
Jarcler: Aspect-Oriented Middleware for Distributed
Software in Java

Muga Nishizawa Shigeru Chiba
Dept. of Mathematical and Computing Sciences

Tokyo Institute of Technology
Email: {muga,chiba}@csg.is.titech.ac.jp

ABSTRACT
This paper proposes Jarcler, which is aspect-oriented mid-
dleware for using replicated objects in Java. It enables the
users to customize the behavior of replicated objects per
class so that the behavior fits requirements of a particular
application. Although reflection has been a typical tech-
nique for customizing such behavior, this paper shows that
reflection forces programmers to write a program far from
their intuition; aspect-oriented programming provided by
Jarcler makes it easier to describe the customization. This
paper illustrates this issue through an example of simple
network game.

1. INTRODUCTION
Making it easy to develop distributed software is one of se-
rious demands in today’s software industry. To do that,
several middleware and tools have been developed. In Java,
the Java RMI (Remote Method Invocation) framework is
provided as part of the standard. It simplifies stub-code gen-
eration. From the research community, several tools such as
Addistant developed by us [15] and J-Orchestra [16] have
been proposed for making remote object reference transpar-
ent. They automatically transform a program so that local
and remote references can be indistinguishable in a program.

Although the tools like Addistant significantly reduce devel-
opment costs of distributed software, our experience with
Addistant revealed that those tools cover only part of dis-
tributed computing. For example, a number of applications
require a mechanism of distributed shared data whereas
those tools do not directly support that mechanism. Al-
though other systems like JavaSpace [8] provides distributed
shared data for Java, they are not integrated with Addistant.

To introduce a mechanism of distributed shared data into a
tool like Addistant, a major research issue is how the tool en-
ables the users to customize the behavior of the distributed
shared data. Since different applications often require dif-
ferent behavior, the customizability is indispensable in prac-

tice. Tools like Addistant do not need customizability since
most of applications require only normal behavior with re-
spect to remote object reference and remote method invo-
cation.

This paper presents our challenge to this issue. We have
been trying to extend Addistant to support distributed shared
data. This extended version of Addistant, which we call Jar-
cler, addresses this issue with aspect-oriented programming
(AOP). This paper shows our ideas and the design of Jarcler.
Although a well known technique for addressing this issue
is meta programming based on reflection [13, 12], it is often
far from the users’ intuition and difficult to use. This paper
presents that our AOP-based solution is more appropriate
than reflection for customizing the behavior of distributed
shared data. Jarcler provides a special language for writing
an aspect; this paper also mentions why we need a special
aspect language instead of a general-purpose AOP language
such as AspectJ [10].

In the rest of this paper, Section 2 briefly describes dis-
tributed shared data that we want to provide and discusses
a drawback of using reflection for customizing the behavior.
Section 3 presents our tool named Jarcler and mentions how
it allows the users to customize the behavior in an aspect-
oriented way. Section 4 discusses related work. Finally,
Section 5 concludes this paper.

2. DISTRIBUTED SHARED DATA
Distributed shared data is a communication and synchro-
nization mechanism among distributed processes [1]. A fa-
mous instance of distributed share data is the tuple space
[9]. A C++ object on distributed shared memory [11] is
another instance of distributed shared data.

2.1 Replicated Object
In Java, typical distributed shared data is a replicated ob-
ject, which is implemented as a set of replications of an
object on different hosts. To keep consistency among the
replications, the underlying system monitors updates of the
field values. If a field value of a replication is updated, then
the update is propagated to the other replications to be re-
flected on every replication.

Since replicated objects are used for not only communication
but also synchronization, they must meet various require-
ments of applications. For example, some applications may
need to atomically update the values of multiple fields to-

gether. Others may require executing a notification method
on every replication when a particular field value of the repli-
cated object is updated. Furthermore, they may need to
suppress or delay propagating updates of some fields to the
other replications.

To meet these requirements, we decided to give customiz-
ability to our tool called Jarcler, which enables the use of
replicated objects in Java. Jarcler transforms a program so
that replications are automatically created on every hosts
when a program attempts to create a replicated object. If a
method is called on one of the replications, then that method
call is propagated to the other replications to be consistently
updated (Figure 1). Note that an update of field value is
not propagated whereas a method call is propagated.

Figure 1: A Replicated Object

Our basic design of replicated object by Jarcler is obviously
too naive to use in practice. For example, propagating all
method calls is inefficient since some method calls never
change field values. If a method causes external side-effects,
for example, if it calls a method on another object objex,
then the behavior of replications should be controlled so that
only one replication calls the method on the object objex to
avoid redundant method calls. To address these problems,
Jarcler provides the behavior mentioned above as the default
one while it allows the users to customize the algorithm for
propagating method calls.

2.2 Tic Tac Toe
Our challenge is how we should design the ability to cus-
tomize the propagation algorithm. Before discussing this is-
sue, we present a simple example of replicated object, which
we will use for discussion in the rest of this paper. Suppose
that we are developing a Tic-Tac-Toe game in which two
players can play through a network. This distributed soft-
ware consists of three components: a game server and two
GUI clients, which are running on different hosts. The game
server is responsible for letting each player alternately play
and for determining which player wins. The GUI clients are
responsible for showing a game board and interacting with
the players.

The three components share the data structure representing
a game board. Let that data structure be an array of nine
Square objects, each of which represents a square on the
game board.

class Square {
char mark; // ’O’, ’X’, or ’ ’
int pos; // position
static char turn; // ’O’ or ’X’
TicTacToe ttt; // the game server

Square(TicTacToe t, int p) {
ttt = t; pos = p; mark = ’ ’; turn = ’O’;

}

void nextTurn() {
turn = (turn == ’O’) ? ’X’ : ’O’; }

void setMark(char c) { mark = c; }
char getMark() { return mark; }

void clicked() {
setMark(turn);
ttt.pressed(pos);
nextTurn();

}
}

The Square class has a field named mark, the value of which
is either ’O’, ’X’, or ’ ’ (blank), and a field named pos

to represent the position of the square on the game board.
If the player clicks a square on the screen, the GUI object
calls clicked() on the corresponding Square object. The
clicked() method changes the value of the mark field and
notifies a TicTacToe object of this event. The TicTacToe

object is on the game server.

Since the Square object is a replicated object, a replication
of this object is allocated on every host at the implementa-
tion level. To maintain consistency among the replications,
if setMark() and nextTurn() are called on one replication,
then they must be executed on all the replications. However,
since getMark() does not update field values, getMark()
should be executed only on the host where the caller exists.
The behavior of clicked() is more complex. If clicked()
is called on the GUI-client host, then it must be executed
not on that host but on the game-server host where the
TicTacToe object exists. The reference value in field ttt
would not be valid on the GUI-client hosts. Furthermore,
the execution of clicked() on the game-server host must
be performed only if the current turn is of the player who
clicked on the screen.

2.3 Reflection
To satisfy these complex requirements above mentioned, the
algorithm for keeping consistency among replications must
be customizable. Reflection is a well known technique to
address this problem [5]. In a system using reflection, a
program is translated at compile time (or load time) so
that every replication is associated with an object called
a metaobject. The metaobject can trap a method call on
the replication and alter the behavior of that call.

To implement the replicated Square object, if the metaob-
ject traps a method call, then it executes the method on the
replication while it sends messages through a network to the
metaobjects associated with the other replications. These
metaobjects execute the method on those replications. If
the trapped method is getMark(), the metaobject does not
send messages but only executes the method on the replica-

tion. If the trapped method is clicked(), then the metaob-
ject sends a message to the metaobject on the game-server
host so that clicked() is executed on that host.

A problem of this technique is that writing a metaobject is
not simple or easy to read. For example, the definition of
the metaobject for the class Square would be something like
this:

class SquareMetaobject extends Metaobject {
char myMark; // ’O’ or ’X’

Object trapMethodCall(Object target, Method m,
Object[] args) {

String name = m.getName();
if (name.equals("netxTrun")

|| name.equals("setMark"))
invokeOnOthers(m, args);

else if (name.equals("clicked")) {
if (myMark == Square.turn)

return invokeOnGameServer(m, args);
else

return null;
}

return m.invoke(target, args);
}

void invokeOnOthers(Method m,
Object[] args) { ... }

void invokeOnGameServer(Method m,
Object[] args) { ... }

:
}

The metaobjects are instances of the class SquareMetaobject .
The super class of SquareMetaobject is Metaobject, which
is provided by the reflection system as the root class of all
the metaobjects. If a method mb is called on a Square ob-
ject, then trapMethodCall() is called on the corresponding
instance of SquareMetaobject. The parameters m and args

represent the called method mb and the actual arguments to
that method mb. The resulting value of trapMethodCall()
is the result of the method call.

If the called method mb is setMark() or nextTurn(), then
the metaobject sends messages containing args to the other
metaobjects by invokeOnOthers() so that the method mb

is also executed on the other replications. Then it exe-
cutes the called method mb on the local Square object. The
method invoke() in Method performs normal execution of
the method. If the called method mb is getMark(), then the
metaobject does not send a message but it just executes the
called method mb by calling invoke().

If the called method mb is clicked(), then the metaob-
ject first compares Square.turn and myMark to determine
whether the current turn is the player’s. Square.turn repre-
sents the current turn. We assume that the value of myMark
(’O’ or ’X’) is the mark of the player using the Square

object corresponding to the metaobject. If Square.turn is
equal to myMark, then the metaobject sends a message con-
taining args to the game-server host so that clicked() is
executed on that host.

Interesting features of the definition of SquareMetaobject
shown above are the followings:

• The definition of trapMethodCall() is too long since
all the behavior of method calls is described in that
method, and

• Basic operations such as method calls and field ac-
cesses are described with different syntax. For exam-
ple, a method call:

((Square)target).setMark(’X’)

is described in a metaobject with different syntax:
m.invoke(target, new Object[] {

new Character(’X’) })

where m is a Method object representing the setMark()
method.

If the former syntax were used in trapMethodCall(),
the method call would be recursively trapped by the
metaobject and then it would result in infinite regres-
sion. Suppressing method-call interception by metaob-
jects within trapMethodCall() is an ad-hoc solution;
a well-designed reflective system never adopts such a
solution [4].

These features are defects in our example. However, this
fact does not mean that reflection is poor technology since
these features are pragmatically useful in other examples.
The basic architecture of reflection is for defining altered
behavior that can be generically applied to various methods
and fields. For example, methods declared in a class differ
from each other with respect to the name, the number and
types of parameters, and the body. With reflection, how-
ever, all the methods are represented by a Method object so
that a program can deal with all the methods in the same
form; all the differences are abstracted away. Parameters
to a method are represented by an array of Object for the
same reason. If some parameters are primitive types such
as int and double, they are converted into wrapper classes
such as Integer and Double so that those parameters can
be stored as well as other Object type parameters in the
array of Object.

Although reflection is suitable for describing customized be-
havior common to a number of methods, it is not suitable for
describing the behavior differently customized per method.
Since the customization for replicated objects is the latter
“fine-grained” one, reflection is not the best solution.

3. JARCLER
Since reflection is not suitable for customizing the behavior
of a replicated object, we have developed a new mechanism
based on aspect-oriented programming. Our tool Jarcler,
which provides a replicated object in Java, allows the users
to customize the behavior of the replicated object with this
mechanism.

3.1 Aspect
To customize the behavior of a replicated object, the users
write a description separated from the rest of the program
including the Square class. We below call this description
an aspect of Jarcler, or for short, an aspect.

In an aspect, the users can specify the followings:

• the class of replicated objects,

• the hosts that replications are allocated on, and

• the algorithm of consistency control among replica-
tions.

An aspect starts with keyword replicate, which is followed
by a class name. An instance of this class is treated as
a replicated object. We below show a simple example of
aspect, which makes a Point object a replicated object.
Suppose that the Point class has two methods move() and
getX().

1: replicate Point {
2: hosts "A","B";
3: int getX() {
4: return this@local.getX();
5: }
6: }

The line 2 specifies that the replications of a Point object are
allocated on hosts named A and B. If an instance of Point is
created on one of those hosts, the runtime system of Jarcler
automatically creates another instance of Point on the other
host. The two instances, which we call replications of a
replicated object, are independent of each other; different
values can be stored in the same field of the two instances.

By default, to maintain consistency among the replications,
a method call on a replication is automatically propagated
to all the other replications.1 Hence, if the method move()
is called on a replication, that method is executed on all the
replications. However, the users can customize this behavior
by a method declaration in an aspect, which specifies how
the consistency is maintained when a method with the same
signature is called on the replication. In the example shown
above, the behavior of calls to getX() is altered (Line 3 to
5).

A method declaration in an aspect is similar to an around
advice of AspectJ. The join point is method invocation on a
replication. The method body of getX() in the aspect is ex-
ecuted instead of the body of the method getX() in the class
Point. With respect to the name scope, a method declara-
tion in an aspect is treated as if it is in the corresponding
class. It can access other methods and fields in the same
class. this is a reference to the corresponding replication.
Unlike reflection, special syntax is not needed to access other
fields and methods.

Within the method declaration, special syntax this@hostname
is available for representing a replication on the specified
host. This corresponds to proceed() of AspectJ. For exam-
ple, the following declaration implements the default behav-
ior for move():

1In the current implementation, field accesses are not prop-
agated. If a new value is directly stored in a field, the consis-
tency among replications is broken. Hence, all the updates
of field values must be performed through a method.

void move(int x, int y) {
this@"A".move(x, y);
this@"B".move(x, y);

}

If move() is called on a replication, then it is executed on all
the hosts A and B. This declaration was not included in the
aspect for Square shown above since the default behavior
is implicitly implemented if any method declaration is not
given in the aspect.

this@ can be followed by a special host name local. this@local
represents a reference to the callee replication. Note that a
method invoker first calls a method on one of the replica-
tions, which usually exists on the local host and then the
method call is propagated to other replications. local rep-
resents the host where there is the replication on which the
invoker first called the method. Therefore,

int getX() {
return this@local.getX();

}

implements that, if getX() is called, the method call is never
propagated but the method is executed only on the local
host. This customization improves execution performance if
getX() causes no side-effects.

3.2 Tic Tac Toe with Jarcler
Now, we show an aspect for the Square object of the Tic-
Tac-Toe example in Section 2.2. The aspect for Square writ-
ten in Jarcler is as follows:

1:replicate Square {
2: hosts "server","client1","client2";
3:
4: char myMark; // ’O’, ’X’, or ’ ’
5:
6: Square(TicTacToe t, int p) on "client1" {
7: myMark = ’O’; this@local(null, p);
8: }
9:

10: Square(TicTacToe t, int p) on "client2" {
11: myMark = ’X’; this@local(null, p);
12: }
13:
14: Square(TicTacToe t, int p) on "server" {
15: myMark = ’ ’; this@local(t, p);
16: }
17:
18: char getMark() {
19: return this@local.getMark();
20: }
21:
22: void clicked() {
23: if (myMark == turn)
24: this@"server".clicked();
25: }
26:}

Line 2 specifies that replications of a Square object are
allocated on three hosts, which are one game-server host
named server and two GUI-client hosts named client1 and

client2. The rest of the lines alters the behavior of the con-
structor and the methods getMark() and clicked(). The
behavior of the other methods nextTurn() and setMark() is
the default one; method calls are automatically propagated
to all the replications to maintain consistency among the
replications.

Line 4 introduces a new field myMark into the class Square.
A field declaration in an aspect is regarded as adding a new
field to the class associated with the aspect. The value of this
field represents the mark (’O’ or ’X’) of the player accessing
the replication through a GUI object. The constructors in
Line 6 to 16 assign a value to this field. If a replication
of Square is created, the constructor defined in the aspect
is called first. In an aspect, multiple constructors with the
same signature can be declared for different hosts. The host
name following on specifies which host the constructor is
prepared for. The field myMark is set to ’O’ if the host is
client1, or ’X’ if the host is client2.

Line 18 to 20 specify the behavior of getMark(). Since
getMark() does not cause side-effects, the calls to getMark()

are not propagated to the other replications. They are exe-
cuted only on the local host.

Finally, Line 22 to 25 specify the behavior of clicked():

22: void clicked() {
23: if (myMark == turn)
24: this@"server".clicked();
25: }

If clicked() is called on one of the GUI-client host, it must
be executed not on that host but on the game-server host.
Furthermore, if this turn is not of the player who clicked on
the screen, the method call to clicked() must be ignored.
To implement this behavior, the values of the fields myMark

and turn of the corresponding replication are compared in
Line 23. Note that a method declaration in an aspect is
treated as if it is in the corresponding class with respect to
the name scope. If the two values are equal, clicked() is
executed on the game-server host instead of the host where
the callee replication exists.

3.3 Implementation
Some readers might think that the customization shown in
this section could be described within the confines of the
standard inheritance mechanism; they might not think an
aspect of Jarcler is necessary. In fact, the description of an
aspect looks similar to that of a subclass.

However, this observation is not true. From the implementa-
tion viewpoint, method declarations in the aspect for Square
are used not for overriding methods declared in Square but
for producing stub or wrapper code that implements a repli-
cated Square object. Jarcler transforms the original defini-
tion of the Square class into the following definition2:

2The definition shown here is a simplified version. The real
one includes several support methods that are not shown
here.

class Square {
:

void clicked() {
if (myMark == turn) {
// send a message to the game-server host.
sendMessage("server", "clicked", "()V",

null);
}

}

void sendMessage(String host, String method,
String signature,
Object[] args) { ... }

void org_clicked() {
// the method body of the original clicked().

}
}

A replication on each host is an instance of this modified
Square class. The original clicked() method is renamed
to org clicked() and a new version of clicked() is de-
clared. The method body of the new clicked() is a copy of
clicked() in the aspect although this@"server" is replaced
with an expression implementing that semantics. The new
clicked() sends a message to the game-server host so that
the method org clicked() is executed on that host.

A crosscutting concern that Jarcler deals with is the behav-
ior of replicated object, which cuts across different classes
of replicated objects. The default implementation of this
crosscutting concern is automatically produced by Jarcler
to be embedded in each class such as Square. However, if
the user writes an aspect of Jarcler, the implementation is
customized according to that aspect. Hence, if comparing
Jarcler and AspectJ, an aspect in Jarcler corresponds to a
sub-aspect in AspectJ, which extends another aspect, while
the default implementation by Jarcler corresponds to that
super-aspect. Since an aspect in Jarcler extends another
aspect embedded in the Jarcler system, the standard inher-
itance mechanism of Java, which is for extending a class,
cannot substitute for Jarcler.

4. RELATED WORK
Reflection
A number of researchers have been proposed reflective mid-
dleware or languages for distributed computing. Their sys-
tems allow the users to customize the behavior of remote
method calls [7, 6] or communication channels [2]. Although
these systems provide different kinds of metaobjects, their
design goal is to avoid repeatedly writing a slightly different
code for every method to implement customized behavior.
In other words, their focus is on enabling to implement cus-
tomization, such as persistence and fault tolerance, with a
single (or a small number of) generic code, which is short
but reusable to cover a number of different methods. In the
context of aspect-oriented programming, reflection can be
regarded as a technique for making an aspect — a modular
unit implementing a crosscutting concern — as reusable as
possible.

However, in this paper, we have been discussing an aspect
specialized for a particular class, which is not reusable in

principle. To use for implementing these aspects, reflec-
tion is too powerful and it rather makes the programming
more complicated. For example, the users cannot use stan-
dard Java syntax; the invoke() method must be called on
a Method object for calling a method. This is inconvenient
since the specialized aspect tends to access particular fields
and methods. Reflection is necessary when implementing
new behavior from scratch, but not when customizing exist-
ing behavior to fit a particular case.

We, therefore, exploited an AspectJ-like advice mechanism
for Jarcler so that the users can easily describe aspects.
Writing an aspect in Jarcler fits the user’s intuition more
than writing a reflective program; for example, the users of
Jarcler can use regular Java syntax (except this@) in an
aspect for calling a method and accessing a field and a pa-
rameter. While reflection is appropriate for writing general
behavior such as the default one of Jarcler, our design of
Jarcler is appropriate for writing behavior specialized for a
particular class.

AspectJ
Soares et al reported that they could use AspectJ for im-
proving the modularity of their program written with the
Java RMI framework [14]. Without AspectJ, the program
must include the code following the programming conven-
tion required by the Java RMI. AspectJ allows to separate
that code from the rest into a distribution aspect. A differ-
ence between their work and our work is that they did not
use aspect-oriented programming for customizing the func-
tionality provided by the middleware, that is, the Java RMI
in their work.

An interesting question is whether we can use AspectJ in-
stead of Jarcler’s aspect language for customizing the behav-
ior of a replicated object. Our answer is “No” because we
need a language for specializing (or sub-aspecting) a sort of
“aspect” providing stub or wrapper code for implementing
a replicated object. This aspect performs relatively complex
program generation, which cannot be described in AspectJ
as long as AspectJ does not provide better capability of re-
flection or something equivalent. Since this aspect is hard-
wired in the Jarcler System as the default implementation,
we need a special aspect language, which provides special
syntax support like this@ so that a sub-aspect can access
the functionality of that “super” aspect hard-wired in the
system.

5. CONCLUSION
This paper presented our tool named Jarcler, which allows
to use a replicated object in distributed software written
in Java. A unique feature of this tool is that the behav-
ior of the replicated object is customizable in an aspect-
oriented way. Although reflection is a well-known tech-
nique for customizing middleware for distributed comput-
ing, we showed that aspect-oriented programming enables
customization that fits the users’ intuition better than re-
flection. Although reflection is suitable to describe behavior
reusable for a number of classes, this paper discussed cus-
tomized behavior only for a particular class. This paper
claimed that an AspectJ-like advice mechanism is suitable
for that customization.

We have finished the design of Jarcler and we are currently
implementing Jarcler using Javassist [3], which is a bytecode
translator based on reflection. Since the default behavior of
replicated objects must be applicable to any class, imple-
mentation of that behavior needs reflection. However, this
implementation using reflection is hidden from the users;
Jarcler internally uses reflection but provides an aspect lan-
guage for the users to customize the implementation.

6. REFERENCES
[1] Bal, H. E., J. G. Steiner, and A. S. Tanenbaum,

“Programming Languages for Distributed Computing
Systems,” Computing Surveys, vol. 21, no. 3,
pp. 261–322, 1989.

[2] Cazzola, W., “mChaRM: Reflective Middleware with
a Global View of Communications,” IEEE Distributed
System On-Line, vol. 3, February 2002.

[3] Chiba, S., “Load-time structural reflection in Java,” in
ECOOP 2000, LNCS 1850, pp. 313–336,
Springer-Verlag, 2000.

[4] Chiba, S., G. Kiczales, and J. Lamping, “Avoiding
Confusion in Metacircularity: The Meta-Helix,” in
Proc. of the 2nd Int’l Symp. on Object Technologies
for Advanced Software (ISOTAS), LNCS 1049,
pp. 157–172, Springer, Mar. 1996.

[5] Chiba, S. and T. Masuda, “Designing an Extensible
Distributed Language with a Meta-Level
Architecture,” in Proc. of the 7th European
Conference on Object-Oriented Programming, LNCS
707, pp. 482–501, Springer-Verlag, 1993.

[6] Fabre, J. C. and T. Pérennou, “A Metaobject
Architecture for Fault Tolerant Distributed Systems:
The FRIENDS Approach,” IEEE Transactions on
Computers, vol. 47, no. 1, pp. 78–95, 1998.

[7] Forman, I. and S. Danforth, Putting Metaclasses to
Work. Addison-Wesley, 1998.

[8] Freeman, E., S. Hupfer, and K. Arnold, JavaSpacesTM

Principles, Patterns, and Practice. Addison-Wesley,
1999.

[9] Gelernter, D., “Generative Communication in Linda,”
ACM Trans. Prog. Lang. Syst., vol. 7, no. 1,
pp. 80–112, 1985.

[10] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold, “An Overview of
AspectJ,” in ECOOP 2001 – Object-Oriented
Programming, LNCS 2072, pp. 327–353, Springer,
2001.

[11] Li, K., “Memory Coherence in Shared Virtual
Memory Systems,” ACM Trans. Comp. Syst., vol. 7,
no. 4, pp. 321–359, 1989.

[12] Maes, P., “Concepts and Experiments in
Computational Reflection,” in Proc. of ACM Conf. on
Object-Oriented Programming Systems, Languages,
and Applications, pp. 147–155, 1987.

[13] Smith, B. C., “Reflection and Semantics in Lisp,” in
Proc. of ACM Symp. on Principles of Programming
Languages, pp. 23–35, 1984.

[14] Soares, S., E. Laureano, and P. Borba, “Implementing
Distribution and Persistence Aspects with AspectJ,”
in Proc. of ACM Conf. on Object-Oriented
Programming Systems, Languages, and Applications,
2002.

[15] Tatsubori, M., T. Sasaki, S. Chiba, and K. Itano, “A
Bytecode Translator for Distributed Execution of
“Legacy” Java Software,” in ECOOP 2001, LNCS
2072, pp. 236–255, Springer-Verlag, 2001.

[16] Tilevich, E. and Y. Smaragdakis, “J-Orchestra:
Automatic Java Application Partitioning,” in ECOOP
2002 — Object-Oriented Programming, LNCS 2374,
pp. 178–204, Springer, 2002.

