
IPSJ SIG Technical Report

Better abstraction for efficient code in HPC programs

YungYu Zhuang1,a) Shigeru Chiba1,b)

Abstract: Slight code difference in HPC programs often results in significant performance change due to a variety
of hardware and dedicated performance tuning techniques. If better abstraction for efficient code could be given, it is
easier to revise or apply individuals of them for tuning performance on different platforms. However, HPC programs
hardly take code abstraction into account since existing abstraction techniques tend to cause an impact on performance;
efficient code might not be efficient anymore if it is implemented by existing abstraction techniques. Even though mix-
ing the performance concern with others has drawbacks, separating the performance concern is meaningless unless no
impact is introduced. We give examples in C language and incrementally improve abstraction to observe the impact
caused by existing techniques. We also show our observation on performance change due to small code modification
in different compilers and discuss future directions.

1. Introduction
This paper is a report on our research progress but not a re-

search result. We point out the problem and show our experiment
data, but have no solution yet. Toward the goal we discuss future
directions.

Since the scale of problems to resolve and the programs tar-
geted at them is going larger and larger, code abstraction is get-
ting important. As to the evolution of code abstraction has a long
history. It plays an important role in several topics related to mod-
ularity such as structured programming[2] and separation of con-
cerns[3]. Without code abstraction it is difficult to model a big
problem and modularize its implementation. A lot of language
features, for example object-oriented programming and aspect-
oriented programming, are thus developed for code abstraction
and code modularity. Nevertheless, HPC programs are far from
the evolution of programming languages since the language fea-
tures used in HPC programs must be pure and simple enough to
be optimized by the dedicated compiler for a specific platform. It
might be one of the reasons why Fortran and C are preferred to
implement HPC programs. Even though traditional programming
languages such as Fortran are still growing and being extended,
their users might choose to stay at an older version.

However, HPC programs are also facing the challenge of tack-
ling complicated problems and optimizing the performance on
various platforms. If a kind of code abstraction could be given,
the programming conventions assumed by various compilers can
be encapsulated and the techniques for tuning performance might
be easier to compose or decompose, plug or unplug, reuse and
share. It does not mean that hiding the tuning knowledge from
HPC programmers but means that helping HPC programmers to
tune performance with less efforts. HPC programmers can be

1 Dept. of Creative Informatics, The University of Tokyo
a) yungyu@acm.org
b) chiba@acm.org

aware of tuning techniques while quickly apply them. So far as
we know, currently doing code abstraction in HPC programs re-
lies on functions, macros, and libraries. We think it might be in-
teresting to see whether such existing abstraction techniques can
separate the performance concern or not, and thus conducted a
series of small experiments on code abstraction in C language. In
this paper we discuss neither C++ nor Java.

In the world of HPC the performance is the only metric to eval-
uate a program, but we were wondering if it is possible to improve
code abstraction while let the performance as good as the one
without code abstraction. We also have several observations on
the performance change due to small code modifications. This
motivates us to do several experiments on trying to abstract the
code in order to avoid bugs and reuse efficient code.

2. Motivation
The code abstraction has several benefits such as better read-

ability, better reusability, better maintainability, and better com-
posability. It has been discussed in other domains for a long pe-
riod and plays an important role in the evolution of programming
language. However, there is room for improvement on code ab-
straction of HPC programs since in most cases code abstraction
is not taken into account due to the concern about performance.
Nevertheless, we assume that code abstraction is helpful to reuse
efficient code, tune the performance, and avoid error-prone code.
Here we focus on the readability and the reusability to explain
what HPC programs can benefit from code abstraction.

2.1 Better readability
Since one of the purposes of HPC programs is simulation, vec-

tors are often used. To provide better readability, the representa-
tion of the vector and its operations should be close to how they
are written in the calculation on paper. However, they are usually
described by an array of numbers or several arrays of numbers
rather than an array of vector. The intention behide such repre-

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.11
2015/8/4

IPSJ SIG Technical Report

1 static float pos[N*3];

(a)

1 static float pos_x[N];
2 static float pos_y[N];
3 static float pos_z[N];

(b)

Fig. 1 Describing vectors by arrays of numbers

sentations might be the concern about performance, but here we
would like to discuss how it should be if such code abstraction
does not cause an impact on performance. For example, in a C
program for N-body simulation we might define an array for stor-
ing the positions of all bodies as shown in Fig. 1(a), where N is
the total number of bodies. Here all the positions of bodies are
stored in the same array and each body occupies three floating-
points to store its 3D coordinates. The vector for i-th body, (x, y,
z), is got by (pos[i*3], pos[i*3+1], pos[i*3+2]). They are also usu-
ally stored by three separate arrays as shown in Fig. 1(b). In this
case, the vector for i-th body is described by (pos x[i], pos y[i],
pos z[i]).
From the viewpoint of readability, such representations of vectors
have several drawbacks. First, an operation on a vector has to be
repeated three times to apply on each element of the vector. For
example, to calculate the addition of two vectors, we need to add
each element individually:
float x = pos_x[i] + pos_x[j];

float y = pos_y[i] + pos_y[j];

float z = pos_z[i] + pos_z[j];

Although the three statements should be put together to perform
the addition of the two vectors, there is no such constraint on
code-level. If the statement for z-direction is omitted or another
statement is inserted between the statements for y-direction and
z-direction, it might not be easy to know whether it is program-
mer’s intention or a bug. Second, it is hard to separate them into
a macro or a function since the number of values that have to
be returned is three. A macro cannot return a value (without the
extension supported by the GNU Compiler Collection[5]), and a
function can only return a value or a pointer. In C language a
widely used technique to overcome the limitation on the number
of return value is passing the address of the variables to be written
by parameters: however, variables must be prepared in advance
on the call site. To improve the readability, we can use the struc-
ture supported in C language to represent a vector:
typedef struct {

float x, y, z;

} Vec;

and encapsulate the operations on vectors into functions as shown
in Fig. 2. Such a Vec can describe the vector as what it looks
like on paper. The operations on vectors such as the addition are
atomic and easy to understand. If a 2D version is needed, it is
also easier—just modify the definition of Vec and the body of
vec add; no modification on the call site of vec add is necessary.

2.2 Making efficient code reusable
Tuning the performance for HPC programs is never easy. Ef-

ficient code should be reusable since a small code modification
often causes huge performance change. The reason is that a pro-
gram can be optimized to get good performance only if its code

1 Vec vec_add(Vec first, Vec second) {
2 Vec ret;
3 ret.x = first.x + second.x;
4 ret.y = first.y + second.y;
5 ret.z = first.z + second.z;
6 return ret;
7 }

Fig. 2 Separating the addition of vectors into a function

pattern can be accepted by the compiler. Programmers need to
try different code patterns with the constraint that the logic for
the other concerns cannot be changed. In order to get good per-
formance, HPC programmers are forced to implement their code
under a specific programming convention used inside the com-
piler for the platform to run on. Here we show our observations
to explain.

The first one was observed on the Fujitsu FX10 supercom-
puter[4]. We found that using a global variable for the reduction
causes an impact on the optimization performed by the Fujitsu C
compiler (fcc). However, such an impact was not observed when
using the Intel C compiler (icc) on our machine. Here we use the
Himeno benchmark[6] as an example. The one we used is the C
static allocate version available on its web site. In the benchmark
the function jacobi uses a local variable gosa to store the margin
of error in the calculation, and returns the value of gosa when
it ends. We modify this function to use a static global variable
instead of a local variable, and let it return void:
static float gosa;

void jacobi(int nn) { ... }

We compare the performance of the global variable version with
the original one, and the result is shown in Fig. 3(a) (named gvar
and orig). They are compiled by fcc with -Kfast and run on
one node of FX10 (SPARC64 IXfx 1.848 GHz processor with
16 cores)[10]. The result of comparison on parallel versions that
are compiled with -Kfast,parallel is shown in Fig 3(b). Note that
all the numbers used in this paper are the average of running the
program ten times. Without the parallelization the measured per-
formance before and after the modification are very close (orig:
563 MFlops, gvar: 561 MFlops). However, after the paralleliza-
tion is applied, the results are quite different (orig: 8316 MFlops,
gvar: 3940 MFlops). It shows that although the modification
causes almost no impact when only -Kfast is applied, it prevents
the program from being optimized for parallelization. Fig. 3(c)
shows the result of compiling the same program by icc with -fast
and running them on a machine with dual Intel Xeon E5-2687W
processors (Sandy Bridge EP, 3.1GHz, 8 cores). In this case the
impact is very small (orig: 7054 MFlops, gvar: 7062 MFlops).

Another performance impact due to small modification is also
observed on FX10. Calling a function in the condition of loop
causes an impact on the optimization performed by fcc. Again,
we modify the Himeno benchmark as an example. In the func-
tion jacobi of the Himeno benchmark the loop for iterating all
elements in the 3D grid looks like:
for(i=1 ; i<imax-1 ; i++)

for(j=1 ; j<jmax-1 ; j++)

for(k=1 ; k<kmax-1 ; k++){

:

}

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.11
2015/8/4

IPSJ SIG Technical Report

Himeno benchmark
!"#$$!"%$$

%&!$$

'$$

%''$$

(''$$

#''$$

)''$$

!''$$

"''$$

*+,-$ -./+$ 01/22$

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/

0
1+
)
$!

(a) fcc with -Kfast option

!"#$%%

"&'(%%

)($%%

(%%

#(((%%

)(((%%

"(((%%

'(((%%

*(((%%

$(((%%

+(((%%

!(((%%

&(((%%

,-./% /01-% 23144%

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/

0
1+
)
$!

(b) fcc with -Kfast,parallel option

!"#$%% !"&'%% !"##%%

"%%

("""%%

'"""%%

)"""%%

$"""%%

#"""%%

&"""%%

!"""%%

*"""%%

+,-.% ./0,% 12033%

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/

0
1+
)
$!

(c) icc with -fast option

Fig. 3 The difference on performance caused by using a global variable or
a function call in loop condition

1 int getimax() { return imax; }
2 int getjmax() { return jmax; }
3 int getkmax() { return kmax; }

Fig. 4 The accessor functions for imax, jmax, and kmax

If the variable accesses imax, jmax, and kmax are replaced with
their accessors, i.e. getimax(), getjmax(), and getkmax() as
shown in Fig. 4, the loop cannot be optimized by fcc well. As
shown in Fig. 3(a), the measured performance after this modi-
fication (named fcall) is about 185 MFlops. The measured per-
formance of the parallelization version is about 206 MFlops as
shown in Fig. 3(b). Although we expect function inlining will
be performed by the compiler and then cause no impact on per-
formance, the result shows that there is an impact on performance
due to this modification. After checking the optimization log gen-
erated by fcc, we found that indeed function inlining is done but
it is performed after the loop optimization. Since the function
calls has not been inlined yet when the loop optimization is per-
formed, the condition looks too complicated to optimize. This
unexpected performance impact is hardly classified as a bug of
fcc and can be regarded as a result of violating the programming
convention used inside fcc. Since the code does not match the
pattern assumed by fcc, the optimization for this code cannot be
applied. On the other hand, Fig. 3(c) shows that there is almost no
difference on performance between orig version and fcall version.

Similar things can be observed on icc as well. If we write a

1 float a = sqrtf(rx * rx + ry * ry + rz * rz + 0.01f);
2 float s = pos1[i].w / (a * a * a);

(a)

1 float a = 1.0f / sqrtf(rx * rx + ry * ry + rz * rz + 0.01f);
2 float s = pos1[i].w * (a * a * a);

(b)

Fig. 5 Multiplying by the result of dividing 1.0f by sqrt instead of dividing
by sqrt

N-body simulation

!"#$$
!"%$$!"&$$

'"'$$

("'$$

#"'$$

&"'$$

)"'$$

%"'$$

!"'$$

*"'$$

+,-.$,/0,1$ -23-4$

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/
0
1+
)
$!

(a) fcc with -Kfast option

!"##
!!##

!"##

$##

%$##

&$##

"$##

'$##

($##

)$##

!$##

*$##

+$##

,-./# -01-2# .34.5#

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/
0
1+
)
$!

(b) fcc with -Kfast,parallel option

!!""

!#"" !#""

$""

%""

&""

#""

'""

!$""

!%""

!&""

!#""

!'""

()*+"),-)." */0*1"

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/
0
1+
)
$!

(c) icc with -fast option

Fig. 6 The difference on performance caused by taking advantage from
rsqrt and using individual float arrays

code that matches the code pattern inside icc, the performance
can be greatly improved. Here we use the N-body simulation
as an example again. In the program we have two lines of code
that using sqrtf as shown in Fig. 5(a). We may modify it to take
advantage of function returning the reciprocal of the square root
(rsqrtf) provided by the compiler as shown in Fig. 5(b). In other
words, multiplying by the result of dividing 1.0f by sqrt instead
of dividing by sqrt. The performance of the two versions (orig
and rsqrt) are shown in Fig. 6. When using icc to compile, the
performance of rsqrt version compiled by icc is much faster than
the original one as shown in Fig. 6(c) (16 GFlops vs. 11 GFlops).
However, as shown in Fig. 6(a) and Fig. 6(b), such difference is
not obvious when using fcc.

The last example we are going to show is observed on icc as
well. As we mentioned in Sec. 2.1, to store the coordinates for
objects in N-body simulation we may use an array of structure or
individual arrays. The original version discussed in the previous

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.11
2015/8/4

IPSJ SIG Technical Report

example adopts an array of structure to store the 3D coordinates
and the weight. The indiv version shown in Fig. 6 shows the per-
formance of using 4 individual arrays rather than an array of a
structure that contain 4 variables. We can find that in the case
of icc the performance is greatly improved (orig: 11 GFlops, in-
div: 16 GFlops). However, such a significant difference is not
observed on fcc.

These examples show that the performance of a program heav-
ily depends on whether its code can match the code pattern that
can be optimized by the compiler. In other words, we have to fol-
low the specific programming convention assumed by the com-
piler that we are going to use. Since in the world of HPC dif-
ferent platforms usually need different dedicated compilers, we
are forced to write different versions based on different program-
ming conventions in order to get the best performance on those
platforms. This motivates us to attempt to abstract the code for
hiding the difference between various programming conventions.
If such code abstraction could be given, it is easier to switch be-
tween them for performance tuning. It is not to say that pro-
grammers should be unaware of such programming convention,
but means that programmers can improve the code for the perfor-
mance concern without modifying other code and further reuse
the tuning techniques in other programs.

3. Code abstraction with existing techniques
This section is a series of experiments on whether the perfor-

mance concern can be separated well by existing abstraction tech-
niques. In Sec. 2.2 the last example shows that the performance
of the version with code abstraction using struct (orig version)
seems worse than the one without code abstraction (indiv ver-
sion), though the difference depends on the compiler. In order
to know such an impact on performance due to code abstraction,
we implement abstraction for readability and reusability in two
programs with existing techniques. From the result of this exper-
iments we know that the performance concern cannot be sepa-
rated well by existing abstraction techniques. Below we explain
our modification for abstraction and show the numbers.

3.1 The abstraction for readability
The abstraction for readability can be done, but it is very slow.

The example we want to show is making the N-body simula-
tion program we mentioned in Sec. 2 more readable by using
functions, structures, and pointers. In the program we have two
buffers as shown in Fig. 7 and have functions map1 and sum1
for array pos1, map2 and sum2 for array pos2. The purpose
of the functions map1 and map2 is performing the motion for
every body in one round, and the functions sum1 and sum2 are
respectively called inside map1 and map2 to sum the forces on
a body. The operations inside map1 and map2, sum1 and sum2
are totally the same except the arrays they operate. This is a lit-
tle confusing since the code reviewer might not sure if the two
functions do really the same thing. Furthermore, ensuring the
consistency between such duplicated functions takes efforts. To
make the intention clear we merge them into two functions map
and sum, and use pointer to indicate which array to operate. Then
we further improve code abstraction by encapsulating vector op-

1 typedef struct {
2 float x, y, z, w;
3 } Vec4;
4 static Vec4 pos1[N];
5 static Vec4 pos2[N];

Fig. 7 The buffers used to store the 3D coordinates and the weight in our
N-body simulation program

1 float rx = p.x - pos[j].x;
2 float ry = p.y - pos[j].y;
3 float rz = p.z - pos[j].z;
4 float a = sqrtf(rx * rx + ry * ry + rz * rz + 0.01f);

(a)

1 Vec3 r = vec3_sub(p, pos[j]);
2 float a = sqrtf(vec3_mult(r, r) + 0.01f);

(b)

Fig. 8 Encapsulating vector operations in functions

N-body simulation

!"#$$!"%$$

#"&$$

!"#$$!"#$$!"#$$

%"%$$

'"%$$

#"%$$

("%$$

)"%$$

*"%$$

!"%$$

+"%$$

,-./$ 01-/1$ 01-/1$2$314,5$

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/
0
1+
)
$!

6784$

094-,$

(a) fcc with -Kfast option
!"## !$##

"##

!"## !$##

%&##

'##

('##

$'##

"'##

%'##

&'##

)'##

!'##

*'##

+,-.# /0,.0# /0,.0#1#203+4#

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/
0
1+
)
$!

5673#

/83,+#

(b) fcc with -Kfast,parallel option

!!""

!#""

$""

!!""

!#"" !#""

%""

#""

&""

'""

(""

!%""

!#""

!&""

)*+," -.*,." -.*,."/"0.1)2"

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/
0
1+
)
$!

3451"

-61*)"

(c) icc with -fast option

Fig. 9 The performance impact caused by merging functions and encapsu-
lating vector operations in this example

erations. In the original program, although we use struct to de-
clare the buffers, the operations on vectors are performed by cal-
culating each coordinate individually as shown in Fig. 8(a). As
discussed in Sec. 2.1, vector operations can be encapsulated to
improve code abstraction. We extract vector operations into func-
tions, for example vec3 sub and vec3 mult, and rewrite them as
shown in Fig. 8(b).

The measured performance of the three versions: the original
one (named orig), the one that merges functions (named merge),
and the one that further encapsulates vector operations (named
merge + vecop), is shown by the dark grey bars (marked with
func) in Fig. 9. From the result we can know the two modifica-
tions we made lowered the performance, especially the one that
encapsulates vector operations. In the case of fcc without paral-

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.11
2015/8/4

IPSJ SIG Technical Report

lelization, the measured performance of orig is about 6.2 GFlops,
the one of merge is about 6.0 GFlops, and the one of merge +
vecop is about 2.9 GFlops. In the case of fcc with paralleliza-
tion, the measured performance of them are about 73 GFlops, 72
GFlops, and 3 GFlops, respectively. As to the case of icc they
are about 11 GFlops, 12 GFlops, and 9 GFlops, respectively. The
reason might be due to the cost of calling functions and passing
structures, and the result of preventing the optimization. Another
interesting observation is that merging functions even slightly im-
proves the performance when using icc.

Using macros might be helpful, but its overheads are not zero.
The light grey bars marked with macro in Fig. 9 show the per-
formance of using macros instead of functions to implement the
above code abstraction. It shows that using macros can preserve
the performance in both the cases of fcc and icc, but has an im-
pact on fcc parallelization (for fcc without parallelization all the
three versions are about 6.2 GFlops, for icc they are about 11
GFlops, 12 GFlops, and 12 GFlops, while for fcc with paral-
lelization they are about 73 GFlops, 72 GFlops, and 45 GFlops).
Although this experiment shows that the impact caused by macros
is much smaller than the one caused by functions and structures,
it is still not zero. Furthermore, without the GCC extension the
macro in C does not allow returning a value as what the function
does; its usage is limited. Type checking and debugging is also
difficult. Using inline functions might be better but its overheads
are not zero, either. To sum up, existing techniques can be used
to abstract the code for readability, but the overheads caused by
them cannot be totally eliminated.

3.2 The abstraction for reusability
In this subsection we want to abstract the code for reusability.

As we discussed in Sec. 2.2, writing code abstraction for reusing
efficient code is one of our motivations. However, with exist-
ing abstraction techniques the abstraction for reusability might
be done, but the implementation is not fast ever. Here we use
the Himeno benchmark again to demonstrate the abstraction for
reusability and show its impact on performance. When we are
tuning the performance of our remake of the Himeno benchmark
based on our framework on FX10, we got a lot of advice from
Fujitsu. One of them is swapping the indexes of the 4D array.
As shown in Fig. 10(a) A 4D array in the Himeno benchmark ac-
tually contains several 3D arrays, and the indexes (n, i, j, k) are
used to indicate the (i, j, k) element in n-th 3D array. The idea is to
swap the indexes to (i, j, k, n). Since which one is faster depends
on the access pattern and the memory available on the platform,
we define an array and its accessor as shown in Fig. 10(b) to make
it easy to swap the indexes for performance tuning on a specific
platform. Now the client side of Float4Array always uses the
accessor FLOAT4ARRAY to access an element, and thus chang-
ing the order of the indexes inside Float4Array does not cause
additional modification on the client side; the tuning can be eas-
ily done by modifying Fig. 10(b) to Fig. 10(c). The next we are
going to do is abstracting the kernel calculation. We were won-
dering if we can quickly write similar stencil programs by simply
replacing the kernel calculation. If it is possible, we can reuse
the code that we have tuned. A well-known existing technique

1 static float a[4][MIMAX][MJMAX][MKMAX],
2 b[3][MIMAX][MJMAX][MKMAX],
3 c[3][MIMAX][MJMAX][MKMAX];

(a)

1 typedef float Float4Array[4][MIMAX][MJMAX][MKMAX];
2 #define FLOAT4ARRAY(a, n, i, j, k) (a[n][i][j][k])
3 static Float4Array a, b, c;

(b)

1 typedef float Float4Array[MIMAX][MJMAX][MKMAX][4];
2 #define FLOAT4ARRAY(a, n, i, j, k) (a[i][j][k][n])
3 static Float4Array a, b, c;

(b)

Fig. 10 Defining an array and its accessor to make it easy to swap the in-
dexes

Himeno benchmark

!"#$$!%&$$

'"#$$

"%($$

#'&$$

)$$

'))$$

*))$$

#))$$

())$$

!))$$

"))$$

&))$$

%))$$

+,-.$ /,,$ /,,$0$12,3$

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/

0
1+
)
$!

3+,4/5$

67/8829$

(a) fcc with -Kfast option

!"#$%% !&"$%%

#!'%%

##"#(%%

")&%%

'%%

)'''%%

&'''%%

$'''%%

!'''%%

#''''%%

#)'''%%

*+,-% .++% .++%/%01+2%

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/

0
1+
)
$!

2*+3.4%

56.7718%

(b) fcc with -Kfast,parallel option

!"#"$$!"%#$$!%%%$$

%&'#$$ %&'#$$

($$

#((($$

%((($$

"((($$

)((($$

'((($$

!((($$

*((($$

+,-.$ /,,$ /,,$0$12,3$

!
"
#
$%
&"
'
()
"
&*
+
&!

#
,
-"
(.
,
(/

0
1+
)
$!

3+,4/5$

67/8829$

(c) icc with -O3 -mcmodel=medium option

Fig. 11 The performance impact caused by defining arrays and using func-
tion pointer for kernel calculation in this example

to do such thing is function pointer, while it is also known for
its performance impact. To know how much it costs we further
extract the kernel calculation by declaring the following function
pointer:
static float

(*kernel)(int i, int j, int k, float* r);

and extract the kernel calculation to a function named my kernel
and assign the address of my kernel to the function pointer ker-
nel:
kernel = &my_kernel;

The place that executing the kernel calculation is replaced with
the call to the function pointed by kernel:
(*kernel)(i, j, k, &gosa);

where i, j, k, and &gosa are the arguments given to the function.
Fig. 11 shows the result. The drak grey bars marked with nor-

mal refer to the versions without swapping the indexes, while

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.11
2015/8/4

IPSJ SIG Technical Report

the light bars marked with swapped refer to the version with
swapped indexes. If we look at the first step that defining ar-
rays (named arr), it is successful. For the case of fcc without
parallelization, the performance of the original one is about 563
MFlops, the modified version (named arr) is about 587 MFlops,
and the one after swapped is about 684 MFlops. For the case of
fcc with parallelization, the performance of them are about 8316
MFlops, 8436 MFlops, and 11319 MFlops, respectively. On the
other hand, swapping the indexes decreases rather than increases
the performance in the case of icc. Note that due to the mem-
ory limitation we have to specify the option -mcmodel=medium
and use -O3 instead of -fast. It is not surprising that the per-
formance of using function pointer (named arr + kern) is very
low for the case of fcc either with or without parallelization. The
numbers are about 163 MFlops and 180 MFlops, respectively.
Even after the indexes are swapped, they are about 317 MFlops
and 324 MFlops, respectively. In the case of icc, however, it does
not cause a notable impact (arr: 6321 Mflops, arr + kern: 6222
MFlops. It might be related to memory model or optimization,
and shows that such performance tuning needs analysis and try
for a specific platform. Readers might be wondering if macros
can be used to implement such code abstraction with limited per-
formance impact as we showed in previous subsection. Unfortu-
nately, so far as we know, the macro in C is not powerful enough
to do such abstraction.

The experiment result points to an interesting but sad conclu-
sion: with existing abstraction techniques, if we want to abstract
the efficient code for reusability, the code will be no longer effi-
cient. Given that you have an idea on performance improvement,
that idea does not work anymore if you implement that idea by
a library or something else. Indeed class library might be a pos-
sible solution to separate the performance concern, but its flexi-
bility is quite limited if function pointer cannot be used. On the
other hand, once we use function pointer, the abstraction for the
performance concern becomes meaningless.

4. Related work and future directions
Although in Sec. 3 we got a discouraging conclusion that the

efficient code cannot be abstracted, there is an assumption that
using existing abstraction techniques such as typedef, struct,
macros, functions, and function pointers. If we look into the rea-
son why they cannot abstract the code well, we can find the root
cause is that the abstracted code does not match the code pattern
used inside the compilers. In other words, existing abstraction
techniques allow programmers to abstract the code but cannot let
the code be accepted by the compilers. If there were a way to
write down the code with abstraction but translate them to the
code that matches the code pattern before giving to the compil-
ers, we could enjoy both code abstraction and efficiency.

4.1 Metaprogramming
In fact, there is such a technique—metaprogramming. It has

been developed for a long time, but so far as we know it has not
been used to abstract the code for HPC programs yet. Metapro-
gramming is powerful but complicated. Metaobject protocols[8],
the template in C++[1], the macro in Lisp, and other metapro-

gramming techniques can be used to separate the performance
concern by translating code while preserving the runtime perfor-
mance. The dynamic parts that tend to cause an impact on perfor-
mance can be statically translated at compile-time and thus their
runtime overheads can be eliminated. However, how to make it
easy to use is still a challenge. Programmers need to consider
their programs at meta-level. Moreover, debugging is also a diffi-
cult part to tackle.

4.2 Domain-specific language
Domain-specific language (DSL)[7] can be regarded as a com-

promise since it simplifies the usage of metaprogramming and
provides limited code translation support. Research activities
such as Physis[9] can be classified into this category. With DSL it
is possible to give a limited set of language features and translate
the DSL code to the code that can be optimized by the dedicated
compiler for a specific platform. The problem of DSL approach is
the flexibility. When a DSL does not fit the needs, it takes efforts
to modify the DSL specification and its compiler.

On the other hand, class libraries are easier to use and mod-
ify. If a DSL can be customized as easy as a class library, it
might be able to separate the performance concern from other
concerns while rapidly customizing the DSL based on the needs
found during the progress of development. That is what we are
developing, a DSL framework named Bytespresso. Bytespresso
combines DSL with metaprogramming to allow programmers to
develop their own DSLs and translate the DSL code to the one
that matches the code pattern accepted by the compilers. How to
avoid increasing its complexity while giving full flexibility is our
challenge.

5. Conclusions
Since HPC programs are getting more and more complicated

due to complex tuning techniques, even a small modification
tends to cause either a bug or an impact on performance. We
showed how a slight code difference may cause a significant per-
formance change on different platforms by several examples. We
suggested that such a code difference should be regarded as a per-
formance concern and be separated from other concerns to make
it easier to do performance tuning on various platforms without
touching the code for other concerns. We also explained what we
can benefit from code abstraction and then attempted to use exist-
ing techniques to abstract the code. However, unfortunately the
experiments showed a discouraging result that code abstraction
tends to cause a performance impact. With existing abstraction
techniques, whenever we want to abstract efficient code, the code
becomes no longer efficient. The reason is that the abstracted
code is far from the programming convention that compilers can
optimize. To tackle this issue, code translation is a promising so-
lution since the abstracted code can be translated to the code pat-
tern accepted by the compilers. Metaprogramming and domain-
specific language are possible approaches, but how to reduce the
complexity of usage is still a challenge.

6ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.11
2015/8/4

IPSJ SIG Technical Report

References
[1] Abrahams, D. and Gurtovoy, A.: C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond (C++ in
Depth Series), Addison-Wesley Professional (2004).

[2] Dahl, O. J., Dijkstra, E. W. and Hoare, C. A. R.(eds.): Structured Pro-
gramming, Academic Press Ltd., London, UK, UK (1972).

[3] Dijkstra, E. W.: The Structure of the &Ldquo;THE&Rdquo;-
multiprogramming System, Commun. ACM, Vol. 11, No. 5, pp. 341–
346 (online), DOI: 10.1145/363095.363143 (1968).

[4] Fujitsu: PRIMEHPC FX10, Fujitsu Limited (online), available from
⟨http://www.fujitsu.com/jp/products/computing/servers/supercomputer/primehpc-
fx10/⟩ (accessed 2015-07-09).

[5] GNU Compiler Collection (GCC): Statements and
Declarations in Expressions, GNU (online), avail-
able from ⟨https://gcc.gnu.org/onlinedocs/gcc/Statement-
Exprs.html#Statement-Exprs⟩ (accessed 2015-07-09).

[6] Himeno, R.: Himeno benchmark, Source code（C, static allocate ver-
sion）, Advanced Center for Computing and Communication, RIKEN
(online), available from ⟨http://accc.riken.jp/2465.htm#itemid4535⟩
(accessed 2015-07-09).

[7] Hudak, P.: Modular domain specific languages and tools, Software
Reuse, 1998. Proceedings. Fifth International Conference on, pp. 134–
142 (online), DOI: 10.1109/ICSR.1998.685738 (1998).

[8] Kiczales, G. and Rivieres, J. D.: The Art of the Metaobject Protocol,
MIT Press, Cambridge, MA, USA (1991).

[9] Maruyama, N., Nomura, T., Sato, K. and Matsuoka, S.: Physis: An
Implicitly Parallel Programming Model for Stencil Computations on
Large-scale GPU-accelerated Supercomputers, Proceedings of 2011
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’11, New York, NY, USA, ACM, pp.
11:1–11:12 (online), DOI: 10.1145/2063384.2063398 (2011).

[10] Oakleaf-FX,Oakbridge-FX: FX10 Supercomputer system, Su-
percomputing Division, Information Technology Center, The
University of Tokyo (online), available from ⟨http://www.cc.u-
tokyo.ac.jp/system/fx10/⟩ (accessed 2015-07-09).

7ⓒ 2015 Information Processing Society of Japan

Vol.2015-HPC-150 No.11
2015/8/4

