
Thanh-Chung Dao and Shigeru Chiba
The University of Tokyo, Japan

1Thanh-Chung Dao

SEMem: deployment of MPI-based in-memory 
storage for Hadoop on supercomputers

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers



Running Hadoop on modern supercomputers

• Hadoop assumes every compute node has a local 
disk drive

• Modern supercomputers do not have local disk drives
• It only has a central file server using e.g. Lustre
• For example, K computer, Cray Titan, and IBM Sequoia

Thanh-Chung Dao 2SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

From Fujitsu



Why supercomputers do not 
have local disk drives

• Local disk
• Not scalable
• Hard to maintain
• Physical space is limited

• It cannot be shared among all users

• SSD is available on some supercomputers
• But data should be erased after a job finishes

3SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers Thanh-Chung Dao



Using in-memory storage to provide 
efficient virtual local disks

• Research question: 
How to deploy in-memory storage on supercomputers
• Choose the best deployment strategy in context of MapReduce

• Using in-memory storage is natural approach to avoid 
expensive disk I/O to central file server
• Data is kept in memory

• Memcached-like separate in-memory server is also an option
• Typical deployment of Memcached software is installing its daemon on 

dedicated nodes

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 4Thanh-Chung Dao



Our approach: SEMem
in-memory file system

• Users can choose three deployment strategies
• RamDisk: data is stored only in local memory
• Every-node: data can be stored in remote memory
• Dedicated-node: data is stored on dedicated nodes

• Our in-memory storage, SEMem:
• Easily configurable to select appropriate deployment strategy
• Tightly integrated with Hadoop
• Using MPI communication [Dao & Chiba, CCGRID’16]

5SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers Thanh-Chung Dao



RamDisk: data is stored only in local memory

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 6

Not available

Node

Available

Thanh-Chung Dao

In-memory storage

Node 1

Tasks

data



RamDisk: data is stored only in local memory

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 7

In-memory storage

Node 2

In-memory storage

Node 3

Not available

Node

Available

• Out of memory can happen
v Since each node has limited amount of memory

In-memory storage

Node 4

Thanh-Chung Dao

In-memory storage

Node 1

Tasks

data

Node 1 cannot use memory 
of Node 2, 3, & 4



The original Hadoop workflow

8SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Data sending 
on the same node

Inter-node communication

Thanh-Chung Dao

Shuffle
ServerMappers Reducers

Map Output

Local Disk



RamDisk deployment on Hadoop workflow

9SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

• Mappers are modified to send their output 
directly to shuffle server

• In-memory storage is set up at shuffle server

Thanh-Chung Dao

Mappers Reducers
Map Output

Local Disk

Shuffle server

In-memory storage

Inter-node communication

Fetch



Every-node: deployed on every node and 
data can be stored in remote memory

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 10

Full

Node

Available

Thanh-Chung Dao

In-memory storage

Node 1

Tasks

data



Every-node: deployed on every node and 
data can be stored in remote memory

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 11

Full

Node

Available

Thanh-Chung Dao

In-memory storage

Node 1

Tasks

data



Every-node: deployed on every node and 
data can be stored in remote memory

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 12

In-memory storage

Node 2

In-memory storage

Node 3

• More complex in-memory management is required

In-memory storage

Node 4

Thanh-Chung Dao

When storage on Node 1 is 
full, it can use memory of 
Node 2, 3, & 4

Full

Node

Available

In-memory storage

Node 1

Tasks

data

Inter-node 
communication



Every-node deployment on Hadoop workflow
13SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Shuffle server

…

In-memory storage

Inter-node communication

Shuffle server

Daemon

Node

Thanh-Chung Dao



Every-node deployment on Hadoop workflow
14SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Shuffle server

SEMem daemon

…

In-memory storage

Inter-node communication

Shuffle server

SEMem daemon
Daemon

Node

Thanh-Chung Dao



Every-node deployment on Hadoop workflow
15SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Map Output

Shuffle server

SEMem daemon

…

In-memory storage

Inter-node communication

Shuffle server

SEMem daemon
Daemon

Node

Thanh-Chung Dao



Every-node deployment on Hadoop workflow
16SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Map Output

Shuffle server

SEMem daemon

…

In-memory storage

Inter-node communication

Shuffle server

SEMem daemon
Daemon

Node

Thanh-Chung Dao

Get 
metadata



Every-node deployment on Hadoop workflow
17SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Map Output

Shuffle server

SEMem daemon

…

In-memory storage

Inter-node communication

Shuffle server

SEMem daemon
Daemon

Node

Thanh-Chung Dao

Get 
metadata

Fetch



Dedicated-node: deployed only on dedicated 
nodes that are used only for storage

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 18Thanh-Chung Dao

In-memory storage

Node 1

Tasks

data

Full

Node

Available



Dedicated-node: deployed only on dedicated 
nodes that are used only for storage

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 19Thanh-Chung Dao

In-memory storage

Node 1

Tasks

data

Full

Node

Available



Dedicated-node: deployed only on dedicated 
nodes that are used only for storage

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 20

Not available

Node

Available

• Dedicated nodes
• There is no computation task

In-memory storage

Dedicated node

In-memory storage

Dedicated node

In-memory storage

Node 2

Thanh-Chung Dao

In-memory storage

Node 1

Tasks

data



Dedicated-node: deployed only on dedicated 
nodes that are used only for storage

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 21

Not available

Node

Available

In-memory storage

Dedicated node

In-memory storage

Dedicated node

In-memory storage

Node 2

Thanh-Chung Dao

In-memory storage

Node 1

Tasks

data

• Dedicated nodes
• There is no computation task

• It might slow since only 2 of 4 nodes compute the task

When storage on Node 1 is 
full, it can use memory of 
dedicate nodes



Dedicated-node deployment on Hadoop workflow
22SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Shuffle server

In-memory storage

Inter-node communication
Daemon

Node

Thanh-Chung Dao



Dedicated-node deployment on Hadoop workflow
23SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Shuffle server

SEMem daemon

SEMem daemon

Memory node
Manager

…In-memory storage

Inter-node communication
Daemon

Node

Thanh-Chung Dao



Dedicated-node deployment on Hadoop workflow
24SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Shuffle server

SEMem daemon

SEMem daemon

Memory node
Manager

…In-memory storage

Inter-node communication
Daemon

Node

Thanh-Chung Dao



Dedicated-node deployment on Hadoop workflow
25SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Shuffle server

SEMem daemon

SEMem daemon

Memory node
Manager

…In-memory storage

Inter-node communication
Daemon

Node

Thanh-Chung Dao

Map Output



Dedicated-node deployment on Hadoop workflow
26SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Shuffle server

SEMem daemon

SEMem daemon

Memory node
Manager

…In-memory storage

Inter-node communication
Daemon

Node

Thanh-Chung Dao

Map Output

Get 
metadata



Dedicated-node deployment on Hadoop workflow
27SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Mappers
Reducers

Shuffle server

SEMem daemon

SEMem daemon

Memory node
Manager

…In-memory storage

Inter-node communication
Daemon

Node

Thanh-Chung Dao

Map Output

Get 
metadata

Fetch



Technical issue 1: communication protocol 
on SEMem

• MPI communication on SEMem
• Fast communication protocol is required

• Since every-node and dedicated-node are network-intensive
• MPI is the de facto communication on modern supercomputers

• HPC-Reuse is used
• Enable MPI over Hadoop processes

• MPI-friendly dynamic process creation is required

• Multiplexing non-blocking MPI on memory nodes
• Since we want to avoid MPI_THREAD_MULTIPLE

• Handling multiple requests from clients

• Direct memory is used
• Since memory copying between JVM’s heap and native MPI is slow

• Current MPI implementation is written in C

28SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers Thanh-Chung Dao



MPI over Hadoop processes [Dao, CCGrid 2016]

• Using our HPC-Reuse
• MPI-friendly dynamic process creation

• Hadoop requires dynamic process creation
• Minimizing the cost of changes in architecture

• Gang scheduling (of processes) more favorable in MPI
• All-or-nothing scheduling strategy

• Statically creating all processes at the beginning
• Minimizing communication delay
• Since resizing running jobs might affect performance and fairness

• MPI-Spawn is slow due to collective operation

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers Thanh-Chung Dao 29



Avoiding MPI_THREAD_MULTIPLE

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 30

Chapter 4. E�ciently Virtualizing Local Disks 82

while true do
if req == null then

req = MPI.iRecv
end
if there is a new request then

Add req to sendingPool’s waitList;
Reset req = null

end
for slot in sendingPool’s slots do

if data reading finishes then
MPI.iSend to the client

end
if iSend finishes then

free the slot
end

end
Assign req in waitList to free slots;

end
Algorithm 1: Multiplexing non-blocking MPI on the memory nodes

To multiplex non-blocking communication, SEMem runs a dedicated thread on every

node to handle it. Note that most of the supercomputers we know, for example TSUB-

AME and Fujitsu FX10, do not support MPI THREAD MULTIPLE mode. This ap-

proach helps avoid calling MPI send/recv in di↵erent threads.

On each memory node, we run a waiting daemon to listen incoming requests. The

algorithm implemented in the daemon is shown in Algorithm 1. We use progress strategy

to check iRecv and iSend status and data is queued as well. A loop is called to check if

there is any coming message or not (req variable). When there is a new request, it is

added to a queue (waitList). This waiting list contains requests that have been processed.

A sending pool, namely sendingPool, is created to process queued requests. A slot of

the sending pool is responsible for reading data and calling iSend. When data is read to

the sending bu↵er, iSend is called to send data to the client. Data reading must be also

implemented to use an asynchronous mechanism, for example AsynchronousFileChannel

while any MapOutput do
Wait for (host, MapOutputs) ;
for each MapOutput do

MPI.Send to the host ;
if MPI.Recv from the host then

Data in heap ;
end

end

end
Algorithm 2: Receiving data at reducers of Hadoop MapReduce

Chapter 4. E�ciently Virtualizing Local Disks 82

while true do
if req == null then

req = MPI.iRecv
end
if there is a new request then

Add req to sendingPool’s waitList;
Reset req = null

end
for slot in sendingPool’s slots do

if data reading finishes then
MPI.iSend to the client

end
if iSend finishes then

free the slot
end

end
Assign req in waitList to free slots;

end
Algorithm 1: Multiplexing non-blocking MPI on the memory nodes

To multiplex non-blocking communication, SEMem runs a dedicated thread on every

node to handle it. Note that most of the supercomputers we know, for example TSUB-

AME and Fujitsu FX10, do not support MPI THREAD MULTIPLE mode. This ap-

proach helps avoid calling MPI send/recv in di↵erent threads.

On each memory node, we run a waiting daemon to listen incoming requests. The

algorithm implemented in the daemon is shown in Algorithm 1. We use progress strategy

to check iRecv and iSend status and data is queued as well. A loop is called to check if

there is any coming message or not (req variable). When there is a new request, it is

added to a queue (waitList). This waiting list contains requests that have been processed.

A sending pool, namely sendingPool, is created to process queued requests. A slot of

the sending pool is responsible for reading data and calling iSend. When data is read to

the sending bu↵er, iSend is called to send data to the client. Data reading must be also

implemented to use an asynchronous mechanism, for example AsynchronousFileChannel

while any MapOutput do
Wait for (host, MapOutputs) ;
for each MapOutput do

MPI.Send to the host ;
if MPI.Recv from the host then

Data in heap ;
end

end

end
Algorithm 2: Receiving data at reducers of Hadoop MapReduce

At SEMem daemon

• Multiplexing non-blocking MPI

At clients

Thanh-Chung Dao



Technical issue 2: storage size in 
dedicated-node SEMem

• How to estimate number of memory nodes
• Need to minimize number of memory nodes

• Since we trade computation resource for data storage in dedicated-
node

• Our approach: number of memory nodes is estimated 
roughly based on the size of input data

31SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers Thanh-Chung Dao



Experiment configuration
• Benchmarks

• Puma: WordCount, InvertedIndex, and SequenceCount
• Tera-sort: up to 1 TB of input data

• Supercomputers
• K computer-like FX10 at the University of Tokyo
• TSUBAME at Tokyo Institute of Technology

• Hadoop v2.2.0

32SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers Thanh-Chung Dao



33SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Dedicated-node is faster than every-node 
in some benchmarks

0
20
0

40
0

60
0

80
0
10
00

Data size

Ti
m

e 
(s

ec
on

d)

10G 20G 40G 80G 120G

Dedicated-node
RamDisk
Every-node
Central-disk

0
20
0

40
0

60
0

80
0
10
00

Data size

Ti
m

e 
(s

ec
on

d)

10G 20G 40G 80G 120G

Dedicated-node
RamDisk
Every-node
Central-disk

0
20
0

40
0

60
0

80
0
10
00

Data size

Ti
m

e 
(s

ec
on

d)

10G 20G 40G 80G 120G

Dedicated-node
RamDisk
Every-node
Central-disk

WordcountInvertedIndex SequenceCount

Dedicated-node 
13% faster than 
every-node

Out of memory

Thanh-Chung Dao

Configuration #computation nodes
RamDisk 36

Every-node 36
Central-disk 36

Dedicated-node 32

• In every-node deployment, the more 
complex SEMem daemon disturbs 
computation tasks at several places

• 4 memory nodes in dedicated-node



20
0

40
0

60
0

80
0

10
00

12
00

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

(s
ec

on
d)

64G 128G 256G 512G 1TB

SEMem
Central disk
SSD

#40

#40
#48

#48

#64

Data size

34SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Dedicated-node SEMem is 
faster than central disk and SSD

SEMem reduces execution time 
by 20% and 5% on average

• Total number of nodes 
is the same

• SEMem has less
computation nodes

• Tera-sort application 
on TSUBAME

Thanh-Chung Dao



35SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Dedicated-node SEMem and SSD-backed 
storage can be an alternative for each other

20
0

40
0

60
0

80
0

10
00

12
00

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

(s
ec

on
d)

64G 128G 256G 512G 1TB

SEMem (32 nodes + memory nodes)
SSD (32 nodes + SSD storage)

#40 #40
#48

#48

#64

Data size

SEMem is faster 4~13%

• Both have the same
number of computation 
nodes

• SEMem has memory 
nodes

• Tera-sort application 
on TSUBAME

• SSD size of each node 
is 120 GB

Thanh-Chung Dao



36SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

10
0

20
0

30
0

40
0

50
0

60
0

Data size

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

(s
ec

on
d)

64G 128G 256G 512G

MPI-based in memory Hadoop
TCP-based in-memory Hadoop

Up to 10% faster
than TCP communication

MPI-based Hadoop is faster than TCP
• Tera-sort on TSUBAME 

(64 nodes)

• Both MPI and TCP test 
cases using in-memory 
storage

Thanh-Chung Dao



• Experiment purpose:
• Measure performance impact of storage size (left figure)
• When out of memory happens (right figure)

• Number of memory nodes is estimated based on size of input data
• 64GB of input data
• 8GB each memory node

37SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Number of memory nodes should not be large
10
00

15
00

20
00

25
00

30
00

35
00

Ti
m

e 
(M

ill
is

ec
on

ds
)

4 6 8 10 12 14 16

Data copying timeNumber of memory nodes 0
50

10
0

15
0

20
0

Number of computation/storage nodes

E
xe

cu
tio

n 
tim

e 
(S

ec
on

ds
)

32/16 34/14 36/12 38/10 40/8 42/6 44/4 46/2 48/0

Tera-sort 64GB input data

Out of memory happens

8 memory nodes show the 
best result

Tera-sort on TSUBAME

Thanh-Chung Dao



Related work
• M3R (VLDB 2012)

• In-memory storage by providing a shared heap-state
• Data is stored through places and activities operators 
• Did not mention storage deployment explicitly and also no evaluation

• HaLoop (VLDB 2010)
• Caching preferences by providing efficient hash algorithms for reading and 

writing
• Deployment strategies are not relevant in this context

• Spark (NSDI 2012)
• Use in-memory storage
• Choose a location for Resilient Distributed Datasets (RDD) through 

preferredLocations() operator
• Does not provide deployment strategies in general
• There was no evaluation of RDD deployment

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 38Thanh-Chung Dao



SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 39Thanh-Chung Dao

Limitations
• No fault-tolerance in MPI

• Multiple levels of storage

• Preferred locations



Future work
• Estimating number of memory nodes

• Topology of memory nodes

SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers 40Thanh-Chung Dao



Summary
• Goal: Using in-memory storage to provide efficient 
virtual local disks

• Challenge: choose the best deployment strategy of in-
memory storage (or virtual local disks)

• Our approach: SEMem
• Dedicated-node strategy showed a good performance in some 

benchmarks 
• Easily configure the system to investigate an appropriate 

strategy for applications
• MPI communication

41SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers Thanh-Chung Dao


