enables

in-memory storage in the heap space of JVM and X10 supports where data is stored

through places and activities operators that we call data a�nity.

M3R has high productivity since it provides a Hadoop MapReduce-like syntax. M3R

is developed by IBM and still active, but its developer community is small. Since

M3R is written in X10 and an independent Hadoop implementation, the clusters and

supercomputers where M3R is deployed must support X10. That is why we rate it low

in the aspect of compatibility. The framework is scalable on thousands of commodity

nodes.

HaLoop is based on the Hadoop engine, so it is also using ProcessBuilder and does

not support MPI communication. HaLoop provides caching preferences, such as reducer

input and output cache and mapper input cache, but intermediate data is only shared on

the same node between jobs and deployment strategies are not relevant in this context.
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HaLoop keeps the same the Hadoop MapReduce syntax, so its productivity is high.

However, HaLoop is relevant to iterative MapReduce applications, so its community is

small. HaLoop is as scalable as Hadoop.

Spark depends on YARN and Mesos resource managers to spawn new applications and

processes. Besides using ProcessBuilder to spawn a new executor for tasks, multiple tasks

can be also run on the same JVM. MPI communication is not available on Spark. Spark

o↵ers in-memory storage for its RDD data model and it is possible to choose a location

for a RDD through preferredLocations() operator that we call data a�nity.

The overall rating for Spark is a good framework due to its productivity, maturity, and

scalability. Spark applications can be written in Java and Scala and its syntax is flexible

and ease to use. The lines of code in Spark applications should be shorter than the

Hadoop MapReduce applications.

Memcached software does not have any process management since it only provides in-

memory storage. Memcached uses TCP-based communication and RDMA-based Mem-

cached [78] is an extension that speeds up internode communication by using RDMA.

MPI communication is not supported in Memcached software. It does not support de-

ployment strategies clearly, but users can choose explicitly where can install the mem-

cached daemons.

The rating for maturity and scalability is high the software is still well supported from

industry and developers. The Memcached software is proved highly scalable at Facebook

by being deployed on a thousand of servers and million of users [79].

2.7 E↵ective deployment

The comparison table 2.2 has showed that in aspects of productivity and maturity,

Hadoop and Spark are good choices to run data-intensive applications on supercomputers

in comparison with developing application frameworks, for example a new MapReduce

library, from scratch. Both frameworks are used widely on commodity clusters and

in industry. However, the performance of the default deployment is not satisfactory

due to mismatches on dynamic process creation and local disks. For more e↵ective

deployment of the data-intensive frameworks, such as Hadoop, those mismatches have to

be mitigated, in particular, with minimum source code modification of the frameworks.

E↵ective deployment is required to run the popular data-intensive application frame-

works on supercomputers in order to exploit supercomputers’ advantage, reduce bur-

dens on hardware upgrade, and keep the original codebase of those frameworks as much
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as possible. In this thesis, process management (dynamic process creation) and data

storage (local disks) are chosen to be optimized because of the reasons of keeping fast

inter-connection and avoiding expensive disk I/O on the supercomputer design.

The e↵ective deployment should help exploit supercomputers’ advantage including fast

interconnection and large memory size and avoid the drawback of no local disks on

almost all supercomputers. The data-intensive frameworks depend on mainly TCP-

based communication protocol, but that protocol is not supported well on the fast

interconnection on supercomputers. The e↵ective deployment should enable supported

protocols on supercomputers, such as MPI and RDMA. Due to no local disk, the e↵ective

deployment should prevent disk I/O as much as possible.

The e↵ective deployment should help minimizing the cost of changes in the architecture

of data-intensive frameworks and keep the original codebase as much as possible. Hadoop

and Spark have a huge codebase, changing their architecture is not easy and might a↵ect

the performance later. The e↵ective deployment should provide a para-virtualization

environment to run those data-intensive frameworks.

The e↵ective deployment could reduce the start-up time of cluster deployment on su-

percomputers. On a commodity cluster, when Hadoop is deployed, the cluster is always

ready to run applications. However, on supercomputers, Hadoop cluster must be de-

ployed from scratch.





Chapter 3

Virtualizing Dynamic Process

Creation

Regarding the first observation of MPI-friendly dynamic process creation on supercom-

puters, the challenge is that how to provide MPI-friendly dynamic process creation for

popular data-intensive frameworks, such as Hadoop and Spark, but satisfy the standard

way of creating processes on the PBS-like resource manager of supercomputers.

We want to extend those popular frameworks to use MPI, the de facto communication

protocol on supercomputers, to improve performance. Those Hadoop-like data-intensive

frameworks need dynamic process creation in order to keep their current architecture

and minimize source code changes, but MPI-compatible fast dynamic process creation

is not available. To overcome that di�culty, in this section, we propose HPC-Reuse,

an e�cient process creation for running MPI and our focused Hadoop MapReduce on

supercomputers. Evaluation and discussion are shown at the end of this chapter.

3.1 HPC-Reuse: virtualizing dynamic process creation

To provide better support of dynamic management with MPI, we propose a virtual

layer located between YARN-like and PBS-like resource managers on supercomputers.

In order to avoid process creation and satisfy resource specification at the beginning

of job running, we create a bunch of processes in advance and then allocate them to

the dynamic resource manager when it requests process execution. These processes are

cleaned and de-allocated back in order to be used next time when they finish. We

use a process pool to implement this mechanism. We name it HPC-Reuse designed

specially for Hadoop YARN hosting JVM-based applications, such as MapReduce, Spark

51
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Figure 3.1: Fork-based vs. HPC-Reuse workflow: slots denote JVM processes; RM
and NM stand for ResourceManager and NodeManager, respectively.

and Storm, running on supercomputers. HPC-Reuse plays a role as a virtual layer in

providing dynamic resource management over static one on supercomputers. In this

section, first we describe the idea of reusing applied to YARN and show its design.

Technical issues are followed.

3.1.1 Idea of Reusing

YARN creates process containers on demand when it receives requests from workloads.

Container is used as abstraction for resource allocation. It has two main components:

ResourceManager (RM) and NodeManager (NM) running on master and slave nodes,

respectively. RM is responsible for allocating resources to workloads and scheduling,

and NM is responsible for executing containers and monitoring them on a node. It is

typical to have one RM. NM uses the fork-based mechanism to spawn new JVM process

containers when it receives task running requests (e.g. MapTasks and ReduceTasks)
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from a workload. Figure 3.1 (left) shows the creation flow. First, a shell script contain-

ing a MapTask or ReduceTask is prepared in advance. Then, it is invoked to export

environment variables and run the process container (called Mapper or Reducer). When

the assigned task is completed, the process container is terminated.

To avoid process creation, we keep JVM process containers running without being ter-

minated. A pool of empty JVM process containers is responsible for container allocation

and de-allocation to each execution request. Figure 3.1 (right) illustrates this approach

(called HPC-Reuse). When NM receives a container request, it sends that request con-

taining the shell script path to HPC-Reuse. Then, a slot is assigned to run the shell

script and invoke the main() of the Java program. When the assigned task is completed,

that slot is cleaned and returned back to the pool.

Figure 3.2 shows how processes and tasks are run in the original design. The slave

daemon running on each node first spawns new processes (Figure 3.2a) and tasks will

be executed on processes (Figure 3.2b). Then, when tasks finish, the processes will be

terminated (Figure 3.2c). Figure 3.3 shows our idea of how processes will be created

and tasks are run. On each slave, a pool of processes is created in advance. When tasks

are available, processes from the pool will be allocated to the tasks (Figure 3.3a). Then,

they are run on the given processes (Figure 3.3b). When tasks finish, the processes are

kept running and cleaned in order to reset to the original condition. All reset processes

are set idle and ready to execute other new tasks (Figure 3.3c).

3.1.2 Process pool

We use process pool approach to implement HPC-Reuse. A pool containing empty JVM

processes (namely slots) is created on each node at the beginning when the Hadoop

cluster is deployed on the supercomputer. Note that the number of slots is fixed and

unchanged during job execution. Figure 3.4 shows the pool architecture on a slave node

where a NodeManager is running. Container requests are forwarded from NM to Pool

Manager instead of calling a process builder (fork-based approach). A flag array is used

to store slot status in the pool. We use round-robin scheduling to choose an empty slot.

A container request is held until there is a slot available.

When a slot is assigned to a container request, first, environment variables are exported.

Then, a new class loader is created to load user classes. Finally, main() method is

invoked to run the associated task. De-allocation including static field clean-up and slot

resetting will be called after the task is completed.
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3.1.3 Technical issues

There are three issues discussed in this section including class loading, clean-up, and

the number of slots in the pool. In order to make allocation and de-allocation possible

and safe, there are two issues: how to load user classes and clean a slot. Note that

the two issues are problematic for JVM-based applications running on YARN, such as

MapReduce, Spark, Flink, and Storm.

3.1.3.1 Class loading

We use a new class loader to load user classes when a user submits a MapReduce

workload to the Hadoop cluster. In the original flow of process creation (fork-based ap-

proach), CLASSPATH containing user classes is exported before container execution, so

the container can find and load such classes. CLASSPATH is defined before a JVM pro-

cess is started and classes in the CLASSPATH are loaded by the application classloader.

In HPC-Reuse flow, however, slots in the pool are started before the CLASSPATH is

exported and thus the user classes are not found.

Figure 3.5 shows how classes in Java are loaded at run-time. The top class loader is the

bootstrap one that is the parent of all class loaders. This class loader is responsible for

loading standard Java class files from rt.jar, for example String.class and Integer.class.

Then, other extended classed located at JRE/lib/ext are loaded by the extension class

loader. Hadoop classes declared in CLASSPATH are loaded by the application class
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loader. When the Hadoop cluster is deployed and the pool on each node is initialized,

the application class loader starts loading all necessary Hadoop classes. Note that a class

is actually loaded only when it is declared and used at run-time. A class already loaded

will not be loaded again. When a class is not found, it will be looked for in rt.jar first,

and if the class is not there, the extension class loader starts finding in JRE/lib/ext

directory. The next class loader in the Figure 3.5 will look for when the class is not

found in the parents.

User classes are not included in the CLASSPATH, so they will be loaded during run-time

when users run their workloads. When the user submits workload1, a new class loader

named classload1 is declared and will load classes of workload1. This class loader is a

child of the application class loader and inherits all classed loaded by the parent class

loader. When the user submits another workload, namely workload2, a di↵erent new

class loader named classload2 is declared and will load classes of workload2. Note that

the classes of classload1 are not available in classload2.

At the step of slot allocation in HPC Reuse workflow, a new class loader is created to

load the user classes before invoking its main() method. If the user submits the same

class or package that exists in the previous workload, an error will not happen. A class

Bootstrap Classloader
(classes from JRE/lib/rt.jar)

Extension Classloader
(classes from JRE/lib/ext)

Application Classloader
(classes from CLASSPATH, e.g Hadoop)

User Classloader1
(classes from 
workload1)

User Classloader2
(classes from 
workload2)

Figure 3.5: How user classes are loaded
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loader is created newly for each workload. However, note that we do not reload all

Hadoop classes, and only the user classes are reloaded. That helps reduce class loading

time and exploit compilation technology in JVM. User classes are often small, so it does

not take a long time to reload user classes. They should be mapping and reducing classes

in the Hadoop MapReduce framework.

The current design of class loaders is working for Hadoop MapReduce, but the mecha-

nism should be the same for Spark and Flink since they are also JVM-based frameworks.

Spark is written in Scala that also provides ClassLoader.scala to declare a new class loader.

Another possible approach not requiring di↵erent class loaders is using a Java bytecode

manipulation tool and just check whether the new workload contains any the same class

name or not. If the same class name is detected, the old one can be replaced at run-time.

3.1.3.2 Clean-up

In order to reuse a JVM process and run the next task correctly and e�ciently, the JVM

process must be cleaned up after de-allocation and returning to the pool. HPC-Reuse

may have problems of security and performance due to reusing the JVM in which static

fields for the previous workload are already set. In Java, a static field is a variable and

located in a class, but it is not in an instance of the class. Although there are many

instances of the class created, there is only one static field existing in the class. There

are two kinds of static fields including static field and final static field. While final static

field is used to define constants in the class, static field is used to share values among

instances. A static field can be accessible from any class of the scope.

/**

* Information about the logged in user.

*/

private static UserGroupInformation loginUser = null;

private static String keytabPrincipal = null;

private static String keytabFile = null;

/** Environment variable pointing to the token cache file*/

public static final String HADOOP_TOKEN_FILE_LOCATION =

"HADOOP_TOKEN_FILE_LOCATION ";

Listing 3.1: An example of static field usage in UserGroupInformation of Hadoop

An example of static field usage in UserGroupInformation class of Hadoop [80] in Listing

3.1 is that when the container is executed, UserGroup static field is initialized. That field

is kept unchanged whenever its value is not null. Therefore, the same login static field

is used for other users. Although on the supercomputer, Hadoop cluster is used by only



Chapter 3. Virtualizing Dynamic Process Creation 59

one user at a time, but clean-up of all static fields is necessary in general. Moreover, the

configuration of two di↵erent workloads might be not changed since the static fields of

Configuration are set. That will cause wrong behavior and worse performance.

At the current implementation, we just do a simple clean-up by resetting only static fields

containing user information and workload configuration. First, we manually check which

classes are loaded and which static fields are set when a workload is executed. Then,

we record those static fields and will reset them to null value when a new workload

is executed. The drawback of this approach is that we cannot detect all static fields

since the workload might invoke di↵erent classes. Moreover, when upgrading Hadoop

and Spark, the checking of static fields must be repeated. Note that only static fields

changed during loading the previous workload will be reset to null value.

Another possible approach is to detect all static fields associated with the execution con-

tainer by using Java bytecode manipulation tools, for example Javassist [81]. By using

those tools, all static fields can be detected during at run-time and reset automatically.

3.1.3.3 Number of slots in the pool

Node performance could be a↵ected if the pool has lots of slots since idle JVM pro-

cesses still consume CPU time for waiting requests from Pool Manager and memory for

Hadoop classes. On the contrary, the pool with a few slots causes ine�cient resource

utilization. We set number of slots equal to maximum containers defined in the Hadoop

Yarn configuration file by default. If that parameter is not declared, we set it equal to

the number of processor cores.

When the Hadoop cluster is deployed and the pool is initialized, the number of slots

in the pool is kept unchanged during the cluster running. That drawback limits the

scalability of our proposed HPC-Reuse when we want to increase the number of parallel

tasks that are able to run on a node. Although increasing the number of slots helps

improve parallelism, but the performance can be degraded since compute, memory,

network bandwidth resources are limited.

3.1.4 Performance benefit

As mentioned in the motivation section, MPI-Spawn is a mechanism to spawn a new

MPI process, but its performance is slow. Note that nested MPI jobs are not allowed

on most of implementation of MPI on supercomputers. Figure 3.6 illustrates MPI-

Spawn’s collective operation: rounded rectangles represent spawning call; rectangles

denote processes; dotted rectangles show waiting states. When spawning is invoked on
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Figure 3.6: MPI-Spawn vs. HPC-Reuse in process creation: rounded rectangles rep-
resent spawning call; rectangles denote processes; dotted rectangles show waiting states.

the COMM WORLD communicator at a certain process, it requires all other processes

must call spawning with the same parameters (Fig. 3.6(a): P1 and P3 must stop their

execution while P2 is calling). Each spawning call must be serialized. Dotted rectangles

show the waiting state. Conversely, HPC-Reuse supports multiple threads and does not

use MPI-Spawn, so each process can request creating as many new processes as at any

time (Fig. 3.6(b)). HPC-Reuse keeps those processes running without terminating, so

MPI connection is always available during job execution time.

Not only helping avoid MPI-Spawn, HPC-Reuse also shortens JVM start-up time. The

JVM start-up flow is divided into four main steps: OS-level creation, class loading,

main() invoking, and instruction execution. HPC-Reuse skips the first two step since

the process does not need to be created newly and related classes are already loaded and

linked together. Figure 3.7 illustrates the flow of JVM start-up: JVM process executing

A program is reused to run B program. Moreover, HPC-Reuse takes advantage of com-

pilation technology, such as Just-in-time (JIT) compilation and adaptive optimization

that are designed to improve execution performance.

Iterative MapReduce workloads can benefit much from HPC-Reuse since it helps shorten

start-up time. An iterative workload is run consecutively until it meets a condition or its

value converges. Figure 2.3 of the previous chapter describes how an iterative workload

works. The result of previous MapReduce iteration is used as the input to the next

one. For each iteration, mapping and reducing phases repeated cause lots of processes

created. HPC-Reuse reduces the start-up time of those processes.
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Figure 3.7: JVM Reuse of a program

3.2 Other benefits of HPC-Reuse

HPC-Reuse not only solves the problem of dynamic management and shortens start-up

time, but MPI integration on HPC-Reuse also gives other important advantages. For

Fujitsu FX10-like supercomputers that do not allow dynamic process creation (MPI-

Spawn) on the same node, HPC-Reuse enables MPI on Hadoop processes and makes

YARN possible to host pure MPI applications. For TSUBAME-like supercomputers

on which MPI-Spawn overhead is high, HPC-Reuse helps avoid it and also host MPI

programs more e�ciently in the aspect of start-up time overhead. By virtue of fine-

grained management manner in YARN, multiple workloads can be scheduled to run

simultaneously and more e�ciently. Furthermore, in rich data analysis workflow, post

processing after MapReduce tasks enables YARN to host pure MPI applications and

e�cient data copying between MapReduce and pure MPI applications.

3.2.1 MPI communication over Hadoop processes

MPI connection is always available among processes in the pool since HPC-Reuse keeps

those processes running without terminating. MPI communication is established among

processes at the beginning when the Hadoop cluster is deployed. In the pool, we create

an intra-communicator for all execution slots. Pool Manager and Node manager do not

belong to that intra-communicator, but COMM WORLD of course.

Data shu✏e performance in HMR is slow since it is using TCP-based communication

and JVM’s transport protocols [82]. It is specially slow in workloads having high volume

of data exchange, such as tera-sort and self-join. Its performance can be improved by
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Figure 3.8: TCP/IP vs. MPI shu✏ing

using MPI instead of TCP. In order to show benefit of MPI communication, we have

implemented a MPI shu✏ing engine to bypass using the original shu✏ing based on TCP

communication.

Figure 3.8 shows comparison between the TCP-based shu✏e engine and MPI-based

shu✏e engine. HTTP servlet server is replaced with our Shu✏e Manager to handle

receiving requests and sending MapOutput data. Shu✏e Manager process on each node

belongs to COMM WORLD communicator. Rank of each Shu✏e Manager is stored in

the pool. HTTP servlet server can handle multiple HTTPURLConnections from Reducers

at once (non-blocking type), and our Shu✏e Manager can also receive multiple requests

at a time. The detail design of our Shu✏e Manager is described in Section 4.4.1 of

Chapter 4 since it requires in-memory storage.

There are three main phases in Hadoop MapReduce: mapping, shu✏ing, and reducing.

Mapping and reducing run users’ MapTask and ReduceTask, respectively. The shuf-

fling phase is located in the middle in which a Reducer fetches MapOutput data from



Chapter 3. Virtualizing Dynamic Process Creation 63

MapTasks that is written to local disk through HTTP servlet servers (Fig. 3.8a). Each

slave node has one HTTP servlet server that can handle multiple HTTPURLConnections

from Reducers at once (nonblocking type). HTTPURLConnection is a library class based

on TCP/IP. In the same way, our shu✏e engine does receive requests from Reducers,

then read MapOutput files, and send back to the Reducers. Nevertheless, we use MPI

connection instead of HTTPURLConnection.

3.2.2 Post processing after MapReduce tasks

After MapReduce tasks, post processing, for example MPI-based Support Vector Ma-

chine (SVM) training, helps increase job diversity and avoid data copying between

MapReduce and post processing tasks. We present two benefits as follows:

3.2.2.1 Enabling YARN to host pure MPI applications e�ciently

Pure MPI applications are typical on supercomputers, especially those that require

compute-intensive computation, such as simulation, modelling, and machine learning.

Although MPI applications can be submitted as typical jobs to the job queue, running

them on YARN makes resource utilization more e�cient since YARN is a fine-grained

resource manager. Moreover, the combination of Hadoop MapReduce and pure MPI

applications also enables rich data analysis workflows. So far, Gerbil [70] is a solution to

run both pure MPI and MapReduce on YARN, but its start-up overhead is significant

for short running applications.

A YARN application often consists of three main components: YarnClient, AppMaster,

and YarnChild that are shown in Figure 3.9. First, YarnClient sends a request including

execution contexts and application classes to ResourceManager (RM) in order to create

a new application and start AppMaster. Then, RM leaves the control of the application

to its AppMaster. After that, AppMaster requests execution containers from RM and asks

assigned NodeManagers to start those containers. YarnChild is a wrap of the application

that is executed in containers.

We create MpiClient, MpiAM, and MpiChild, respectively, for running pure MPI appli-

cations. MpiClient is responsible for replacing the COMM WORLD communicator with

our YARN COMM WORLD by using a bytecode manipulation tool. It then packages the

application’s classes and sends to RM. After that, MpiAM is started. MpiAM requests

containers with a special flag that denotes a MPI application that Pool Manager will

use to create an intra-communicator for assigned slots. We use MPI Comm split(color,

key) to create that intra-communicator. Its key is the current rank and its color is 1
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Figure 3.9: A YARN application often consists of three main components: YarnClient,
AppMaster, and YarnChild.

for assigned slots, but otherwise 0 for the remainder. We assign that communicator to

YARN COMM WORLD.

Since the MPI application is executed on JVM processes, so our assumption is that

the application is written in Java using a MPI binding. Moreover, due to creation of

an intra-communicator for each MPI application, our design can host only one MPI

application at a time.

Protection of communication is required when MPI program is running on HPC-Reuse

because all processes in the pool belong to the same COMM WORLD. We avoid it at the

step of replacing the COMM WORLD communicator with our YARN COMM WORLD.

This COMM WORLD only contains processes allocated to the MPI program.

3.2.2.2 E�cient data copying

Using both MapReduce and pure MPI models is required for complex data analysis

workflows in which first large-scale input data is filtered by MapReduce, and then its

output is processed by a pure MPI application. For example, eye tracking research

uses eye positions to study the human visual system, psychology, human computer
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interaction, and user center design. In eye tracking data analysis, eye positions are

captured by using an eye tracker that has high frequency, e.g. 300Hz (300 positions

detected every second). If recording time is several months, the number of eye positions

is billions. In order to detect fixations and saccades, MapReduce is employed to analyze

the data [83]. Detected fixations and saccades are used to create features for SVM

training in order to predict gaze-based interaction [84].

Output data of Hadoop MapReduce is typical to be written to Hadoop file system

(HDFS), whereas MPI applications read data from shared disks (or local disks if staging-

in is done in advance). Time of moving data from HMR to pure MPI applications is

significant, since output is written to HDFS and then copied to local disks or shared

storage where MPI will read later. Note that reading-writing I/O on supercomputers is

expensive.

We add a key-value in-memory cache to HPC-Reuse in order to keep output data from

MapReduce in memory. Since pure MPI applications are able to run on HPC-Reuse,

they can access MapReduce output from the cache. In order to minimize data moving

overhead, MPI processes are scheduled running on pool slots in which ReduceTasks have

used before. Pool Manager is responsible for the scheduling.

3.3 Experimental evaluation

Our experiments are conducted on the 33 TSUBAME nodes or 33 FX10 compute nodes.

A TSUBAME node (thin type) is equipped with Intel Xeon X5670 2.93GHz processor (12

cores) and 54GB main memory. All compute nodes are connected using the Infiniband

network (Grid Director 4700). Its maximum throughput is 80 Gbps. Each node has

120GB of local SSD storage and a parallel central disk are also provided. A FX10

node is equipped with SPARC64 IXfx 1.848 GHz processor (16 cores) and 32GB main

memory. Computing nodes are connected with each other through Tofu interconnection

[17]. FX10 does not have a local disk for each computing node, conversely a central disk

used.

HPC-Reuse can be integrated with any Hadoop version 2.x, but we use Hadoop v2.2.0

(a stable version) in our evaluation. In order to adapt to HPC-Reuse, Hadoop source

code is changed with the below ratio:

• Line of code / total of Hadoop: 336 / 1,851,473

• Number of classes / total of Hadoop: 8 / 35142
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Each Hadoop cluster has one master node dedicated to run both Resource Manager and

NameNode of Hadoop Distributed File System (HDFS), the remainder are slave nodes.

Node Manager and DataNode are run on each slave node. A Hadoop cluster is deployed

by using a MPI program. When the cluster is ready, MapReduce workloads are submit-

ted to YARN. Note that Hadoop deployment and workload/application submission are

run in the same supercomputer job.

The maximum MapTasks and ReduceTasks that can be run simultaneously on a node

is four. Each execution container is configured to use 4096 MB of memory at most. The

central disk are used for Hadoop Distributed File System (HDFS) storage with 256MB

block size.

We use OpenJDK 7 and OpenMPI 1.6.5 on both TSUBAME and FX10. In order to use

MPI from Java, we use a MPI binding [85] that has been included in OpenMPI 1.7.5

or later. We made a minor modification to integrate this MPI binding with OpenMPI

on the TSUBAME and FX10. On FX10, experiments are run with the MCA parameter

plm ple cpu a�nity = 0 to disable CPU binding to each MPI process.

We use three test cases: fork-based YARN, MPI-Spawn YARN, and HPC-Reuse YARN.

The original YARN is called fork-based YARN. We replace process fork mechanism of

the original YARN with using MPI-Spawn command (at DefaultContainerExecutor class)

that we call MPI-Spawn YARN. HPC-Reuse YARN is our proposal. On fork-based

YARN, MPI is not available among processes (the below table).

Test case TCP/IP MPI

Fork-based YARN X ⇥
MPI-Spawn YARN X X
HPC-Reuse YARN X X

To evaluate HPC-Reuse performance, we compare the total execution and the start-

up time of Tera-sort and iterative PageRank in three test cases. In order to show

MPI performance on Hadoop MapReduce, we show shu✏ing time between MPI- and

TCP/IP-based communication. We also evaluate further our HPC-Reuse by testing

on Puma benchmark suite [86]. Pure MPI application running is evaluated based on

execution time. We use eye tracking data from [84] to run MapReduce and SVM training

to evaluate copying data overhead.

3.3.1 Benefit of HPC-Reuse

This experiment is aimed to show the performance of HPC-Reuse YARN is as good as

the original fork-based YARN in general and HPC-Reuse approach shortens start-up
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time in iterative workloads. We run Tera-sort workload of di↵erent input size up to

128GB on TSUBAME. We calculate the average execution and start-up time for each

input size. We run iterative PageRank on FX10 and measure its total execution and

start-up time. Each experiment of a data size or an iteration is run twice. Note that

MPI-Spawn YARN does not work on FX10 because it is not allowed to spawn new

processes on the same node. For fair comparison, the original shu✏e engine (TCP/IP)

is used for three test cases. Number of Reducers is set equal to number of Mappers in

each experiment.

Figure 3.10 shows results of Tera-sort running on TSUBAME. In Figure 3.10a, HPC-

Reuse outperforms the MPI-Spawn approach when data size is bigger than 32GB and

its performance is the same as the fork-based one, even better with 128GB data size.

Compared to MPI-Spawn YARN and Fork-based YARN, HPC-Reuse YARN reduces the

workload execution times by 52% and 6%, respectively, on average. Regarding start-up

time (Figure 3.10b), it achieves improvement of 82% and 30%, respectively, on average.

Compared to Fork-based YARN in the aspect of total execution time, the improvement

of HPC-Reuse YARN is modest since its computation time is significantly longer than

start-up time as shown in 3.11a. By contrast, when using MPI-Spawn YARN, up to

60% execution time is used for process creation in case of 128GB input size. The more

input data increases, the more number of MapTasks is required.

Another observation shown in Figure 3.10b is that when average start-up time in-

creases significantly when data size grows. This is because that each process container

is spawned in sequence when using MPI-Spawn command and each spawning call takes

nearly 0.5 second on TSUBAME (shown in Figure 2.10). Note that number of process

containers increases when data size grows.

Figure 3.12 shows results of iterative PageRank running on FX10. In Figure 3.12a,

when the number of iterations increases, HPC-Reuse approach shows more reduction,

up to 26% at 32 iterations. This is because the more number of iteration is executed,

the more JVM process containers are created that makes start-up time of Fork-based

YARN longer. HPC-Reuse helps eliminate overhead of JVM start-up.

In Figure 3.12b, HPC-Reuse reduces start-up and workload initialization time by 57% on

average. Moreover, Figure 3.13a reveals the ratio of start-up time in comparison with

overall execution time is small in case of HPC-Reuse YARN. Workload initialization

time is reduced because of connection and file caches, some un-reset static fields, and

JIT compilation.

Figure 3.14 shows how the start-up time is shorten in the iterative PageRank when

using HPC-Reuse. At the top figure 3.14a, three iterations have the same start-up time
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Figure 3.10: Benefit of HPC-Reuse (Tera-sort on TSUBAME)

that marked with blue color. At the bottom figure 3.14b, however, the second iteration

has shorter start-time than the first one. The third iteration is also shorter. In this

PageRank applications, HPC-Reuse achieves 22% improvement at the second iteration

and as much as 25% after the third iteration.
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Figure 3.11: Execution time breakdown Tera-sort on TSUBAME

3.3.2 Benefit of MPI

This experiment is conducted to show how fast MPI shu✏e engine runs in comparison

with the original TCP/IP engine. Tera-sort workload is chosen for the comparison and

only HPC-Reuse YARN is used. In our MPI shu✏e engine, since TSUBAME and FX10

do not support multiple thread-safe communication, we set number of fetcher threads

running on each Reducer to one (mapreduce.reduce.shu✏e.parallelcopies = 1 ). The

number of Reducers is set to 64.

Figure 3.15 reveals when data size is 32GB, execution time starts decreasing by using

MPI shu✏e engine, but its improvement is modest: by up to 7% and 8% on TSUBAME

and FX10, respectively.

Our current design of MPI shu✏e engine is immature and straightforward: only one

fetcher thread is used for each Reducer, and MPI Shu✏e Manager can handle one

request at a time (blocking). Moreover, we do not use any special techniques, such

as in-memory cache [73] and pre-fetching [82]. We show more improvement of using

MPI in Chapter 4 where in-memory storage is implemented that helps leverage MPI

communication.
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Figure 3.12: Benefit of HPC-Reuse (Iterative PageRank on FX10)

3.3.3 Purdue benchmark suite

To evaluate HPC-Reuse with other Hadoop MapReduce workloads, we use Purdue

benchmark suite [86]. Kmeans and Classification workloads use a 15GB movie dataset,

and the remainder use 30GB wikipedia data. All workloads are run on TSUBAME.

Each experiment of a workload is run just once. The number of Reducers is set to 32.



Chapter 3. Virtualizing Dynamic Process Creation 71

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

(s
)

0
20

40
60

80
10
0

12
0

Fork-based YARN HPC-Reuse YARN

Start-up time
Workload Init
Task Init
Data shuffle
Computation

(a) 32 iterations

Figure 3.13: Execution time breakdown of iterative PageRank on FX10

Figure 4.9a shows execution time of those workloads. In comparison with MPI-Spawn

YARN, HPC-Reuse YARN achieves improvement of 48% on average. At Grep and

Classification workloads, since computation time is short, execution time is reduced by

80%.

Compared to Fork-based YARN, HPC-Reuse reduces execution by 6% on average, es-

pecially 10% in case of Kmeans. This is because Kmeans workload has iterative compu-

tation that HPC-Reuse can exploit complication technology in JVM. Our MPI shu✏e

engine shows bad performance in Kmeans and Classification since the input size is not

large.

3.3.4 Pure MPI application running

The purpose of this experiment is to show overhead of running pure MPI applications

on HPC-Reuse YARN in comparison with on the supercomputer’s job queue. First, we

run a MPI program as a supercomputer job. Then, we run the same program on HPC-

Reuse by submitting to YARN. We run this experiment on TSUBAME. MPI programs

are written in Java.
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Figure 3.14: Comparison in iterative PageRank

We evaluate three simple MPI applications: prime count, Pi estimation, and numerical

integration. In the Figure 3.17, compared to MPI jobs submitted to the supercomputer’s

job queue, execution time running on YARN is 3.5 seconds longer on average. This is

because it takes time to start new YARN AppMaster and process containers. 3.5-second

for start-up time is reasonable in long running programs, for example applications in

the Purdue MapReduce benchmark. The MPI applications used in the experiment is

simple and short running. It is our future work to run more complex and long running

MPI applications on HPC-Reuse YARN.

3.3.5 Data copying overhead

To show data copying overhead between MapReduce and pure MPI applications, we

conduct an experiment with an eye-tracking analysis workflow. Eye tracking research

uses eye positions to study the human visual system, psychology, human computer
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Figure 3.15: Benefit of MPI

interaction, and user center design. First, we use MapReduce to compute fixations,

saccades, and 13 eye movement features [84] from over 167,000 eye positions. Then, we

run SVM training as an embarrassingly parallel pure MPI application. The output from

MapReduce is input of this pure MPI application.
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There are two test cases of how to run the pure MPI application. In the first case (HMR

+ MPI on the supercomputer’s job queue), the pure MPI application is submitted to

the supercomputer’s job queue as a typical job, and it reads MapReduce output from

the central disk. In the second one (HMR + MPI on HPC-Reuse YARN), the pure MPI

application is run on HPC-Reuse YARN, and MapReduce output is read from key-value
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in-memory storage.

This experiment is run on TSUBAME. Figure 3.18 shows that data copying time is

reduced by 90% when the MPI application is run directly on HPC-Reuse YARN. If the

pure MPI application is run on the supercomputer’s job queue, it takes two seconds for

data copying and reading. However, execution time of the MPI application is longer

on YARN. This is because it takes 3-4 seconds to start a MPI application running on

HPC-Reuse YARN.

Another advantage of running HMR and pure MPI on HPC-Reuse YARN is the pure

MPI application can be immediately started after MapReduce is finished when both

applications run on HPC-Reuse YARN. By contrast, we must manually check whether

data is available in order to submit the MPI application to the supercomputer’s job

queue.

3.4 Related work

JVM Reuse. M3R [73] used X10 language and JVM Reuse to implement HMR engine

and run in-memory MapReduce. However, technical issues were not provided, for exam-

ple class loading and static field clean-up. Also, there was no specific evaluation of JVM

Reuse, such as start-up time reduction. In our HPC-Reuse, we provide optimization to
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use JVM Reuse more e�ciently, and its e↵ectiveness on iterative workloads has been

evaluated. Moreover, we keep the original HMR engine with minimum changes.

MPI on YARN. Gerbil [70] is already presented in Section 2.4.4. While their approach

is to start MPI process containers by using MultiPurpose Daemon [71], in our approach,

MPI process containers are allocated from a process pool. Moreover, in their approach,

we are aware that for short running MPI applications, start-up overhead is significant in

comparison with total execution time. For performance comparison, it takes 9 seconds

for YARN AppMaster start-up and container allocation in Gerbil. Their experiment was

conducted on nodes equipped with two Intel Quad-core Xeon E5462 2.8 GHz processors

and AppMaster container was configured to use 3072 MB of memory. Our HPC-Reuse

approach needs just 3.5 seconds in order to start MPI programs on TSUBAME nodes

equipped with a Intel Xeon X5670 2.93 GHz processor. Each pool slot is allocated with

4096 MB of memory.

Data shu✏e. JVM-Bypass [82] proposed C-based shu✏e engine integrated with RDMA

in order to speed up the data shu✏e phase. They were aware that JVM-based shu✏e

engine is slow due to Java’s deep stack of transport protocol. While they focused on

evaluating e↵ectiveness of bypassing JVM and using RDMA, we aim at using MPI over

Hadoop processes and evaluating how fast MPI shu✏e engine can speed up.

Resource management. Slurm++ workload manager [87] is an extended implemen-

tation from Slurm that aims to support mixture of applications, such as traditional

HPC applications (MPI), ensemble runs, and many-task computing at exascale. It uses

multiple controllers to manage partitions of compute nodes, but its current design only

supports running coarse-grained workloads. Our HPC-Reuse YARN can host various

kinds of application in fine-grained management manner.

Wasi et al. [65] proposed high performance design of YARN running on HPC clusters.

YARN is redesigned to utilize more e�ciently Lustre file system and Remote Direct

Memory Access (RDMA). While their main objective is to evaluate combination of

Lustre and RDMA, we focus on using MPI over Hadoop processes and hosting pure

MPI applications.

Hadoop on Demand (HoD). The first HoD (mentioned in [20]) was developed at

Yahoo!, and Torque [18] and Maui [88] were used to allocate a Hadoop cluster on a pool

of shared nodes. Torque/Maui was also responsible for starting Hadoop’s JobTracker and

TaskTrackers. myHadoop [24], another HoD, used this style to deploy a Hadoop cluster

on supercomputers. However, there are several shortcomings of HoD: resource utilization

and application diversity. For example, it does not support MPI communication, hosting
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pure MPI applications, exploiting huge main memory, or avoiding I/O to the central

disk.

3.5 Discussion and Summary

We have proposed HPC-Reuse to better support dynamic management with MPI on

supercomputers. It helps avoid process creation mechanism, such as MPI-Spawn, and

enable MPI communication over Hadoop processes. We have also designed a MPI shu✏e

engine to speed up data exchange. Our HPC-Reuse YARN can host pure MPI applica-

tions that helps improve the resource manager’s e�ciency. In addition, combination of

MapReduce and pure MPI workflow as post processing is optimized by using in-memory

caching on our HPC-Reuse. Compared to other JVM Reuse implementation, our design

considers optimization including class loading and clean-up. Moreover, our approach

only makes minimum changes of the original Hadoop. Our experimental results show

e↵ectiveness of HPC-Reuse with improvement of 26% in iterative workloads and 8% in

data shu✏ing.

HPC-Reuse design can be applied to other fine-grained resource managers, for example

Mesos, an o↵er-based resource manager. Implementation of HPC-Reuse using a process

pool can work independently, and it is easy to be integrated with outside components.

HPC-Reuse is providing a para-virtualization layer, so the upper frameworks need to

be modified in order to adapt to HPC-Reuse, but the modification should be small as

discussed in Section 3.3.

Although there is some implementation using JVM reuse, but all of them did not evaluate

JVM reuse and provide any technical issues when using JVM reuse. In our JVM reuse,

we have considered issues including class loading used to load users’ classes and clean-up

that helps to reset to the original condition.

Overhead by adding HPC-Reuse layer on the supercomputer environment is small since

compute and memory resources used for keeping slots of HPC-Reuse are not significant.

Those slots should be in the sleep state when there is no task running. Benefits from

HPC-Reuse is much bigger than such overhead.

Through experiments in Section 3.3, if we compare HPC-Reuse with the original Hadoop,

the major performance gain comes from reducing start-up time, especially in iterative

workloads, such as PageRank. At the current implementation and datasets, the im-

provement from MPI is less than 8% in the tera-sort workload. The performance gain

is not much, but we have already proposed a mechanism to use MPI for data shu✏ing.
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The trend showed that more improvement could be achieved for larger datasets that is

discussed in Chapter 4 where in-memory storage is used.



Chapter 4

E�ciently Virtualizing Local

Disks

Regarding the second mismatch on expensive disk I/O to the central disk on supercom-

puters, we focus on supercomputers where the local disk is not available and we want

to run the popular data-intensive frameworks on such supercomputers having only the

central disk.

We solve the expensive disk I/O mismatch by using in-memory storage to provide e�-

cient virtual local disks instead of using the central disk. Although this approach is not

new, the challenge is to choose the best deployment strategy of in-memory storage (or

virtual disks) in the context of MapReduce, our targeted application type. In this chap-

ter, we present our own memcached-like in-memory storage for Hadoop (our focused

framework), namely SEMem, that supports di↵erent deployment strategies including

being deployed as RAM disks, deployed on every node and data can be stored in remote

memory, and deployed only on dedicated nodes that are used only for storage.

We have conducted experiments and found the dedicated-node strategy showed a good

performance in some benchmarks including Puma and Tera-sort although that strategy

does not intuitively seem good due to fewer nodes used for computation tasks. Moreover,

SEMem is tightly integrated with the implementation of Hadoop, hence the users of

Hadoop with SEMem can easily configure the system to select an appropriate deployment

strategy. Its intra-communication is through MPI, which is the de facto fast networking

protocol on supercomputers.

79
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4.1 Virtualizing local disks

In-memory storage is a natural approach of virtualizing local disks that helps avoid disk

spilling by keeping intermediate data in memory [43][73][74]. We choose in-memory

storage to provide virtual local disks since the size of memory on each compute node of

supercomputers is large enough to serve both computing and data storage. Although

typical in-memory storage for MapReduce frameworks use the local memory space of

each node, the location of in-memory storage is not limited to the local memory space but

it can be the remote memory of other compute nodes. We identify that this in-memory

storage can be seen as memcached-like style [30].

We developed our memcached-like in-memory storage for Hadoop so that Hadoop can

e�ciently run even on supercomputers that have only a slow central disk but no local

disk per node. We named this storage system SEMem. Unlike Memcached, SEMem is

integrated into Hadoop with HPC-Reuse in Chapter 3, hence it can use MPI for commu-

nication. It supports multiple deployment strategies on which memory spaces are used

as local storage, local memory, remote memory, or their mixture. The specified memory

spaces are managed by a SEMem daemon as in-memory storage and provided as a local

disk for mapper tasks and reducer tasks of Hadoop, which communicate to a SEMem

daemon shown in Figure 4.1. The users of Hadoop with SEMem can easily change

deployment strategies to investigate an appropriate strategy for their applications.

Mappers Reducers

Virtual 
Local Disk

SEMem daemon

SEMem

Inter-node network

Store Fetch

Figure 4.1: SEMem providing virtual local disks
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Figure 4.2: RamDisk: deployed as RAM disks where data is stored only in local
memory

4.2 Deployment strategies

SEMem supports three deployment strategies: RamDisk, Every node, and Dedicated

nodes. We below present these three strategies.

RamDisk: in-memory storage is deployed as RAM disks where data is stored only in local

memory. Memory size on each node is limited, data might not fit into memory. When

out of memory happens, the task must be stopped or restarted on other nodes. For

large-scale datasets, this approach is not feasible. Our expectation is this deployment

strategy is fast in small-scale datasets.

Figure 4.2 shows how in-memory storage is used in the RamDisk strategy. There are four

computation nodes in the figures and on each node, a memory space is allocated to store

in-memory data. Since there are computation tasks running on the node, the allocated

memory space is limited. Out of memory will happen on a node when its in-memory

storage is full. Note that the in-memory storage on each node is independent and node

#1 cannot use the in-memory storage of node #2, 3, or 4. The design of in-memory

storage in RamDisk is simple and the overhead of running in-memory storage is small.

Every node: in-memory storage is deployed on every computation node and data can be

stored in remote memory. We call nodes that are responsible for running applications

computation nodes. Computation nodes are used to run a job’s tasks, e.g. Mapping or

Reducing tasks in Hadoop MapReduce. The SEMem daemon is run on all computation

nodes and helps share a node’s in-memory storage with other nodes. This strategy solves

the problem of out of memory when data size is bigger than a node’s in-memory storage

size.
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Figure 4.3 shows how in-memory storage is deployed on four nodes following the every-

node strategy. On node #1, when its in-memory storage is full, it will request other

nodes to send data to those nodes. In-memory storage on every node can be shared and

gathered in order to create a in-memory pool. This in-memory pattern is quite similar

to the partitioned global address space (PGAS) programming model, but we focus more

on data organization and movement.

Compared to RamDisk, a more complex in-memory storage design is required since

each node must handle data from other nodes and manage its own in-memory storage

e�ciently. On each node, a waiting daemon should be used to receive data from other

nodes. To balance data among in-memory storage on each node, we can use the round

robin algorithm to store data on remote nodes. The size of in-memory storage on each

node should be fixed in order to not a↵ect the performance of computation tasks running

on the same node.

Regarding data movement, there is more data sent and received among nodes that

makes network busier, especially in unbalanced input data. Data movement happens

when in-memory storage on a node is full and it must send data to other nodes. In

network-intensive applications, data movement can be a performance bottleneck. A

balanced data distribution of in-memory storage is required to avoid the bottleneck that

might happen on certain nodes where too much data is stored.

Dedicated nodes: in-memory storage is deployed only on dedicated nodes that are used

only for storage. We allocate a group of nodes that is only used to store data in their

memory. No computation task is run on that group of nodes. We call those nodes

memory nodes and their memory external memory. The SEMem daemon is run only on

each memory node. In this deployment strategy, we trade computation resource for data

In-memory storage

Node 1

In-memory storage

Node 2

In-memory storage

Node 3

Not available

Node

Available

In-memory storage

Node 4

Figure 4.3: Every-node: deployed on every node and data can be stored in remote
memory
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In-memory storage
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Not available

Node

Available

In-memory storage

Dedicated node

In-memory storage

Dedicated node

In-memory storage

Node 2

Figure 4.4: Dedicated-node: deployed only on dedicated nodes that are used only for
storage

storage by using memory nodes only for keeping data. A question is that whether this

strategy is a complete waste of resources or not. No computation task on memory nodes

gives a chance of allocating bigger memory space to SEMem and makes the memory

nodes less busy.

Figure 4.4 shows how in-memory storage is deployed on four nodes following the dedicated-

node strategy. There are two nodes used for in-memory storage called dedicated node.

Node #1 can send its data to those dedicated nodes when its in-memory storage is

full. Note that the in-memory storage of node #2 cannot be used by node #1. Those

dedicated nodes are used only for in-memory storage without computation task running

on those nodes. Due to no computation task, bigger in-memory storage size can be

allocated on those nodes.

Compared to Every-node, the in-memory storage design on each computation node is

simpler since it does not need to handle receiving data from other nodes. The design is

as simple as RamDisk’s one. On each dedicated node, a waiting daemon is deployed to

receive data from computation nodes. We can use the round robin algorithm to balance

data stored on dedicated nodes.

The amount of data sent and received among nodes is the same as Every-node, but the

performance bottleneck will happen only at memory nodes. On a computation node,

it sends and receives its own data, so there is no network bottleneck happening. The

round robin data placement on memory nodes helps avoid unbalanced data distribution

of in-memory storage.

In the case that the dedicated-node strategy is chosen, the total performance might

be slower than the every-node’s one since the number of computation nodes is smaller.
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(a) The original Hadoop

Mappers Reducers
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Local Disk
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(b) RamDisk deployment

Figure 4.5: SEMem configuration for RAMDisk deployment strategy: a shu✏e server
is integrated into NodeManager of Hadoop framework.

If the application is compute-intensive and in-memory storage is not used much, the

dedicated-node strategy could show its disadvantage. However, in this thesis, we focus on

data-intensive applications with large-scale intermediate data. The number of memory

nodes is one of our technical issues.

4.3 SEMem architecture

In the original Hadoop MapReduce workflow (Figure 4.5a), intermediate data generated

by mapping tasks is written to a node’s local disk. In case of supercomputer, instead of

local disks, the central disk or SSD is used to store that data. Figure 4.5a shows how

map output is copied from mappers to reducers. At the mapping side, map output is

bu↵ered in memory, and then when its size reaches bu↵er size, it is spilled to the local

disk. The spilled files are merged into a final map output at the end of the mapping

phase. There is a shu✏e server (thread) running on each computation node waiting for

fetching request from reducers. When a request comes, the shu✏e server will look up
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map output metadata, read again those data from the local disk, and send back to the

reducer.

In the RamDisk deployment (Fig. 4.5b), map output is stored totally in memory to

avoid writing to and reading from the local disk. Map output is kept in memory instead

of spilling to the local disk when the bu↵er is full. After merging, map output is sent to

the shu✏e server. A memory space is created on each shu✏e server to keep map output

in memory. When a fetching request comes, the shu✏e server looks up the memory space

and is able to send back immediately to the reducer. The size of the memory space on

each shu✏e server is limited, so out of memory might happen during data fetching. For

example, suppose that the memory space size is 8 GB and there are 20 map tasks running

on the node. If each input data is 512 MB and running tera-sort application, the total

size of map output is 10 GB. Those data cannot fit into the memory space. Although

the map output can be deleted right after it is sent to the corresponding reducer, that

out of memory error can happen at any time.

In Every-node deployment (Fig. 4.6a), SEMem daemon is run on the same node with the

shu✏e server. In contrast to RamDisk where data is stored at a shu✏e server, data can

be kept at any node’s in-memory storage (memory daemon). Round-robin data a�nity

is used to store in-memory data to remote memory since it makes data more distributed

and helps speed up data fetching later. This kind of data a�nity does not use a certain

remote memory for storage as long as possible since unbalanced intermediate data might

be a performance bottleneck.

Dedicated-node deployment (Fig. 4.6b) is to create a group of nodes (called memory

nodes) used only for storing map output and there is no map or reduce task running

on those nodes. On the supercomputer environment, those nodes are requested on the

same job as the nodes used to run Hadoop applications. In Figure 4.6b, the group

of memory nodes consists of one node manager (master) and slave nodes (just called

memory nodes). The node manager is responsible for data placement and monitoring

memory left on each memory node. Since there is no task running on memory nodes,

the size of the memory space can be allocated bigger.

In comparison with RamDisk design, data exchange among nodes of SEMem in Every-

node and Dedicated-node is more complex. First, the mapper requests its shu✏e server

to send map output. If the shu✏e server still has empty space, data is sent then. If the

shu✏e server’s memory space is full, the mapper requests the memory node manager to

send map output. The node manager will find a relevant place and send back to the

mapper. Then, the mapper starts sending map output to the specified memory node.

When finishing sending map output, the mapper also informs the shu✏e server about

the location of map output on memory nodes.



Chapter 4. E�ciently Virtualizing Local Disks 86

Mappers
Reducers

Map Output

Shuffle server

SEMem daemon

…

In-memory storage

Request exchange

Inter-node communication

Shuffle server

SEMem daemon

Shuffle server

SEMem daemon

Daemon

Node
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Figure 4.6: SEMem configuration for every-node and dedicated-node deployment
strategies. Memory daemon (or node) is a separate process running on each node of the
every-node and dedicated-node strategies and responsible for in-memory storage. In the
every-node strategy, the memory daemon and shu✏e server are available on the same

node.

What is the best strategy of storing map output in external memory? Should we dis-

tribute map output to as many memory nodes as possible or just store on a memory

node and when it is full, the next memory node will be used? The former helps increase

fetching throughput since reducers can request to more memory nodes. The latter is

useful if map output is packaged and sent once to a reducer. In the current design, we

have implemented a round robin scheduler on the memory node manager. Data will be

distributed on all memory nodes.
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Compared to using the central disk and SSD to store intermediate data, SEMem helps

avoid spilling out intermediate data to disks that is considered slow. SEMem might

outperform the central disk since disk I/O to the central disk is expensive as shown

in Section 2.5.1. SSD is often equipped in the same node with compute (CPU) and

memory resources, so disk I/O to SSD is faster than the central disk’s one. However,

reading and writing from/to the memory are faster than SSD. Using remote memory

might be also faster then SSD due to high-speed interconnection among compute nodes

on supercomputers.

Although total memory size is still limited that depends on the number of memory

nodes, SEMem can be scalable by adding new memory nodes on the fly. In the current

design, that feature is not available yet because it is prohibited from combining two

di↵erent jobs. The load balance of memory usage might be also better than other

in-memory implementations since the round robin algorithm is used to put data on

SEMem’s memory nodes. The intra- and inter-communication is through MPI. Data

sending and receiving from/to SEMem are fast since SEMem is designed to exploit high-

speed network on supercomputers. In the design of the central-disk-based Hadoop, data

from compute nodes is read/written to the disk through Infiniband switches (sometimes

controlled by I/O nodes [27]). It is typical that compute nodes are connected to each

other through special interconnection, such as 6D Mesh/Torus [17] and QDR InfiniBand

switch. The inter-node communication of SEMem is faster one between nodes and the

central disk (through I/O nodes). We detail SEMem’s communication protocol in the

next section.

4.4 Technical issues

In this section, we show details of SEMem’s implementation mainly in aspects of com-

munication protocol and storage size. SEMem is a storage architecture using compute

nodes for storage only where there is no computation task running. Since we trade com-

putation resource for data storage, SEMem must be designed to leverage other resources

and minimize number of memory nodes. As discussed in the previous section, SEMem

exploits high-speed network on supercomputers in order to reduce latency of putting and

fetching data. We use MPI for inter-node communication and the number of memory

nodes is estimated based on the size of input data.
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while true do
if req == null then

req = MPI.iRecv
end
if there is a new request then

Add req to sendingPool’s waitList;
Reset req = null

end
for slot in sendingPool’s slots do

if data reading finishes then
MPI.iSend to the client

end
if iSend finishes then

free the slot
end

end
Assign req in waitList to free slots;

end
Algorithm 2: Multiplexing non-blocking MPI on the memory nodes

4.4.1 Communication protocol

Compute nodes are connected to each other through special connections having high

throughput and low latency, such as 6D Mesh/Torus or QDR Infiniband. By contrast,

disk I/O from compute nodes to the central disk is considered slow since it is piped

through I/O devices and the central disk is a distributed storage consisting of thousand

of HDDs.

We use MPI as communication protocol since MPI is fast and optimized to exploit the

high-speed interconnection of supercomputers. Memcached is an alternative implemen-

tation of SEMem and its communication is based on TCP. However, MPI is the de facto

communication protocol on supercomputers. While some other variants of Memcached

use Remote Direct Memory Access (RDMA) [78] to speed up data exchange among

remote memory, MPI also leverages RDMA for large data messages. In the following

sections, we describe how MPI works on SEMem and direct bu↵er memory in Java when

sending/receiving MPI messages.

4.4.1.1 Non-blocking MPI on memory nodes

Non-blocking MPI is required to handle multiple requests of fetching and putting data.

It helps decrease latency for each request. It is possible to use multiple threads to process

each request of fetching or putting data. However, calling MPI from multiple threads is
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more complex in order to avoid race condition or the MPI implementation must support

MPI THREAD MULTIPLE mode.

To multiplex non-blocking communication, SEMem runs a dedicated thread on every

node to handle it. Note that most of the supercomputers we know, for example TSUB-

AME and Fujitsu FX10, do not support MPI THREAD MULTIPLE mode. This ap-

proach helps avoid calling MPI send/recv in di↵erent threads.

On each memory node, we run a waiting daemon to listen incoming requests. The

algorithm implemented in the daemon is shown in Algorithm 2. We use progress strategy

to check iRecv and iSend status and data is queued as well. A loop is called to check

if there is any coming message or not (req variable). When there is a new request,

it is added to a queue (waitList). This waiting list contains requests that have been

processed. A sending pool, namely sendingPool, is created to process queued requests.

A slot of the sending pool is responsible for reading data and calling iSend. When

data is read to the sending bu↵er, iSend is called to send data to the client. Data

reading must be also implemented to use an asynchronous mechanism, for example

AsynchronousFileChannel in Java. The progress strategy helps prevent calling MPI.iSend

multiple times simultaneously. The Algorithm 3 shows how data is received at the

client, for example at reducers in Hadoop MapReduce. Fetching data is repeated until

all MapOutputs are requested and received. There are several MapOutputs needing to

be fetched on each host, so they are requested at once. Data receiving from the shu✏e

servers will be stored in the heap space of the JVM process.

4.4.1.2 Direct memory in Java

We have chosen to implement multiplexing non-blocking MPI in Java since Hadoop,

Spark, and Flink are JVM-based frameworks. Moreover, MPI is run on each JVM-

based processes of Hadoop, so it is more convenient to implement in Java. Java is not

considered as a well supported programming language on supercomputers and typical

while any MapOutput do
Wait for (host, MapOutputs) ;
for each MapOutput do

MPI.Send to the host ;
if MPI.Recv from the host then

Data in heap ;
end

end

end
Algorithm 3: Receiving data at reducers of Hadoop MapReduce
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compute-intensive applications should be written in C or Fortran that are the de facto

programming languages. Java performance has been being improved significantly by

using just-in-time compilation (JIT) [89] and other optimizations, for example adaptive

optimizing and garbage collection. Therefore, there is no reason why Java should not be

used on supercomputers. Lots of data-intensive frameworks, such as Hadoop and Spark,

are already written in Java and run on JVM.

Most current MPI implementations are written in C, but those popular data-intensive

frameworks and our implementation are in Java. Our approach is using a MPI binding

for Java [85]. That MPI binding helps call MPI, for example MPI.iSend and MPI.iRecv,

from Java and Scala. For the detail of implementation, we are using a MPI binding that

is included in OpenMPI 1.7.5 [90]. Using a MPI binding might degrade communication

performance due to JNI overhead and memory copying.

Memory copying between JVM and the memory space of C program is a bottleneck when

using MPI to send data stored in Java objects. In order to avoid using the heap memory

of JVM, we use direct memory, for example direct ByteBu↵er, to send and receive data in

the MPI binding library. Through JNI libraries, MPI written in C can execute sending

and receiving. Direct memory is located outside the heap space of JVM and it needs to

be allocated explicitly by users. Objects in direct memory will automatically clean up

their bu↵ers after using or when there is no reference to the objects. The cleaning is

one part of Java Garbage Collection (GC).

4.4.1.3 Reusing JVM processes

In order to keep MPI connection among processes, we use HPC-Reuse [36] proposed

in the previous chapter to avoid MPI-Spawn or other methods that are used to start

new processes in which MPI connection to the running processes is still available. HPC-

Reuse is keeping MPI connection among compute nodes that will benefit SEMem when

sending and receiving data at shu✏e servers and memory nodes. Note that by using

HPC-Reuse, the start-up time of process creation is also shortened.

4.4.2 Storage size in dedicated-node deployment

The storage size of SEMem depends on number of memory nodes. In order to reduce the

waste of CPU resource on memory node, it is necessary to minimize number of memory

nodes, but out of memory must not happen and performance is good enough. The

number of memory nodes should be scaled out on demand, but the current design does

not support that feature. The number of memory nodes must be fixed when SEMem is
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started. When the total number of compute nodes is fixed, it will be problematic if the

ratio of the dedicated nodes to the total nodes is large. In this scenario, the number of

nodes used for running tasks is small and it can cause slow performance.

Suppose we have a fixed number of compute nodes (denoted by N

comp

= Constant).

N

mem

denotes number of memory nodes (that used only for storing data). Exec denotes

execution time when number of memory nodes isN
mem

. We need to find a relevantN
mem

where Exec is fastest as follows:

Min(Exec(N
comp

, N

mem

))

In our current design, the number of memory nodes is estimated roughly based on the

size of input data. Our assumption is that total size of intermediate data is smaller

than one of input data. Therefore, the number of memory node is chosen that satisfies

a condition that total size of memory space on shu✏e servers and memory nodes must

be bigger than size of input data. It might not achieve the best performance of data

fetching, but it helps prevent out of memory error. That error is more serious if it

happens since the whole task will be restarted.

The storage size issue does not happen in other deployment strategies. In the RamDisk

strategy, the storage size is the total memory used for in-memory storage on all nodes.

In the every-node strategy, the storage size is also the same as the RamDisk.

4.4.3 Minimizing changes in Hadoop

Keeping the original source code (e.g. Hadoop or Spark) unchanged as much as possible

is important to increase SEMem’s capability in order to be integrated easily to other dif-

ferent data-intensive frameworks. In our implementation of Hadoop integration, Hadoop

source code is changed with the below ratio as follows:

• Line of code / total of Hadoop: 443 / 1,851,473

• Number of classes / total of Hadoop: 8 / 35,142

4.5 Experimental results

In this section, first we compare three in-memory deployment strategies including RamDisk,

Every-node, and Dedicated-node that are described in Section 4.2. We use three work-

loads in Puma benchmark suit [86]: WordCount, InvertedIndex, and SequenceCount.
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Second, we evaluate how fast SEMem (using the dedicated-node deployment strategy) is

in comparison with the central-disk-based and SSD-based storage. There are three test

configurations in this experiment: Central-disk, SSD, and SEMem storage. Tera-sort

application is mainly used in comparison.

Our experiments are conducted on Fujitsu FX10 supercomputer at The University of

Tokyo [27] and TSUBAME supercomputer at Tokyo Institute of Technology [16]. A

FX10 node is equipped with SPARC64 IXfx 1.848 GHz (16 cores) and 32GB memory.

FX10 nodes are connected with each other through Tofu interconnection [17]. The

maximum throughput of that interconnection is 80Gbps. A TSUBAME node has less

cores (Intel Xeon X5670 2.93GHz - 12 cores) and 54GB memory. Each node is connected

with Infiniband device Grid Director 4700. Another feature of TSUBAME is that 120GB

of SSD storage is available on each node.

SEMem has been implemented using Java since it helps integrate more easily with

Hadoop, Spark, or Flink frameworks. We use Hadoop v2.2.0 for experiments, but any

Hadoop version 2.x can be integrated with SEMem. Spark can also use SEMem as an

intermediate storage. Each slave node can run at most four MapTasks or ReduceTasks

simultaneously and maximum heap size of a JVM is 4096 MB of memory. Block size of

Hadoop Distributed File System (HDFS) is 256 MB. In our experiments, all input data

is stored in HDFS running on the central disk.

4.5.1 The performance of deployment strategies

This experiment is aimed to show which deployment strategy of in-memory storage

shows a better performance in data-intensive applications. We compare three strategies

on Fujitsu FX10 supercomputer: RamDisk, Every-node, and Dedicated-node. Moreover,

for comparison of in-memory storage and spilling data to the central disk, we compare

three strategies with another configuration called Central-disk. The largest size of input

data is 120 GB. The number of reducers is set to 128 for all datasets. Note that running

time is 0 (zero) denoting that out of memory happens and the corresponding job is

stopped.

Regarding fairness of this experiment, all three configurations use the same total number

of nodes. In case of dedicated-node, some nodes are assigned to only storing data, but

they are used for computation as well in Ramdisk and every-node. In this experiment,

while we use 32 nodes for computation and 4 nodes for SEMem storage, 36 nodes are

allocated for computation in Ramdisk and every-node configurations.
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Figure 4.7: Running time on di↵erent deployment strategies: zero at 120GB at
RamDisk denotes that out of memory happens and the corresponding job is stopped.



Chapter 4. E�ciently Virtualizing Local Disks 94

Figure 4.7 reveals that RamDisk is the fastest strategy, but out of memory happens

when data size is bigger than 120GB. RamDisk is the fastest deployment strategy since

data is stored at local memory and no inter-node communication. Moreover, there

is no complex distributed in-memory storage installed on the RamDisk strategy and

intensive data movement among nodes. However, due to uneven distribution of input

data, intermediate data is not fit into memory at some nodes. That is why out of

memory happens.

Dedicated-node shows a better performance than every-node when data size is bigger

than 40GB. It is 10% improvement on average in both WordCount and InvertedIndex,

and it is 13% on average faster in SequenceCount. When the size of dataset is big-

ger, the dedicated-node strategy shows a bit higher improvement than the every-node

strategy, for example 12% and 14% for 80 GB and 120 GB datasets, respectively, in

SequenceCount. The dedicated-node strategy has achieved better performance than the

every-node one since there is no complex distributed in-memory storage running on com-

putation nodes and the bottleneck of data fetching at those nodes. In the every-node

deployment, the more complex SEMem daemon disturbs computation tasks at several

places, for example network bandwidth, CPU time, and memory, to a certain degree.

On the other hand, the computation nodes’ resources are used mainly for computation

tasks and in-memory management is o✏oaded to dedicated nodes (or memory nodes)

in the dedicated-node strategy. A network bottleneck could happen at memory nodes,

but the high-speed network combining with using MPI and RDMA on supercomputers

could speed up sending and receiving data between memory and computation nodes. In

case of SequenceCount, since the size of intermediate data is larger than in WordCount

and InvertedIndex, there is more improvement.

Compared with central-disk configuration, dedicated-node is always faster, especially

32% improvement in SequenceCount workload, whereas every-node is slower in Word-

Count and InvertedIndex, but faster in SequenceCount 26% on average. In WordCount

and InvertedIndex workloads, every-node is slower than central-disk configuration since

more communication is required and computation nodes might be busier when SEMem

daemon is run. By contrast, central-disk is the slowest configuration in SequenceCount

because the size of intermediate data is larger.

Every-node performance for the dataset less than 80 GB should be similar to the

RamDisk, but our experiment showed that it is slower since the configuration of every-

node is more complex and more communication required. We run one more daemon on

each node to handle in-memory storage in the every-node deployment. That daemon is

responsible for receiving and sending the intermediate data from mappers and reduc-

ers. However, in the RamDisk deployment, those data are stored directly by the shu✏e
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server. A separate daemon makes the shu✏e server less busier and helps organize in-

memory storage more e�ciently, but the entire compute node’s performance might be

a↵ected. Moreover, in the every-node deployment, the size of in-memory storage must

be fixed in order to ensure that out of memory will not happen since we know how big

the size of in-memory storage can be allocated. Data can be stored on the local node

as long as the total used size is smaller than the maximum size. We set 8 GB in the

experiment. In the RamDisk deployment, data can be written to the in-memory storage

as long as possible, but out of memory can happen at any time. From the experimental

results, the overhead is significant for small data size, but when the data size is bigger,

every-node is faster than the central disk.

4.5.2 SEMem (dedicated-node) vs. central-disk (HDD) and SSD

This experiment is aimed to show how fast SEMem is in comparison with the central-

disk-based and SSD-based approaches. We compare three test configurations on TSUB-

AME: the central-disk-based Hadoop, SSD-based Hadoop, and our approach (SEMem).

Tera-sort is used for comparison and input data is generated by tera-gen. The largest

size of input data is 1 Terabyte. We run each experiment of a data size twice and cal-

culate the average execution time. The number of reducers is fixed to 128 for all data

sizes. The number of nodes (#) is denoted in the figure.

In this experiment, SEMem runs on dedicated nodes and for fairness of this experiment,

all three configurations use the same total number of nodes. In case of SEMem, some

nodes are assigned to only storing data, whereas those nodes are used for computation

in the central-disk and SSD configurations. That means SEMem uses a smaller number

of computation nodes.

Figure 4.8a shows that as the size of input data increases, SEMem is faster than central-

disk-based storage, and close to SSD-based storage. Compared to central disk and SSD

storage, SEMem reduces execution time by 20% and 5%, respectively, on average when

data size is bigger than 512 GB. SSD storage has better performance when the data size

is less than 256 GB.

Choosing SSD or SEMem storage? at the supercomputer centers, when they design

a new supercomputer, a question is that whether each node should be equipped with a

SSD storage or not. SSD storage is considered di�cult for maintenance and it can be

a point of failure. For example, data on SSD storage of TSUBAME must be deleted

manually after each job. If they do not want to install SSD, a question is that SEMem

can be an alternative. Moreover, if SSD is available and also become a paid resource

on supercomputers, whether supercomputer users should buy SSD storage or choose
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Figure 4.8: SEMem vs. Central disk and SSD

to increase number of computation nodes in order to create SEMem. We design an

experiment to answer those questions. This experiment is conducted on TSUBAME.

We keep the same number of computation nodes for both SEMem and SSD test config-

urations. We assume that SEMem and SSD are two types of resources that users can

choose. SEMem has a defined number of nodes used for storage. Tera-sort is used for

comparison and maximum input data is 1 Terabyte.
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Figure 4.9: Purdue MapReduce benchmark

Figure 4.8b reveals that SEMem is always faster than SSD storage, especially 41%

improvement at 128 GB of input data. When input size is 1 Terabyte, the improvement

is 13% in comparison with SSD storage, but SEMem helps decrease the total execution

time (1249 seconds) by 159 seconds. The figure shows that SEMem is feasible to become

an alternative of SSD storage.



Chapter 4. E�ciently Virtualizing Local Disks 98

4.5.2.1 Other benchmarks

To evaluate SEMem with other Hadoop MapReduce workloads, we use Purdue bench-

mark suite [86]. InvertedIndex, Wordcount, and SequenceCount workloads use 120GB

Wikipedia data. The number of reducers is set to 128 for all experiments.

Figure 4.9a shows performance of three workloads using SEMem and the central disk on

TSUBAME supercomputer. InvertedIndex and Wordcount show a modest improvement

(less than 10%) when using SEMem since the size of intermediate data is small, whereas

SEMem reduces execution time of SequenceCount by 33%.

4.5.2.2 Results on Fujitsu FX10 supercomputer

In order to evaluate our approach on other di↵erent supercomputers, we run SEMem

on Fujitsu FX10 where SSD is not available. When SSD is not available, SEMem can

become more useful. Note that FX10 does not has large memory size that makes SEMem

have to require more memory nodes. We run tera-sort application with di↵erent input

sizes and the same micro benchmark as on TSUBAME.

Figure 4.10 shows the results of tera-sort running Fujitsu FX10. Compared with the

central disk configuration, SEMem achieves improvement of 25% on average. Although

the input sizes are small, SEMem shows a good improvement. In the Figure 4.9b of
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Figure 4.10: SEMem vs. Central disk on Fujitsu FX10
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Figure 4.11: MPI-based vs. TCP-based protocols

micro benchmark running on FX10, reduction is small in InvertedIndex and Wordcount,

but SEMem outperforms the central disk in SequenceCount workload.

4.5.3 Communication protocol

This experiment is aimed to check how fast our MPI implementation on SEMem is in

comparison with TCP communication and whether the improvement achieved by using

SEMem comes mainly from in-memory storing or fast MPI communication. We run

the original Hadoop in memory and compare it with SEMem-based Hadoop. The orig-

inal Hadoop uses TCP communication for data exchange between reducers and shu✏e

servers. This comparison is fair because SEMem is an in-memory storage, but use MPI

for data exchange. Tera-sort workload is used for comparison and the number of nodes

(#) is denoted in the figure.

Figure 4.11 shows there is no di↵erence when the size of input data is smaller than

128 GB. However, MPI-based Hadoop is faster 10% and 5%, respectively, when the

input sizes are 256 and 512 GB. Compared with Figure 4.8a at the data size of 256

GB, MPI communication contributes less than 20% to the performance improvement by

using SEMem. This experiment has proved that the main source of improvement (80%)

comes from in-memory storing on memory nodes of SEMem. Moreover, in comparison
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with the MPI experiment in Section 3.3.2 of Chapter 3, the improvement is increased to

up to 10% since the bottleneck of disk I/O in our MPI communication design is removed.

4.5.4 Storage size of SEMem

This experiment is designed to measure performance impacts of storage size. SEMem’s

memory capacity can be configured based on number of memory nodes. We have con-

ducted an experiment by keeping the same number of computation nodes and changing

number of memory nodes. The purpose of this experiment is to check whether our cur-

rent approach of finding the number of memory nodes is e↵ective or not. We always run

tera-sort application on 32 computation nodes. The number of memory nodes ranges

from 4 to 16. The size of input data is 64 GB generated using tera-gen application.

According to our estimation, the required number of memory nodes should be 4 ⇠ 8

nodes. We measure data copying time (between shu✏e servers and memory nodes and

reducers) rather than total execution time. Figure 4.12 shows that when the number of

memory nodes is 8, data is copied fastest. However, if increasing the number of memory

nodes from 8 to 16, the copying time is slower due to complexity in node management.

In order to show when out of memory happens if we change the number of memory

nodes. Figure 4.13 reveals that for 64 GB of the problem size, out of memory occurs

when the number of memory nodes is two.
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4.6 Related work

Memcached software [33] is close to our implementation of SEMem since it is a dis-

tributed caching system. The combination of Hadoop and Memcached is a study topic.

However, to the best our knowledge, there is no study on using Memcached to store

intermediate data implicitly in Hadoop MapReduce workflow. We also evaluated ad-

vantages of that combination SEMem and Hadoop. Memcached uses TCP-based com-

munication and RDMA-based Memcached [78] is an extension that speeds up internode

communication by using RDMA. In our SEMem, we use MPI for communication among

memory nodes. RDMA could be also enabled automatically in MPI communication on

supercomputers.

DASH [29] has the same motivation of decreasing latency gap between main memory

and hard disks. It proposed an storage architecture exploiting SSD and DRAM to fill

that latency gap. DASH is a remote distributed in-memory storage and equipped with

SSDs. However, such storage architecture is not scalable since total storage size is fixed.

The storage size of our approach, SEMem, can be extended by adding more memory

nodes.

HydraDB [91] proposed an in-memory layer supported by RDMA that is located between

computation frameworks, such as Hadoop and Spark, and storage. It mainly focuses on
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reading and writing from/to HDFS. However, SEMem is based on MPI communication

and aimed to store intermediate data.

FARM [92] is a distributed main memory platform that enables to process large-scale

datasets in memory with fast network communication, RDMA, in order to improve

latency and throughput. Nevertheless, our SEMem approach uses memory on computa-

tion nodes exclusively for data storage. Moreover, SEMem has exploited MPI supported

by RDMA to speed up data exchange.

4.7 Discussion and Summary

We have examined in-memory storage deployment strategies including RamDisk, Every-

node, and Dedicated-node. For experiments, we have designed our own memcached-like

file system called SEMem. Dedicated-node shows a good result in the Puma benchmark

with up to 13% improvement of the SequenceCount workload in comparison with Every-

node strategy. Dedicated-node is motivated by a feature of supercomputers that the

number of compute nodes are often huge and supercomputer users can request a number

of nodes they need. Computation tasks are not run on those nodes.

By answering the question of which deployment strategy of in-memory storage is good,

our SEMem provides e�cient virtual local disks that help reduce total execution time

as much as 32%. Moreover, SEMem is easily configurable for di↵erent deployment

strategies. Our own in-memory storage is tightly integrated with the implementation

of Hadoop and using MPI for its communication protocol, but it can be used by other

popular data-intensive frameworks, such as Spark and Flink. The benefit of dedicated-

node has been achieved in the context in which the ratio of the dedicated nodes to the

total nodes is small. If the number of dedicated node is bigger than the number of nodes

used for computation, the application should run slow due to the bottleneck of running

computation tasks.
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Performance benefit of both

HPC-Reuse and SEMem

In this chapter, we combine HPC-Reuse and SEMem and conduct experiments in order

to evaluate the overall performance improvement in comparison with the original data-

intensive frameworks running on supercomputers. Although SEMem is already using

HPC-Reuse to enable MPI communication in Chapter 4 in which all experiments of

its evaluation were run on HPC-Reuse for the fairness, the experimental results in this

chapter will give us a conclusive proof of our research by comparing the original TCP-

based Hadoop without running on HPC-Reuse and SEMem, only using HPC-Reuse, and

combination of HPC-Reuse and SEMem. Note that Hadoop is our targeted framework

for experimental evaluations.

5.1 Experimental results

We show the experimental results of two benchmarks. One is Tera-sort that was already

used in comparison of the TSUBAME supercomputer and Amazon EMR, and SEMem

and the central disk. Another one is the PUMA benchmark [86] including several work-

loads. We compare the original implementation of Hadoop without modification and

the obtained results from the previous chapters.

5.1.1 Tera-sort benchmark

The purpose of this experiment is aimed to show how fast the combination of HPC-Reuse

and SEMem deployed in the dedicated-node strategy can achieve in comparison with a

103
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naive deployment of the unmodified original data-intensive frameworks on supercomput-

ers when running workloads having large-scale intermediate data, for example Tera-sort.

We compare four test cases on TSUBAME including the original Hadoop, HPC-Reuse-

central-disk Hadoop, HPC-Reuse-SSD Hadoop, and HPC-Reuse-SEMem Hadoop that

are described as follows:

• The original Hadoop: refers to the unmodified original implementation that is used

as the baseline for comparison.

• HPC-Reuse-central-disk Hadoop: refers to using HPC-Reuse and writing interme-

diate data to the central disk.

• HPC-Reuse-SSD Hadoop: refers to using HPC-Reuse and writing intermediate

data to local SSDs.

• HPC-Reuse-SEMem Hadoop: refers to using both HPC-Reuse and SEMem.

In this experiment, the four test cases have the same Hadoop configuration and the

total number of compute nodes. However, since SEMem requires dedicated nodes used

for in-memory storage, the number of compute nodes in HPC-Reuse-SEMem Hadoop

is smaller depending on how many memory nodes are used. The number of memory

nodes is estimated based on the discussion in Section 4.4.2. The cluster chosen for the

comparison has 32 nodes and the problem size is 128 GB.

In Figure 5.1, compared with the original Hadoop, HPC-Reuse-SEMem Hadoop, our

combination of HPC-Reuse and SEMem, is faster 61% at the 128 GB of problem

size. The intermediate data of the original Hadoop is written to the central disk, so

HPC-Reuse-central-disk Hadoop is the main baseline. HPC-Reuse-central-disk Hadoop

achieved 12% improvement, HPC-Reuse-SSD Hadoop showed 59% faster.

5.1.2 PUMA benchmark

In this experiment, we show the performance comparison of the unmodified original

Hadoop and di↵erent deployment strategies using both HPC-Reuse and SEMem. Com-

pared with the experiment in Section 4.7, the original Hadoop of this experiment is not

based on HPC-Reuse. There are five test cases as follows:

• The original Hadoop: is the same as in the Tera-sort benchmark.

• Central-disk Hadoop: refers to using HPC-Reuse.
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Figure 5.1: Performance of our approaches: four test cases

• Dedicated-node Hadoop: refers to using both HPC-Reuse and SEMem deployed

in the dedicated-node strategy.

• RamDisk Hadoop: refers to using both HPC-Reuse and SEMem deployed in the

RamDisk strategy.

• Every-node Hadoop: refers to using both HPC-Reuse and SEMem deployed in the

every-node strategy.

We use the PUMA benchmark includingWordCount, InvertedIndex, and SequenceCount

workloads. The cluster has 32 nodes and the problem size ranges from 10 GB to 120

GB.

The Figure 5.2, 5.3, and 5.4 show that the central-disk Hadoop using HPC-Reuse is faster

12%, 11%, and 25% on average than the original running in WordCount, InvertedIn-

dex, and SequenceCount, respectively. Regarding SEMem deployment strategies, in the

WordCount workload, RamDisk, dedicated-node, and every-node achieve 36%, 16%, and

10% on average, respectively. In the InvertedIndex workload, RamDisk, dedicated-node,

and every-node achieve 34%, 14%, and 9% on average, respectively. In the Sequence-

Count workload, RamDisk, dedicated-node, and every-node achieve 61%, 48%, and 45%

on average, respectively.
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Figure 5.2: PUMA benchmark: WordCount

5.2 Hadoop’s source code changes

The goal of achieving a better performance without large source code modifications on

supercomputers is feasible since the source code changes are not much in comparison

with the size of Hadoop codebase. Figure 5.5 shows how many lines of code and classes

we modified in the original Hadoop source code. In Hadoop v2.2 [93], the total lines of

code (LOC) is more than 1.8 millions and there are around 35,142 class files. In order to

work with HPC-Reuse, we modified mainly ContainerExecutor class with 336 LOC.

MapTask and Fetch classes are changed to communicate with SEMem, and the total

changes are 443 LOC.

5.3 Discussion

The overall improvement obtained by using HPC-Reuse and SEMem is 61% faster than

the original Hadoop without modification. HPC-Reuse is making up 12% and SEMem

contributes 49% improvement on average in the tera-sort workload at the problem size

of 128 GB. When SSD is not available, the performance benefit from SEMem is large. If
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Figure 5.3: PUMA benchmark: InvertedIndex

SSD is installed on supercomputers, the improvement is only significant with large-scale

datasets, for example 512 GB and 1 TB.

In the Figure 5.1, we have only experimental results of the original Hadoop at 64 GB and

128 GB. However, the trend showed that our proposals are outperforming the original

Hadoop deployed on supercomputers. For the larger datasets, the performance of the

original Hadoop should be much slower.

In the WordCount and InvertedIndex workloads, while HPC-Reuse contributes 11%

faster on average, SEMem shows a modest improvement with as much as 5%. However,

in the SequenceCount workload, HPC-Reuse and SEMem achieve 25% and up to 23%,

respectively. The data size in PUMA benchmark is not big that is why HPC-Reuse

showed more improvement.

5.3.1 Scalability

Regarding the scalability in our experiments, it has showed that our proposal is scalable

up to 128 nodes since we deployed our HPC-Reuse and SEMem Hadoop on up to 128

compute nodes and on each compute, we run up to 8 task processes in the experiments.

Those experiments run stably on that configuration. We expect that our system can
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Figure 5.4: PUMA benchmark: SequenceCount

execute workloads stably having up to 1024 task processes. If we consider that one

process is equivalent to one compute node, we expect that our system could scale on the

cluster containing 1024 nodes. Compared to typical commodity clusters configured at

the laboratory or cloud services, the number of nodes is big enough.

We expect that our system can be scaled out to handle bigger datasets since the per-

formance could be improved more and the trend can be seen as shown in Section 3.3.1,

4.5.2, and 5.1.1. The biggest data size in our experiments was one terabytes and the

figures have showed that when the size of datasets increases, the performance improve-

ment is going up gradually. It means that our proposal could be e�cient for large-scale

datasets.

We also expect that HPC-Reuse and SEMem Hadoop is as scalable as the original

Hadoop that was already deployed on thousands of nodes at Yahoo [94]. HPC-Reuse and

SEMem are just a para-virtualization layer that do not a↵ect much on the scalability of

Hadoop. While the HPC-Reuse daemon is just monitoring a node, the SEMem daemon

on the dedicated-node strategy is responsible for memory nodes whose ratio to the total

number of nodes is small. Our HPC-Reuse does not support fault tolerance that is the

drawback of our system when the number of nodes is large. That is still our future work.
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Figure 5.5: Hadoop’s source code modifications

Regarding the strong and weak scaling, there are several results in our experiments

showing such measurement. In the Figure 5.1, the number of computation nodes was

adjusted in the small range, and the problem size is increased. The figure’s trend has

showed a constant improvement as the weak scaling. The PageRank experiments in Fig-

ure 3.14 have presented our system’s strong scaling by showing that when the number of

nodes increases from 32 to 128 computation nodes, the more improvement was achieved.

5.3.2 E↵ectiveness

We show that our proposal has satisfied the requirements of an e↵ective deployment

defined in Section 2.7 as follows:

• HPC-Reuse enables using MPI communication in the e↵ective way by starting all

processes simultaneously and SEMem enables a fast virtual local disk based on

memory that helps avoid expensive disk I/O to the central disk.

• The changes in Hadoop is small when using on the top of HPC-Reuse and SEMem

as shown in Section 5.2. Minimizing modifications helps increase productivity and

ease of upgrade.

• We did not evaluate how long the deployment of Hadoop cluster takes, but it

should be short in comparison with the total execution time of applications in our

experiments.
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Conclusions

This thesis is about proposing an e↵ective deployment of popular data-intensive frame-

works, such as Hadoop and Spark, with minimum source code modifications when they

are run on modern supercomputers rather than on commodity clusters where they are

typically widely used. By observing two mismatches related to lack of MPI-friendly

dynamic process creation and local disks, we show the ine�cient way of using network

communication and performance bottleneck of the central disk in the default deploy-

ment on supercomputers. Commodity clusters are the targeted environment for the

data-intensive frameworks, but supercomputers designed di↵erently from commodity

clusters cause those mismatches. The naive default deployment of those frameworks on

supercomputers is considered not e↵ective. Note that our targeted framework in imple-

mentation and evaluations is Hadoop MapReduce. As shown through the experimental

results in Chapter 3, 4, and 5, our proposal of HPC-Reuse and SEMem have resolved

the two mismatches and made the deployment of Hadoop-like popular data-intensive

frameworks e↵ective on the modern supercomputers.

Table 6.1 shows the comparison of our proposal, HPC-Reuse and SEMem, and other

approaches mentioned in Section 2.6. Our proposal is using JVM Reuse that helps

reduce start-up time and supporting MPI communication among processes following an

e↵ective mechanism that does not require MPI-Spawn or the process fork(). Our SEMem

enables in-memory storage and supports di↵erent deployment strategies. Moreover,

it also provides simple data a�nity. Our proposal is as good as Hadoop in aspects

of productivity and maturity, but it is more compatible since it can be deployed on

supercomputers in an e↵ective way. Its scalability is as high as Hadoop since HPC-

Reuse and SEMem can be deployed on a large number of nodes.

Regarding the data size that our system can handle, since HPC-Reuse-SEMem Hadoop

is as strong as the original Hadoop, we expect that it is possible to handle and process
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Dynamic process creation

Process creation JVM reuse Fork MPI-spawn MPI-spawn
& reuse

JVM reuse Fork&
reuse

MPI support Yes No Yes Yes Might No

Local disks

In-memory storage Yes No No No Yes Yes

Deployment strategy Yes No No No No No

Other criteria

Overall Good Good Bad Bad Neutral Good

Productivity High High Low Low High High

Maturity High High Low Low Fair High

Compatibility High Fair Low Fair Low Fair

Scalability High High Fair Fair High High

Table 6.1: Our proposal vs. existing solutions

large-scale datasets. In our experiments, although 1 TB is the biggest dataset we have

tested, the trend in the Figure 4.8 and 4.11 showed that it could be scalable for larger

datasets.

Our proposals of HPC-Reuse and SEMem help achieve a better performance of data-

intensive frameworks when running on supercomputers in general. From our experi-

ments, sorting algorithm and iterative MapReduce applications are getting much ben-

efit. HPC-Reuse enables faster process creation, so it is good for iterative MapReduce

applications, for example PageRank and k-means clustering, or any application to cre-

ate many processes. HPC-Reuse enables also MPI communication, so it is good for
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Dynamic process creation

Process creation JVM reuse Fork MPI-spawn MPI-spawn
& reuse

JVM reuse Fork &
reuse

•Slot resizing No Yes Yes No Yes Yes

MPI support Yes No Yes Yes Might No

•Fault tolerance No Yes No Yes Might Yes

Local disks

In-memory storage Yes No No No Yes Yes

•Data a�nity Partial No No No Partial Yes

•Multiple levels No Yes No No No Yes

Deployment strategy Yes No No No No No

•Preferred locations No No No No Might Yes

Table 6.2: Limitations of our proposal

network-intensive applications as well, such as Tera-sort. Regarding SEMem, it enables

e�cient virtual local disks, so it is good for applications having large intermediate data.

6.1 Limitations

Regarding process creation, our HPC-Reuse cannot resize the number of slots in a node.

M3R supports adding more slots, namely place in X10 [95], on the fly [96]. Spark also

provides a mechanism in order to resize the number of slots called executor in Spark

[97]. That drawback limits the scalability of our proposed HPC-Reuse when we want

to increase the number of parallel tasks that are able to run on a node. Although
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increasing the number of slots helps improve parallelism, but the performance can be

degraded since compute, memory, and network bandwidth resources are limited.

Since MPI does not support fault-tolerance in its implementation on supercomputers,

our HPC-Reuse process pool will be terminated when any process in the pool fails due

to errors. As our future work, it is possible to implement a checkpoint mechanism for

HPC-Reuse in order to restart its state when an error happens. DataMPI supports both

MPI and fault tolerance since DataMPI is a pure MPI framework. It is also not clear

that if M3R is supporting MPI fault tolerance or not.

SEMem partially supports data a�nity, for example users can configure how to place

data into the in-memory storage including round-robin style and storing on a node as

much as possible. M3R supports where data is stored through places and activities

operators, but they are implicitly controlled through X10. In Spark, it is possible to

choose a location for a RDD through preferredLocations() operator.

When in-memory storage is full, out of memory will happen and our system cannot

extend to store in the next level of storage, for example SSD and the central disk.

Although the original Hadoop supports that feature, but there is no connection of our

implementation of in-memory storage and that configuration. Spark is fully supporting

multiple storage levels, such as memory, local disks, SSD, and the central disk.

Our SEMem does not provide exactly which node data will be stored that is called

preferred location. That feature is useful when users want to exploit data locality for

running tasks, for example running reducing tasks on the same nodes where intermediate

data is available. Spark is fully supporting that feature by putting the preferred location

information into its RDD data model. M3R supports partially and implicitly through

the place of X10 programming language.

6.2 Future work

HPC-Reuse: our future work is to add more features and improvement, such as full

clean-up including static fields and heap memory and a slot resizing mechanism men-

tioned in the previous section. We also have a plan to redesign our MPI shu✏e engine

in order to support fault tolerance.

Estimating number of memory nodes: the number of memory nodes a↵ects wait-

ing time in the job queue on supercomputers and job performance as well. The size

of intermediate data is always changed that depends on the type of applications. In

our current design, we estimate roughly the number of memory nodes based on the size
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of input data. That way does not achieve the best performance. We are going to use

machine learning to study sample data first and then run the real application later.

Moreover, one more straight solution is to add more memory nodes on the fly by sub-

mitting another job to the job queue. However, it is only possible if the supercomputer

job queue allows to combine di↵erent running jobs, but the waiting time on the job

queue is another problem that needs to be considered.

Topology of memory nodes: on some supercomputers (e.g. Fujitsu FX10 using

Tofu interconnection), compute nodes can be allocated by a shape of 2D or 3D. A

relevant node topology can improve job performance since it helps increase throughput

and decrease latency among nodes. Note that we used the default shape in our current

experiments.
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[92] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson.

Farm: fast remote memory. In 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), pages 401–414, 2014.

[93] Hadoop 2.2 Release Notes. http://hadoop.apache.org/docs/r2.4.1/hadoop-project-

dist/hadoop-common/releasenotes.html.

[94] Yahoo. Yahoo: We run the whole company on hadoop. Yahoo: We Run the Whole

Company on Hadoop, 2014.

[95] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove.

X10 language specification, 2011.

[96] Elastic X10. http://x10-lang.org/documentation/practical-x10-

programming/elastic-x10.html, 2017.

[97] Dynamic resource allocation in Spark. http://spark.apache.org/docs/latest/

configuration.html#dynamic-allocation, 2017.


	Abstract
	Acknowledgements
	List of Figures
	Listings
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis organization
	1.4 Main publications

	2 Background
	2.1 Data-intensive application frameworks
	2.1.1 Data-intensive applications
	2.1.2 Hadoop MapReduce
	2.1.3 Spark
	2.1.4 Flink
	2.1.5 Scratch building frameworks
	2.1.5.1 K MapReduce
	2.1.5.2 DataMPI


	2.2 Supercomputers
	2.2.1 Supercomputers versus Commodity clusters
	2.2.2 Examples of supercomputers
	2.2.2.1 TSUBAME supercomputer
	2.2.2.2 Fujitsu FX10 supercomputer
	2.2.2.3 Cray Titan supercomputer
	2.2.2.4 IBM Sequoia supercomputer

	2.2.3 Commercial HPC clusters
	2.2.3.1 Amazon HPC cluster
	2.2.3.2 Microsoft Azure HPC cluster

	2.2.4 System comparison

	2.3 Where data-intensive frameworks should be run
	2.3.1 Choosing supercomputers
	2.3.2 Performance is not satisfactory
	2.3.2.1 Data-intensive supercomputers
	2.3.2.2 Hadoop/Spark on supercomputers
	2.3.2.3 MPI-based MapReduce frameworks

	2.3.3 Our observations

	2.4 Mismatch: MPI-friendly dynamic process creation
	2.4.1 MPI for data-intensive frameworks on supercomputers
	2.4.2 Hadoop YARN resource manager
	2.4.3 Issue of resource management
	2.4.4 MPI-friendly dynamic process creation

	2.5 Mismatch: local disk on a compute node
	2.5.1 Expensive disk I/O
	2.5.2 In-memory approach
	2.5.2.1 When in-memory storage is useful
	2.5.2.2 Examples of in-memory storage implementation

	2.5.3 Deployment of in-memory storage

	2.6 Comparison of existing solutions
	2.7 Effective deployment

	3 Virtualizing Dynamic Process Creation
	3.1 HPC-Reuse: virtualizing dynamic process creation
	3.1.1 Idea of Reusing
	3.1.2 Process pool
	3.1.3 Technical issues
	3.1.3.1 Class loading
	3.1.3.2 Clean-up
	3.1.3.3 Number of slots in the pool

	3.1.4 Performance benefit

	3.2 Other benefits of HPC-Reuse
	3.2.1 MPI communication over Hadoop processes
	3.2.2 Post processing after MapReduce tasks
	3.2.2.1 Enabling YARN to host pure MPI applications efficiently
	3.2.2.2 Efficient data copying


	3.3 Experimental evaluation
	3.3.1 Benefit of HPC-Reuse
	3.3.2 Benefit of MPI
	3.3.3 Purdue benchmark suite
	3.3.4 Pure MPI application running
	3.3.5 Data copying overhead

	3.4 Related work
	3.5 Discussion and Summary

	4 Efficiently Virtualizing Local Disks
	4.1 Virtualizing local disks
	4.2 Deployment strategies
	4.3 SEMem architecture
	4.4 Technical issues
	4.4.1 Communication protocol
	4.4.1.1 Non-blocking MPI on memory nodes
	4.4.1.2 Direct memory in Java
	4.4.1.3 Reusing JVM processes

	4.4.2 Storage size in dedicated-node deployment
	4.4.3 Minimizing changes in Hadoop

	4.5 Experimental results
	4.5.1 The performance of deployment strategies
	4.5.2 SEMem (dedicated-node) vs. central-disk (HDD) and SSD
	4.5.2.1 Other benchmarks
	4.5.2.2 Results on Fujitsu FX10 supercomputer

	4.5.3 Communication protocol
	4.5.4 Storage size of SEMem

	4.6 Related work
	4.7 Discussion and Summary

	5 Performance benefit of both HPC-Reuse and SEMem
	5.1 Experimental results
	5.1.1 Tera-sort benchmark
	5.1.2 PUMA benchmark

	5.2 Hadoop's source code changes
	5.3 Discussion
	5.3.1 Scalability
	5.3.2 Effectiveness


	6 Conclusions
	6.1 Limitations
	6.2 Future work

	Bibliography

