SEMem: Deployment of MPI-Based In-Memory
Storage for Hadoop on Supercomputers

Thanh-Chung Dao™ and Shigeru Chiba

Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan
chung@csg.ci.i.u-tokyo.ac.jp, chiba@acm.org

Abstract. This paper reports our experiments to compare various
deployment strategies of memcached-like in-memory storage for Hadoop
on supercomputers, where each node often does not have a local disk
but shares a slow central disk. For the experiments, we developed our
own memcached-like file system, named SEMem, for Hadoop. Since
SEMem was designed for supercomputers, it uses MPI for communica-
tion. SEMem is configurable to adopt various deployment strategies and
our experiments revealed that a good deployment strategy was allocat-
ing some nodes that work only for in-memory storage but do not directly
perform map-reduce computation.

1 Introduction

This research is motivated by the challenges of running data-intensive frame-
works, such as Hadoop [15], Spark [16], and Flink [5] on supercomputers to
meet their design. A supercomputer is a big machine consisting of thousands
of high-performance nodes that are connected to each other through high-speed
network. Not only running efficiently compute-intensive but also data-intensive
workloads, for example, clustering and classification in machine learning and
graph processing, are challenges on supercomputers.

In today’s top supercomputers, each compute node does not have a local
disk or is equipped only with a small size solid state drive (SSD) due to its
relative costs and high failure rate. It makes writing and reading intermediate
data during job execution (Hadoop/Spark) become a bottleneck since those data
must be stored on the distributed central disk whose access time is considered
slower five orders of magnitude than one of main memory [9]. To solve that
problem, a natural approach is using in-memory intermediate data storage in
order to avoid spilling to disk. We call that approach as memcached-like style
[7] since in-memory storage could be at either a local or remote node.

How to deploy memcached-like file systems on supercomputers is not an easily
answerable question and combination of memcached-like in-memory storage and
Hadoop is not studied well as far as we know. A feature of supercomputers is
that the number of compute nodes is often huge and supercomputer users submit
a job to a job queue in order to request a number of nodes they need. When

© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 442-454, 2017.
DOI: 10.1007/978-3-319-64203-1_32

SEMem: Deployment of MPI-Based In-Memory Storage 443

compute nodes are given to users, should we deploy in-memory storage on every
node? should we allocate dedicated nodes from the given nodes for in-memory
usage only? or should we allow using memory of remote nodes?

In this paper, we answer that research question by designing experiments
of different in-memory storage deployment strategies for figuring out which
one achieves a good performance when running data-intensive MapReduce
applications on supercomputers. For experiments, we have designed our own
memcached-like file system, named SEMem. Since Hadoop and Spark are good
choices to run data-intensive applications even on supercomputers in aspects
of productivity and maturity, we integrated our SEMem with the implemen-
tation of Hadoop. The deployment of SEMem is easily configurable and the
intra-communication is through MPI, which is the de facto networking protocol
on supercomputers. We examined the following deployment strategies:

1. SEMem is deployed as RAM disks where data is stored only in local memory.
2. SEMem is deployed on every node and data can be stored in remote memory.
3. SEMem is deployed only on dedicated nodes that are used only for storage.

Note that the original memcached software [11] is not a file system, does not
support Hadoop directly, and uses TCP socket for data exchange. That is the
reason why we developed SEMem from scratch.

Our experimental results reveal that allocating a group of nodes used only to
store data in memory shows a good result in data-intensive applications with 7—
10% improvement in comparison with deploying the memcached-like file system
on every computation node. The benefit has been achieved in the context in
which the ratio of the dedicated nodes to the total nodes is small (less than
12%). Note that there is no computation task running on those dedicated nodes.
No computation task on the dedicated nodes might give a chance of allocating
bigger memory space to in-memory storage and makes those nodes less busy.

Moreover, our experiments reveal that supercomputer centers can consider
in-memory storage (e.g. SEMem) instead of installing SSD storage for flexible
hardware resource configuration and supercomputer users can choose in-memory
storage as an alternative of SSD. Compared to the central disk and SSD storage
on TSUBAME supercomputer [13], our experimental results show that SEMem
reduces execution time by 25% and 5%, respectively, on average when data size is
bigger than 128 GB. In this experiment, SEMem runs on dedicated nodes and for
fairness of this experiment, all three configurations use the same total number of
nodes. In case of SEMem, some nodes are assigned to only storing data, whereas
they are used for computation in the central-disk and SSD configurations. That
means SEMem uses a smaller number of computation nodes.

In the context in which the ratio of the dedicated nodes to the total nodes
is small, better performance from using fewer compute nodes demonstrates that
Hadoop aims for data organization rather than computation.

444 T.-C. Dao and S. Chiba

2 DMotivation

2.1 Running Hadoop MapReduce on Supercomputers

In today’s top supercomputers, it is typical that there is no local disk on each
compute node, but SSD is sometimes equipped [13]. Local disk on each node
can be a point of failure and when it happens, it is difficult to fix. Instead of
local disk, there is a shared storage called central disk. Disk I/O from and to the
central disk is slow. SSD can be integrated in each compute node. Note that SSD
might be a temporary storage where data will be deleted after job execution.

When running Hadoop MapReduce on supercomputers, writing/reading
intermediate data is a performance bottleneck since it must be stored on the
central disk. There are two main phases in Hadoop MapReduce workflow: map-
ping and reducing. Mapping tasks generate intermediate data that is written
to a node’s local disk and deleted after being sent to reducers. On supercom-
puters, the central disk is used to store that intermediate data instead of local
disks. Reducing tasks fetch data from nodes where intermediate data is available
and execute the reducing function. Figure 1 shows execution timeline of tera-sort
application on TSUBAME supercomputer consisting of 256 mapping tasks and
128 reducing tasks. It reveals that in mapping tasks, writing time of intermediate
data to the central disk (red color) is relatively long in comparison with the total
execution time. In the figure, mapping tasks have shorter execution time than
reducing ones. Using a local SSD helps improve writing/reading performance,
but it is not always available.

Task ID

W Start-up (JVM & User info)
@ Task initializing

O Data waiting

@ Shuffling (Data copying)
O Data merging

W Data reading

W Task running

B Task finishing

1 31 66 106 151 196 241 286 331 376

T T T
0 40 80 120

Timeline (second)

Fig. 1. Tera-sort running on TSUBAME supercomputer using its central disk: shorter
running tasks are mappers, the longer ones are reducers.

2.2 In-Memory Approach and Deployment

In-memory storage is a natural approach that helps avoid disk spilling by keeping
intermediate data in memory [4,12,16]. We call that approach as memcached-
like style [7] since in-memory storage could be at either a local or remote node.

SEMem: Deployment of MPI-Based In-Memory Storage 445

Memecached [11] is a distributed memory cache software that is used widely
in web applications to speed up database accessing. A typical deployment of
Memcached is installing its daemon on dedicated nodes used only for in-memory
storage.

How to deploy memcached-like file systems on supercomputers is not an
easily answerable question, even on commodity or off-the-shelf clusters, such
as laboratory clusters and Amazon EC2. In this paper, we focus only on the
supercomputer environment since the modern (or future) cloud systems [3] look
like supercomputers. A feature of supercomputers is that the number of compute
nodes are often huge and supercomputer users submit a job to a job queue in
order to request a number of nodes they need. When compute nodes are given
to users, should we deploy in-memory storage on every node? should we allocate
dedicated nodes from the given nodes for in-memory usage only? or should we
allow using memory of remote nodes? Moreover, combination of memcached-like
storage and Hadoop is not studied well as far as we know.

3 Experiment Design

We answer the above research question by designing experiments of different
in-memory storage deployment strategies for figuring out which one achieves
a good performance when running data-intensive MapReduce applications on
supercomputers. For experiments, we have designed our own memcached-like
file system named SEMem. We examined the following deployment strategies:

RamDisk: SEMem is deployed as RAM disks where data is stored only in local
memory. Memory size on each node is limited, data might not fit into memory.
When out of memory happens, the task must be stopped or restarted on other
nodes. For large-scale datasets, this approach is not feasible. Our expectation is
this deployment strategy is fast in small-scale datasets.

Every Node: SEMem is deployed on every computation node and data can be
stored in remote memory. We call nodes that are responsible for running appli-
cations computation nodes. Computation nodes are used to run a job’s tasks,
e.g. Mapping or Reducing tasks in Hadoop MapReduce. The SEMem daemon is
run on all computation nodes and helps share a node’s in-memory storage with
other nodes. This strategy solves the problem of out of memory when data size
is bigger than a node’s in-memory storage size.

Dedicated Nodes: SEMem is deployed only on dedicated nodes that are used
only for storage. We allocate a group of nodes that is only used to store data in
their memory. There is no computation task running on that group of nodes. We
call those nodes memory nodes and their memory external memory. The SEMem
daemon is run only on each memory nodes. In this deployment strategy, we trade
computation resource for data storage by using memory nodes only for keeping
data. A question is that whether this approach is a complete waste of resources
or not. No computation task on memory nodes gives a chance of allocating bigger
memory space to SEMem and makes the memory nodes less busy.

446 T.-C. Dao and S. Chiba

SEMem Architecture: In this section, we describe our own in-memory storage
called SEMem. SEMem is easy to be configured to change the deployment strat-
egy of in-memory storage. SEMem is designed to tightly integrate with Hadoop
MapReduce framework.

In original Hadoop MapReduce workflow (Fig. 2a), intermediate data gener-
ated by mapping tasks is written to a node’s local disk. In case of supercomputer,
instead of local disks, the central disk or SSD is used to store that data. Figure 2a
shows how map output is copied from mappers to reducers. At the mapping side,
map output is buffered in memory, and then when its size reaches buffer size, it
is spilled to the local disk. The spilled files are merged into a final map output at
the end of the mapping phase. There is a shuffle server (thread) running on each
computation node waiting for fetching requests from reducers. When a request
comes, the shuffle server will look up map output metadata, read again those
data from the local disk, and send back to the reducer.

In the RamDisk deployment (Fig. 2b), map output is stored totally in memory
to avoid writing to and reading from the local disk. Map output is kept in memory
instead of spilling to the local disk when the buffer is full. After merging, map
output is sent to the shuffle server. A memory space is created on each shuffle
server to keep map output in memory. When a fetching request comes, the shuffle
server looks up the memory space and is able to send back immediately to the
reducer. The size of the memory space on each shuffle server is limited, so out

Local Disk Local Disk

Shuffle server

Map Output
=

[

(a) The original Hadoop (b) RamDisk deployment

Shuffle server
_______________ N [
Reducers
N -
\
\

S

Memory node i Memory node

Shuffle server
Do e el

Memory daemon

Map Outpu

i| Shuffle server |

Memory node i Memory node

f—! AN :
Shuffle server | Memory daemon : N 88 . @8

& In-memory storage |
--> Request exchange Wﬂ
== Inter-node i !
[] Daemon temen caeman N Memory node
8 4 Mormary o
Node
(¢) Every node deployment (d) Dedicated node deployment

Fig. 2. SEMem configuration for each deployment strategy: a shuffle server is integrated
into NodeManager of Hadoop framework. Memory daemon (or node) is a separate
process running on each node of the every-node and dedicated-node strategies and
responsible for in-memory storage. In the every-node strategy, the memory daemon
and shuffle server are available on the same node.

SEMem: Deployment of MPI-Based In-Memory Storage 447

of memory might happen during data fetching. For example, suppose that the
memory space size is 8 GB and there are 20 map tasks running on the node. If
each input data is 512 MB and running tera-sort application, the total size of
map output is 10 GB. Those data cannot fit into the memory space. Although
the map output can be deleted right after it is sent to the corresponding reducer,
that out of memory error can happen at any time.

In Every-node deployment (Fig.2c), SEMem daemon (called memory dae-
mon) is run on the same node with the shuffle server. In contrast to RamDisk
where data is stored at a shuflle server, data can be kept at any node’s in-memory
storage (memory daemon). Round-robin data affinity is used to store in-memory
data since it makes data more distributed and helps speed up data fetching later.
This kind of data affinity does not use the local memory for storage as long as
possible since unbalanced intermediate data might be a performance bottleneck.

Dedicated-node deployment (Fig.2d) is to create a group of nodes (called
memory nodes) used only for storing map output and there is no map or reduce
task running on those nodes. On supercomputer environment, those nodes are
requested on the same job as the nodes used to run Hadoop applications. In
Fig. 2d, the group of memory nodes consists of one node manager (master) and
slave nodes (just called memory nodes). Node manager is responsible for data
placement and monitoring memory left on each memory node. Since there is no
task running on memory nodes, the amount of memory allocated can be bigger.

In comparison with RamDisk design, data exchange among nodes of SEMem
in Every-node and Dedicated-node is more complex. First, the mapper requests
its shuffle server to send map output. If the shuffle server still has empty space,
data is sent then. If the shuffle server’s memory space is full, the mapper requests
the memory node manager to send map output. The node manager will find a
relevant place and send back to the mapper. Then, the mapper starts sending
map output to the specified memory node. When finishing sending map output,
the mapper also informs the shuffle server about the location of map output on
memory nodes.

What is the best strategy for storing map output in external memory? Should
we distribute map output to as many memory nodes as possible or just store on
a memory node and when it is full, the next memory node will be used? The
former helps increase fetching throughput since reducers can request to more
memory nodes. The latter is useful if map output is packaged and sent once to
a reducer. In the current design, we have implemented a round robin scheduler
on the memory node manager. Data will be distributed on all memory nodes.

Communication Protocol: SEMem uses MPI as communication protocol,
which is the de facto protocol on supercomputers and exploits underlaying hard-
ware such as remote DMA. This is a reason why we developed SEMem from
scratch since Memcahced uses TCP/IP. SEMem uses the direct buffer memory
of Java and MPI binding for Java [14] included in OpenMPI 1.7.5. It also uses our
HPC-Reuse framework [6] to avoid MPI-Spawn or other methods to keep MPI
connections available when a new process starts. To multiplex non-blocking com-

448 T.-C. Dao and S. Chiba

munication, SEMem runs a dedicated thread on every node to handle it. Note
that our supercomputers do not support MPI_.THREAD_MULTIPLE mode.

Storage Size: Storage size of SEMem depends on the number of memory nodes.
To waste less CPU resources on memory node, it is necessary to minimize the
number of memory nodes, although out of memory must not happen. In our
current design, the number of memory nodes is estimated roughly based on the
size of input data. Our assumption is that total size of map output is equal to
one of input data. Therefore, the number of memory nodes chosen satisfies the
condition that the total size of memory space on shuffle servers and the memory
nodes must be bigger than the size of input data. It might not achieve the best
performance of data fetching, but it helps prevent out of memory error. That
error is more serious if it happens since the whole task will be restarted.

Minimizing Changes in Hadoop: Keeping the original source code (e.g.
Hadoop or Spark) unchanged as much as possible is important to increase
SEMem’s capability in order to be integrated easily to other different data-
intensive frameworks. In our implementation of Hadoop integration, Hadoop
source code is changed with the below ratio:

— Line of code/total of Hadoop: 443/1,851,473
— Number of classes/total of Hadoop: 8/35,142

4 Experimental Results

In this section, first we compare three in-memory deployment strategies including
RamDisk, Every-node, and Dedicated-node that are described in Sect. 3. We use
three workloads in Puma benchmark suit [1]: WordCount, InvertedIndex, and
SequenceCount. Second, we evaluate how fast SEMem (using the dedicated-node
deployment strategy) is in comparison with the central-disk-based and SSD-
based storage. There are three test configurations in this experiment: Central-
disk, SSD, and SEMem storages. Tera-sort application is chosen for comparison
since the size of intermediate data is big enough to show the bottleneck of the
central disk.

Our experiments are conducted on Fujitsu FX10 supercomputer at The
University of Tokyo [8] and TSUBAME supercomputer at Tokyo Institute of
Technology [13]. A FX10 node is equipped with SPARC64 IXfx 1.848 GHz (16
cores) and 32 GB memory. FX10 nodes are connected with each other through
Tofu interconnection [2]. The maximum throughput of that interconnection is
80 Gbps. A TSUBAME node has less cores (Intel Xeon X5670 2.93 GHz - 12
cores) and 54 GB memory. Each node is connected with Infiniband device Grid
Director 4700. Another feature of TSUBAME is that 120 GB of SSD storage is
available on each node.

SEMem: Deployment of MPI-Based In-Memory Storage 449

SEMem has been implemented using Java since it helps integrate more easily
with Hadoop, Spark, or Flink frameworks. We use Hadoop v2.2.0 for experi-
ments, but any Hadoop version 2.z can be integrated with SEMem. Spark can
also use SEMem as an intermediate storage. Our Hadoop cluster consists of
one resource manager (master) and 31 slave nodes. Each slave node can run at
most four MapTasks or ReduceTasks simultaneously and maximum heap size
of a JVM is 4096 MB of memory. Block size of Hadoop Distributed File System
(HDFS) is 256 MB. In our experiments, all input data is stored in HDF'S running
on the central disk.

4.1 Deployment Strategies

This experiment is aimed to show which deployment strategy of in-memory
storage shows a better performance in data-intensive applications. We compare
three configurations on Fujitsu FX10 supercomputer: RamDisk, Every-node, and
Dedicated-node. Moreover, for comparison of in-memory storage and spilling
data to the central disk, we compare three strategies with another configuration
called Central-disk. The largest size of input data is 120 GB. The number of
reducers is set to 128 for all datasets. Note that running time is 0 (zero) denoting
that out of memory happens and the corresponding job is stopped.

Regarding fairness of this experiment, all three configurations use the same
total number of nodes. In case of dedicated-node, some nodes are assigned to
only storing data, but they are used for computation as well in Ramdisk and
Every-node. In this experiment, while we use 32 nodes for computation and 4
nodes for SEMem storage, 36 nodes are allocated for computation in Ramdisk
and every-node configurations.

Figure 3 reveals that RamDisk is the fastest strategy, but out of memory
happens when data size is bigger than 120 GB. Dedicated-node shows a bet-
ter performance (10% on average) than Every-node when data size is bigger
than 40 GB. Compared with central-disk configuration, Dedicated-node is always
faster, especially 32% improvement in SequenceCount workload, whereas Every-
node is slower in WordCount and InvertedIndex, but faster in SequenceCount
26% on average.

RamDisk is the fastest deployment strategy since data is stored at local
memory and no inter-node communication. However, due to uneven distribution
of input data, intermediate data is not fit into memory at some nodes. That
is why out of memory happens. In WordCount and InvertedIndex workloads,
Every-node is slower than central-disk configuration since more communication
is required and computation nodes might be busier when SEMem daemon is run.
By contrast, central-disk is the slowest configuration in SequenceCount because
size of intermediate data is larger.

4.2 SEMem (Dedicated-Node) vs. Central-Disk (HDD) and SSD

This experiment is aimed to show how fast SEMem is in comparison with the
central-disk-based and SSD-based approaches. We compare three test configu-

450 T.-C. Dao and S. Chiba

Dedicated-node
RamDisk
Every-node
Central-disk

Dedicated-node
RamDisk
Every-node
Central-disk

HE
$e

Time (second)

200 400 600 800 1000
1
Time (second)
200 400 600 800 1000
1

0
I
X
0
1
x

10G 20G 40G 80G 120G 10G 20G 40G 80G 120G
Data size Data size
(a) WordCount (b) InvertedIndex
|-~ Dedicated-node
o |= RambDisk
S |-+ Every-node
T |k Central-disk
= 8 4
28
8
83
[}
£ o
=
o
8 J
N
o - %

10G 20G 40G 80G 120G

Data size

(¢) SequenceCount

Fig. 3. Running time on different deployment strategies: zero at 120 GB at RamDisk
denotes that out of memory happens and the corresponding job is stopped.

rations on TSUBAME: the central-disk-based Hadoop, SSD-based Hadoop, and
our approach (SEMem). Tera-sort is used for comparison and input data is gen-
erated by tera-gen. The largest size of input data is 1 Terabyte. We run each
experiment of a data size twice and calculate the average execution time. The
number of reducers is fixed to 128 for all data sizes. The number of nodes (#)
is denoted in the figure.

In this experiment, SEMem runs on dedicated nodes and for fairness of this
experiment, all three configurations use the same total number of nodes. In case
of SEMem, some nodes are assigned to only storing data, whereas those nodes
are used for computation in the central-disk and SSD configurations. That means
SEMem uses a smaller number of computation nodes.

Figure4a shows that as the size of input data increases, SEMem is faster
than central-disk-based storage, and close to SSD-based storage. Compared to
central disk and SSD storage, SEMem reduces execution time by 20% and 5%,
respectively, on average when data size is bigger than 512 GB. SSD storage has
better performance when data size is less than 256 GB.

SEMem: Deployment of MPI-Based In-Memory Storage 451

—8— SEMem #64
—— Central disk
|- ssp

—&—- SEMem (32 nodes + memory nodes) #64/!
7 SSD (32 nodes + SSD storage)

1200

1000 1200
1000

800
L

800

600
L

Total Execution Time (second)
600

400
Total Execution Time (second)

400

200
200

Data size

Data size
T

T T T T T T T T
64G 128G 256G 512G 1B 64G 128G 256G 512G 1TB

(a) SEMem vs. Central disk and SSD (b) Choosing SSD or compute nodes?

Fig. 4. SEMem vs. central disk and SSD

Choosing SSD or SEMem storage? at the supercomputer centers, when
they design a new supercomputer, a question is that whether each node should
be equipped with a SSD storage or not. SSD storage is considered difficult for
maintenance and it can be a point of failure. For example, data on SSD storage
of TSUBAME must be deleted manually after each job. If they do not want to
install SSD, a question is whether SEMem can be an alternative. Moreover, if
SSD is available and also become a paid resource on supercomputers, whether
supercomputer users should buy SSD storage or choose to increase number of
computation nodes in order to create SEMem. We design an experiment to
answer those questions. This experiment is conducted on TSUBAME.

We keep the same number of computation nodes for both SEMem and SSD
test configurations. We assume that SEMem and SSD is two types of resources
that users can choose. SEMem has a defined number of nodes used for storage.
Tera-sort is used for comparison and maximum input data is 1 Terabyte.

Figure 4b reveals that SEMem is always faster than SSD storage, especially
41% improvement at 128 GB of input data. When input size is 1 Terabyte, the
improvement is 13% in comparison with SSD storage, but SEMem helps decrease
the total execution time (1249s) by 159s. The figure shows that SEMem is
feasible to become an alternative of SSD storage.

4.3 Communication Protocol

This experiment is aimed to check how fast our MPI implementation on SEMem
is in comparison with TCP communication and whether the improvement
achieved by using SEMem comes mainly from in-memory storing or fast MPI
communication. We run the original Hadoop in memory and compare it with
SEMem-based Hadoop. The original Hadoop uses TCP communication for data
exchange between reducers and shuffle servers. This comparison is fair because
SEMem is an in-memory storage, but uses MPI for data exchange. Tera-sort
workload is used for comparison and the number of nodes (#) is denoted in the
figure.

452 T.-C. Dao and S. Chiba

Figure 5a shows there is no difference when the size of input data is smaller
than 128 GB. However, MPI-based Hadoop is faster 10% and 5%, respectively,
when input size is 256 and 512 GB. Compared with Fig.4a at the data size
of 256 GB, MPI communication contributes less than 20% to the performance
improvement by using SEMem. This experiment has proved that the main
source of improvement (80%) comes from in-memory storing on memory nodes
of SEMem.

“|-e~ MPI-based in memory Hadoop
—v— TCP-based in-memory Hadoop

500 600
3500

400
L

300
.
Time (Millseconds)

Total Execution Time (second)
1500 2000 2500 3000

200

8 | #40
- Data size 8 | Number of memory nodes —&— Data copying time
G-"'G 12‘8G 25‘6G 51‘2(3 4 é 8 1‘0 1‘2 1‘4 1‘6
(a) MPI-based vs. TCP-based in-memory(b) Average data copying time when chang-
Hadoop MapReduce ing the number of memory nodes

Fig. 5. Evaluation of implementation issues

4.4 Storage Size of SEMem

This experiment is designed to measure performance impacts of storage size.
SEMem’s memory capacity can be configured based on number of memory nodes.
We have conducted an experiment by keeping the same number of computation
nodes and changing number of memory nodes. The purpose of this experiment
is to check whether our current approach of finding the number of memory
nodes is effective or not. We always run tera-sort application on 32 computation
nodes. The number of memory nodes ranges from 4 to 16. The size of input
data is 64 GB generated using tera-gen application. According to our estima-
tion, required number of memory nodes should be 4-8 nodes. We measure data
copying time (between shuffle servers and memory nodes and reducers) rather
than total execution time. Figure 5b shows that when number of memory nodes
is 8, data is copied fastest. However, if increasing number of memory nodes from
8 to 16, copying time is slower due to complexity in node management.

5 Related Work

There are several proposals of using in-memory storage in Hadoop, but they
did not clearly describe and evaluate deployment strategies including location of
in-memory instances and storage size. M3R, [12] is an in-memory Hadoop engine

SEMem: Deployment of MPI-Based In-Memory Storage 453

implemented using X10 programming language and M3R instances running on
each node is responsible for in-memory storage by providing a shared heap-state.
Although X10 supports where data is stored through places and activities oper-
ators, but the paper did not mention it explicitly and also have any evaluation.
HaLoop [4] provides caching preferences, such as reducer input and output cache
and mapper input cache, but intermediate data is only shared on the same node
between jobs and deployment strategies are not relevant in this context. Spark
[16] is a data-intensive framework and uses in-memory storage to improve per-
formance compared with Hadoop. It proposed a programming model based on
Resilient Distributed Dataset (RDD) and intermediate data is built and gen-
erated from RDDs. It is possible to choose a location for a RDD through pre-
ferredLocations() operator, but there was no evaluation of RDD deployment in
the paper. Moreover, the supercomputer context makes our contribution unique.

Memcached software [11] is close to our implementation of SEMem since it
is a distributed caching system. The combination of Hadoop and Memcached is
a study topic. However, to the best our knowledge, there is no study on using
Memcached to store intermediate data implicitly in Hadoop MapReduce work-
flow. We also evaluated advantages of that combination SEMem and Hadoop.
Memcached uses TCP-based communication and RDMA-based Memcached [10]
is an extension that speeds up internode communication by using RDMA. In our
SEMem, we use MPI for communication among memory nodes. RDMA could
be also enabled automatically in MPI communication on supercomputers.

6 Conclusion

In this paper, we have examined in-memory storage deployment strategies
including RamDisk, Every-node, and Dedicated-node. For experiments, we have
designed our own memcached-like file system called SEMem. Dedicated-node
shows a good result in data-intensive applications with 10% improvement in
comparison with Every-node strategy. Dedicated-node is motivated by a fea-
ture of supercomputers that the number of compute nodes is often huge and
supercomputer users can request a number of nodes they need. There is no
computation task running on that group of nodes.

SEMem is an easily configurable in-memory storage for different deployment
strategies. It is tightly integrated with Hadoop, but Spark can use SEMem
as preferred servers in the preferredLocations(). The performance of Hadoop
MapReduce with SEMem should be the same as Spark since both of them are
supporting in-memory storage. In our SEMem, however, users can choose the
best in-memory storage deployment strategy for their applications. MPI commu-
nication on SEMem is an advantage in comparison with other Memcached-like
software.

When we have only a fixed number of nodes, increasing the number of dedi-
cated nodes according to the dataset size should affect the performance. Finding
the best ratio of the dedicated nodes to the total nodes is our future work. More-
over, when the dataset does not fit into memory, SEMem needs to be adapted
to use the central disk or SSD storage if available.

454

T.-C. Dao and S. Chiba

References

10.

11.
12.

13.
14.

15.
16.

. Ahmad, F.| Lee, S., Thottethodi, M., Vijaykumar, T.: Puma: Purdue MapReduce

benchmarks suite (2012)

. Ajima, Y., Sumimoto, S., Shimizu, T.: Tofu: a 6D mesh/torus interconnect for

exascale computers. Computer 11(42), 36-40 (2009)
Amazon Web Services: High Performance Computing (2017). https://aws.amazon.
com/hpc/

. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data

processing on large clusters. Proc. VLDB Endow. 3(1-2), 285-296 (2010)
Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flink: stream and batch processing in a single engine. Bull. IEEE Com-
put. Soc. Tech. Committee Data Eng. 36(4), 28 (2015)

Dao, T.C., Chiba, S.: HPC-Reuse: efficient process creation for running MPI and
Hadoop MapReduce on supercomputers. In: 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 342-345. IEEE
(2016)

Fitzpatrick, B.: Distributed caching with memcached. Linux J. 2004(124), 5 (2004)
FX10: User’s Guide (2015). http://www.cc.u-tokyo.ac.jp/system/fx10/index-e.
html

He, J., Jagatheesan, A., Gupta, S., Bennett, J., Snavely, A.: Dash: a recipe for a
flash-based data intensive supercomputer. In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1-11. IEEE Computer Society (2010)

Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-ur Rahman, M.,
Islam, N.S., Ouyang, X., Wang, H., Sur, S., et al.: Memcached design on high
performance RDMA capable interconnects. In: 2011 International Conference on
Parallel Processing, pp. 743-752. IEEE (2011)

Memcached: A caching system (2017). https://memcached.org

Shinnar, A., Cunningham, D., Saraswat, V., Herta, B.: M3R: increased perfor-
mance for in-memory Hadoop jobs. Proc. VLDB Endow. 5(12), 1736-1747 (2012)
TSUBAME: User’sGuide (2016). http://tsubame.gsic.titech.ac.jp/en/top
Vega-Gisbert, O., Roman, J.E., Squyres, J.M.: Design and implementation of Java
bindings in Open MPI (2014)

White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc., Sebastopol (2012)
Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementation, p. 2. USENIX Association
(2012)

https://aws.amazon.com/hpc/
https://aws.amazon.com/hpc/
http://www.cc.u-tokyo.ac.jp/system/fx10/index-e.html
http://www.cc.u-tokyo.ac.jp/system/fx10/index-e.html
https://memcached.org
http://tsubame.gsic.titech.ac.jp/en/top

	SEMem: Deployment of MPI-Based In-Memory Storage for Hadoop on Supercomputers
	1 Introduction
	2 Motivation
	2.1 Running Hadoop MapReduce on Supercomputers
	2.2 In-Memory Approach and Deployment

	3 Experiment Design
	4 Experimental Results
	4.1 Deployment Strategies
	4.2 SEMem (Dedicated-Node) vs. Central-Disk (HDD) and SSD
	4.3 Communication Protocol
	4.4 Storage Size of SEMem

	5 Related Work
	6 Conclusion
	References

