
Deeply Reifying Running Code for Constructing a
Domain-Specific Language

Shigeru Chiba
Graduate School of

Information Science and
Technology

The University of Tokyo
chiba@acm.org

YungYu Zhuang
Graduate School of

Information Science and
Technology

The University of Tokyo
zhuang@csg.ci.i.u-

tokyo.ac.jp

Maximilian Scherr
Graduate School of

Information Science and
Technology

The University of Tokyo
scherr@csg.ci.i.u-

tokyo.ac.jp

ABSTRACT
This paper presents deep reification, which is a language
mechanism for reflective computing. It reifies a self-contained
partial snapshot of the current execution environment. The
snapshot contains not only data but also code and type def-
initions. This mechanism can be used as a common com-
ponent of execution systems of embedded domain-specific
languages (DSLs). Unlike typical implementations of em-
bedded DSLs, the mechanism enables a DSL to borrow the
host-language’s syntax yet execute under a different seman-
tics on different platforms from the host language’s. DSL
implementation can allow programmers to first construct a
function closure as DSL code, reify a snapshot necessary for
executing the function closure, transform the code in the
snapshot into a program for a target platform, and finally
execute the program. As a prototype system of deep reifica-
tion, we have implemented Bytespresso for Java. This paper
shows Bytespresso and also Bytespresso-C, our DSL built
on top of Bytespresso. The target of this DSL is numerical
computing on cluster computers and GPUs.

CCS Concepts
•Software and its engineering → Translator writing
systems and compiler generators; Domain specific
languages; Abstraction, modeling and modularity; Object
oriented languages;

Keywords
Reflection, Meta programming, Embedded DSL, Parallel
computing.

1. INTRODUCTION
When writing a program for large-scale scientific comput-

ing, or high-performance computing (HPC), execution per-
formance has been often its primary concern. As the system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPPJ ’16, August 29-September 02, 2016, Lugano, Switzerland
c© 2016 ACM. ISBN 978-1-4503-4135-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2972206.2972219

architecture of modern high-performance computers is get-
ting more complicated, however, programming techniques
for achieving the best execution performance are getting
also complicated. Using rich abstractions when writing a
program would be a solution to avoid convoluted program-
ming but the use of rich abstraction itself often involves a
severe performance penalty. This is true if the abstraction
is implemented as a library in a general-purpose language.

Domain-specific languages (DSLs) are a promising option
to address this problem. A DSL for HPC can provide such
rich abstraction as built-in language constructs and apply
a domain-specific compiler-optimization to it. Since the de-
velopment cost of DSLs is a drawback, a category of DSLs
called embedded DSLs [16] are widely used. An embedded
DSL is a DSL that is embedded in the host language and
uses a large part of the host language infrastructure such
as the syntax and the type system. To reduce the develop-
ment cost, thus the DSL author can reuse the development
tools of the host language such as an editor. By reusing the
parser of the host language, she does not have to implement
the parser of her DSL.

For domain-specific optimization, the DSL author has to
be able to implement the transformation of the DSL code.
Deep embedding is a technique that enables the extraction
of the intermediate representation (IR) of DSL code written
in an embedded DSL. The DSL author can transform the
extracted IR for optimization. In deep embedding, DSL
code is treated as regular host-language code but, when it
runs, it constructs the IR of the DSL code, transforms it for
optimized execution, and finally executes it. An example of
the IR is an abstract syntax tree. The IR transformation
gives DSL authors a chance of performance optimization.
A drawback of deep embedding is that the DSL users are
aware of two-stage computation; the IR construction and
transformation and the execution of it. The representation
of the DSL code is not satisfactory due to this awareness.

This paper presents an alternative approach, we name
deep reification. It is a reflection mechanism for extracting
the IR. Reification is an operation of reflective computing
[31]. It extracts and converts entities in an execution envi-
ronment (or meta-level entities) into program-manipulatable
values (or base-level entities) [10].

Our deep reification reifies the IR of a code block typically
given as a function closure. DSL authors (who implement a
DSL compiler) exploit this mechanism to retrieve DSL code
embedded in a host language and compile it into a program

running on a target platform. The DSL code is expressed
with the host-language syntax. It can contain any host-
language expression/statement including a method call. If a
method is called, the body of the invoked method is regarded
as part of the DSL code. Since the host-language syntax is
borrowed, the DSL code is naturally embedded in its host-
language code. However, the semantics of the DSL code is
given by the DSL compiler although it is expected to reuse a
large part of the host-language semantics. To support DSL
compilation, the deep reification extracts a self-contained
partial snapshot of the current execution environment. It
contains not only the IR of the extracted code but also that
data and types that the code refers to.

The design of the deep reification is illustrated through
Bytespresso, our prototype system for Java. This paper also
presents a DSL built on top of Bytespresso. This DSL, called
Bytespresso-C, is designed for performance-sensitive numer-
ical computing on various platforms such as GPUs and clus-
ter computers. The DSL code is compiled into a C or CUDA
program and then native binary code. The paper presents
that a program expressed in this DSL can exploit high-level
abstraction while showing good performance comparable to
a program written by hand in C or CUDA. Since the deep
reification implies runtime overheads, it is not appropriate
for DSL programs that are relatively short and repeatedly
invoked by the host-language code. The deep reification best
fits standalone, largely self-contained DSL programs, which
run for sufficiently long time with minimal data exchanges
with the host-language code.

2. MOTIVATION
The recent advancement of parallelization hardware such

as GPUs and complex memory hierarchy for hiding access
latency are rendering performance-conscious programming
extremely difficult for average scientists. Introducing richer
abstraction, for example, by object orientation should be
a promising solution but existing general-purpose object-
oriented languages do not show acceptable performance. For
example, the all-pairs approach to N-body simulation is to
compute all pair-wise interactions among the N bodies and
its kernel computation is represented by the following for-
mula [21]:

ai =
∑

j wj(r · r + ε2)−
3
2 r where r = pj − pi (1)

v′
i = δ(vi + ∆t · ai) (2)

p′
i = pi + ∆t · v′

i (3)

Here, pi is the position of the i-th body and vi is its velocity.
wi is the mass of its body. p′

i and v′
i are the values at the

next time step.
A program for this simulation would be simplified and

easy to maintain if it is written with abstractions such as
vector types and map functions. Listing 1 shows a Java
program computing the formula above by using these ab-
stractions. Vec3 is a class for three-dimensional vectors.
Vec4Array is a class for arrays of four-dimensional vectors

(used as an array of bodies [x
(p)
i , y

(p)
i , z

(p)
i , wi]). Vec3 pro-

vides methods for basic arithmetic such as add and sub (sub-
traction). It also provides mult for scalar product and scale
for scalar multiplication. Vec4Array provides the sum and
map methods as well as getters and setters. Line 9 to 13
compute the formula (1), line 14 and 15 compute (2), and
line 16 computes (3). The variables softening, damping, and

1 final Vec4Array pos1 = ...
2 final Vec4Array pos2 = ...
3 final Vec4Array vel = ...
4 final float softening = 0.01f;
5 final float damping = 1.0f;
6 final float deltaTime = 0.016f;
7

8 final Func f = (Vec4Array pos, int i, Vec3 pi, float wi) −> {
9 Vec3 a=pos.sum((Vec4Array p,int j,Vec3 pj,float wj)−>{

10 Vec3 r = pi.sub(pj);
11 float ra = VecDSL.reciprocalSqrt(r.mult(r) + softening);
12 return r.scale(wj ∗ (ra ∗ ra ∗ ra));
13 });
14 Vec3 v2=vel.get(i).add(a.scale(deltaTime)).scale(damping);
15 vel.set(i, v2);
16 return pi.add(v2.scale(deltaTime));
17 };
18 :
19 pos2.map(f, pos1);

Listing 1: N-body simulation in Java

deltaTime correspond to constants ε, δ, and ∆t, respectively.
Line 19 applies the function f to every element of an array
of bodies pos1 and stores the resulting values into pos2. It
implements a single step of the simulation. Note that an ex-
pression such as (Vec4Array p, ...)->{...} is a function
object called a lambda expression in Java. (Vec4Array p,

...) specifies function parameters and {...} does a func-
tion body. The sum method in line 9 receives a function

object, which implements the expression wj(r · r + ε2)−
3
2 r,

and computes the sum of that expression. Some parameters
such as p in line 9 are not used. This is because the same
type Func is used for both map and sum.

The abstractions such as Vec4Array are not only for sim-
plifying code but also useful for hiding parallel computing
under the hood. However, the abstractions often involve ex-
tra data copying and indirections to access data. Even a
modern optimizing compiler has difficulties in eliminating
performance penalties due to the abstractions.

Domain Specific Languages
Domain-specific languages (DSLs) are an option to enable
rich abstraction with acceptable execution overheads. They
provide abstractions for their specific domains. The pro-
grams using the abstractions are compiled by their compil-
ers with domain-specific optimization. An example is Ph-
ysis [20], which is a DSL for parallel stencil computation. A
drawback of this approach is their development costs. De-
veloping a compiler, an intelligent editor, and other develop-
ment tools are relatively expensive. The development cost
of a DSL can be paid off only if we can expect a large user
base of that DSL.

To minimize the development costs of such DSLs, deep
embedding is a well-known approach. In a deeply embedded
DSL, the DSL code is embedded in a host-language program
and the syntax of the DSL is directly mapped into language
constructs such as method calls in the host language. The
DSL code is compiled and executed as part of the host-
language program within the confines of the host-language
semantics. No new parser is needed. The existing tool chain
for the host language is used. Such deeply embedded DSLs
are also called library-based DSLs.

With deep embedding, a language construct that the DSL

syntax maps to does not interpret the semantics of the DSL
but extracts the intermediate representation (IR). This pro-
vides opportunities for optimized execution and sets it apart
from its simpler counterpart, shallow embedding. For exam-
ple,

v2 = vi.add(a.scale(t)).eval();

this DSL code deeply embedded in Java represents vector
arithmetic v2 = vi + t · a. Here, add and scale are Java
methods. They do not immediately perform addition or
scalar multiplication but they construct the IR, such as an
abstract syntax tree, for these arithmetic operations. So the
execution of the expression vi.add(a.scale(t)) extracts the IR
of this expression. The computation of vi+t·a is postponed
until the eval method is invoked on the IR. The eval method
compiles the IR under the DSL-specific semantics and exe-
cutes it. For example, the method may generate a CUDA
program computing the arithmetic represented by the IR
and run it on a GPU. It may interpret the IR on the JVM.
Then it materializes the resulting value into a host-language
Java value to return.

A drawback of deep embedding is that the IR extraction
is explicit and DSL users are aware of it. Since the computa-
tion is split into two stages, the IR construction/transforma-
tion and the IR execution, the DSL users have to explicitly
call eval to start the second stage. They also have to be con-
scious that the return types of add and scale are the type
representing the IR, for example, Vec3IR although the type
of v2 is a type representing a vector value such as Vec3. If vi
or a refers to not the IR (a Vec3IR value) but a vector value
(a Vec3 value), it has to be explicitly lifted up to the IR. The
DSL user has to write something like cnst(a).add(a.scale(t)).
cnst is a method for converting a vector value into the IR
representing that value as a constant.

Another drawback of deep embedding is that it has dif-
ficulty in supporting DSL-level procedure abstraction. To
extract the IR of the code that is related but located apart,
the DSL authors and users have to manually implement the
extraction. Suppose that vi in the example above is com-
puted by a procedure getVi defined in the DSL. Then the
DSL users might write the following DSL code:

v2 = getVi().add(a.scale(t)).eval();

However, this does not actually amount to DSL-internal
procedure abstraction. Here, getVi is not a DSL procedure
but a Java method. If getVi returns the IR of the expres-
sion computing vi, that IR will be directly expanded in the
IR constructed by the code above. To avoid this macro-like
expansion, the DSL author would have to provide a Java
method constructing the IR representing a procedure call
and the DSL users would have to use it and also pass to the
eval method the IR of the definition of the procedure. The
DSL-user code would be something like this:

v2 = call("getVi").add(a.scale(t)).eval(defGetVi);

Here, defGetVi is a variable referring to the IR of the pro-
cedure definition. This is less simple and natural than the
DSL code shown first.

A more user-friendly form of deep embedding is found in
Lightweight Modular Staging (LMS) [26], which enables the
construction of a new deep embedding library by modularly
combining existing ones. LMS relies on Scala’s type system
and advanced features such as user-defined implicit conver-
sion (and often Scala-Virtualized compiler extension [27])

and thereby it allows deeply embedded code to have more
natural representation. Types such as Vec3 and Vec3IR do
not seem to play a big role since they are hidden behind
type inference. However, it is exactly this type inference
that determines which part of program is contained in the
extracted IR. The users still may have to be aware of the IR
extraction.

Yin-Yang [18] proposed to use Scala’s macros for hiding
the LMS-style IR extraction and avoiding abstraction leaks
in LMS. Programmers do not have to be aware of the type
representing the IR. However, these approaches depend on
the power of Scala’s type system as well as compile-time
meta-programming capabilities.

3. DEEP REIFICATION
This section presents our reflection mechanism named deep

reification. As in deep embedding, DSL authors can use
deep reification to extract DSL code expressed with the host-
language syntax, transform it into a program implementing
the semantics of their DSLs, and execute it. The program
after the transformation may be expressed in a different lan-
guage from the host one. Unlike deep embedding, DSL code
can exploit more language constructs of the host language.
In case of Java as the host-language choice, the DSL code
can call a method and instantiate a class as normal Java
code does although the semantics of method calls and ob-
ject instantiation is still left to the DSL authors.

Deep reification dynamically extracts a self-contained snap-
shot of the current execution environment for a given code
block, which we below call a root code block. The snap-
shot is not a whole environment; it is rather a necessary
subset for executing the given root code block. It contains
the intermediate representation (IR) of the code, the type
definitions, and the objects that will be used/accessed dur-
ing the execution of that root code block. Here, the code
includes what is indirectly invoked from the root code block.
This is the origin of “deep” in “deep reification”. If the root
code block is a method, the extracted code includes all the
methods invoked during the execution of that root method.

Since the extracted snapshot contains the IR, deep reifica-
tion can be used to extract DSL code by giving the DSL code
as a root code block. The DSL code can contain method
calls. The code of a called method is also extracted although
deep reification allows delimiting the trace of a method-call
chain. Some method calls should be considered as the in-
vocation of DSL primitives and, if they are primitive invo-
cations, the code of the called methods should not be ex-
tracted.

Deep reification is similar to object serialization or mar-
shalling since object serialization also extracts a self-contained
object graph for restoring it on a remote platform. However,
unlike deep reification, the serialized data contain only type
names but not type definitions. The type definitions are ex-
pected to be available on a destination platform, or obtain-
able on demand, which in turn incurs additional overhead
and additional complexity in the runtime systems of both
the source and target platform.

3.1 Bytespresso
Bytespresso is our prototype of the deep reification mech-

anism in Java. It is a Java library providing a Reifier class
for deep reification. For example, the following code extracts
a snapshot for method m under consideration of invocation

with arguments args:

Object[] args = ...;
Reifier reifier = new Reifier(m, args);
Snapshot image = reifier.snap();

The snap method on reifier performs deep reification. Here,
m refers to a method body1 used as the root code block of
the extraction and args refers to the runtime values of the
arguments passed to that method body. The snap method
extracts a snapshot of the environment that is needed when
invoking m with the argument args. An object passed as an
argument is included in the snapshot.

The snapshot returned by snap contains the IR of not
only the body of the method m but also other methods’
that may be invoked during the execution of the method m.
The snapshot also contains a table of classes referred to in
the IR. Furthermore, it contains a table of objects accessed
through static fields as well as the objects passed as args.

Since computing the method m passed to snap as an ar-
gument is not intuitive for end users, a DSL system built
with Bytespresso may provide a wrapper class providing a
higher-level programming interface. For example, consider a
DSL for GPU computing. Its users could write the following
code:

double[] p = ...;
double[] q = ...;
new GpuDSL().compile(() −> {

double r = dotProduct(p, q);
Util.print(r);

});

The compile method in the GpuDSL class takes a lambda
expression, which is regarded as DSL code, and compiles it.
Its implementation would be as follows:

void compile(Runnable f) {
CtMethod m = getStartMethod();
Object[] args = { f };
Reifier reifier = new Reifier(m, args);
Snapshot image = reifier.snap();
compileAndRun(image);

}
:

static void start(Runnable f) { f.run(); }

It first obtains the method object representing start by call-
ing getStartMethod. Then it performs deep reification by
snap with that method object. The respective IRs of the
bodies of the start method, the lambda expression f, Util.print,
and dotProduct (and others called by dotProduct) are ex-
tracted as well as the current values of p and q. They are
passed to the DSL compiler compileAndRun, which will gen-
erate a CUDA program.

Note that dotProduct is regarded as a DSL method al-
though it is expressed elsewhere in Java (recall that deep
embedding does not enable this as mentioned in Section 2).
The values of p and q are initialized before the DSL com-
pilation. Since only the result of the initialization is passed
to the DSL compiler, the DSL users can naturally describe
staged computation: the first stage is computed on the JVM
while the second stage is on a GPU.

1The variable m does not refer to java.lang.reflect.Method. It
refers to a CtMethod object provided by Javassist bytecode
engineering library [5]

3.2 Extracting a snapshot
The standard reflection mechanism of Java enables the

extraction of data from the current execution environment.
Although it cannot be used for extracting code, there are a
few techniques for obtaining code. To implement deep reifi-
cation in Java, Bytespresso obtains bytecode by locating and
reading a class file with existing facilities. This approach was
chosen to maximize compatibility with current and older
versions of Java. A limitation of this approach is that all
bytecode has to be stored in class files. So if a program uses a
lambda expression, -Djdk.internal.lambda.dumpProxyClasses
option has to be given to the JVM running Bytespresso.2 It
forces the JVM to dynamically produce a class file contain-
ing the bytecode of a lambda expression.

Bytespresso uses an abstract syntax tree as the IR of ex-
tracted code. After reading bytecode, Bytespresso decom-
piles the bytecode to construct an abstract syntax tree of the
method body that the bytecode represents. Since the de-
compilation may not reconstruct all Java statements, an ab-
stract syntax tree obtained by Bytespresso does not exactly
match the original Java source. Bytespresso reconstructs
only expressions and control structures. We attempt to
reconstruct control-flow structures, in particular, for-loops.
Where this fails, we fall back to representing control-flow by
Goto and (conditional) Branch nodes in an abstract syntax
tree.

A snapshot extracted by deep reification includes method
bodies that will be indirectly invoked from a root code block
given to the mechanism. Since Java supports dynamic method
dispatch, Bytespresso conservatively collects all method bod-
ies possibly invoked. The collected method bodies are recorded
for each invocation site in the IR. The basic algorithm re-
sembles RTA [2]. A snapshot {M,T,Obj} is extracted in
the algorithm sketched below. M is a set of method bodies,
T is a set of types, and Obj is a set of objects. Suppose
that C is a set of classes that may be instantiated during
the execution of a root code block given to deep reification.
When deep reification is applied to a method body mbody
with arguments args, we record mbody in M and run the
following algorithm:

1. Add each object v in args to Obj. Add the actual type
of v to C and T . If v contains a reference to another
object w, also add w and the type of w and recursively
do the same on references contained in w.

2. For each expression in mbody,

2.1. If an expression is new D(...) (instantiation of a
class D), then add D to C and T .

2.2. If an expression is p.f (reading a field f of an object
p), then add the static types of p and f to T . If f
is a static field, obtain the current value v of f by
reflection and do the same as in 1 on v.

2.3. If an expression is an assignment to p.f (writing
to a field f of an object p), then add the static
types of p and f to T .

2.4. If an expression is a method call p.m(...) (call a
method m on an object p), add the static type s
of p is T . For every type t in C, if t is equal to

2Other techniques, such as intercepting class loading, could
be used alternatively. Also, future versions of Java may
support a more direct way of obtaining this information [24].

s or a subtype of s, then record in M a method
body of m declared in t. Do the same as in 2 on
that method body.

2.5. Otherwise, if an expression contains a type t, then
add t to T . For example, if an expression is a type
cast, then add the type to T .

When a type t is added to T , all the super types of t
are also added to T .

3. Repeat 2 until no new class is added to C.

Due to this algorithm (and inherent limitations) Bytespresso
is not able to support invocation of the Java reflection API
from DSL code to be reified.

Since Bytespresso performs partial evaluation, a more spe-
cific type of p may be statically determined at step 2.4. If
such a type is found, then it is used instead of the apparent
static type s. Details of the partial evaluation by Byte-
spresso are mentioned later.

Delimiting an extracted snapshot is a significant issue of
deep reification. Some methods might be treated as DSL
primitives and thus the IR of their method bodies might
not be necessary. Step 2 of the algorithm above is skipped
if a method body mbody is abstract or native. Step 2 is also
skipped if a method body is annotated with @Native by DSL
authors or users.

3.3 IR construction
Bytespresso uses abstract syntax trees (ASTs) as the IR

of the extracted code. Their tree nodes are instances of
ASTree or its subclasses. Since they support the Visitor
pattern [12], DSL compilers can perform code generation by
traversing trees.

Some DSL compilers may exploit annotations that their
users attach in DSL code. For supporting DSL compila-
tion considering such annotations, Bytespresso recognizes a
few annotations and constructs ASTs reflecting them. For
example, if an extracted method body has an annotation
@Metaclass, Bytespresso changes the class for an AST node
representing that method body.

@Metaclass(type=CUDA.Global.class)
public static void gpuKernel(int blk, int th) { ... }

This specifies that an AST node for the body of the gpuKer-
nel method is created by a factory object CUDA.Global.instance.
DSL users can rely on this feature to control the semantics of
DSL code. For example, in some DSL for GPUs, the gpuK-
ernel method would become a global function in CUDA.
It is a function running on GPUs.

An @Metaclass annotation is propagated to methods di-
rectly or indirectly called from the method with @Metaclass.
The AST nodes for those methods are also created by the
factory object specified by @Metaclass. This feature is use-
ful to implement a DSL for GPUs since methods have to be
classified in CUDA into host functions running on CPUs
and device functions running on GPUs. The propagation
of @Metaclass automates this classification.

Bytespresso also recognizes the @Native annotation. It is
primarily used for delimiting a snapshot but it takes a String
argument. A DSL compiler can use this argument for code
generation. For example, a DSL compiler may transform
the following Java method:

@Native("float* p; cudaMalloc(&p,sizeof(float)*(v1+2));"
+ "return p;")

public static float[] mallocFloat(int size) {
return new float[size];

}

into a C function as follows:

float∗ CUDA mallocFloat 1(int v1) {
float∗ p; cudaMalloc(&p,sizeof(float)∗(v1+2)); return p;

}

The function body is as specified by the argument to @Na-
tive. The parameter size in Java is v1 in C. The original
body of the Java method is ignored. This feature allows
DSL authors to conveniently implement a primitive of their
DSLs.

The @Metaclass annotation can be attached to a class dec-
laration. Such an annotation changes the class for an object
representing the class definition. For example,

@Metaclass(type=ImmutableClass.class)
class Vec3 {

public final float x, y, z;
Vec3(float xx, float yy, float zz) {

x = xx; y = yy; z = zz;
}

}

Bytespresso creates an instance of ImmutableClass and puts
it as the object representing the Vec3 class in the class table
of an extracted snapshot. DSL users can specify that the
Vec3 class has custom semantics and a DSL compiler can
change code generation according to this annotation.

3.4 Optimized extraction
Bytespresso extracts method bodies under the assumption

that the semantics of method calls in a DSL is mostly the
same as in Java. During snapshot extraction, Bytespresso
performs partial evaluation [9, 11]. It basically does con-
stant propagation and folding by using runtime values avail-
able at extraction time. Code specialization per method
body is also performed so that Bytespresso can have more
opportunities of devirtualization [1].

Bytespresso recognizes that a final static field has a con-
stant value. If a reference to an object is a constant value
and the object has a final field, then this final field is also
recognized as having a constant value. Note that a free vari-
able in a lambda expression is implemented as a final field
of its object. Bytespresso also recognizes that the values in
args passed to the constructor of Reifier are constant val-
ues. A reference that a new expression evaluates to is also
a constant value. If a variable is initialized with a constant
value and does not change its value, the variable is recog-
nized as having a constant value (i.e. effectively final in the
Java specifications). An AST node representing that vari-
able holds that constant value.

Furthermore, the value of a field with the @Final anno-
tation is recognized as a constant value. Such a field is
treated as if it holds a constant value while DSL code is ex-
ecuted. The value of a @Final field may be freely modified
in Java. However, if the DSL code extracted by deep reifi-
cation is found to attempt to update the value of a @Final
field, Bytespresso reports an error.

Devirtualization and code specialization
The propagated constant values are used for devirtualization
[1]. If a constant value is a reference to an invocation target

of method call, then the method call is devirtualized. The
method body that the devirtualized method call invokes is
then specialized with the invocation target and the argu-
ments of constant values (so these are regarded as constant
values within the specialized body). A new AST for the
specialized method body is constructed so that further de-
virtualization can be performed. The AST node represent-
ing the devirtualized method call refers to the constructed
new AST. If devirtualization succeeds, only the specialized
method body is contained in a snapshot extracted by the
deep reification.

Bytespresso also performs dead code elimination. This
mechanism can be used to emulate the preprocessor directive
#if in C by an if statement referring to a static final field
of boolean type in Java. If a constant value is a value of
branch condition of if statement, its not-executed then or
else block is eliminated from an extracted AST as dead code.
A method call in the eliminated block is not examined to
extract other method bodies. Dead code elimination can be
also used for delimiting extraction. Bytespresso currently
performs dead code elimination only if a branch condition
is either a constant value of boolean type or an expression
testing a constant value of int is equal to 0.

Code specialization implies a risk of code explosion. To
avoid excessive specialization and infinite regression due to
recursive calls, if the number of specialized instances of the
same Java method body reaches a threshold, Bytespresso
stops specialization for that method body. For the same
reason, arguments of primitive types such as int are not con-
sidered for the specialization. Only arguments of reference
type are considered.

Inlining
Bytespresso also supports the @Inline annotation attached to
a method body. If a method body is annotated with @Inline
and if possible, before constructing an AST, Bytespresso lex-
ically substitutes the body of that method for a method-call
expression to that method. Inline code expansion is recur-
sively applied to all method-call expressions within the body
of that method with @Inline. If a DSL compiler invokes a
back-end compiler such as a C compiler, explicit inline ex-
pansion by Bytespresso may help the back-end compiler per-
form more aggressive optimization with deep code analysis.
If specified, Bytespresso attempts to specially transform an
object passed as an argument to the inlined method. The ob-
ject is transformed into a set of variables of primitive types.
Each variable holds a value of the corresponding field of that
object. This may also help optimization by a back-end com-
piler.

3.5 Other languages
Deep reification can be implemented for other languages

than Java if several primitive mechanisms are available. First
of all, the language has to provide a reflection (reification)
mechanism for obtaining the type and the field values of any
given objects at runtime. The definitions of the obtained
types have to be also accessible. Method (or function) bod-
ies included in the type definitions need to be extractable.
The extracted bodies have to hold sufficient information to
reconstruct the IR of the bodies. The ability to faithfully
reconstruct the original source code is not required. Deep
reification only needs to be able to reconstruct method-call
chains. Hence, it may choose low-level IR that is rather

1 final VecDSL dsl = new VecDSL(N);
2 final Vec4Array pos1 = dsl.array();
3 final Vec4Array pos2 = dsl.array();
4 final Vec4Array vel = dsl.array();
5

6 final float softening = 0.01f;
7 final float damping = 1.0f;
8 final float deltaTime = 0.016f;
9 final Func f = (Vec4Array pos, int i, Vec3 pi, float wi) −> {

10 // same as in Listing 1
11 };
12

13 dsl.run(() −> {
14 pos1.tabulate(i −> new Vec4(i, i, i, 2));
15 vel.tabulate(i −> new Vec4(i, i, i, 2));
16 dsl.repeat(R, () −> {
17 pos2.map(f, pos1);
18 pos1.map(f, pos2);
19 });
20 });

Listing 2: N-body simulation in our DSL

similar to machine code.

4. EXPERIMENTS
To examine the idea of deep reification and Bytespresso,

we have developed an embedded DSL for Java. The tar-
get domain of this DSL, which we named Bytespresso-C, is
numerical computing on various platforms including a clus-
ter computer and GPUs. It is a Java class library built on
top of Bytespresso. The DSL users write their DSL code
in the form of a lambda expression. Bytespresso-C extracts
the code and the related data by the deep reification and
generates a standalone3 platform-dependent program in C
or CUDA from the extracted code and data. Java objects
accessed from the extracted code are translated into global
variables of struct type in C so that it will be statically allo-
cated for optimization. Updates of these objects in the DSL
code are not written back to the original Java objects.

The DSL code is expressed with Java syntax and executed
mostly under the Java semantics, as Java objects, meth-
ods, and types. So the DSL is fairly compatible with Java.
Only a few methods and classes are treated with the DSL-
specific semantics so that they can serve as primitive entities
abstracting platform-native facilities. Furthermore, array
boundary checking and exception handling are not available
in the DSL. The multi-threading of Java is not supported as
well as the standard Java library. Hence parallel comput-
ing has to be described with the primitives provided by the
DSL.

4.1 N-body simulation
We first show our vector library in Bytespresso-C. List-

ing 2 is the N-body simulation written with this library. It
is equivalent to Listing 1. Line 14 to 19 is the DSL code. All
the classes VecDSL, Vec4Array, Vec3, and Vec4 are library
classes. The tabulate method in line 14 and 15 initializes
array elements by the given lambda expression. Note that
the DSL can naturally call this method regarded as part of
the DSL code.

3The DSL code can send a resulting value back to Java code
but this feature is out of the scope of this paper.

0

2

4

6

8

10

12

14

16

18

C C++ Template Bytespresso-C Java

Intel	C

Gcc

Clang

OpenJDK

G
flo
ps

Figure 1: The execution performance of N-body
simulation

The arrays pos1 and vel are created beforehand in line 2
and 4, which is out of the DSL code, since Listing 2 imple-
ments staged computation. The DSL compiler treats these
arrays as constant values exploited by partial evaluation. In
this DSL, the more objects are created beforehand in Java
code, the better chances of optimization the DSL compiler
has.

The repeat method in line 16 repeatedly calls the lambda
expression given as the second argument. It calls the lambda
expression R-times. Although the for statement can substi-
tute repeat because the DSL borrows most Java syntax, we
use repeat so that we can reuse this code in a later example.

A Vec4Array object contains only a final field referring a
FloatArray2D object, where array elements are stored. FloatAr-
ray2D is a primitive class provided by Bytespresso-C and it
is not subject to the Java semantics. Its behavior is cus-
tomized by Bytespresso-C to emulate a native array in C. A
call to its getter or setter method is transformed into a direct
access to native array in C. Vec3, Vec4, and Func objects are
immutable. The DSL compiler transforms them into stack-
allocated values of struct type in C. They are passed not
by reference but by copy. Hence no heap memory is al-
located for objects and no garbage collection is necessary
while running Listing 2. Although all those classes are ex-
pressed with Java syntax, the compilation of their code is
customized by@Metaclass.

Figure 1 shows the execution performance of Listing 2.
We measured the execution time of line 16 to 19. For com-
parison, we also ran several programs compatible to List-
ing 2. All the programs are single-threaded and they sim-
ulated 30208 bodies for 10 time-steps. The execution time
is the average across 5 runs. C denotes a manually imple-
mented C program for reference using bare float arrays with-
out higher-level abstraction such as Vec4Array type. No fur-
ther optimization techniques like loop tiling are applied to
the program. The code size is about 90 lines. C++ denotes
a C++ program that is straightforward translation of List-
ing 2 from Java to C++. All the overridable methods are
virtual functions. Vec3 objects are not allocated on the heap
but the stack. Template denotes a C++ program optimized
by template metaprogramming while preserving the origi-
nal abstraction. Java denotes the Java program in Listing 2
that was run without Bytespresso-C but with the same DSL
classes written in pure Java. The C/C++ programs were
compiled by Intel C compiler (version 15.0.0.090) with -fast,

1 final Vec4CudaArrayOnShared shared = dsl.sharedMemory();
2 final Func f = (Vec4Array pos, int i, Vec3 pi, float wi) −> {
3 Vec3 a = shared.fold(pos, acc −> {
4 Vec3 sum=shared.sum((Vec4Array p,int j,Vec3 pj,float wj)−>{
5 Vec3 r = pi.sub(pj);
6 float ra = VecDSL.reciprocalSqrt(r.mult(r) + softening);
7 return r.scale(wj ∗ (ra ∗ ra ∗ ra));
8 });
9 return acc.add(sum);

10 });
11 Vec3 v2 = vel.get(i).add(a.scale(deltaTime)).scale(damping);
12 vel.set(i, v2);
13 return pi.add(v2.scale(deltaTime));
14 };

Listing 3: N-body simulation targeting CUDA

GCC 4.8.2 with -Ofast, or Clang 3.4.2 with -Ofast. The Java
program was executed by OpenJDK (version 1.8.0 40). All
the programs were run on CentOS 6.2 on dual Intel Xeon
E5-2687W processors (Sandy Bridge EP, 8 cores, 3.1GHz).

Bytespresso-C achieved good performance comparable to
the C program when compiled with the Intel C compiler or
GCC. However, the Clang-compiled version did not match
up to this. The figure shows that the overall performance
significantly depends on a back-end compiler, probably how
it effectively applies SIMD vectorization to the programs.
The code generated by Bytespresso-C contains struct types
for representing vectors and lambda expressions. This poses
an obstacle to achieving performance on par with the hand-
written C program. Bytespresso-C cannot compile these
abstractions away to be bare primitive types.

The DSL compilation was relatively small. It took about
400 msec. (including 300 msec. by the C compiler) with the
Intel C compiler.

4.2 GPU computing
Our vector library supports GPU computing in CUDA.

To run Listing 2 on a GPU, only the first line is modified to
instantiate VecCudaDSL, which is a subclass of VecDSL. The
array method in this subclass instantiates Vec4CudaArray to
create a vector array (line 2 to 4 in Listing 2) and the map
function in Vec4CudaArray runs in parallel by invoking a
CUDA kernel function (line 17 and 18). One of the sources
of complexity of CUDA programming is memory copying
between the host and the GPU. In our vector library, the
memory copying is hidden in the repeat method in line 16
in Listing 2, which is overridden in VecCudaDSL.

To support the implementation of these classes, Bytespres-
so-C provides several Java methods for calling CUDA library
functions. In the CUDA code generated by Bytespresso-
C, these methods become C functions that call the CUDA
library functions when they are invoked. Bytespresso-C
also provides the @Metaclass annotation for implementing

global or device functions in CUDA. A Java method
with that annotation is transformed into such a function in
CUDA.

Listing 2 can be modified to use the shared memory (fast
local memory) in CUDA. Listing 3 shows the lambda ex-
pression f after the modification. The variable shared refers
to the object abstracting the shared memory. Bytespresso-
C treats this object with special semantics when generating
CUDA code. The fold method on this object first divides

1 Boundary b = new FixedEndBoundary();
2 b.initializer(new Initializer() { ... });
3 GridFloat2D grid = new CpuGridFloat2D(xsize, ysize, b);
4

5 Initializer init = new Initializer() {
6 public float value(int i, int j) { return 273.15f; }
7 };
8

9 Kernel k = new Kernel() {
10 public float newValue(Float2Array oldValue, Cursor cur,
11 int t, Reduction r) {
12 float v = c0 ∗ (cur.north(oldValue) + cur.south(oldValue))
13 + c1 ∗ (cur.east(oldValue) + cur.west(oldValue))
14 + c2 ∗ cur.self(oldValue);
15 return v;
16 }
17 };
18

19 grid.initialize(init)
20 .each(Reduction.NO, 1, Predicate.FOREVER, k)
21 .repeat(N, new StdDriver());

Listing 4: 2-dimensional 5-point stencil

the elements of the first argument pos into a number of
chunks. The chunk is copied onto the shared memory one
at a time and the function given as the second argument
is invoked with the chunk on the shared memory. Copying
onto the shared memory is executed in parallel with neigh-
bor threads. Finally, the fold method accumulates the values
returned from the function for every chunk.

We ran the program on NVIDIA Tesla K20m with CUDA
6.5. We compiled it by nvcc 6.5.12. We also compared its
performance with the sample code distributed with CUDA
Toolkit 6.5. It was written with C++ templates in CUDA to
demonstrate the execution performance of CUDA [21] but
its program structure was not modular or using rich abstrac-
tion. The execution time of the program in Bytespresso-
C was 134 msec. and it corresponds to 1.36 tera flops (we
counted 20 flops per pair-wise force calculation). The ex-
ecution time of the sample code from NVIDIA was 122
msec. and it corresponds to 1.5 tera flops. The overhead
due to the abstraction of our library was 10%.

4.3 Stencil computation
We wrote a simple framework library for stencil computa-

tion and compared its execution speed with equivalent pro-
grams written in C, C++, C++ template, and Java. Stencil
computation is a popular model for solving a partial differ-
ential equation. Listing 4 lists a program written with a
two-dimensional version of our framework implemented with
Bytespresso-C. It performs five-point stencil computation in
single precision. All the classes are provided by the frame-
work. The program creates several objects representing the
configuration such as a boundary condition, how to initial-
ize, and a kernel function. Then these objects are assembled
in the grid object. This framework regards init and k as the
DSL code and starts compilation when the repeat method is
called in line 21.

The variable k represents a stencil kernel. It is repeatedly
applied to update every element of a regular Cartesian grid
until the system reaches a solution. The Cursor object given
to the kernel function is used to access the elements adjacent
to the current point. It hides implementation details of the

0

2

4

6

8

10

12

C C++ template Java Bytespresso-C

G
flo

ps 35 msec.

304 msec.

75 msec.

234 msec.

36 msec.

Figure 2: The execution performance of 2D-stencil
computation

traversal on the grid and the boundary condition. For ex-
ample, cur.north(oldValue) reads a point north of the current
point. To avoid a conditional branch at runtime, the frame-
work may switch a concrete class of the Cursor object for the
points near the border. A Cursor object is a stack-allocated
value in the DSL.

Figure 2 shows the execution performance of the stencil
computation. Our framework showed comparable perfor-
mance to the equivalent C program. The grid size was 5000
by 10000. The programs compute till 100 time-steps and we
ran the programs five times. The execution time shown in
the figure is the average execution time of the single time-
step. The programs ran on the same machine in Section 4.1
and we used Intel C compiler. All the programs are single-
threaded.

4.4 Distributed computing
The next experiment is on the support to MPI by Bytespresso-

C. We also wrote a framework for three-dimensional stencil
computing. A program with this framework runs on a super-
computer consisting of distributed nodes communicating via
MPI. From the framework users’ viewpoint, this framework
is not much different from the framework in Section 4.3. The
framework users are not necessarily aware of inter-node com-
munication. All the communication via MPI is hidden in the
implementation of the framework. We wrote the framework
by using MPI primitives provided by Bytespresso-C. They
are Java methods that are transformed by the DSL compiler
into MPI functions in C.

To examine this framework, we rewrote the Himeno bench-
mark [15] to use this framework. The resulting benchmark
program in Bytespresso-C was similar to Listing 4. This
benchmark runs a single three-dimensional Jacobi kernel.
The problem size was XL (512 × 512 × 1024). The original
benchmark is written in C with MPI and each MPI process
is single-threaded in single precision. The benchmark score
mainly reflects the memory bandwidth.

We ran the programs on the TSUBAME 2.5 supercom-
puter at Tokyo Institute of Technology. The maximum num-
ber of nodes we used was 256. Every node had one MPI pro-
cess whereas it had more than one process when the total
number of the processes is more than 256. Each node has
dual Intel Xeon X5670 processors (Westmere EP, 6 cores,
2.93GHz). The nodes are connected via QDR InfiniBand
network. We used Intel C compiler (version 14.0.2.144) and
OpenMPI 1.8.2. The compile option was -Ofast. When the
node size is less than 8, the -mcmodel=medium option was
also given.

Figure 3 shows the results. We counted 34 floating-point

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
ea
su
re
d	
pe

rfo
rm

an
ce
	in
	TF

lo
ps

The	number	of	processes

Bytespresso-C

Origianl	C

16x16x16

16x16x8

16x8x8

8x8x8

8x8x4

8x4x4
4x4x4

Figure 3: Strong scale performance of the Jacobi
kernel of Himeno on TSUBAME2.5

operations per computation on each grid element for all the
programs. The labels such as 8x8x4 denote the decompo-
sition of the grid. The performance difference between the
original C program and the Bytespresso-C program would be
due to the difference in the memory layout of the grid data.
The original C program used a four-dimensional array while
the Bytespresso-C program used several three-dimensional
arrays. Both programs used Cartesian-related MPI func-
tions and the vector types of MPI.

4.5 Comparison to DSL
Since stencil computation is one of typical computation

patterns seen in numerical algorithms, there are a number
of DSLs for stencil computation. We compared our stencil
framework on Bytespresso-C with Physis, an external DSL
for stencil computation [20]. Since Physis provides a custom
compiler, we expected its potential of better performance. In
the following experiments, we used the programs included in
the distribution of Physis4 as the version written in Physis.

Figure 4 shows the execution performance of the Himeno
benchmark on a single CPU. For this experiment, we modi-
fied our framework to apply the double buffering technique
as Physis although the original benchmark program used
single buffering. Since the program in Physis accessed grid
data via a pointer, the original program and our framework
were modified to access via a pointer. For comparison, we
also ran the programs where grid data are held in a multi-
dimensional array. In the figure, (array) denotes them. The
program in Physis did not perform a reduction operation al-
though the others did. The programs were compiled by GCC
4.3.4 with -O3 or Intel C compiler 14.0.2.144 with -Ofast or -
fast. They were run on TSUBAME 2.5 supercomputer. The
problem size was L (256 × 256 × 512). The performance
numbers were on average across 10 iterations.

Our framework on Bytespresso-C outperformed Physis but
this was because the code generation by Physis was not well
tuned for execution on CPUs. Our framework also outper-
formed the original benchmark program in C when the pro-
grams were compiled by GCC or Intel C compiler with -
Ofast. The reason was that the original program accessed
memory to obtain the grid size whenever it computed the
address of a grid element. In the program for our framework,
the grid size was given at runtime but it was propagated as

4https://github.com/naoyam/physis/tree/develop/examples

0

1

2

3

4

5

6

7

Original	C Original	C
(array)

Physis Bytespresso
-C

Bytespresso-C
(array)

Gf
lo
ps

gcc
-O3

Intel	C
-Ofast

Intel	C
-fast

Figure 4: Jacobi kernel of Himeno on single CPU

0

50

100

150

200

250

300

CUDA
baseline

CUDA
optimized

Physis Bytespresso-C

M
ea
su
re
d	
pe
rf
or
m
an
ce
	in
	G
Fl
op
s

K20Xm

GTX780

Figure 5: Three-dimensional diffusion

a constant value during the DSL compilation. This is an
advantage of the design of Bytespresso-C.

Figure 5 shows the execution performance of the programs
solving a three-dimensional diffusion equation on a GPU.
Our framework on Bytespresso-C achieved comparable per-
formance to Physis; its performance is sometimes better
than Physis. Note that Physis was targeted at NVIDIA’s
Fermi architecture but we examined with the Kepler ar-
chitecture. Their performance behavior is notably differ-
ent [19]. CUDA baseline and CUDA optimized are pro-
grams written in CUDA. The grid size was 256× 256× 256.
We counted 13 floating-point operations per computation
on each grid element. The performance numbers were on
average across 1000 iterations. All the programs were com-
piled by nvcc 6.5.12 with -arch=sm 35 and gcc 4.3.4 (4.8.2
for GTX780) with -O3. They were run with CUDA 6.5 on
Tesla K20Xm or GeForce GTX780.

5. RELATED WORK

Deep reification and Bytespresso
There have been a few systems providing functionality sim-
ilar to deep reification or Bytespresso. Lancet [28] allows
programmers to directly control just-in-time (JIT) compila-
tion in Scala. Although it does not explicitly provide deep
reification exactly as presented in this paper, it is possible to
achieve similar feats by tweaking and customizing Lancet.
In particular, a customized JIT compiler using Lancet can
generate GPU instead of native CPU code as Bytespresso-C
does. Lancet’s strength lies in customizing JIT compila-
tion similar to systems like OpenJIT [23]. Making extracted
snapshots of the environment self-contained for DSLs is not
the main focus of that work. In the context of JIT compila-
tion, it is customary to have escape hatches and interfaces to

account for dynamic situations. The resulting code of JIT
compilation can access missing objects and code on demand.

Graal [24], which is used as the back-end of Lancet, makes
bytecode accessible from a running program through a graph-
based internal representation (IR). Although deep reification
adopts abstract syntax trees as its IR for straightforward
translation into a C-like language, the graph-based IR [8]
is good for optimization. It is useful, for example, for par-
tial evaluation by Truffle [32]. The accessibility of Graal to
bytecode at runtime can be used to implement deep reifi-
cation. Since Bytespresso performs bytecode decompilation
for extracting bytecode, however, it can run on instances of
the JVM other than Graal or ones with similar interfaces.
Furthermore, bytecode extraction is only a part of deep reifi-
cation; delimiting necessary code and collecting necessary
data are just as, or even more, crucial.

The following illustrates why delimiting necessary code
is a significant technical issue. An article [22] on Firepile,
which is an offloading system from Scala to CUDA, men-
tions how Firepile constructs abstract syntax trees while
supporting dynamic method dispatch. According to the arti-
cle, Firepile seems to conservatively enumerate methods on
each call. Unlike deep reification, which refers to runtime
constant values, it seems to statically collect methods in all
available subclasses of the type of a called object. JaBEE
[34] is an offloading system from Java to CUDA and it also
supports dynamic method dispatch. It requests program-
mers to manually delimit necessary code for offloaded com-
putation. They have to store all necessary class files in a
specific directory.

Object serialization or marshalling is a simpler form of
deep reification. Its snapshots only contain data (and possi-
bly type and code references, but not code itself) extracted
from the current execution environment. It has been pro-
vided by distributed computing systems since its early days
[14, 3]. How to and whether to cut off (or delimit) parts
of an object graph for transferal has been a long-standing
technical issue.

A few low-level techniques for directly accessing code should
be noted as well. They can be used as a primitive for ex-
tracting code. Macros in Scala and other languages, can be
considered low-level mechanisms for IR extraction. Expres-
sion trees in C# extract the IR of a lambda expression typed
as Expression. These techniques enable us to transparently
extract code/IR without users’ awareness. Any kind of host-
language code can be extracted. However, these techniques
extract the IR of only a lexically delimited code block. They
do not allow extracting the IR of a method body invoked
within that code block, or DSL authors have to manually
extract it.

Bytespresso-C
Delite [4] is an offloading system similar to Bytespresso-C.
It also can be regarded as a development system of embed-
ded DSLs, in other words, class libraries providing domain-
specific abstraction in the host-platform language. A differ-
ence from Bytespresso-C is that Delite exploits LMS as its
basis and has drawbacks mentioned in Section 2. Note how-
ever that the previously mentioned Lancet may be combined
with Delite to address these drawbacks.

A class library on Bytespresso-C such as the ones we
showed in Section 4 is transformed and compiled into a lan-
guage on a destination platform. However, since it is written

still in pure Java, it can be regarded as an embedded DSL.
It is different from external DSLs such as Physis [20] and
ExaSlang [30]. Their code has to be compiled by their own
compilers and their development environments including a
source code editor have to be dedicated ones. The develop-
ment costs of these tools are a drawback of external DSLs.
However, for fairness sake we would mention that the slightly
changed Java semantics of embedded DSLs like Bytespresso-
C may threaten the reliability of tool-based refactoring for
pure Java.

There have been a number of systems for offloading com-
putation from the JVM to GPUs such as JCUDA [33], Root-
beer [25], JConqurr [13], and JCudaMP [7]. They are similar
to Bytespresso-C. Although a certain degree of deep reifica-
tion (as we define it) is internally performed in most systems,
it is tightly embedded in the systems and hence its imple-
mentation is not reusable. Unlike those offloading systems,
Bytespresso-C was designed to support not only GPU but
also multiple platforms. We enhanced the basic architecture
used by those systems to support various platforms and to
be an essential component of offloading systems, which is
deep reification.

Our previous work
Prior to this work, we have developed a similar system named
WootinJ [17]. Bytespresso is our latest system of this series
of work. In the paper about WootinJ, however, deep reifica-
tion has not been identified as an underlying support mech-
anism for DSLs although a simple form of deep reification is
internally executed.

Deep reification was first proposed in our workshop paper
[6]. This short paper presented only a basic idea of deep
reification but it does not mention Bytespresso-C, our DSL
using deep reification. This paper is an extended version of
that workshop paper.

Our proposal of implicit staging [29] may also be consid-
ered a predecessor of this work. Although it also proposed
the reification of code, it is limited to expressions. It reifies
code at load-time and hence the extracted IR does not con-
tain references to runtime values. The IR extraction did not
perform deep call-graph analysis, either.

6. CONCLUSION
This paper presented a reflection mechanism called deep

reification for developing embedded DSLs. A technical is-
sue of particular interest is how to delimit extracted code
and data. Our prototype of deep reification for Java, Byte-
spresso, refers to runtime values available at extraction time
and performs partial evaluation so that only necessary code
and data will be extracted from a program that may con-
tain dynamic method dispatch. This paper also presented
Bytespresso-C. It shows that a practical DSL based on deep
reification can be constructed. The source code of Byte-
spresso and Bytespresso-C is available from https://github.
com/csg-tokyo/bytespresso.

Acknowledgments
This work was partly supported by JST CREST funding
program. We would like to thank Naoya Maruyama for his
help with the use of Physis and performance tuning tech-
niques of CUDA code.

References
[1] G. Aigner and U. Hölzle. Eliminating virtual function

calls in C++ programs. In ECOOP ’96 — Object-
Oriented Programming, LNCS 1098, pages 142–166,
1996.

[2] D. F. Bacon and P. F. Sweeney. Fast static analysis of
C++ virtual function calls. In Proc. of ACM OOPSLA,
pages 324–341. ACM, 1996.

[3] A. D. Birrell and B. J. Nelson. Implementing remote
procedure calls. ACM Trans. Comp. Syst., 2(1):39–59,
1984.

[4] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf,
H. Chafi, M. Odersky, and K. Olukotun. A heteroge-
neous parallel framework for domain-specific languages.
In Proc. of the 2011 Int’l Conf. on Parallel Architec-
tures and Compilation Techniques, PACT ’11, pages
89–100. IEEE Computer Society, 2011.

[5] S. Chiba. Load-time structural reflection in Java. In
ECOOP 2000, LNCS 1850, pages 313–336. Springer-
Verlag, 2000.

[6] S. Chiba, Y. Zhuang, and M. Scherr. A design of
deep reification. In Companion Proc. of the 15th Int’l
Conf. on Modularity (MASS’16 workshop), pages 168–
171. ACM, 2016.

[7] G. Dotzler, R. Veldema, and M. Klemm. JCud-
aMP: OpenMP/Java on CUDA. In Proc. of the
3rd Int. Workshop on Multicore Software Engineering,
IWMSE ’10, pages 10–17. ACM, 2010.

[8] G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer,
D. Simon, and H. Mössenböck. An intermediate rep-
resentation for speculative optimizations in a dynamic
compiler. In Proc. of the 7th ACM Workshop on Vir-
tual Machines and Intermediate Languages (VMIL ’13),
pages 1–10. ACM, 2013.

[9] A. Ershov. On the essence of compilation. In
E. Neuhold, editor, Formal Description of Program-
ming Concepts, pages 391–420. North-Holland, 1978.

[10] D. P. Friedman and M. Wand. Reification: Reflec-
tion without metaphysics. In Proc. of the 1984 ACM
Symp. on LISP and Functional Programming, pages
348–355. ACM, 1984.

[11] Y. Futamura. Partial computation of programs. In
Proc. of RIMS Symposia on Software Science and En-
gineering, number 147 in LNCS, pages 1–35, 1982.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns. Addison-Wesley, 1994.

[13] G. A. C. P. Ganegoda, D. M. A. Samaranayake, L. S.
Bandara, and K. A. D. N. Wimalawarne. JConqurr — a
multi-core programming toolkit for Java. Int. Journal
of Computer and Information Engineering, 3(7):596–
603, 2009.

[14] M. Herlihy and B. Liskov. A value transmission method
for abstract data types. ACM Trans. Prog. Lang. Syst.,
4(4):527–551, 1982.

[15] R. Himeno. Himeno benchmark.
http://accc.riken.jp/2444.htm, 2001.

[16] P. Hudak. Modular domain specific languages and tools.
In Proc. of the 5th International Conference on Soft-
ware Reuse, ICSR ’98, pages 134–142. IEEE Computer
Society, 1998.

[17] M. Ioki and S. Chiba. A framework for multiplatform
HPC applications. In Proc. of Workshop on Program-
ming Models and Applications on Multicores and Many-
cores (PMAM2014), pages 61–69, 2014.

[18] V. Jovanovic, A. Shaikhha, S. Stucki, V. Nikolaev,
C. Koch, and M. Odersky. Yin-yang: Concealing the
deep embedding of dsls. In Proc. of the 2014 Int’l
Conf. on Generative Programming: Concepts and Ex-
periences, GPCE 2014, pages 73–82. ACM, 2014.

[19] N. Maruyama and T. Aoki. Optimizing stencil com-
putations for NVIDIA Kepler GPUs. In Proc. of 1st
Int. Workshop on High-Performance Stencil Computa-
tions (HiStencils 2014), 2014.

[20] N. Maruyama, T. Nomura, K. Sato, and S. Mat-
suoka. Physis: An implicitly parallel programming
model for stencil computations on large-scale gpu-
accelerated supercomputers. In Proc. of 2011 Int’l
Conf. for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 11:1–11:12. ACM,
2011.

[21] L. Nyland, M. Harris, and J. Prins. Fast n-body simu-
lation with CUDA. In H. Nguyen, editor, GPU Gems
3, chapter 31, pages 677–695. Addison-Wesley, 2007.

[22] N. Nystrom, D. White, and K. Das. Firepile: Run-time
compilation for GPUs in Scala. In Proc. of the 10th
ACM Int. Conf. on Generative Programming and Com-
ponent Engineering, GPCE ’11, pages 107–116. ACM,
2011.

[23] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama,
Y. Sohda, and F. Kimura. OpenJIT : An open-
ended, reflective JIT compiler framework for Java. In
ECOOP 2000, LNCS 1850, pages 362–387. Springer-
Verlag, 2000.

[24] Oracle. OpenJDK: Graal project.
http://openjdk.java.net/projects/graal, 2012.

[25] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch.
Rootbeer: Seamlessly using GPUs from Java. In
Proc. of the 2012 IEEE 14th Int. Conf. on High Perfor-
mance Computing and Communication & 2012 IEEE
9th Int. Conf. on Embedded Software and Systems,
HPCC ’12, pages 375–380. IEEE Computer Society,
2012.

[26] T. Rompf and M. Odersky. Lightweight Modular Stag-
ing: A pragmatic approach to runtime code generation
and compiled DSLs. In Proc. of the Ninth Int’l Conf. on
Generative Programming and Component Engineering,
GPCE ’10, pages 127–136. ACM, 2010.

[27] T. Rompf, N. Amin, A. Moors, P. Haller, and M. Oder-
sky. Scala-Virtualized: linguistic reuse for deep embed-
dings. Higher-Order and Symbolic Computation, 25(1):
165–207, 2012.

[28] T. Rompf, A. K. Sujeeth, K. J. Brown, H. Lee, H. Chafi,
and K. Olukotun. Surgical precision JIT compilers. In
Proc. of the 35th ACM SIGPLAN Conf. on Program-
ming Language Design and Implementation, PLDI ’14,
pages 41–52. ACM, 2014.

[29] M. Scherr and S. Chiba. Implicit staging of EDSL ex-
pressions: A bridge between shallow and deep embed-
ding. In ECOOP 2014 – Object-Oriented Programming,
volume 8586 of LNCS, pages 385–410, 2014.

[30] C. Schmitt, S. Kuckuk, F. Hannig, H. Köstler, and
J. Teich. Exaslang: A domain-specific language
for highly scalable multigrid solvers. In Proc. of
the Fourth Int. Workshop on Domain-Specific Lan-
guages and High-Level Frameworks for High Perfor-
mance Computing, WOLFHPC ’14, pages 42–51. IEEE
Press, 2014.

[31] B. Smith. Reflection and semantics in a procedural
languages. Technical Report MIT-TR-272, M.I.T. Lab-
oratory for Computer Science, 1982.

[32] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Du-
boscq, C. Humer, G. Richards, D. Simon, and M. Wol-
czko. One VM to rule them all. In Proc. of ACM
Onward! 2013, pages 187–204. ACM, 2013.

[33] Y. Yan, M. Grossman, and V. Sarkar. JCUDA:
A programmer-friendly interface for accelerating Java
programs with CUDA. In Proc. of the 15th Int. Euro-
Par Conf. on Parallel Processing, Euro-Par ’09, pages
887–899. Springer-Verlag, 2009.

[34] W. Zaremba, Y. Lin, and V. Grover. JaBEE: frame-
work for object-oriented Java bytecode compilation and
execution on graphics processor units. In Proc. of the
5th Annual Workshop on General Purpose Processing
with Graphics Processing Units, GPGPU-5, pages 74–
83. ACM, 2012.

