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Running Hadoop on modern supercomputers

• Hadoop assumes every compute node has a local 
disk drive

• Modern supercomputers do not have local disk drives
• It only has a central file server using e.g. Lustre
• For example, K computer, Cray Titan, and IBM Sequoia
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From Fujitsu



Why supercomputers do not 
have local disk drives

• Local disk
• Not scalable
• Hard to maintain
• Physical space is limited

• It cannot be shared among all users

• SSD is available on some supercomputers
• But data should be erased after a job finishes
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Using in-memory storage to provide 
efficient virtual local disks

• Research question: 
How to deploy in-memory storage on supercomputers
• Choose the best deployment strategy in context of MapReduce

• Using in-memory storage is natural approach to avoid 
expensive disk I/O to central file server
• Data is kept in memory

• Memcached-like separate in-memory server is also an option
• Typical deployment of Memcached software is installing its daemon on 

dedicated nodes
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Our approach: SEMem
in-memory file system

• Users can choose three deployment strategies
• RamDisk: data is stored only in local memory
• Every-node: data can be stored in remote memory
• Dedicated-node: data is stored on dedicated nodes

• Our in-memory storage, SEMem:
• Easily configurable to select appropriate deployment strategy
• Tightly integrated with Hadoop
• Using MPI communication [Dao & Chiba, CCGRID’16]
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RamDisk: data is stored only in local memory
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RamDisk: data is stored only in local memory
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The original Hadoop workflow
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RamDisk deployment on Hadoop workflow
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• Mappers are modified to send their output 
directly to shuffle server

• In-memory storage is set up at shuffle server
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Every-node: deployed on every node and 
data can be stored in remote memory
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Every-node: deployed on every node and 
data can be stored in remote memory
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Every-node: deployed on every node and 
data can be stored in remote memory
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Every-node deployment on Hadoop workflow
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Every-node deployment on Hadoop workflow
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Every-node deployment on Hadoop workflow
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Every-node deployment on Hadoop workflow
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Every-node deployment on Hadoop workflow
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Dedicated-node: deployed only on dedicated 
nodes that are used only for storage
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Dedicated-node: deployed only on dedicated 
nodes that are used only for storage
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Dedicated-node: deployed only on dedicated 
nodes that are used only for storage
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Dedicated-node: deployed only on dedicated 
nodes that are used only for storage
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• Dedicated nodes
• There is no computation task

• It might slow since only 2 of 4 nodes compute the task

When storage on Node 1 is 
full, it can use memory of 
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Dedicated-node deployment on Hadoop workflow
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Dedicated-node deployment on Hadoop workflow
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Dedicated-node deployment on Hadoop workflow
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Dedicated-node deployment on Hadoop workflow
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Dedicated-node deployment on Hadoop workflow
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Dedicated-node deployment on Hadoop workflow
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Technical issue 1: communication protocol 
on SEMem

• MPI communication on SEMem
• Fast communication protocol is required

• Since every-node and dedicated-node are network-intensive
• MPI is the de facto communication on modern supercomputers

• HPC-Reuse is used
• Enable MPI over Hadoop processes

• MPI-friendly dynamic process creation is required

• Multiplexing non-blocking MPI on memory nodes
• Since we want to avoid MPI_THREAD_MULTIPLE

• Handling multiple requests from clients

• Direct memory is used
• Since memory copying between JVM’s heap and native MPI is slow

• Current MPI implementation is written in C
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MPI over Hadoop processes [Dao, CCGrid 2016]

• Using our HPC-Reuse
• MPI-friendly dynamic process creation

• Hadoop requires dynamic process creation
• Minimizing the cost of changes in architecture

• Gang scheduling (of processes) more favorable in MPI
• All-or-nothing scheduling strategy

• Statically creating all processes at the beginning
• Minimizing communication delay
• Since resizing running jobs might affect performance and fairness

• MPI-Spawn is slow due to collective operation
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Avoiding MPI_THREAD_MULTIPLE
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while true do
if req == null then

req = MPI.iRecv
end
if there is a new request then

Add req to sendingPool’s waitList;
Reset req = null

end
for slot in sendingPool’s slots do

if data reading finishes then
MPI.iSend to the client

end
if iSend finishes then

free the slot
end

end
Assign req in waitList to free slots;

end
Algorithm 1: Multiplexing non-blocking MPI on the memory nodes

To multiplex non-blocking communication, SEMem runs a dedicated thread on every

node to handle it. Note that most of the supercomputers we know, for example TSUB-

AME and Fujitsu FX10, do not support MPI THREAD MULTIPLE mode. This ap-

proach helps avoid calling MPI send/recv in di↵erent threads.

On each memory node, we run a waiting daemon to listen incoming requests. The

algorithm implemented in the daemon is shown in Algorithm 1. We use progress strategy

to check iRecv and iSend status and data is queued as well. A loop is called to check if

there is any coming message or not (req variable). When there is a new request, it is

added to a queue (waitList). This waiting list contains requests that have been processed.

A sending pool, namely sendingPool, is created to process queued requests. A slot of

the sending pool is responsible for reading data and calling iSend. When data is read to

the sending bu↵er, iSend is called to send data to the client. Data reading must be also

implemented to use an asynchronous mechanism, for example AsynchronousFileChannel

while any MapOutput do
Wait for (host, MapOutputs) ;
for each MapOutput do

MPI.Send to the host ;
if MPI.Recv from the host then

Data in heap ;
end

end

end
Algorithm 2: Receiving data at reducers of Hadoop MapReduce

Chapter 4. E�ciently Virtualizing Local Disks 82

while true do
if req == null then

req = MPI.iRecv
end
if there is a new request then

Add req to sendingPool’s waitList;
Reset req = null

end
for slot in sendingPool’s slots do

if data reading finishes then
MPI.iSend to the client

end
if iSend finishes then

free the slot
end

end
Assign req in waitList to free slots;

end
Algorithm 1: Multiplexing non-blocking MPI on the memory nodes

To multiplex non-blocking communication, SEMem runs a dedicated thread on every

node to handle it. Note that most of the supercomputers we know, for example TSUB-

AME and Fujitsu FX10, do not support MPI THREAD MULTIPLE mode. This ap-

proach helps avoid calling MPI send/recv in di↵erent threads.

On each memory node, we run a waiting daemon to listen incoming requests. The

algorithm implemented in the daemon is shown in Algorithm 1. We use progress strategy

to check iRecv and iSend status and data is queued as well. A loop is called to check if

there is any coming message or not (req variable). When there is a new request, it is

added to a queue (waitList). This waiting list contains requests that have been processed.

A sending pool, namely sendingPool, is created to process queued requests. A slot of

the sending pool is responsible for reading data and calling iSend. When data is read to

the sending bu↵er, iSend is called to send data to the client. Data reading must be also

implemented to use an asynchronous mechanism, for example AsynchronousFileChannel

while any MapOutput do
Wait for (host, MapOutputs) ;
for each MapOutput do

MPI.Send to the host ;
if MPI.Recv from the host then

Data in heap ;
end

end

end
Algorithm 2: Receiving data at reducers of Hadoop MapReduce

At SEMem daemon

• Multiplexing non-blocking MPI

At clients
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Technical issue 2: storage size in 
dedicated-node SEMem

• How to estimate number of memory nodes
• Need to minimize number of memory nodes

• Since we trade computation resource for data storage in dedicated-
node

• Our approach: number of memory nodes is estimated 
roughly based on the size of input data
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Experiment configuration
• Benchmarks

• Puma: WordCount, InvertedIndex, and SequenceCount
• Tera-sort: up to 1 TB of input data

• Supercomputers
• K computer-like FX10 at the University of Tokyo
• TSUBAME at Tokyo Institute of Technology

• Hadoop v2.2.0

32SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers Thanh-Chung Dao



33SEMem: deployment of MPI-based in-memory storage for Hadoop on supercomputers

Dedicated-node is faster than every-node 
in some benchmarks
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Configuration #computation nodes
RamDisk 36

Every-node 36
Central-disk 36

Dedicated-node 32

• In every-node deployment, the more 
complex SEMem daemon disturbs 
computation tasks at several places

• 4 memory nodes in dedicated-node
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Dedicated-node SEMem is 
faster than central disk and SSD

SEMem reduces execution time 
by 20% and 5% on average

• Total number of nodes 
is the same

• SEMem has less
computation nodes

• Tera-sort application 
on TSUBAME
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Dedicated-node SEMem and SSD-backed 
storage can be an alternative for each other
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• Experiment purpose:
• Measure performance impact of storage size (left figure)
• When out of memory happens (right figure)

• Number of memory nodes is estimated based on size of input data
• 64GB of input data
• 8GB each memory node
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Number of memory nodes should not be large
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Related work
• M3R (VLDB 2012)

• In-memory storage by providing a shared heap-state
• Data is stored through places and activities operators 
• Did not mention storage deployment explicitly and also no evaluation

• HaLoop (VLDB 2010)
• Caching preferences by providing efficient hash algorithms for reading and 

writing
• Deployment strategies are not relevant in this context

• Spark (NSDI 2012)
• Use in-memory storage
• Choose a location for Resilient Distributed Datasets (RDD) through 

preferredLocations() operator
• Does not provide deployment strategies in general
• There was no evaluation of RDD deployment
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Limitations
• No fault-tolerance in MPI

• Multiple levels of storage

• Preferred locations



Future work
• Estimating number of memory nodes

• Topology of memory nodes
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Summary
• Goal: Using in-memory storage to provide efficient 
virtual local disks

• Challenge: choose the best deployment strategy of in-
memory storage (or virtual local disks)

• Our approach: SEMem
• Dedicated-node strategy showed a good performance in some 

benchmarks 
• Easily configure the system to investigate an appropriate 

strategy for applications
• MPI communication
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