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Abstract—Hadoop and Spark analytics are used widely for
large-scale data processing on commodity clusters. It is better
choice to run them on supercomputers in aspects of productivity
and maturity rather than developing new frameworks from
scratch. YARN, a key component of Hadoop, is responsible for
resource management. YARN adopts dynamic management for
job execution and scheduling. We identify three Ds (3D) dynamic
characteristics from YARN-like management: on-Demand (pro-
cesses created during job execution), Diverse job, and Detailed
(fine-grained allocation). The dynamic management does not fit
into typical resource managers on supercomputers, for example
PBS, that are identified having three Ss (3S) static characteristics:
Stationary (no newly created process during execution), Single
job, and Shallow (coarse-grained allocation). In this paper, we
propose HPC-Reuse located between YARN-like and PBS-like
resource managers in order to provide better support of dynamic
management. HPC-Reuse helps avoid process creation, such
as MPI-Spawn, and enable MPI communication over Hadoop
processes. Our experimental results show that HPC-Reuse can
reduce execution time of iterative PageRank by 26%.

I. INTRODUCTION

Supercomputing has focused mainly on compute-intensive

applications, but data-intensive workloads are emerging as

supercomputing problems. Hadoop [1] and Spark [2] analytics

are used widely for large-scale data processing on commodity

clusters. It is better choice to run them on supercomputers in

aspects of productivity and maturity rather than developing

new frameworks from scratch. Hadoop and Spark depend on

YARN [3] and Mesos [4] resource managers to execute their

tasks, whereas most supercomputers use PBS [5] and Slurm

[6]. There are some studies on running Hadoop and Spark as

typical jobs submitted to the PBS or Slurm’s job queue [7]

[8] [9]. To the best of our knowledge, however, there is no

study carried out to adapt and optimize YARN-like resource

managers to ones on supercomputers.

A. YARN-like resource managers

YARN adopts dynamic management for job execution and

scheduling in order to increase resource utilization. We iden-

tify three Ds (3D) dynamic characteristics from YARN-like

management as follows:

on-Demand. Execution processes are created on demand.

Number of processes and CPU time are subject to change

during job execution that depend on size of input and output

data.

Diverse. It supports running simultaneously multiple jobs

with fine-grained scheduling. Job types are not limited to

MapReduce since YARN can host Spark and Storm as well.

Detailed (fine-grained). Resources are managed by number of

process containers running on each node based on amount of

memory. The resource manager is responsible for scheduling,

process executing, and handling failures.

B. Issue of resource management

The dynamic management does not fit into typical resource

managers on supercomputers that are identified having the

below three Ss (3S) static characteristics:

Stationary. It is typical to start all necessary processes at the

beginning of job running and there is no newly created process

during execution (e.g. MPI programs). Number of processes

and CPU time should be specified at the job submission.

Single. It is typical to run jobs one by one on allocated

nodes. Simultaneous jobs can affect jobs’ performance because

resource managers only support coarse-grained manner in

which each job must handle resources that it is using.

Shallow (coarse-grained). Resources are often requested by

number of nodes and the whole resource on a node is allocated

to a user’s job. Users decide how many processes run on those

nodes, how they are executed, and how to handle failures.

Dynamic management on supercomputers is supported par-

tially and not sufficient to be integrated with resource man-

agers, such as Hadoop YARN. For example, FX10 supercom-

puter allows to fork a new process but MPI is not available

in that process, whereas Tsubame supercomputer provides
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Fig. 1. MPI application (Prime count) running on parent processes versus
spawned child processes on Tsubame supercomputer
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creating dynamically processes by using MPI-Spawn com-

mand, but its performance is slow due to a collective operator

required. MPI is de facto communication on supercomputers

and highly optimized for the associated interconnection. It

stands for Message Passing Interface that is used widely on

supercomputer environment rather than TCP/IP. MPI-Spawn

is a mechanism to spawn new processes on which MPI

connection is still kept. FX10 does not allow using MPI-

Spawn to spawn new processes on the same node. Figure 1

shows a MPI application, Prime count, running on 32 Tsubame

nodes and using OpenMPI 1.6.5. In the first test case, we run

the application on the COMM WORLD communicator and

measure total running time. In the second one, we spawn

child processes from the COMM WORLD communicator and

run the same program on those processes. It reveals that the

spawning time is relatively long in comparison with total

execution time, and it takes 0.5 second to spawn a process.

To provide better support of dynamic management, we pro-

pose a virtual layer located between YARN-like and PBS-like

resource managers on supercomputers. It helps avoid process

creation, such as MPI-Spawn, and enable MPI communication

over Hadoop processes. In order to avoid process creation

later and satisfy resource specification at the beginning of

job running, we create a bunch of processes in advance and

then allocate them to the dynamic resource manager when it

requests process execution. These processes are cleaned and

de-allocated back in order to be used next time when they

finish. We use a process pool to implement this mechanism.

We name it HPC-Reuse designed specially for Hadoop YARN

hosting JVM-based applications, such as MapReduce, Spark,

and Storm applications, running on supercomputers.

Compared to the original Hadoop, our experimental results

show that HPC-Reuse can reduce execution time of iterative

PageRank by 26% on FX10 supercomputer. For Tera-sort run-

ning on Tsubame supercomputer, the improvement is minor,

but compared to using MPI-Spawn to create new processes,

HPC-Reuse has achieved improvement of 52% on average.

II. HPC-REUSE

In this section, first we describe the idea of reusing applied

to YARN and show its design. Technical issues are followed.

A. Idea of Reusing

YARN creates process containers on demand when it re-

ceives requests from workloads. Container is used as abstrac-

tion for resource allocation. It has two main components:

ResourceManager (RM) and NodeManager (NM) running on

master and slave nodes, respectively. RM is responsible for

allocating resources to workloads and scheduling, and NM is

responsible for executing containers and monitoring them on

a node. It is typical to have one RM. NM uses the fork-based

mechanism to spawn new JVM process containers when it re-

ceives task running requests (e.g. MapTasks and ReduceTasks)

from a workload. Figure 2 (left) shows the creation flow. First,

a shell script containing a MapTask or ReduceTask is prepared

in advance. Then, it is invoked to export environment variables
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Fig. 2. Fork-based vs. HPC-Reuse workflow: slots denote JVM processes;
RM and NM stand for ResourceManager and NodeManager, respectively.

and run the process container (called Mapper or Reducer).

When the assigned task is completed, the process container is

terminated.

To avoid process creation, we keep JVM process containers

running without being terminated. A pool of empty JVM

process containers is responsible for container allocation and

de-allocation to each execution request. Figure 2 (right) illus-

trates this approach (called HPC-Reuse). When NM receives

a container request, it sends that request containing the shell

script path to HPC-Reuse. Then, a slot is assigned to run the

shell script and invoke the main() of the Java program. When

the assigned task is completed, that slot is cleaned and returned

back to the pool.

B. Process pool

We use process pool approach to implement HPC-Reuse. A

pool containing empty JVM processes (namely slots) is created

on each node at the beginning when the Hadoop cluster is

deployed on the supercomputer. Note that number of slots is

fixed and unchanged during job execution. Figure 3 shows

the pool architecture on a slave node where a NodeManager

is running. Container requests are forwarded from NM to

Pool Manager instead of calling a process builder (fork-based

approach). A flag array is used to store slot status in the pool.

We use round-robin scheduling to choose an empty slot. A

container request is held until there is a slot available.

When a slot is assigned to a container request, first, envi-

ronment variables are exported. Then, a new class loader is

created to load user classes. Finally, main() method is invoked

to run the associated task. De-allocation including static field

clean-up and slot reseting will be called after the task is

completed.

C. Technical issues

In order to make allocation and de-allocation possible and

safe, there are two issues: how to load user classes and clean
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Fig. 3. Pool architecture in a node: one represents an occupied state and
zero represents an empty state

a slot. Note that these issues are problematic for JVM-based

applications running on YARN, such as MapReduce, Spark,

and Storm.

1) Class loading: We use a new class loader to load

user classes when a user submits a MapReduce workload to

the Hadoop cluster. In the original flow of process creation

(fork-based approach), CLASSPATH containing user classes is

exported before container execution, so the container can find

and load such classes. In HPC-Reuse flow, however, slots in

the pool are started before the CLASSPATH is exported and

thus the user classes are not found.

At the step of slot allocation in HPC Reuse workflow, a new

class loader is created to load the user classes before invoking

its main() method. Even if the user submits the same class and

package that exists in the previous workload, an error will not

happen. A class loader is created newly for each workload.

However, note that we do not reload all Hadoop classes, and

only the user classes are reloaded. That helps reduce class

loading time and exploit compilation technology in JVM.

2) Clean-up: HPC-Reuse may have a problem of security

due to reusing the JVM in which static fields for the previous

workload are already set. For example, when the container is

executed, loginUser static field is initialized. That field is kept

unchanged whenever its value is not null. Therefore, the same

static field is used for other users. Note that UserGroupInfor-
mation class, which contains loginUser, is not reloaded for

each workload since it is already loaded by the system class

loader. Although on the supercomputer, Hadoop cluster is used

by only one user at a time, but clean-up of all static fields is

necessary in general. However, at the current implementation,

we just do a simple clean-up by reseting only static fields

containing user information and workload configuration.

D. Performance benefit

As mentioned in the motivation section, MPI-Spawn is a

mechanism to spawn a new MPI process, but its performance

is slow. Note that nested MPI jobs are not allowed on most

of implementation of MPI on supercomputers. Figure 4 illus-

trates MPI-Spawn’s collective operation: rounded rectangles

represent spawning call; rectangles denote processes; dotted

rectangles show waiting states. When spawning is invoked

on the COMM WORLD communicator at a certain process, it

requires all other processes must call spawning with the same
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Fig. 4. MPI-Spawn vs. HPC-Reuse in process creation: rounded rectangles
represent spawning call; rectangles denote processes; dotted rectangles show
waiting states.

parameters (Fig. 4(a): P1 and P3 must stop their execution

while P2 is calling). Each spawning call must be serialized.

Conversely, HPC-Reuse supports multiple threads and does

not use MPI-Spawn, so each process can request creating as

many new processes as needed at any time (Fig. 4(b)). HPC-

Reuse keeps those processes running without terminating, so

MPI connection is always available during job execution time.

III. EXPERIMENTAL EVALUATION

Our experiments are conducted on the 33 Tsubame nodes

or 33 FX10 compute nodes. A Tsubame node (thin type)

is equipped with Intel Xeon X5670 2.93GHz processor (12

cores) and 54GB main memory. All compute nodes are

connected using the Infiniband network (Grid Director 4700).

Its maximum throughput is 80 Gbps. Each node has 120GB

of local SSD storage and parallel shared disks are also

provided. Each FX10 node is equipped with SPARC64 IXfx

1.848 GHz processor (16 cores) and 32GB main memory.

Computing nodes are connected with each other through Tofu

interconnection [10]. FX10 does not have a local disk for each

computing node, conversely shared disks used.

HPC-Reuse can be integrated with any Hadoop version 2.x,

but we use Hadoop v2.2.0 (a stable version) in our evaluation.

We use OpenJDK 7 and OpenMPI 1.6.5 on both Tsubame and

FX10. In order to use MPI from Java, we use a MPI binding

[11] that has been included in OpenMPI 1.7.5 or later. We

made a minor modification to integrate this MPI binding with

OpenMPI on the Tsubame and FX10. On FX10, experiments

are run with the MCA parameter plm ple cpu affinity = 0 to

disable CPU binding to each MPI process.

We use three test cases: fork-based YARN, MPI-Spawn

YARN, and HPC-Reuse YARN. The original YARN is called

fork-based YARN. We replaced the process fork mechanism

of the original YARN with using MPI-Spawn command (at

DefaultContainerExecutor class), which we call MPI-Spawn

YARN. HPC-Reuse YARN is our proposal.

This experiment is aimed to show performance of HPC-

Reuse YARN is as good as the original fork-based YARN and

HPC-Reuse approach shortens start-up time in iterative work-

loads. We run Tera-sort workload of different input size up to

128GB on Tsubame. We calculate the average execution and

start-up time for each input size. We run iterative PageRank
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Fig. 6. Benefit of HPC-Reuse (Iterative PageRank on FX10)

on FX10 and measure its total execution and start-up time.

Each experiment of a data size or an iteration is run twice.

Note that MPI-Spawn YARN does not work on FX10 because

it is not allowed to spawn new processes on the same node.

For fair comparison, the original shuffle engine (TCP/IP) is

used for three test cases. Number of Reducers is set equal to

number of Mappers in each experiment.

Figure 5 shows results of Tera-sort running on Tsubame. In

Figure 5a, HPC-Reuse outperforms the MPI-Spawn approach

when data size is bigger than 32GB and its performance is

the same as the fork-based one, even better with 128GB data

size. Compared to MPI-Spawn YARN and Fork-based YARN,

HPC-Reuse YARN reduces the workload execution times by

52% and 6%, respectively, on average. Regarding start-up

time (Figure 5b), it achieves improvement of 82% and 30%,

respectively, on average.

Figure 6 shows results of iterative PageRank running on

FX10. In Figure 6a, when the number of iterations increases,

HPC-Reuse approach shows more reduction, up to 26% at

32 iterations. This is because the more number of iteration

is executed, the more JVM process container are created that

makes start-up time of Fork-based YARN longer. HPC-Reuse

helps eliminate overhead of JVM start-up. In Figure 6b, HPC-

Reuse reduces start-up and workload initialization time by

57% on average.

IV. RELATED WORK

Resource management. Slurm++ workload manager [12]

is an extended implementation from Slurm that aims to support

mixture of applications, such as traditional HPC applications

(MPI), ensemble runs, and many-task computing at exascale.

It uses multiple controllers to manage partitions of compute

nodes, but its current design only supports running coarse-

grained workloads. Our HPC-Reuse YARN can host various

kinds of application in a fine-grained management manner.

JVM Reuse. M3R [13] used X10 language and JVM Reuse

to implement HMR engine and run in-memory MapReduce.

However, technical issues were not provided, for example class

loading and static field clean-up. Also, there was no specific

evaluation of JVM Reuse, such as start-up time reduction. In

our HPC-Reuse, we provide optimization to use JVM Reuse

more efficiently, and its effectiveness on iterative workloads

has been evaluated. Moreover, we keep the original HMR

engine with minimum changes.
In the Hadoop v1 (without YARN), MapTasks can

be executed in a JVM process in sequence (mapre-
duce.job.jvm.numtasks) [14]. However, this JVM process is

only used for a single workload, and it will be terminated

when MapTasks finish.

V. CONCLUSION

We have proposed HPC-Reuse to better support dynamic

management on supercomputers. It helps avoid process cre-

ation mechanism, such as MPI-Spawn, and enable MPI com-

munication over Hadoop processes. Our experimental results

show effectiveness of HPC-Reuse with improvement of 26%

in iterative PageRank.
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