
Reducing Calling Convention Overhead in
Object-Oriented Programming on Embedded ARM

Thumb-2 Platforms
Joseph Caldwell
University of Tokyo

Bunkyo-ku, Tokyo, Japan
joecaldwell@csg.ci.i.u-tokyo.ac.jp

Shigeru Chiba
University of Tokyo

Bunkyo-ku, Tokyo, Japan
chiba@acm.org

Abstract
This paper examines the causes and extent of code size over-
head caused by the ARM calling convention in Thumb-2
binaries. We show that binaries generated from C++ source
files generally have higher amounts of calling convention
overhead, and present a binary file optimizer to eliminate
some of that overhead. Calling convention overhead can neg-
atively impact power consumption, flash memory costs, and
chip size in embedded or otherwise resource-constrained
domains. This is particularly true on platforms using "com-
pressed" instruction sets, such as the 16-bit ARM Thumb
and Thumb-2 instruction sets, used in virtually all smart-
phones and in many other smaller-scale embedded devices.
In this paper, we examine the extent of calling convention
overhead in practical software, and compare the results of C
and C++ programs, and find that C++ programs generally
have a higher percentage of calling-convention overhead.
Finally, we demonstrate a tool capable of eliminating some
of this overhead, particularly in the case of C++ programs,
by modifying the calling conventions on a per-procedure
basis.

CCS Concepts • Software and its engineering→Com-
pilers; •Computer systems organization→ Embedded
software;

Keywords ARM, Thumb, code size, calling conventions,
C++

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5524-7/17/10. . . $15.00
https://doi.org/10.1145/3136040.3136057

ACM Reference Format:
Joseph Caldwell and Shigeru Chiba. 2017. Reducing Calling Con-
vention Overhead in Object-Oriented Programming on Embed-
ded ARM Thumb-2 Platforms. In Proceedings of 16th ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE’17).ACM, NewYork, NY, USA, 11 pages.
https://doi.org/10.1145/3136040.3136057

1 Introduction
Most compilers use a convention to determine how a pro-
gram shouldmake use of various resources, such as hardware
registers and stack memory, during a procedure call. The use
of conventions in this way are useful for a number of reasons
- they simplify the compiler by allowing it to easily emit code
for any procedure call without knowing the details of its im-
plementation, and they allow easy integration with libraries
and the operating system. However, these conventions also
introduce overhead to most calls. For example, arguments
not in the correct registers at call-time must be moved, and
values in caller-saved registers must be either re-computed
or moved elsewhere to avoid being overwritten.
These additional operations, in addition to possible per-

formance penalties, also increase code size and waste energy.
Such penalties may be acceptable in environments such as
PC software where storage space and energy consumption
are not critical resources, but in embedded domains where
the software must fit on a few hundred kilobytes of flash
memory built directly into a microcontroller, these penalties
can be especially burdensome. Developers may need to limit
features or choose larger, more expensive, and more energy-
hungry microcontrollers as a result of code size limitations.
In addition, this and other sources of code size overhead

can cause embedded developers to be reluctant to use more
abstracted programming styles or languages like C++ over
C, which we show to produce a generally greater amount of
calling convention overhead. This is a major problem as it
can potentially limit the productivity of embedded systems
programmers by restricting them to older technologies and
programming styles that may be ill-suited for a particular
problem, ultimately increasing development costs and time.
This paper first provides an analysis of the problem of

calling convention overhead on the Thumb-2 instruction

146

https://doi.org/10.1145/3136040.3136057
https://doi.org/10.1145/3136040.3136057

GPCE’17, October 23–24, 2017, Vancouver, Canada Joseph Caldwell and Shigeru Chiba

set, which has become very widely adopted in the embed-
ded systems and smartphone space, and then presents a
optimizer to reduce calling convention overhead based on
those results as a proof-of-concept. In particular, this pa-
per is aimed primarily at devices with storage space on the
order of hundreds of kilobytes of flash space, and tens of
kilobytes of RAM, as is the case for many low-end Cortex-M
devices from manufacturers such as Atmel, Freescale, NXP,
and ST Microelectronics. While not the explicit target of this
paper, higher-end devices found in smartphones can also
sometimes benefit from smaller binaries as a result of better
instruction cache and energy performance [10].
We show that 4-12% of the instructions in typical ARM

Thumb-2 binaries are overhead derived from the calling con-
vention, with the average rate for C++ programs being about
3% higher than for C programs. The overhead percentage is
shown to be positively correlated with the average number
of call sites per procedure. We demonstrate our optimizer
which eliminated 22-31% of the calling convention overhead
in C++ programs in our trials.

2 Calling Convention Overhead
Calling convention overhead for a particular call site can
be thought of as instructions that could be removed if an
ideal calling convention were in use at that call site. Such an
ideal calling convention would require that all arguments
be in their present locations, and would return a value in
whichever register that value is required in. The overhead of
the call itself, that is to say, branch instructions, instructions
required to do vtable lookups, etc., are not considered âĂŤ
they would fall under the category of call overhead, rather
than calling convention overhead.

2.1 Motivating Example
To illustrate calling convention overhead, consider the fol-
lowing simple C/C++ function:

function compute (int a, int b) {
return foo(a) + bar(b);

}

This function essentially performs three operations: two
function calls, followed by an addition. When compiled tar-
geting ARM Thumb-2 assembly code, the following instruc-
tion sequence is produced (on GCC):

push {r4, r5, lr}
mov r4, r1

* bl <foo>
mov r5, r0
mov r0, r4

* bl <bar>
* add r0, r5

pop {r4, r5, lr}

In this example, the instructions indicated with an asterisk
are directly responsible for performing those three opera-
tions. The other five operations exist as a side-effect of the
calling conventions. They move values to and from registers
according to the calling convention in use, which in this
case, is specified in the ARM ABI as follows (shown here in
a highly simplified form):

Table 1. ARM Calling Convention (simplified)

Argument Values: Registers r0 - r3
Return Values: Register r0
Caller-Saved Values: Registers r0 - r3
Callee-Saved Values: Registers r4 - r12

In this (admittedly contrived) example, the majority of in-
structions are implementing the calling convention, rather
than performing "useful" work. If we were concerned about
the performance penalty of these extra instructions, we could
simply use function inlining to insert the function bodies in
place of the branch instructions, and then no calling conven-
tion would be necessary at all. However, from the point of
view of an embedded developer concerned with code size,
function inlining would create a complete copy of the func-
tion body for each call site, most likely increasing the code
size much more than eliminating the overhead would save
for all but the shortest functions. It is for this reason that, on
GCC, inlining is disabled by default when optimizing for size.
From this perspective, it would be preferable to maintain the
concept of calling conventions, but to tailor them specifically
to each call site. Of course, there are many reasons why call-
ing conventions tailored to each individual situation might
not be practical or desired. For example,

(a) functions are often called from multiple sites, making
the task of choosing an optimal convention difficult

(b) the code for the caller and callee may not be available
to the compiler at once,

(c) a standard allows for easy integration with externally
linked libraries, operating system components, etc.,
which is lost when using multiple conventions, and

(d) the compiler’s design is considerably complicated by
using multiple conventions (especially given how hard
it is to correctly implement a calling convention, even
in production compilers [13]).

Yet, it would certainly be advantageous to trade away these
advantages in exchange for space savings if space is par-
ticularly precious to an application. This is especially so in
cases where the whole program can be statically known at
compile time (as is the case in many embedded bare-metal
and real-time operating system environments), since advan-
tages (b) and (c) of using a single standard convention are
not relevant.

147

Reducing Calling Convention Overhead in Object-Oriented ... GPCE’17, October 23–24, 2017, Vancouver, Canada

2.2 Influence of the Instruction Set
While calling convention overhead is potentially a factor
on any platform, the Thumb and Thumb-2 instruction sets
are particularly vulnerable to it, compared to most 32-bit
platforms. These instruction sets are so-called "compressed"
instruction sets, in which their 16-bit instructions are logi-
cally decompressed into 32-bit traditional ARM instructions
and then executed. Because of this, most of the compressed
instructions only support two operands, with the destination
register of the operation implicitly set to be equal to the first
operand. As a result, Thumb instructions are often unable to
place instruction results in convenient registers, which leads
to more explicit move instructions in Thumb code [9].

While normal processing normally has no reason to favour
any particular register over any other equivalent register as
a destination register, when those values must be passed
to a procedure call, it is advantageous to be able to place
the result directly in the register specified by the calling
convention. If this is not possible, because of the limited
expressive power of a 16-bit instruction, either an explicit
move instruction must be inserted, or (on Thumb-2) a 32-bit
instruction must be substituted (requiring the same amount
of extra space, either way). While Thumb and Thumb-2 have
been found to decrease overall code size by about 30% when
compared with traditional ARM code [7, 9], the additional
calling convention overhead incurred by this instruction set
could be limiting those gains.
A second feature of the architecture is its push and pop

instructions, which allow up to 8 registers to be saved or re-
stored, respectively, in a single 16-bit instruction (though the
time taken to actually execute this instruction is proportional
to the number of registers saved). While other techniques for
code compaction make good use of eliminating register saves
and restores [5], this technique is less effective on Thumb
code, due to the density of these instructions; an optimizer
would have to eliminate all of the saves or restores in a pro-
cedure in order to gain any size benefit. Making this more
unlikely still is the fact that the ARM architecture uses a link
register (LR) to record the return address when making a
procedure call, and this register is saved/restored in all proce-
dures which call other procedures (excluding tail-calls). This
makes those push and pop instructions very challenging to
eliminate.

3 Analysis of the Problem
In order to effectively optimize calling convention overhead
on this platform, we first performed an analysis of the ef-
fects of calling convention overhead on a number of open
source and proprietary embedded system projects targeting
either embedded systems in general or the Cortex-M plat-
form specifically. While contrived examples demonstrating
the problem are readily available, it was not immediately
clear whether calling convention overhead was actually a

significant problem on this platform or whether its effects
were minor.

To perform the analysis, we created a tool to process the
assembly language listing of the compiled programs, and
classify each instruction as overhead or not. In addition,
the tool computes a number of other statistics regarding
each program that we thought could be correlated with the
amount of overhead.

3.1 Types of Calling Convention Overhead on ARM
Calling convention overhead can be further divided into four
categories which can be detected by our analysis tool. Call-
ing convention overhead can manifest itself in subtle ways
beyond these four types, but these four could be classified
programmatically without human judgement. The four types
are as follows:
Register-to-RegisterMoves:Amov instructionwhere both
the source and destination are general-purpose registers.
This kind of instruction is used frequently to move a value
into a convention-specified register, as there is rarely any
other reason to prefer a certain general purpose registers
over any other on this platform. In theory, there could be
rare cases in which it could be used for other purposes, but
this has not been observed. Rarely, an instruction other than
mov is used, such as an add constant instruction where the
constant is zero; such cases are included in this category.
Redundant PC-Relative Loads: An instruction that loads
into a register a constant value that has been previously
loaded at least once in the same procedure. This can occur
either because the value was in a caller-saved register when
a procedure was called, or because the procedure is register-
starved, and thus there were insufficient registers available
to keep the value loaded in a register over its useful lifetime.
Redundant StackReferences: Similar to the previous type,
but rather than constant values, values on the stack are re-
peatedly loaded into registers.
Redundant Stack Loads: Similar to the previous type, but
rather than a value on the stack being directly loaded into a
register, the stack value is dereferenced first.
Ambiguous Cases: There are some cases where it is not
clear how an instruction should be categorized. Overhead can
influence the instruction sequence in a variety of subtle ways
where an instruction cannot be clearly said to be a result
of the calling convention or not. For example, sometimes
a 32-bit instruction is emitted by the compiler in order to
avoid adding a move instruction; in this case, it is not clear
how to classify the instruction. Our tool is conservative in
this case, and will not count such instructions in its total.
In cases where a procedure is register-starved, that is,

there is a live value in all available registers at some point
during the procedure’s operation, it is sometimes unclear
whether the overhead should be "blamed" on the calling con-
vention, or the register-starvation. This is the case because

148

GPCE’17, October 23–24, 2017, Vancouver, Canada Joseph Caldwell and Shigeru Chiba

Figure 1. Analysis of calling convention overhead in real-world programs

the tool cannot distinguish whether the register starvation
condition itself is caused in part because of the registers
required for the calling convention, which greatly affects the
register allocation process. Our tool does include these cases
as overhead, though they appear to be relatively rare.

3.2 Experimental Method
We collected several open source and proprietary software
projects intended for embedded devices to use for this study.
Where possible, both the GCC and Clang compilers were
used. As we are primarily interested in code size, most pro-
grams were compiled with the -Os flag (optimize for size),
but some were compiled with -O2 (optimize for speed, level
2) for comparison. A branch of GCC maintained by ARM
employees targeted specifically at their embedded Cortex-
M and Cortex-R processors was used in the case of GCC.
To determine if the problem is significantly worse in C++
programs compared to C programs, both C, C++, and mixed-
language example programs were analysed.

3.3 Experimental Results
It was found that typical embedded software compiled with
Thumb-2 instructions contains between 4-12% instruction
overhead, with an overall average of about 8%, shown graph-
ically in Figure 1 (this holds whether each binary is taken
individually, or if the best result of related binaries is used).
This can be thought of as an approximate upper bound

for the effectiveness of optimizations targeting this problem,
as any optimizer cannot remove more calling convention
overhead than actually exists. It cannot be called a hard
bound, however, because of the ambiguous cases, however

we presume that these cases represent a relatively small
proportion of the overall overhead.
Register-to-register move overhead was the most signifi-

cant contributor to the overhead overall and in each individ-
ual case except for cf2loader, where redundant PC-relative
loads are unusually high. The other three categories vary
considerably from program to program, from non-existent in
some cases. If the other three categories are taken together,
this combination becomes the majority contributor in three
of the fifteen cases.

It should be noted that despite the binaries compiled using
-O2 and with the Clang compiler sometimes contained a
smaller percentage of calling convention overhead than the
corresponding -Os compiled binary, the GCC -Os binaries
were still smaller in all cases.

3.4 Effect of Source Language
While both C and C++ programs show significant calling
convention overhead, the amount present in C++ programs
tended to be greater. Only one C program had a higher in-
stance of register-to-register move overhead than any of the
C++ or mixed-language programs. With real-world code,
however, it is difficult to compare programs directly, as any
given pair of C and C++ programs are likely different in
many key attributes that are difficult to attribute solely to
the programming language used. Indeed, as most C code is
also valid C++ code, rather than considering the language,
it may be better to consider it a question of programming
style.
From Table 2, we can see that all of the C++ and mixed-

language programs had a higher average number of call

149

Reducing Calling Convention Overhead in Object-Oriented ... GPCE’17, October 23–24, 2017, Vancouver, Canada

Table 2. Attributes of the studied real-world programs

Program Source
Lan-
guage

Average
Call Site
Count

Median
Call Site
Count

Average
Param-
eter
Count

Median
Param-
eter
Count

Average
Mod-
ified
Scratch
Register
Count

Median
Mod-
ified
Scratch
Register
Count

Function
Count

cflie† C 3.0 1 1.3 0 2.9 4 498
ch C 3.1 2 1.4 4 2.5 4 46
FreeRTOS C 2.0 2 0.9 0 2.2 0 18
tinyaes C 1.8 1 2.5 5 3.1 3 46
CMSIS† Mixed 6.0 3 0.8 2 1.6 4 27
TinyXML C++ 4.2 2 1.4 1 2.0 1 136
PPBFirmware† C++ 4.0 3 2.0 3 2.9 4 339
PPDFirmware† C++ 6.8 1 2.1 2 2.3 3 912

sites per function than any of the C programs, with the
medians being generally higher as well. This suggests that a
typical C++ program will tend to call each defined function
from more locations than a typical C program, and that this
contributes to the increased amount of calling convention
overhead that we see in the C++ programs. This could be
a consequence of the object-oriented programming style,
which encourages, for example, having many small accessor
functions for class members, for which there are likely many
calls; while such functions can often be inlined efficiently,
when optimizing for size (as we have done with most of our
sample programs), inlining is disabled. The average number
of call sites showed a mild correlation with overall overhead
(0.67) and a slightly stronger correlation with register-to-
register moves (0.76).
The number of parameters of typical functions does not

appear to be significantly different across languages (note
that, in the case of C++, the this pointer is taken as one of
the parameters on method calls), nor did the typical number
of registers modified.
To provide a more exact comparison of object-oriented

C++ and C code, we wrote two programs‡ each accomplish-
ing the same task, one in idiomatic C, and one in idiomatic
object-oriented C++, and the amount of calling convention
overhead in each was compared using the same methods
as in the previous experiment. The programs were written
specifically for this experiment by one of this paper’s authors,
with several years of experience in embedded systems devel-
opment. They were each compiled using GCC, optimized for
size (-Os).

As these are highly synthetic programs, the implications of
the results are naturally debatable. Exactly what constitutes

†These programs were written specifically for the ARM Thumb-2 platform,
so may be more heavily optimized with this in mind. The other programs,
while intended for embedded platforms in general, are not specifically
targeted at this instruction set.
‡These programs can be found at https://github.com/csg-tokyo/caldwell

an "idiomatic" programming style in C and C++ is far from
clear. The C++ program could easily be written in a more
C-like fashion, and, although C does not natively support the
object-oriented paradigm, it could also have been written
in a much more abstracted object-oriented style. Still, we
believe it still has some value as a point of comparison.
The results are shown in Table 3. The C++ version con-

tained far more overhead (8.0 percentage points more) than
the C version. We do not believe this to be the direct result
of particular language features, but rather a consequence of
programming style. The C++ version, for example, contains
about 72% more function calls per byte of code than the C
version, which will naturally increase the overhead percent-
age. While it is certainly possible that a C program could
contain a larger number of function calls for its size than a
C++ program, we believe that having a greater number of
function calls to be at least partially a consequence of an
object-oriented style. The C++ version also makes use of a
number of constructor functions which, as previously noted,
nearly always introduce overhead.

3.5 Sources of Calling Convention Overhead
While each instance of calling convention overhead can ul-
timately be attributed to a calling convention that is sub-
optimal for that particular calling context, a number of more
specific causes can be identified by manually inspecting the
assembly code. The following are a list of patterns that were
commonly found to cause additional overhead in programs
when compiled to ARM Thumb-2.

Table 3. Comparison of synthetic C/C++ program pair

Version CC Overhead Calls per 1K Code
C 5.8% 24.8
C++ 13.8% 42.6

150

GPCE’17, October 23–24, 2017, Vancouver, Canada Joseph Caldwell and Shigeru Chiba

Adjacent Procedure Calls:When two or more procedures
are called in close proximity to each other, the compiler has
little opportunity to make use to intermediate operations to
manoeuvre values into their appropriate registers, leading
to more overhead than widely-spaced procedure calls would.
As C++ code was shown to have more calls per function in
general, it would seem likely that C++ programs are more
likely to have adjacent procedure calls as well.
C++ Constructors: As constructors are implemented as
void functions on the target platform, the object that was just
constructed is not returned from the constructor. This means
that the constructed object will no longer be in a register
unless the compiler has explicitly saved it in a callee-saved
register. Since the object will almost certainly be used (or
at least returned) somewhere in the procedure, this almost
always results in additional overhead. Obviously, as this is a
C++ language feature, it would be more likely seen in C++
programs, although it could easily be imitated in C.

Figure 2. Example of a
long-lived register value
(green) being frequently
moved (represented by
horizontal lines)

Long-Lived Values: Values
that are live across multiple
procedure calls not only use
up a register for a long pe-
riod, but must be kept in the
more limited pool of callee-
saved registers. When these
values are used directly as
arguments to a procedure
call, they must be copied
from their callee-saved regis-
ters into argument registers,
which is always an example
of overhead.
Return Value as Later Ar-
gument: Whenever return
values are directly used as ar-
guments of other procedures, move instructions will be re-
quired unless the return value is used as the first argument
(in non-object-oriented programs) or the object (in object-
oriented programs) of the next procedure. For example, each
of the following lines of C/C++ will require an additional
move instruction as a result of the calling convention:

foo(x, bar());
x.foo(bar());

As C++ programs tend to use method calls with an implicit
this pointer, any return value used as an argument will match
this pattern on C++ method calls.

4 Optimization
To eliminate some of the overhead, particularly in C++ pro-
grams, we designed an optimizer to assign more optimal call-
ing conventions to procedures, and thus eliminating some

of the additional move instructions needed before and after
call instructions, and in procedure prologues and epilogues.
With this method, the abstraction of a calling convention
is retained, but in place of a universal calling convention,
each procedure has a dynamic calling convention assigned
to it. The optimizer determines good calling conventions
first by "proposing" a new calling convention that improves
a procedure’s local code size, and then using a cost function
to evaluate the cost of making that change globally.

This method benefits from having the entire binary avail-
able, so that accurate estimates can be obtained using the
cost functions. This is not likely onerous for the target do-
main, as the programs being compiled are most likely small.
However, if incremental compilation is desired, it can still
function with poorer estimation accuracy.
In our proof-of-concept implementation, the optimizer

identifies the procedures and builds the call graph by parsing
DWARF debugging information, as it is a stand-alone tool,
though it could also be determined from internal compiler
data if it were integrated into a compiler. Our implementation
does not perform the binary re-writing itself, but rather
produces sufficient information to modify the binary and
evaluate the code size savings.

4.1 Detailed Description
The optimizer iterates through each procedure in the current
module. For each procedure in this module, changes are
proposed to both the calling convention for this procedure
itself, and to the calling conventions for any procedures
called that would reduce the number of bytes required locally
in this procedure. A cost function is used to estimate the
cost of applying each proposed change globally to the whole
program (discussed in detail in section 4.2). Any changes that
are estimated to increase the global binary size are discarded
at this stage. Once this process is complete for all procedures,
the preliminary set of changes is filtered to remove any
mutually-exclusive changes, by removing whichever change
would yield the greatest estimated savings.

The optimization abstracts procedures using a simplified
model inwhich each procedure contains a prologue, epilogue,
and zero or more processing blocks and procedure call blocks.
Control flow is not modelled at the high level.

Any move instructions at the beginning of the procedure
are considered to be part of the prologue for our purposes
here. Compilers may place move instructions here for pa-
rameters which will outlive at least one procedure call, such
that they are not in caller-saved registers.
In some cases where the code is highly optimized, some

non-prologue instructions may be mixed into the prologue,
which requires the optimizer to identify prologue instruc-
tions in order to implement this model.
The epilogue similarly may contain up to one move in-

struction to move the final return value to the register speci-
fied by the calling convention. The prologue also contains

151

Reducing Calling Convention Overhead in Object-Oriented ... GPCE’17, October 23–24, 2017, Vancouver, Canada

Definitions

CCP(f,p): returns the register assigned to parameter p by the calling convention of procedure f.
cost(c): returns a tuple (k, c’), where the first element k is an estimated cost to code size (in bytes) of applying the set of
changes c to the program. The second element c’ is a set of the actual set of changes which need to be applied to achieve
this cost, which includes all changes in c and may include additional changes to other procedures to lower the costs of
implementing the change. The implementation of this function will be discussed in depth later.

Pseudocode

The following pseudocode lists the overall optimization algorithm to optimized the registers used during parameter
passing.
procedure Opt im i z e (module m) :

l e t C be a l i s t o f proposed change s e t s
f o r each procedure f i n m

f o r each paramete r p i n f
i f the p ro logue o f f c on t a i n s a move from CCP (f , p) t o r e g i s t e r r

l e t c r e p r e s e n t a conven t i on change to f where CCP (f , p) = r
l e t (k , c ') = c o s t ({ c })
i f k < 0

add (k , c ') t o C

f o r each procedure c a l l t o g i n f
f o r each paramete r p i n g

i f the c a l l −pro logue o f g c on t a i n s a move from r e g i s t e r r t o CCP (g , p)
l e t c r e p r e s e n t a conven t i on change to g where CCP (g , p) = r
l e t (k , c ') = c o s t ({ c })
i f k < 0

add (k , c ') t o C

l e t A be a l i s t o f a p p l i e d change s e t s
s o r t C by each k (a s c end ing)
f o r each (k , c ') i n C

i f c ' i s not mutua l l y e x c l u s i v e with any i tem in A
app ly a l l changes in c '
add c ' t o A

Figure 3. High-level pseudocode of the optimization process

instructions to set up the stack, which are not of particular
interest here.

Procedure call blocks are divided further. There is no exist-
ing nomenclature that is appropriate for our purposes here,
so we will denote the three sub-blocks of a procedure call as
the call-prologue, the branch, and the call-epilogue. Similar
to the procedure prologue, the call-prologue contains any
move instructions necessary to move argument values to
the registers specified by the calling convention. The call-
epilogue contains at most one move instruction used to move
the return value of the call, such as to a callee-saved register
if that value will outlive subsequent procedure calls.

The high-level algorithm is described in pseudocode in
Figure 3. For simplicity, the algorithm described there only
optimizes the registers used for procedure parameters. It
can be trivially expanded to also optimize the return value
registers.

In addition, additional optimizations can be added to opti-
mize other aspects of the calling convention. For example, it
can be expanded to optimize for which registers are caller-
and callee-saved. In some cases, a caller may be able to re-
move some instructions if it knows that a callee will not
modify certain registers, and the cost function could esti-
mate the cost of implementing that change.

152

GPCE’17, October 23–24, 2017, Vancouver, Canada Joseph Caldwell and Shigeru Chiba

4.1.1 Limitations
Not all aspects of a calling convention can be optimized
using this method. For example, the handling of additional
parameters passed on the stack cannot be modified, as those
additional parameters are invisible at the assembly level, and
could not be identified without additional information from
the compiler.

4.2 Cost Function
The cost function, cost(c), where c is a set of changes, esti-
mates the cost to the code size (in bytes) across an entire
program. This is done by calculating an actual cost where
practical and using heuristics where it is not.
The function returns a tuple (k, c’) where k is the cost

expressed as an integer and c’ is the set of changes that
produced this cost, including the original change passed to
the cost function plus any subsequent changes made in order
to implement the original change with a lower cost.
For example, an individual change might be "change pa-

rameter 2 of procedure foo from register r1 to r5." A change
set is a collection of changes. Implementing such change
across a whole binary might eliminate three 16-bit instruc-
tions and add one 16-bit instruction, resulting in an overall
cost of -4 bytes.

4.2.1 Local Cost Computation
There are multiple ways of modifying a procedure’s code to
accommodate a calling convention change. Our optimizer
evaluates the cost using two strategies:
Prologue/epilogue move statement modification: In this

case, move instructions are added, removed, or modified
in the procedure’s prologue/epilogue or call-prologues/call-
epilogues of corresponding call sites.

Register renaming: In this case, two registers are swapped
in the procedure body.Move instructions in the call-prologues
and call-epilogues of any procedure calls may need to be
added, removed, or modified to accommodate the register
renaming.

The costs of both of these strategies are evaluated and the
lowest cost method is chosen. To evaluate each method, a
liveness analysis is performed based on the forward fixpoint
method [1]. If the procedure makes no procedure calls, or
the registers used in the procedure calls are unaffected by
these changes, the cost computation returns the cost and the
original change c as c’.

If the procedure is not available in this module and has not
been encountered before, the cost of the change is simply
assumed to be 0. If a procedure is register-starved, it may
be impossible to implement the change without spilling ad-
ditional registers on the stack, which is highly expensive
in terms of code size. Rather than perform this additional
spilling, the cost of making such changes is simply reported
as infinite (impossible).

4.2.2 Recursive Cost Estimation
If the procedure contains calls to other procedures, often sim-
ple changes as described above produce poor results without
making subsequent changes to the calling conventions of
those called procedures. In this case, the change is specula-
tively applied, and the optimizer is run recursively on the
called procedures.
If the overall cost to applying the subsequent change(s)

to called procedures is less than the cost of applying local
changes alone, the subsequent changes are appended to the
original change to create c’.

4.2.3 Special Cases
There are a number of special cases that require more careful
handling. Functions called through a function pointer, as
well as C++ virtual functions, cannot be easily optimized
using this approach. As the actual function being called is
not known at compile time, the calling convention used must
be appropriate for every possible function that may be called
at that call site.
In the case of virtual function calls, the set of all imple-

mentations of a particular virtual function can potentially
be called, so they must all use the same calling convention,
unless the optimizer can prove that there are a smaller set of
possible implementations are possible at a particular call site
(such as, for example, if the object was created in the same
function as the call site, it may be possible to determine the
exact implementation). With this additional constraint, it is
very difficult to produce an advantageous calling conven-
tion that would eliminate calling convention overhead; in
practice, we believe the additional constraints makes opti-
mizing such functions unlikely to produce much in the way
of savings, so our optimizer ignores virtual functions.

In the case of function pointers, this is even more difficult
to determine, as any function with a matching signature
and return value could potentially be assigned to a partic-
ular pointer, and even functions without matching or raw
memory addresses can be used if casting is employed. In
this case, it would be best to simply use the standard calling
convention. In this case, any function which has its address
taken at any point in the program must use the standard
calling convention. This can be implemented either by not
optimizing such functions, or by generating a stub function
that adapts the standard calling convention to the actual
optimized calling convention. Different methods may yield
better or worse results depending on whether such functions
are also called directly at other points in the program or not.
In practice, our implementation is not sophisticated enough
to detect where function addresses are computed, leading
to potential correctness issues where function pointers are
used unless those functions are explicitly marked as "do not
optimize" - a hypothetical implementation integrated into
the compiler would be able to overcome this limitation.

153

Reducing Calling Convention Overhead in Object-Oriented ... GPCE’17, October 23–24, 2017, Vancouver, Canada

Figure 4. Conceptual diagram of the cost function computation

Exported and external functions must not be optimized,
as they must retain their original calling convention. Such
functions can be detected by DWARF debugging information,
which is used in our implementation. This is not required
if everything is linked statically, which is often the case in
embedded software in our targeted class.

4.2.4 Termination
The optimizer maintains a list of procedures currently being
optimized, and will not recurse into a procedure in this list,
to ensure that the algorithm is decidable. The cost of making
such changes is reported to be infinite (impossible). This
reduces our implementation’s ability to optimize recursive
procedures and recursive chains of procedures, though they
can still be optimized using local changes.

4.3 Scalability Issues
While whole-program compilation will improve the opti-
mization, incremental compilation can be supported at the
cost of poorer cost estimations if necessary. As each file is
compiled, each procedure seen (as a definition or as a proce-
dure call) is assigned a convention, which is retained across
files. If seen first as a definition, a convention can be assigned
greedily that is helpful towards reducing its own size and the
size of other procedures in the same module. If encountered
as a procedure call, a convention can be assigned greedily
that is helpful in reducing that caller’s size (and the size of
other caller’s in that module).

Procedure calls or definitions encountered after a conven-
tion has been set are generally constrained to using that
convention. However, in the case of procedure calls, if that
procedure’s source has been seen since the convention was
defined, a more constrained convention may be usable. The
initially assigned convention may have been more flexible

than that procedure required, such as being allowed to mod-
ify read-only registers. In this case, the "effective" calling
convention can be used instead.

5 Evaluation
To evaluate our implementation of the optimizer, it was
run against several programs which had previously been
included in the experiment presented in section 3. The op-
timizer produces a sequence of changes to the binary and
displays a count of bytes added or removed with each change.
The results are displayed in Table 4 as a percentage of the
total overhead in each binary (as measured in section 3). Be-
cause of some technical limitations, some of the programs in
section 3 are unsupported by the optimizer, and so are not
listed here.

The programs tested are the same as those in section 3.

Table 4. Evaluation

Program Source
Language

Overhead
Removed

cflie C 21%
FreeRTOS C < 1%
tinyaes C 10%
CMSIS Mixed 4%
TinyXML C++ 30%
PPBFirmware C++ 22%
PPDFirmware C++ 31%

While the mixed-language project did not fare so well, the
C++ programs each showed a greater elimination percentage
than any of the C programs, at 27% on average vs. only 10%
at most for the C programs. We believe these results could be
improved in the future with a more sophisticated optimizer,

154

GPCE’17, October 23–24, 2017, Vancouver, Canada Joseph Caldwell and Shigeru Chiba

as our proof-of-concept implementation only focused on
register-to-register moves, and was limited in the number of
scenarios it was able to make changes to the binary.

In addition to the above experiment, the pair of programs
described in section 3, used to compare the amount of over-
head in C vs. C++ programs, was also run through our opti-
mizer in a similar fashion. These two programs perform the
same function, differing only in implementation language
and programming style; the C program is written in an id-
iomatic procedural style, while the C++ version is written in
an idiomatic object-oriented style, making full use of many of
the abstractions available in the C++ language. Their results
are compared in Table 5, below.

Table 5. Optimization of Synthetic C/C++ Binary Pair

Version Overhead Removed
C Version 12%
C++ Version 29%

In the above table, we can see that not only was a greater
optimization rate achieved with the C++ version, but also
a greater proportion of the total overhead was removable
in that version. This may suggest that the kind of overhead
present in C programs is, to a greater extent, unavoidable,
when compared to C++ programs, although the evidence
presented here is insufficient to make that claim with any
certainty.

It is important to note, however, that the C version remains
smaller overall, despite the amount of overhead removed. As
was indicated in section 3, as this pair of programs is quite
synthetic, when compared to the real-world programs tested,
the results here should be taken with a grain of salt - they
are presented merely as a way of comparing a C and C++
more directly than using dissimilar programs allows.

6 Related Work
While calling convention overhead has been studied before
[4, 5, 11, 12, 15], much of the work has been focused pri-
marily on its impact on performance rather than on code
size, and it has not yet been studied in the context of the
Thumb or Thumb-2 instruction sets, which are currently
very popular in the microcontroller market (with all major
microcontroller manufacturers having Cortex-M offerings
at the time of writing), and are also used alongside the tradi-
tional ARM instruction set (and sometimes others) in nearly
all smartphones (running Cortex-A SoCs).

These is some research has considered calling convention
overhead removal (in combination with many other opti-
mizations) on ARM processors (though not supporting the
Thumb instruction sets) with the explicit goal of reducing of
code size [4]. In this work, calling convention overhead in
the form of register-to-register move instructions are elim-
inated in the special case in which all call sites contain an

identical move instruction for passing a parameter. In our
work, we have presented a more general solution that does
not require this special case.
The problem of optimal register allocation is closely re-

lated to calling convention overhead elimination.While regis-
ter allocation is normally applied locally within a procedure,
some researchers have used the approach of performing an
inter-procedural (or global) register allocation, in which case
the abstraction of a calling convention is not needed (to the
same extent, at least). Chaitin’s seminal paper [3] suggests
that the graph-colouring register allocator could be used on
a whole-program scale if there are sufficient hardware regis-
ters available, though this method is not very scalable and
quite expensive even when registers are plentiful. Wall [15]
takes advantage of the large number of registers available
on one platform to save some registers for a global register
allocation process to re-allocate the most commonly used
registers previously allocated using a local allocation, allow-
ing each procedure to use the same registers for these values.
Unfortunately there are only 12 general purpose registers on
Thumb platforms (and of those, only 8 are accessible by all
instructions), far less than the 64 register platform discussed
in that paper, so this method is not very effective in our case.
Some combined approaches have been tried. Lai, Hsieh,

and Chao [11, 12] combine inlining and global register allo-
cation to achieve performance benefits while avoiding situa-
tions in which one method or the other cannot be effectively
applied. This work focused on performance, but although
inlining is most often detrimental to code size, there are sit-
uations in which this is not the case, particularly with small
procedures or those with few call sites, so some limited use
of inlining in combination with our method would likely
provide some improvement.
On the hardware side, research into improving the code

density of instruction sets as a way of reducing code size is
another approach, and could be said to be proceeding with a
renewed interest, at a time where energy consumption and
cooling have become chief concerns [16]. A recent paper by
Lozano [14] proposes extending Thumb-2 with 8-bit wide
instructions to improve code density further.

Other techniques to reduce overall code size have included
applying a compression algorithm to the program, either in
whole or in part. Wolfe [17] suggests a block-based program
compression using Huffman codes, while Kirovski [8] sug-
gests a procedure-based compression scheme using an LZ77
compression algorithm. Such results have been improved
using compression algorithms specifically designed for com-
pression code, such as suggested by DriniÄĞ [6], or by apply-
ing instruction set-specific pre-processing the code prior to
compression to improve the results, as suggested by Bonny
[2]. While these methods produce impressive code compres-
sion, they require a significant processing and memory cost
to decompress the code for execution and to maintain in-
dexes into the compressed code. Some of this cost can be

155

Reducing Calling Convention Overhead in Object-Oriented ... GPCE’17, October 23–24, 2017, Vancouver, Canada

offset by hardware-based decompression, but this is sadly
unavailable in the vast majority of current microcontrollers.
In addition, the decompressed code (though not necessarily
the entire program at once) must be stored in RAM, which
is usually much more limited than flash space current mi-
crocontrollers, limiting this approach to situations in which
there is sufficient free RAM available but insufficient flash.
Another method of code compaction is known as code

factoring, which is used in combination with other methods
byDebray et al [5], in which instances of completely identical
or, with amore sophisticated system, sufficiently similar code
is identified and "factored" into new procedures. We believe
this method would work well alongside our approach.

7 Conclusion
The calling conventions used by typical compilers can cause
significant amounts of code size overhead in both C and C++
programs, which may be unacceptable in some embedded en-
vironments where flash space is limited. The overhead found
in C++ binaries was significantly larger than that found in
C binaries in most cases, perhaps as a result of the larger
numbers of procedure calls present in the C++ programs.
Our optimizer was effective at removing one type of over-
head in C++ programs, which we termed register-to-register
moves. In a direct comparison of a pair of synthetic pro-
grams performing the same task, one in idiomatic C and one
in object-oriented C++, we found that not only did the C++
program contain much more overhead, but that a higher per-
centage of that overhead was removable by our optimization
tool.

References
[1] F. E. Allen and J. Cocke. 1976. A Program Data Flow Analysis Pro-

cedure. Commun. ACM 19, 3 (March 1976), 137–. https://doi.org/10.
1145/360018.360025

[2] Talal Bonny and Jörg Henkel. 2010. Huffman-based Code Compression
Techniques for Embedded Processors. ACMTrans. Des. Autom. Electron.
Syst. 15, 4, Article 31 (Oct. 2010), 37 pages. https://doi.org/10.1145/
1835420.1835424

[3] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. 1981. Register Allocation
via Coloring. Comput. Lang. 6, 1 (Jan. 1981), 47–57. https://doi.org/10.
1016/0096-0551(81)90048-5

[4] Bjorn De Sutter, Ludo Van Put, Dominique Chanet, Bruno De Bus, and
Koen De Bosschere. 2007. Link-time Compaction and Optimization

of ARM Executables. ACM Trans. Embed. Comput. Syst. 6, 1, Article 5
(Feb. 2007). https://doi.org/10.1145/1210268.1210273

[5] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter.
2000. Compiler Techniques for Code Compaction. ACMTrans. Program.
Lang. Syst. 22, 2 (March 2000), 378–415. https://doi.org/10.1145/349214.
349233

[6] Milenko Drinić, Darko Kirovski, and Hoi Vo. 2007. PPMexe: Program
Compression. ACM Trans. Program. Lang. Syst. 29, 1, Article 3 (Jan.
2007). https://doi.org/10.1145/1180475.1180478

[7] L. Goudge and S. Segars. 1996. Thumb: reducing the cost of 32-bit
RISC performance in portable and consumer applications. In Compcon
’96. ’Technologies for the Information Superhighway’ Digest of Papers.
176–181. https://doi.org/10.1109/CMPCON.1996.501765

[8] Darko Kirovski, Johnson Kin, and William H. Mangione-Smith. 1997.
Procedure Based Program Compression. In Proceedings of the 30th
Annual ACM/IEEE International Symposium on Microarchitecture (MI-
CRO 30). IEEE Computer Society, Washington, DC, USA, 204–213.
http://dl.acm.org/citation.cfm?id=266800.266820

[9] Arvind Krishnaswamy and Rajiv Gupta. 2002. Profile Guided Selection
of ARM and Thumb Instructions. SIGPLAN Not. 37, 7 (June 2002),
56–64. https://doi.org/10.1145/566225.513840

[10] Arvind Krishnaswamy and Rajiv Gupta. 2005. Dynamic Coalescing
for 16-bit Instructions. ACM Trans. Embed. Comput. Syst. 4, 1 (Feb.
2005), 3–37. https://doi.org/10.1145/1053271.1053273

[11] Feipei Lai and Yung-Kuang Chao. 1994. The complementary relation-
ship of interprocedural register allocation and inlining. In Computer
Languages, 1994., Proceedings of the 1994 International Conference on.
253–264. https://doi.org/10.1109/ICCL.1994.288375

[12] Feipei Lai and Chia-Jung Hsieh. 1994. Reducing procedure call over-
head: optimizing register usage at procedure calls. In Proceedings of
1994 International Conference on Parallel and Distributed Systems. 649–
654. https://doi.org/10.1109/ICPADS.1994.590416

[13] Christian Lindig. 2005. Random Testing of C Calling Conventions.
In Proceedings of the Sixth International Symposium on Automated
Analysis-driven Debugging (AADEBUG’05). ACM, New York, NY, USA,
3–12. https://doi.org/10.1145/1085130.1085132

[14] H. Lozano and M. Ito. 2016. Increasing the Code Density of Embedded
RISC Applications. In 2016 IEEE 19th International Symposium on Real-
Time Distributed Computing (ISORC). 182–189. https://doi.org/10.1109/
ISORC.2016.33

[15] DavidW.Wall. 1986. Global Register Allocation at Link Time. SIGPLAN
Not. 21, 7 (July 1986), 264–275. https://doi.org/10.1145/13310.13338

[16] Vincent M. Weaver and Sally A. McKee. 2009. Code Density Concerns
for New Architectures. In Proceedings of the 2009 IEEE International
Conference on Computer Design (ICCD’09). IEEE Press, Piscataway, NJ,
USA, 459–464. http://dl.acm.org/citation.cfm?id=1792354.1792441

[17] Andrew Wolfe and Alex Chanin. 1992. Executing Compressed Pro-
grams on an Embedded RISC Architecture. SIGMICRO Newsl. 23, 1-2
(Dec. 1992), 81–91. https://doi.org/10.1145/144965.145003

156

https://doi.org/10.1145/360018.360025
https://doi.org/10.1145/360018.360025
https://doi.org/10.1145/1835420.1835424
https://doi.org/10.1145/1835420.1835424
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/1210268.1210273
https://doi.org/10.1145/349214.349233
https://doi.org/10.1145/349214.349233
https://doi.org/10.1145/1180475.1180478
https://doi.org/10.1109/CMPCON.1996.501765
http://dl.acm.org/citation.cfm?id=266800.266820
https://doi.org/10.1145/566225.513840
https://doi.org/10.1145/1053271.1053273
https://doi.org/10.1109/ICCL.1994.288375
https://doi.org/10.1109/ICPADS.1994.590416
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1109/ISORC.2016.33
https://doi.org/10.1109/ISORC.2016.33
https://doi.org/10.1145/13310.13338
http://dl.acm.org/citation.cfm?id=1792354.1792441
https://doi.org/10.1145/144965.145003

	Abstract
	1 Introduction
	2 Calling Convention Overhead
	2.1 Motivating Example
	2.2 Influence of the Instruction Set

	3 Analysis of the Problem
	3.1 Types of Calling Convention Overhead on ARM
	3.2 Experimental Method
	3.3 Experimental Results
	3.4 Effect of Source Language
	3.5 Sources of Calling Convention Overhead

	4 Optimization
	4.1 Detailed Description
	4.2 Cost Function
	4.3 Scalability Issues

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

