A Design of Deep Reification

Shigeru Chiba

YungYu Zhuang

Maximilian Scherr

Graduate School of Information Science and Technology
The University of Tokyo, Japan

{chiba,zhuang,scherr}@csg.ci.i.u-tokyo.ac.jp

Abstract

This short paper presents our design of deep reification, which is
a reflection mechanism for computation offloading. As heteroge-
neous computing is getting popular, several systems have been pro-
posed and implemented for offloading a part of Java program to an
external processor such as GPU. Deep reification provides the com-
mon functionality among those systems so that it will help their
development. It dynamically extracts abstract syntax trees of of-
floaded methods as well as offloaded objects and class definitions.
These methods, objects, and classes are deeply copied to be sent to
an external processor. Deep reification also allows user program-
mers to annotate offloaded code to give optimization hints to the
offloading system built with deep reification.

Categories and Subject Descriptors
guages]: Processors

D.3.4 [Programming Lan-

Keywords Reflection, Meta programming

1. Introduction

As the effectiveness of GPU computing emerges, a number of com-
putation offloading systems from Java to CUDA or OpenCL have
been developed. For example, JCUDA(Yan et al. 2009), Rootbeer
(Pratt-Szeliga et al. 2012), JConqurr (Ganegoda et al. 2009), JCu-
daMP (Dotzler et al. 2010), and JaBEE (Zaremba et al. 2012) be-
long to this category. These systems except JCUDA translate Java
code into CUDA on the fly during runtime and execute the gen-
erated CUDA code on GPUs to exploit GPUs’ massively parallel
computing capability. Computation offloading is effective with not
only GPUs but also many-core accelerators, FPGA chips, and even
native CPUs. A Java program sometime runs faster if part of the
program is translated into C code and run directly on a native CPU
after being compiled by an external C compiler to exploit, for ex-
ample, the latest SIMD instructions such as AVX2 and AVX-512
and/or multi-threading by OpenMP. The translation into C is also
effective when the just-in-time compiler of the Java virtual machine
(JVM) cannot produce highly optimized code for the target proces-
sor. For example, we cannot expect highly optimized just-in-time
compilation by the JVM on the K supercomputer at the RIKEN
AICS in Japan since its node processors are SPARC64 VIIIfx, which
supports non-standard SIMD extension. The OpenJDK for SPARC
does not support that extension. It is also effective to offload com-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY Companion’16, March 14-17, 2016, Malaga, Spain
ACM. 978-1-4503-4033-5/16/03...
http://dx.doi.org/10.1145/2892664.2892695

168

putation from the JVM to multiple-nodes parallel supercomputers
such as the K computer, where a number of nodes communicate
through MPI.

This paper presents Bytespresso, which provides a reflection
mechanism used as a basis of systems for offloading computation
from the JVM. This mechanism is called deep reification and (1) it
dynamically extracts a self-contained snapshot of the current exe-
cution environment for executing an offloaded method. It contains
abstract syntax trees of necessary methods, necessary class defini-
tions, and objects that will be accessed during the execution of the
offloaded method. (2) The mechanism deeply extracts (i.e. reify)
all methods that may be directly or indirectly invoked from an of-
floaded method unless they are explicitly excluded. The mecha-
nism traces a call graph including dynamic method dispatch. (3)
The construction of an abstract syntax tree is customizable and its
node objects are also customizable.

Reflective computation (Smith 1984) consists of two opera-
tions: reify and reflect. Reifying is to convert an abstract concept
in a program into a first-class object, which a program can pro-
cess. For example, program code and type definitions in a virtual
machine can be reified. Reflecting is to convert a first-class object
back to an abstract concept so that program behavior is affected by
changes to a reified first-class object. Deep reification is our opera-
tion for reifying offloaded code and data.

Developers can use Bytespresso and its deep reification mech-
anism to build an offloading system. Bytespresso runs on the stan-
dard JVM. Its deep reification reads Java bytecode, decompiles it,
and constructs an abstract syntax tree corresponding to decompiled
Java source code. Hence the developers have only to implement
a code generator from the abstract syntax trees and an executor
of the generated code. If needed, the abstract syntax tree can be
translated into target code without preserving the original Java se-
mantics. Custom node objects will help this custom translation. For
example, accesses to a particular static field might be translated as
accesses to some native language construct of the target system.
Developers of GPU offloading systems might want to provide a
static field, Cuda.idx (Cuda is a library class), for their users. Un-
like accesses to normal static fields, an access to that static field
would be specially translated into an access to a built-in variable
threadldx in CUDA as seen in typical GPU-offloading systems like
Rootbeer (Pratt-Szeliga et al. 2012). This design enables the users
to directly access threadldx in their offloaded Java code while their
code is still within the confines of the standard Java syntax. In this
fashion, language extensions can be expressed by a similar idiom
of the host language Java. A preprocessor is not needed for making
these extensions available.

2. Deep Reification and Bytespresso

If a method that will be offloaded is given, deep reification extracts
a self-contained snapshot of the current execution environment. It



is not a whole environment but only a minimum part of the en-
vironment that is necessary to execute that “root” method on an
isolated platform. This snapshot includes all necessary methods,
type definitions, and objects. Deep reification is similar to object
serialization or marshalling since object serialization also extracts
a self-contained object graph for restoring it on a different plat-
form. However, unlike deep reification, the serialized data contain
only type names but not type definitions. The type definitions are
expected to be available on a destination platform.

This design of deep reification is based on the fact that a plat-
form where an offloaded program runs has an isolated memory
space and hence accessing data on the host platform is expensive;
explicit data transfer and data conversion are required. Even pro-
gram code has to be explicitly transferred with code translation.
Offloading systems manage this data/code transfer and conversion.
Deep reification supports the implementation of this management.

Using Bytespresso, our deep-reification implementation for
Java, is simple. For example, the following code extracts a snapshot
for executing method m:

Object|[] args = ...;
Reifier reifier = new Reifier(m, args);
Snapshot image = reifier.snap();

The snap method on reifier performs deep reification. Here, m
refers to a method! used as the root of the extraction and args refers
to the runtime values of the arguments passed to that method. Deep
reification extracts a snapshot of the environment that is needed
when invoking m with the argument args. An object passed as an
argument is included in the snapshot.

The snapshot returned by snap contains abstract syntax trees of
not only the body of the method m but also other methods’ that may
be invoked during the execution of the method m. Deep reification
extracts not a single tree but a forest. The snapshot also contains a
table of classes referred in the abstract syntax trees. Furthermore, it
contains a table of objects accessed through static fields as well as
the objects passed as args.

If a node object of the abstract syntax tree represents a method
call, it holds references to the abstract syntax trees of all the meth-
ods potentially invoked on that call. To correctly enumerate these
methods, snap refers to the types of the objects contained in the
snapshot. It also refers to classes that will be instantiated when the
program contained in the snapshot is executed.

Since computing the method m passed to snap as an argument
is not intuitive for end users, an offloading system built with Byte-
spresso may provide a wrapper class providing a higher-level pro-
gramming interface. For example, if the system is for offloading to
a GPU, its users could write the following code:

double[] p

double[] g = ..;

double d = new GpuOffloader().run(() —> {
double r = dotProduct(p, q); return r;

b

The run method in the GpuOffloader class takes a function closure
(or a Java lambda). In the code above,

0—>{

double r = dotProduct(p, q); return r;
}

is a function closure. It does not take any arguments but executes
the body {...} with the current values of p and q. The implementa-
tion of run would be as follows:

' The variable m does not refer to java.lang.reflect.Method. It refers to
a CtMethod object provided by Javassist bytecode engineering library
(Chiba 2000).

169

import java.util.function.DoubleSupplier;

double run(DoubleSupplier f) {
CtMethod m = getOffloadMethod();
Object[] args = { f };
Reifier reifier = new Reifier(m, args);
Snapshot image = reifier.snap();
return translatelntoCUDAandExecute(image);

}

static double offload(DoubleSupplier f) {
return f.getAsDouble();

} .

The implementation of run would first compute the method object
representing offload by calling getOffloadMethod. Then it would
perform deep reification by snap with that method object. Since
abstract syntax trees of the body of the offload method, the body of
the function closure, and the body of dotProduct (and others called
by dotProduct) are extracted as well as p and q, the run method
could translate the trees into CUDA code, compile it by an external
CUDA compiler, and execute it.

3. Abstract Syntax Tree Construction

The implementation of deep reification needs as a primitive mech-
anism to be able to read the bytecode of a specified method body.
Some virtual machines (VM) such as Graal (Oracle 2012), OpenJIT
(Ogawa et al. 2000), and classic Smalltalk VMs already provide a
reflection mechanism for reading bytecode loaded in a virtual ma-
chine. Another approach is to rely on existing facilities for locating
and reading a class file to obtain bytecode. Since this approach is
available with the standard Java 8 (and earlier) VM, Bytespresso
adopts this approach. A limitation of this approach is that all byte-
code has to be stored in class files. So if a program uses a function
closure, -Djdk.internal.lambda.dumpProxyClasses option has to
be given to the Java VM running Bytespresso. It forces the Java
VM to dynamically produce a class file containing the bytecode of
a function closure.

After reading bytecode, deep reification decompiles the byte-
code to construct an abstract syntax tree of that method. Since the
decompilation may not reconstruct all Java statements, an abstract
syntax tree obtained by deep reification does not exactly represent
the original Java source. Bytespresso’s Deep reification mechanism
reconstructs only expressions and control structures so that the ob-
tained tree can be easily converted into C or C-like language code.
We attempt to reconstruct control-flow structures, in particular, for-
loops. Where this fails, we fall back to representing control-flow by
Goto and (conditional) Branch nodes in an abstract syntax tree.

Deep reification does not extract only a single abstract syntax
tree. It rather extracts a forest; the trees of methods invoked from
a root method. Hence it traces a call graph to collect all the meth-
ods. Since Java supports dynamic method dispatch, a method call
in an extracted method body may dynamically select and invoke
one of multiple methods declared in different classes. The selected
method is not statically determined. Hence, deep reification ex-
tracts abstract syntax trees of all the methods potentially selected
on each call. It can exploit runtime values for a technique known
as devirtualization (Aigner and Holzle 1996) to minimize a set of
potentially selected methods.

For each call to method m, deep reification examines all the
classes of the objects reachable from arguments given to a “root”
method given to snap of Bytespresso, or a static field accessed in
a method body that has been extracted so far. It also examines a
class instantiated in such a method body. Then, if the examined
class overrides m, the overriding method m’ is added to the set of
potentially selected methods. The body of the added method m’



is examined and, if it instantiates a new class or accesses a static
field, the instantiated class or the object that the static field refers
to is also examined. If a new method call is found in the body, then
all the potentially-selected methods for this call are collected. This
algorithm is repeatedly performed until no new class or method
call is found. Deep reification does not support the use of Java’s
reflection API in extracted methods since the algorithm above is
unable to find a class that will be loaded later by reflection.

4. Abstract Syntax Tree Customization

Besides customizing the reification process by overriding methods
in Reifier, Bytespresso allows customizing the construction of ab-
stract syntax trees. The node objects of abstract syntax trees are in-
stances of ASTree or its subclasses. Since they support the Visitor
pattern (Gamma et al. 1994), a code generator can be written as a
visitor traversing trees. Bytespresso allows programmers to change
the class for a particular node object representing a method body
from the default class Function to its subclass. Programmers can
add an annotation @Metaclass to a method so that the node object
representing the body of that method will be changed to an subclass
instance. For example,

@Metaclass(type=CUDA.Global.class)
public static void gpuKernel(int blk, int th) { ... }

This will change the class of a node object for the body of the
gpuKernel method. The node object will be created by a factory
object CUDA.Global.instance. A code generator can exploit this to
change how to generate the code. An offloading system can rely on
this feature to allow user-programmers to control code generation
by adding this annotation, for example, so that the gpuKernel
method will become a __global__ function in CUDA.

Once an @Metaclass annotation is given to a method, the spec-
ified factory object continues to create node objects for methods
directly or indirectly called from the method that @Metaclass is
given to. This feature is useful when an offloading system to CPU
and GPU automatically determines whether a given Java method
should be translated into a __host__ function or a __device__ func-
tion in CUDA.

Programmers can also add an @Metaclass annotation to a class
declaration in Java. The annotation changes the class for an object
representing the class declaration. Recall that a snapshot returned
by the snap method in Reifier contains a table of classes appearing
in abstract syntax trees. The annotation added to a class declaration
changes the class of a table entry representing that class declaration.
For example,

@Metaclass(type=ImmutableClass.class)
public final class Vec3 {
public final float x, y, z;

}

for the Vec3 class, Bytespresso creates an instance of Immutable-
Class and puts it in a class table. A code generator can exploit such
a custom entry in a class table so that custom code will be gen-
erated for an expression related to Vec3, the class represented by
that table entry. This design is similar to compile-time metaobject
protocols or compile-time reflection (Chiba 1995).

For example, when a code generator encounters a new expres-
sion for object creation, the visit(New expr) method is invoked on
the code generator. New is the class for node objects representing
new expressions. It may look up a class table and call a method on
a table-entry object representing the instantiated class. The method
will generate appropriate code for the new expression. If the ex-
pression is new Vec3(), then a method on an ImmutableClass ob-
ject will be invoked. By implementing a method in Immutable-
Class to override the default behavior, the code generator can im-

170

plement custom object creation effective only to Vec3 and other
classes associated with ImmutableClass.

A code generator may also exploit a table-entry object in a
class table when it generates the code defining a data structure for
every class type. For example, if target code is generated for the C
language, a class type in Java may be translated into a struct type
in C. A code generator may generate a custom struct type for the
Vec3 class since it is an ImmutableClass (a class for immutable
objects).

An ©@Metaclass annotation given to a class declaration may
be inherited by subclasses. A table-entry object in a class table
can supply an @Metaclass annotation to subclass declarations.
For example, an ImmutableClass object supplies an annotation to
subclasses of Vec3 to use ImmutableClass. Programmers do not
have to explicitly add @Metaclass to every subclass. This is useful
when building a class library, where an @Metaclass annotation is
hidden in a super class. The library users can define a subclass
without considering @Metaclass.

5. Delimiting Extraction

Although deep reification extracts the abstract syntax trees of all the
methods included in a call graph from a root method, programmers
may want to delimit this traversal of a call graph. Deep reification
allows developers of offloading systems to control how to delimit
the traversal.

Bytespresso stops the traversal when it encounters a native or
abstract method since it does not have a method body. In addition,
an offloading system built on Bytespresso may provide a user-
defined “native” method, whose body is not traversed. For this aim,
Bytespresso provides an annotation @Native:

ONative("return sqrtf(vi);")
public static float squareRoot(float f) {
return (float)Math.sqrt(f);

Since a method squareRoot has an @Native annotation, its body
is not traversed. An abstract syntax tree for the sqrt method in
Math class is not extracted. A node object representing the method
body of squareRoot is an instance of a subclass of the default class
Function, that is, a custom class that does not contain an abstract
syntax tree of the method body. It only contains an argument to
the annotation "return sqrtf(v1);”. A code generator can use this
argument to generate code for the squareRoot method. It may
generate a function in the C language whose body is the same as
that argument and has a parameter v1 referring to the first argument
to that function.

6. Optimization

As part of deep reification, Bytespresso transforms extracted ab-
stract syntax trees for performance optimization of offloaded code.
Since deep reification uses runtime values when extracting abstract
syntax trees, constant propagation (and constant folding, or simple
partial evaluation) based on these runtime values is possible. This is
not a mandatory feature of deep reification but a useful extension.

Bytespresso recognizes that a final static field has a constant
value. If a reference to an object is a constant value and the object
has a final field, then this final field is also recognized as having
a constant value. Note that a free variable in a function closure
is currently implemented as a final field of the function object.
Bytespresso also recognizes that the arguments passed to the root
method (i.e. the second argument to the constructor of Reifier) are
constant values. If a variable is initialized with a constant value and
does not change its value, the variable is recognized as having a
constant value.



When a method is called with an argument and the argument is
recognized as a constant value, Bytespresso specializes the body
of the called method with that constant value, i.e. it constructs
a specialized abstract syntax tree for that method body. In this
specialized method body, that argument is recognized as a constant
value.

If a variable or field has a constant value, it is available from the
node object representing that variable or field in an abstract syntax
tree. A code generator using Bytespresso can exploit this constant
value. Furthermore, Bytespresso exploits this for devirtualization
(Aigner and Holzle 1996). If Bytespresso encounters a method call
and a reference to a called object is constant, it statically resolves
method dispatch and binds the method call directly to a particular
method declared in the class of the called object. It extracts only an
abstract syntax tree of this particular method.

Bytespresso also performs dead code elimination. If a constant
value is the value of a branch condition of if statement, its then or
else block not executed is eliminated from an abstract syntax tree as
dead code. A method call in the eliminated block is not examined
to find a called method or further extract an abstract syntax tree for
the method. Dead code elimination can be also used for delimiting
extraction. Bytespresso currently performs dead code elimination
only if a branch condition is either a constant value of boolean
type or an expression testing a constant value of int is equal to 0.

Although Bytespresso tends to specialize a method body, this
has a risk of code explosion. To avoid excessive specialization
and infinite regression due to recursive calls, if the number of the
specialized instances of the same Java method reaches a threshold,
Bytespresso stops specialization for that method. For the same
reason, arguments of primitive types such as int are not considered
for the specialization. Only if an argument of reference type is a
constant value, Bytespresso performs specialization.

7. Concluding Remarks

This paper presents the design for deep reification and Bytespresso
as its implementation for Java. Deep reification is a reflection mech-
anism for helping the development of a computation-offloading
system. It extracts a snapshot of the current environment necessary
for executing offloaded code. An offloading system can be devel-
oped by implementing only a code generator from the code and
objects contained in the snapshot.

There have been a few systems providing functionality simi-
lar to deep reification or Bytespresso. Lancet (Rompf et al. 2014)
allows programmers to directly control just-in-time (JIT) compila-
tion in Scala. Although it does not explicitly provide deep reifica-
tion as presented in this paper, programmers can access the byte-
code of a specified method at runtime. So they can also build an
offloading system on top of Lancet; a customized JIT compiler on
Lancet can generate GPU code instead of native CPU code. How-
ever, since Lance is for customizing a JIT compiler like OpenJIT
(Ogawa et al. 2000), making an extracted snapshot of the environ-
ment self-contained is not a main concern. In the context of JIT
compilation, it is customary to have escape hatches and interfaces
to account for dynamic situations. The resulting code of JIT com-
pilation does not run on a different platform; it can access missing
objects and code on demand.

Graal (Oracle 2012), which is used as the back-end of Lancet,
makes bytecode accessible from a running program through a
graph-based internal representation (IR). Although deep reification
adopts abstract syntax trees as its IR for straightforward translation
into a C-like language, the graph-based IR is good for optimization.
It is used, for example, for partial evaluation by Truffle (Wiirthinger
et al. 2013).

As we have already mentioned, there have been a number of sys-
tems for offloading computation from the JVM to GPUs. Although

171

a certain degree of deep reification (as we define it) is internally
performed in most systems, it is tightly embedded in the systems
and hence its implementation is not reusable. An article (Nystrom
et al. 2011) on Firepile mentions how Firepile constructs abstract
syntax trees while supporting dynamic method dispatch. According
to the article, Firepile seems to conservatively enumerate methods
on each call. Unlike deep reification, it seems to collect methods in
all available subclasses of the type of a called object.

Acknowledgement
This work was partly supported by JST CREST funding program.

References

G. Aigner and U. Holzle. Eliminating virtual function calls in C++ pro-
grams. In ECOOP 96 — Object-Oriented Programming, LNCS 1098,
pages 142-166, 1996.

S. Chiba. A metaobject protocol for C++. In Proc. of ACM OOPSLA, pages
285-299. ACM, 1995.

S. Chiba. Load-time structural reflection in Java. In ECOOP 2000, LNCS
1850, pages 313-336. Springer-Verlag, 2000.

Dotzler, R. Veldema, and M. Klemm. JCudaMP: OpenMP/Java on
CUDA. In Proc. of the 3rd Int. Workshop on Multicore Software En-
gineering, IWNMSE 10, pages 10-17. ACM, 2010.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Addison-Wesley, 1994.

A. C. P. Ganegoda, D. M. A. Samaranayake, L. S. Bandara, and
K. A. D. N. Wimalawarne. JConqurr — a multi-core programming
toolkit for Java. Int. Journal of Computer and Information Engineer-
ing, 3(7):596-603, 2009.

Nystrom, D. White, and K. Das. Firepile: Run-time compilation for
GPUs in Scala. In Proc. of the 10th ACM Int. Conf. on Generative
Programming and Component Engineering, GPCE ’11, pages 107-116.
ACM, 2011.

Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, and
F. Kimura. Openjit : An open-ended, reflective jit compiler framework
for java. In ECOOP 2000, LNCS 1850, pages 362—387. Springer-Verlag,
2000.

Oracle. Openjdk: Graal project. http://openjdk. java.net/projects/
graal, 2012.

P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch. Rootbeer: Seamlessly
using GPUs from Java. In Proc. of the 2012 IEEE 14th Int. Conf. on
High Performance Computing and Communication & 2012 IEEE 9th
Int. Conf. on Embedded Software and Systems, HPCC *12, pages 375—
380. IEEE Computer Society, 2012.

T. Rompf, A. K. Sujeeth, K. J. Brown, H. Lee, H. Chafi, and K. Olukotun.
Surgical precision jit compilers. In Proc. of the 35th ACM SIGPLAN
Conf. on Programming Language Design and Implementation, PLDI
’14, pages 41-52. ACM, 2014.

B. C. Smith. Reflection and semantics in Lisp. In Proc. of ACM Symp. on
Principles of Programming Languages, pages 23-35, 1984.

T. Wiirthinger, C. Wimmer, A. W68, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One vm to rule them all. In
Proc. of ACM Onward! 2013, pages 187-204. ACM, 2013.

Y. Yan, M. Grossman, and V. Sarkar. JCUDA: A programmer-friendly
interface for accelerating Java programs with CUDA. In Proc. of the
15th Int. Euro-Par Conf. on Parallel Processing, Euro-Par *09, pages
887-899. Springer-Verlag, 2009.

W. Zaremba, Y. Lin, and V. Grover. JaBEE: framework for object-oriented
Java bytecode compilation and execution on graphics processor units. In
Proc. of the 5th Annual Workshop on General Purpose Processing with
Graphics Processing Units, GPGPU-5, pages 74-83. ACM, 2012.

G.

Design Patterns.

N.



