
日本ソフトウェア科学会第 34 回大会 (2017 年度) 講演論文集

Outlook on Composite Type Labels in

User-Defined Type Systems

Antoine Tu　 Shigeru Chiba

This paper describes an envisioned implementation of user-defined type systems that relies on a feature we

call composite type labels for type-checking. Desiging a type system is a complex task, and while some

user-defined type systems exist to address the need for use-case specific types, those systems usually have

a high level of verbosity and compromise on expressiveness to ensure safety. Our preliminary approach

addresses these problems through automating the instantiation of additional type labels, the derivation of

implicit conversion rules and the resolution of ambiguities during type-cheking as necessary. To achieve that

we rely on composite type labels, that are defined by composition rules. We first begin by identifying some

key problems with current approaches, after which we demonstrate how our planned system solves them.

1 Introduction

In this paper, we present a system for type-

checking user-defined type labels that relies on com-

position rules to reduce the cognitive load on pro-

grammers while ensuring a high level of expressive-

ness in declaring new type labels. Our approach

uses those rules to automatically instantiate addi-

tional type labels when appropriate. Similarly, our

system automatically derives implicit conversions

between instantiated type labels and performs type

normalization where necessary.

A programming language’s built-in type system

only provides a small set of primitive types that

are suitable for general use-cases. In some applica-

tions however, use-case specific types are useful to

prevent type-related errors that are not handled by

the general-purpose built-in type system. The idea

of allowing programmers to bring in their own type

system to enhance the existing one has already been

proposed by Bracha [1] and is called user-defined or

pluggable type systems. Current implementations

of this idea only implement it partially and in a re-

stricted fashion, as it is challenging to open up the

コンポジットタイプレーベルによるユーザ定義型システム

ツ アントアン　千葉滋, 東京大学情報理工学系研究科,

Graduate School of Information Science and Tech-

nology, The University of Tokyo.

type system while maintaining the safety promises

of the overall system.

We believe that for a type system to be useful,

it must provide users with a high level of expres-

siveness while minimally increasing the cognitive

load required to define and use such type system.

To achieve this, we extend the idea of user-defined

type systems by proposing composite type labels.

A composite type label is a type label that is de-

fined by the composition of traditional type labels

or other composite type labels through user-defined

composition rules. Our contribution is the auto-

matic instantiation of additional type labels using

type label composition rules, implicit conversion

support for pluggable type systems using path find-

ing, and the automatic resolution of flow merging

ambiguities through the automatic application of

type normalization. We believe these contributions

enhance existing pluggable type systems by reduc-

ing the cognitive load on programmers while main-

taining an equal or higher level of expressiveness

compared to existing systems.

2 Motivation

User-defined or pluggable type systems [1], as

defined by Bracha, have been introduced to ad-

dress the need to support use-case specific type

systems in addition to a host language’s built-

in type system. Their implementations do so by

providing a framework that allows users to de-

fine additional attributes, which we will refer to

as type labels, that can be attached to primitive

types to provide additional information to the type

checker. Type-checking is then performed against

those user-defined type labels on top of the regu-

lar type-checking that occurs in the host language.

This allows users to bring their own type system

to the host language. For instance, the Checker

Framework [4] described by Papi et al. accom-

plishes this by providing a compiler extension to

the Java programming language that parses user-

defined type labels implemented through Java type

annotations.

2. 1 Reducing definition burden

Those systems however are subject to several

constraints to ensure that users do not introduce

unexpected behavior to the host language. Indeed,

they often demand a high level of verbosity on

the part of the programmer, and provide low ex-

pressiveness. The previously introduced Checker

Framework, for instance, requires every type label

to be explicitly defined and doesn’t provide support

for combining type labels.

As an example, if we wanted to implement a type

system to express units of measurement, current

systems would require us to explicitly define all

units of length (m, km, cm, etc.) and time (sec,

min, hour, etc.) as well as all possible combinations

of length and time (m/sec, m/hour, km/hour, etc.).

Furthermore, current systems do not provide a way

to relate composite types such as km/hour with the

types labels they are composed of (km and hour).

For all intents and purposes, current systems treat

them as completely unrelated types.

The problem with this approach is that due to its

high verbosity it increases the cognitive load on the

programmers who want to define type labels. To

support more complex user-defined type systems,

we therefore need to provide a way of reducing def-

inition burden.

2. 2 Implicit conversions

Implicit conversions are useful in a type system as

they reduce the need for programmers to explicitly

annotate conversions, but they are usually avoided

by current user-defined type system approaches due

1 double@m foo = 5;

2 double@mm bar = 59;

3 double@Length baz = foo + bar;

Fig. 1 Flow merging in Checker Framework

presented using C# syntax

to the additional level of complexity its support in-

troduces. Indeed, the Checker Framework does not

support rewriting values and therefore has limited

support for implicit conversions. Defining all pos-

sible implicit conversions for a type system consist-

ing of n type labels would be an effort of the order

O(n2). We therefore want to have a mechanism for

defining implicit conversions with a low definition

burden.

2. 3 Resolving ambiguity

Current systems like the Checker Framework al-

low the grouping of type labels into something sim-

ilar to a subtyping or subclassing relationship with

a parent or abstract type label. For instance, a

programmer can define type labels m (meter) and

mm (millimiter) as being concrete incarnations of

the Length abstract type label. A variable declared

as Length may take on a label m or mm later on

through a process the authors call type refinement

which assigns to a variable a more restrictive type

label if such label is found to exist [4]. However,

this process only applies from the abstract type la-

bel to a concrete one, and doesn’t allow for inter-

actions between concrete type labels.

Indeed, merging two data flows of different type

labels results in a compiler error even if both type

labels are related. For instance, in Figure 2. 3 we

present a simple Checker Framework example, that

we have rewritten in C# syntax for consistency

with the language used in this paper. In this exam-

ple, if we try to add two units of Length, namely m

andmm, the compiler throws an error since it is un-

clear which type label this operation should result

in. However, it is necessary in our composite type

label implementation to handle such ambiguities.

Indeed, since we automatically generate additional

type labels, we cannot rely on the users to explicitly

specify how to solve every ambiguous case.

@Length

@m @cm @km ...

@Time

@sec @min ...

@Speed

@km/hour @m/sec ...

Fig. 2 Composite type labels

1 Label m {

2 AllowedTypes: uint ulong

double

3 Canonical

4 }

5 Label cm {

6 AllowedTypes: uint ulong double

7 ConvertFromCanonical: Multiply

(100)

8 ConvertToCanonical: Divide (100)

9 }

10 CompositeLabel Length {

11 MemberLabels: m | km | cm

12 CompositionRules: Speed *

Time

13 }

Fig. 3 Definition of labels and composite type

labels

3 Composite Type Labels

A composite type label is a type label that is de-

fined by the composition of traditional type labels

or other composite type labels through user-defined

composition rules. It can be seen as similar to an

abstract type which can take the instance of any

type label in its definition. The concrete instance is

selected automatically during type-checking. Fig-

ure 3 shows the Length, Time and Speed compos-

ite type labels and their members. New type labels

and composite type labels are defined using a pro-

vided external DSL for this purpose, as illustrated

in Figure 3.

1 int@m foo = 5;

2 int@sec bar = 2;

3 int@Speed foobar = foo/bar;

4 int@Length baz = foobar * bar;

Fig. 4 Sample code using composite type

labels

3. 1 Composition rules

Composition rules define the legal combinations

of type labels or composite labels, providing hints

to the type-checker. They are defined by using the

CompositionRules keyword as shown on line 12 of

Figure 3 where we declare that a Length composite

type label can be composed of the multiplication of

a Speed and Time. Figure 3. 1 shows sample C#

code that uses those type labels. In lines 3 and

4, composite type labels are used. During type-

checking, line 3 will resolve to m/sec while line 4

will resolve to m, according to the respective com-

position rules of the declared type labels.

3. 2 Implicit conversion rules

Implicit conversions are implemented by resolv-

ing conversion paths. Indeed, a programmer only

needs to select a type label to be a canonical repre-

sentation, and provide conversion rules to and from

the canonial type label. In Figure 3, we declare m

to be a canonical type label, and declare conver-

sions for cm in lines 7 and 8. Based on those rules,

we define that there is an implicit conversion be-

tween a type label A and B if there exists a con-

version path from A to B that goes through their

respective canonical type labels and can automat-

ically resolve additional implicit conversions from

the minimal set provided.

This approach is inspired from the Checker

Framework, which provides an interface to relate

sub-units like mm and km to the base unit m.

However, it does not support modifying values dur-

ing type-checking, and the sample code in Figure

3. 2 will type-check, but the result will be erroneous

as the run-time semantics are different than those

during compile-time. In this example, line 3 will

yield a value of 10.0 instead of the correct value of

5.05.

In more complex cases such as composite type la-

1 double@m foo = 5;

2 double@cm bar = 5;

3 Console.WriteLine(foo + bar);

Fig. 5 An example where implicit conversion

is needed

bels composed of two or more type labels, we need

to perform that conversion path finding exercise on

all of the type labels that compose the type. For in-

stance, to convert from a km/hour composite type

label to a m/sec type label we will need to find

conversion paths joining km to m as well as hour

to sec. This might lead us into edge cases such as

where the conversion rules defined by the program-

mer yield a path from km to m but not hour to

sec. In this case, a conversion from km/hour to

m/sec will not be possible. As we cannot make a

judgement on whether this is intended behavior or a

definition omission on the part of the programmer,

we will reject this code and generate a compiler

warning.

In allowing programmers to define conversion

rules, we need to prevent them from introducing

unintended behavior. Some general-purpose lan-

guages such as C# that allow programmers to de-

fine their own implicit conversions and put that re-

sponsibility on the them. In our case, since our

system automatically resolves conversion paths it

would be counter-intuitive to rely on programmers

to predict inconsistent behavior. For this reason,

we chose to restrict the rule definition by only al-

lowing programmers to define conversion rules by

calling built-in conversion methods in our provided

DSL, as illustrated in lines 7-8 of Figure 3. These

methods can be chained, allowing more complex

conversion rules to be composed.

3. 3 Type normalization

We perform type normalization automatically to

solve the ambiguity problem presented in Section

2. 3. Such normalization is also needed for our type-

checker to validate a variable’s type label against

composition rules. During type checking we ex-

amine the AST (Abstract Syntax Tree) for nodes

where type labels are being used. We validate

expressions by traversing their left and right sub-

trees and comparing them to type label composi-

tion rules, which we store internally as a tree struc-

ture. In more complex expressions where the left or

right subtrees are deeply nested, we perform such

comparisons on the smaller subtrees and normalize

them.

In order to resolve ambiguous cases like the one

presented in Figure 2. 3, we use the canonical type

label as a default type label, and will fall back to

it if no better candidates exist. In this case the

bar variable on line 3 will be implicitly converted

from mm to m and the resulting type label for baz

will be m. In more complex cases where a simple

fallback may not resolve all ambiguities, we rely on

the order of definition of the type labels.

4 Related Works

Papi et al. have introduced the Checker Frame-

work, which is a pluggable or user-defined type sys-

tem implementation in Java which relies on Java

annotations to provide additional information to

the type-checker [4]. However, it doesn’t support

automatically instantiated type labels and thus

comes with a high level of verbosity. As well, it

cannot rewrite or change the value of a type during

type-checking and therefore does not support im-

plicitly converting variables during type-checking

to resolve ambiguities when merging data flows.

The JavaCOP framework introduced by Mark-

strum et al. behaves similarly to the Checker

Framework in that programmers write additional

checkers whose goal is to enhance the built-in type

system [3]. One improvement JavaCOP had over

the Checker Framwork is an enhanced capability

for dataflow analysis. It however suffers from the

same downside of not supporting type label combi-

nations.

It is also worth mentioning that the F# program-

ming language provides support for user-defined

measurement units, albeit only for numerical types

[2]. Those act like type labels in the sense that

using them adds some label metadata to the vari-

able, allowing the type-checker to perform some ad-

ditional consistency checks. The interesting part of

F#’s implementation is that it provides some ele-

mentary support for combining labels and instan-

tiating new ones. However, such label combination

is performed liberally, without any regard to user

intent. While we also feature measurement units

in our code examples throughout this paper, our

system aims to support arbitrary user-defined type

labels and therefore an unbounded combinatory be-

havior is not appropriate for general use.

5 Conclusion

In this paper we introduced composite type la-

bels, which is a new class of type labels that is

defined recursively by traditional type labels and

composition rules. We further elaborated how we

use those composition rules to automatically in-

stantiate additional type labels as necessary, infer

implicit conversion rules based on path finding and

resolve ambiguities in user code by automatically

performing type normalization. In doing so, we re-

duce the cognitive load imposed on programmers

by existing user-defined or pluggable type systems

while providing them with a higher level of expres-

siveness in the definition of type labels.

References

[1] Bracha, G.: Pluggable type systems, In OOP-

SLA ’04 Workshop on Revival of Dynamic Lan-

guages, 2004.

[2] Kennedy, A.: Types for Units-of-Measure: The-

ory and Practice, Springer Berlin Heidelberg, 2010,

pp. 268–305.

[3] Markstrum, S., Marino, D., Esquivel, M., and

Millstein, T.: T.: Practical enforcement and test-

ing of pluggable type systems, Technical report.

[4] Papi, M. M., Ali, M., Correa, Jr., T. L., Perkins,

J. H., and Ernst, M. D.: Practical Pluggable

Types for Java, Proceedings of the 2008 Interna-

tional Symposium on Software Testing and Analy-

sis, ISSTA ’08, New York, NY, USA, ACM, 2008,

pp. 201–212.

