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Abstract—In event-driven programming we can react to an
event by binding methods to it as handlers, but such a handler
binding in current event systems is explicit and requires explicit
reason about the graph of event propagation even for straightfor-
ward cases. On the other hand, the handler binding in reactive
programming is implicit and constructed through signals. Recent
approaches to support either event-driven programming or re-
active programming show the need of using both the two styles
in a program. We propose an extension to expand event systems
to support reactive programming by enabling the automation of
handler bindings. With such an extension programmers can use
events to cover both the implicit style in reactive programming
and the explicit style in event-driven programming. We first
describe the essentials of reactive programming, signals and signal
assignments, in terms of events, handlers, and bindings, then point
out the lack of automation in existing event systems. Unlike most
research activities we expand event systems to support signals
rather than port signals to event systems. In this paper we also
show a prototype implementation and translation examples to
evaluate the concept of automation.

Keywords—event-driven programming; reactive programming;
signal; behavior;

I. INTRODUCTION

Recently reactive programming attracts a lot of interest
since the need for reactive programs is steeply increasing, for
example applications for mobile devices and web browsers.
FRP (Functional-Reactive Programming) [11], [30], [31], [22],
[32], [6] successfully introduces signals into functional pro-
gramming. The concept of signals might come from data-flow
languages [29], [5], [3], [2], [15], where variables are described
as continuous data streams rather than states at a specific time.
Such variables are signals, which can participate in calculation
to generate other signals or be given to functions for triggering
the reactions; they are very declarative. This programming
style is widely used in hardware design and spreadsheet
programs, where the expressions are usually described without
explicitly specifying the time. When FRP introduces signals
into functional programming for reactive programs such as
GUI programs, a time signal and event streams are also used in
order to properly describe the temporal states in the program.
An event denotes something happening, for example a mouse
click occurs, and an event stream is a series of events on the
timeline. Programmers can use event streams with the time
signal to get a constant value (snapshot) of a signal at a specific
time. They help to describe the states on the timeline more
specifically while keeping the description declarative. This
style is followed by several research activities and inspires the
contributions towards writing GUI libraries for FRP [24], [9].

In these systems signals are given to describe the propagation
of value change and then the compiler can translate them to
some kind of events underneath.

The OO (Object-Oriented) community has been developing
events, which are similar to signals but different concepts. In
OO languages that directly support event-driven programming,
events are first-class objects and an event handler bound to a
specific event is implicitly invoked when that event happens.
Although the OO community notices the convenience of using
signals, OO languages have not been directly integrated with
signals. Signals are brought into existing event systems and ex-
isting GUI libraries are wrapped in FRP style [20], [17], [26].
Although events have been used with objects for a long time
and well integrated into OO languages, propagating values by
events is not implicit enough as signals. All handler bindings,
in other words the statements for setting up the methods that
react to specific events, must be explicitly specified according
to the graph of event propagation. Even for a straightforward
use case of events, programmers have to prepare all events and
handlers, and bind them together one by one. For a complex
event scenario programmers need to prepare too many events
and handlers, and can lead to redundant event propagation.
Thus, the research activities devoted to OO integration borrow
signals from reactive programming and focus on how to
integrate signals with events and objects. Most research result
come up with a conclusion that the existence of events is still
necessary, and signals are used to implicitly propagate parts
of the change of values [27]. As a result, events and signals
appear in both the FRP solution and the OO integration.

This research is targeted at allowing programmers to use
both the implicit style and the explicit style in a program since
the research activities mentioned above show the need of using
both the two style together. The contributions of this paper
can be summarized as follows. First, we compare event-driven
programming with reactive programming to point out the need
of implicit binding in event systems. Second, we show how
event systems can be expanded to cover the implicit style in
reactive programming by enabling the automation of handler
bindings. In order to show the feasibility of our idea, we give
a prototype implementation of the automation on an event
system, and discuss the advantages over the one without the
automation. The issues that might happen when implementing
this concept on OO languages are discussed as well. Moreover,
the analysis on the essentials of reactive programming might
give a better understanding of events and signals.
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Fig. 1. A sheet in a spreadsheet program

II. MOTIVATING EXAMPLE

Programs written in reactive programming can also be
implemented by event-driven programming, though the code
might look quite different. Here we take the example of
spreadsheet programs to discuss the equivalence between what
reactive programming can do and what event-driven program-
ming can do. Although spreadsheet programs are developed
for accounting, they can be regarded as an interactive program-
ming environment. Cells are fields (or variables), and sheets
are some sort of objects that hold a large number of fields.
We can give a cell a constant value or an expression, where
formulas can be used to perform complex calculations. Fig. 1
shows a sheet in a spreadsheet program, where B1 and C1 are
given constant values: 2 and 1 respectively, and A1 is given
an expression “B1 + C1”. As a result, the value in the cell A1
will be always equal to the sum of the values in the cells B1
and C1 even if you arbitrarily change the value of B1 or C1.

Such a sheet defined in spreadsheet programs can be
easily implemented by FRP [11] languages. For example,
Fig. 2 shows an implementation in Flapjax [20], which is a
JavaScript-based language supporting FRP. This program uses
HTML elements to draw the sheet and cells, then gets and sets
signals from/to the cells. Here we do not explain the syntax
of Flapjax in detail but focus on the assignment in Line 18.
We can consider the assignment without the declaration of a:

a = b + c;

Note that what the three variables hold are signals rather than
constant values. The assignment looks not much different from
the one in imperative programming languages such as Java, but
the meaning is quite different. Whenever b or c is changed, a
is updated automatically. The assignment is always effective
and looks like an equation (although it is not bidirectional:
only the change of the right-hand side can trigger the update
of the left-hand side). Signals are very similar to the cells
in spreadsheet programs, and thus can easily describe the
expression in the sheet example. In reactive programming all
updates are automatic and implicit.

On the other hand, such an assignment in imperative pro-
gramming languages is only effective just after the assignment
is executed, and the value at the left-hand side might not be the
same as the one at right-hand side later until the assignment is
executed again. Nevertheless, it is still possible to implement
such a program by imperative programming languages with
events; we can use events to denote the value change and ask
an event handler to execute the assignment again. Here we use
EScala [14], an event system that provides events, handlers,
and bindings based on Scala [23], to write the sheet example.
EScala allows to declare a special kind of field named event to

1 <body onload="loader()">
2 <table width=200>
3 <tr><th>A1</th>
4 <th>B1</th>
5 <th>C1</th>
6 </tr>
7 <tr><th><input id="A1" size=2 value="0" /></th>
8 <th><input id="B1" size=2 value="2" /></th>
9 <th><input id="C1" size=2 value="1" /></th>

10 </tr>
11 </table>
12 </body>
13

14 <script type="text/flapjax">
15 function loader() {
16 var b = extractValueB("B1");
17 var c = extractValueB("C1");
18 var a = b + c;
19 insertValueB(a, "A1", "value");
20 }
21 </script>

Fig. 2. Using Flapjax to implement the sheet example

1 class Sheet {
2 var a: Int = _
3 var b: Int = _
4 var c: Int = _
5 def setB(nb: Int) { b = nb; }
6 def setC(nc: Int) { c = nc; }
7

8 evt eb[Unit] = afterExec(setB)
9 evt ec[Unit] = afterExec(setC)

10 def ha() { a = b + c; }
11 eb += ha;
12 ec += ha;
13 }

Fig. 3. Using EScala to implement the sheet example

denote something happening. The event can be either implicitly
triggered before/after a method call or imperatively triggered
through a method-call syntax. As shown in Fig. 3, we have
two methods setB and setC, which set the fields b and c
respectively (Lines 5–6). Then we can declare two events eb
and ec that denote the happening of value change of b and c
through setB and setC using the primitive afterExec given by
EScala, respectively. Line 8 says that eb is the event occurring
after the method setB is executed—here we assume that setB
only changes the value of b and leave the discussion about
join point model in Sec. III. Line 9 is interpreted similarly
for ec. The next step is preparing a handler that reacts to the
two events properly. As in most event systems, methods play
the role of handler in EScala. As shown in Line 10, in this
example we need a handler ha that executes the assignment
for updating the value of a according to the values of b and
c. Finally we have to connect the events and the handler, or
else the latter is unrelated to the two events (Lines 11–12).
The two statements mean that ha should be executed after eb
and ec

1. Such statements are handler bindings, which bind the
handler to events. The calculation in the event version is the
same as the signal version, but it is manual and explicit. All
events must be manually declared, and the handler bindings
for them must be manually stated as well. These drawbacks
not only make the code longer but also increase the risk of
bugs. When the body of ha (Line 10) is modified, we must
carefully update the handler bindings in Lines 11–12 to ensure
the consistency between the bindings and the handler body.

1Note that EScala supports event composition to improve the abstraction,
but here we just enumerate events and bind the handler to them individually
to simplify the explanation. For example, we can declare a composed event
instead of eb and ec as shown below:
evt ebc[Unit] = afterExec(setB) || afterExec(setC)
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Fig. 4. The signal assignment in the sheet example

The observation that both the two paradigms can implement
reactive programs motivates us to analyze the essentials of
reactive programming from the viewpoint of event-driven
programming. By comparing the essentials of reactive pro-
gramming with event-driven programming we can know how
to expand event systems to cover the implicit style in reactive
programming.

III. AN EXPANDED EVENT SYSTEM SUPPORTING
REACTIVE PROGRAMMING

In this section we propose an expanded event system
that can cover both event-driven programming and reactive
programming. To know what the extension should be, we
clarify what the essentials of reactive programming are and
point out what is necessary to support them in event-driven
programming. We first describe how these essentials work
in reactive programming, and then describe them in terms
of events, handlers, and bindings. The comparison between
the two descriptions reveals an insufficiency in existing event
systems, and led us to propose the expanded event system.

A. The essentials of reactive programming

The essentials of reactive programming are signals and
signal assignments. Fig. 4(a) shows the signal assignment in
the sheet example mentioned in Sec. II, where a is a signal
and b + c is the expression assigned to the signal. We can give
the description of signals and signal assignments as follows:

• A signal (i.e. behavior) is a time-varying field or
variable, the value of which is implicitly reevaluated
when any of the signals involved in its reevaluation
varies. Then its value change also implicitly causes all
the reevaluation that it is involved in.

• A signal assignment is composed of a signal and
the expression assigned to the signal. The signal
expression describes how to reevaluate the value of
the signal. It also implies that which signals are
involved in this reevaluation and the expression has to
be reevaluated for setting the value of this signal when
any of the involved signals varies. Here the involved
signals are the signals that are read in the expression.

In the sheet example a is the signal, the value of which will be
implicitly reevaluated when any of b and c varies according
to the expression in the signal assignment “a = b + c”.

B. In terms of events, handlers, and bindings

Although event-driven programming and reactive program-
ming are different paradigms, what they can do are very
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Fig. 5. The extension must be able to automatically infer the involved events
and implicitly bind the handler to them

similar. They both can be used to implement reactive programs
such as the sheet example we mentioned in Sec. II. We can
also translate the essentials of reactive programming, signals
and signal assignments, into a description in terms of events,
handlers, and bindings as listed below:

• A signal is translated to a field or variable whose value
will be set when any of the events involved in its
reevaluation occurs.

• A signal assignment is translated to a handler for
setting the value of the field (or variable) at the left-
hand side by reevaluating the expression at the right-
hand side. Furthermore, this handler is bound to all
events involved in the expression at the right-hand
side. Here the involved events are the value change
of the fields (or variables) read in the expression.
Whenever such an involved event occurs, the handler
is executed to reevaluate the expression and then set
the value of this field (or variable).

Fig. 4(b) shows how the signal assignment in the sheet exam-
ple is translated in an event system. This signal assignment is
described as a handler for executing “a = b + c” to update the
value of a. Note that we can simply say the handler is bound
to all the involved fields (or variables) inside itself since the
field (or variable) at the left-hand side is written rather than
read.

C. The expanded event system

By comparing the two descriptions we can know that it is
possible to translate a signal assignment to a handler. However,
in existing event systems programmers have to manually check
the body of the handler and infer the involved events by them-
selves. There is no mechanism to bind a handler to multiple
events at once without event composition, either. Programmers
have to enumerate the involved events or specify certain
rules to filter the involved events manually. Once the body
of the handler is modified, the bindings might be no longer
consistent with the handler body. In other words, existing event
systems lack a kind of automation, which means automatically
inferring the involved events and implicitly binding the handler
to them.

As shown in Fig. 5, an extension to event systems for sup-
porting reactive programming must provide such automation in



handlers, which means that a handler can be implicitly bound
to all the involved events that are automatically found inside
itself. If an extension can enable the automation in handlers,
all existing reactive mechanisms can be simply translated to
events and handlers.

1) automatic inference: The extension must be able to
automatically infer all the involved events in a handler. As
shown in Fig. 5, the involved events, eb and ec, are the events
for the value change (or more broadly, the setting) of the
fields (or variables) that are read in the handler, b and c. In
the terminology of AOP (Aspect-Oriented Programming) these
involved events are the join points matched by the set pointcuts
for the fields that are read in the handler. Furthermore, we can
consider the handler in a more generic way since the body
of a handler in event systems might have method calls and
conditional branches. In that case, the fields (or variables)
that are read in the methods called by the handler must
be recursively inferred since they might also be involved in
the reevaluation. The fields (or variables) in all conditional
branches should also be taken into account since any of them
might be involved in the reevaluation at runtime.

2) implicit binding: The extension must also be able to
implicitly bind a handler to all the involved events inside itself.
When any involved event inside the handler occurs, the handler
will be executed to update the values of fields (or variables).
Such a binding must be implicit enough to bind a handler
to multiple events without specifying the events individually.
Event composition is not satisfying either since we still need to
explicitly compose individual events into a higher-level event.
A similar concept is the filter in event systems or the predicate
in AOP, but they are usually used to filter events selected by
other event detectors and compose the result into a higher-level
one.

IV. A PROTOTYPE IMPLEMENTATION

In order to show the feasibility of automation, we expand
DominoJ [33] (DJ) to ReactiveDominoJ (RDJ) by enabling the
automation in method slots as an example of such an expanded
event system. DJ is a language that supports event-driven
programming, which motivates us to propose RDJ. Note that
RDJ is a prototype implementation and has several limitations,
but the extension we proposed in Sec. III is more generic and
can be implemented in any event system.

A. Method slots and DominoJ

DJ is a Java-based language developed for introduc-
ing method slots, a generic construct supporting multiple
paradigms. A method slot is an object’s property, which can
hold more than one closure at the same time. DJ replaces the
methods in Java with method slots. All method-like declara-
tions in DJ are method slot declarations. For example,

public void setX(int nx) { this.x = nx; }

the method-like declaration for setX is a method slot decla-
ration. It is some sort of field that holds an array of closures.
When the method slot is called, all closures in it are executed in
order with the same given arguments and the value returned by
the last one will be regarded as the return value of this method

1 public class Sheet {
2 private int a, b, c;
3 public void setB(int nb) { b = nb; }
4 public void setC(int nc) { c = nc; }
5 public void updateA() { a = b + c; }
6 }

Fig. 6. A simplified sheet example using fields

slot (if its return type is not void). The body of a method slot
declaration is the default closure; it is optional. If the default
closure is declared, it will be created and inserted into the array
when the owner class is instantiated. At runtime the closures
in a method slot can be added or removed using assignment
operators, for example using += operator as shown below:

s.setX += o.update;

means that creating a closure calling the method slot o.update
and appending it to the end of array in s.setX.

We can use DJ as an event system. A method slot decla-
ration is equivalent to an event declaration. When the method
slot is called, the event (i.e. the join point in the terminology of
AOP) occurs and the handlers (closures) in it are executed. The
default closure of a method slot can be regarded as the default
handler for this event. Besides imperatively triggering by calls,
a method slot can also be implicitly triggered after or before
other method slot calls by using the assignment operators:

⟨event⟩ ⟨assignment operator⟩ ⟨handler⟩;
The statement using += operator we showed above is used to
let the event (method slot) update on an object o be triggered
after s.setX is triggered. Note that in DJ a method slot can
be not only an event but also a handler for other events. Thus,
there is no difference between event-event binding and event-
handler binding, and all the bindings are dynamically set at
runtime by the assignment operators.

B. A new syntax for enabling the automation

RDJ allows using the braces operator to enable the au-
tomation in method slots (i.e. handlers) in DJ. For example, if
we have a method slot updateA in a class Sheet as shown
in Fig. 6, we can use the following statement to enable the
automation in updateA:

{this.updateA} += this.updateA();

When the value of b or c is set by setB/setC, this.updateA()
will be executed to update the value of a. In other words, the
statement means that binding the handler this.updateA() to all
the involved events inside itself as we described in Sec. III.
The braces operator makes it possible to bind a handler to a
set of events that are involved in its body without explicitly
specifying them.

The braces operator selects the involved events inside
a method slot by checking all closures in it at runtime.
The semantics of the inference in the braces operator is
described by a piece of pseudocode as shown in Fig. 7,
where M is a method slot and OM is the owner object
of M, getClosuresIn returns all the closures in a specified
method slot, findFieldsReadIn returns all the fields read in



1 procedure braces_operator(OM, M) {
2 S = new Set();
3 foreach c in getClosuresIn(M):
4 foreach f in findFieldsReadIn(c):
5 if f isOwnedBy OM:
6 foreach m in findMethodSlotsThatWrite(f):
7 if m isOwnedBy OM:
8 S.add(m);
9 foreach (ON, N) in findMethodSlotsCalledIn(c):

10 if ON isOwnedBy OM:
11 S.add(braces_operator(ON, N));
12 return S;
13 }

Fig. 7. The inference in the braces operator

1 public class Debug {
2 private boolean e;
3 private String f;
4 private Object g;
5 public void setE(boolean ne) { e = ne; }
6 public void setF(String nf) { f = nf; }
7 public void setG(Object ng) { g = ng; }
8 public void resetG() { g = null; }
9 public boolean getG() { return g; }

10 public void print() {
11 if(e) System.out.println(f);
12 else System.out.println(g);
13 }
14 }

Fig. 8. Another class Debug

a specified closure, findMethodSlotsThatWrite returns all the
method slots that write the specified field in the default closure,
and findMethodSlotsCalledIn returns all method slots that are
called in a specified closure. First, all the involved fields in
the method slot, which are the fields read during executing the
closures in this method slot, are inferred (Lines 3–4). Then
all the method slots that write any of these involved fields are
regarded as the involved events and selected (Lines 6–8). Take
Fig. 6 as an example. {this.updateA} infers a set of method
slots that write any of the involved fields, this.b and this.c,
and thus the method slots that write this.b or this.c, this.setB
and this.setC, are selected. Any method slot that is called in
any closure of the method slot given to the braces operator
are recursively inferred (Lines 9–11) since the fields read in
the called method slots are also involved in the execution of
this method slot. In this example no method slots are called
in updateA, so that this step is skipped. If another method
slot d.print is called in updateA, where d is a field added to
Sheet to hold an object instance of another class Debug as
shown in Fig. 8. Then the set of involved events inferred by
{updateA} can be considered as shown below:

{this.updateA}
→ (this.setB, this.setC)∪{d.print}
→ (this.setB, this.setC)∪ (d.setE, d.setF, d.setG, d.resetG)
→ (this.setB, this.setC, d.setE, d.setF, d.setG, d.resetG)

Note that only the method slots that belong to the objects
held in the fields in this owner object are recursively inferred
(Line 10 of Fig. 7). To simplify the design, we simply
ignore the method slots that belong to the objects held in
local variables and parameters. The design decision and the
limitation of RDJ will be discussed in a later subsection.

Some readers might notice that in Fig. 7 we only consider
the fields and the method slots on the same object (Lines 5
and 7). It is a simplified inference in RDJ based on OO
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Fig. 9. The braces operator infers the writers

design rather than a limitation of the extension we proposed in
Sec. III. We observed the convention of OO design and made
the assumption: usually fields are only directly used inside
the owner object and other objects must access them through
getters and setters. We can consider the relation between all the
method slots reading a field and all the method slots writing the
field as an extended getter-setter relation. We name it reader-
writer relation since there might be more than one getter/setter
and a getter/setter might get/set more than one field. The
reader-writer relation extends getter-setter relation to N-to-N
and is not limited to the naming scheme. The inference of the
braces operator (Fig. 7) is a process of finding all the writers
by a given reader through a set of fields on the owner object as
shown in Fig. 9. For example, in Fig. 8 using {this.getG} will
select both this.setG and this.resetG. Note that the events
selected by the braces operator are the calls to the writers. In
the terminology of AOP they are the join points matched by
method pointcuts but not field pointcuts. As a result, in RDJ
the execution of a closure is atomic and a handler cannot be
bound for being executed just before/after the field is written
inside a closure. The join point model is consistent with the one
adopted by DJ, which is a region-in-time model [18]. Matching
an arbitrary join point inside a closure is not supported.

To make code clear the underscore symbol _ can be used
within the braces operator to refer to the method slot at
the right-hand side of the assignment operator. For example,
enabling the automation in updateA can be simplified:

{_} += this.updateA();

It is automatically translated by the RDJ compiler. In RDJ,
the method slot that we want to infer the involved events (the
method slot given to the braces operator) and the handler for
reevaluation (the method slot call at the right-hand side) are
not necessarily the same. The syntax of the braces operator
allows observers to register a handler through a public method
slot for getting a notification when private fields in the subject
object are written.

C. Rewriting the motivating example

To show how the automation can be used we first use DJ to
write the sheet example in Sec. II and then rewrite it by RDJ
to compare with Flapjax. In order to make it easier to compare
we assume that there were a Flapjax-like Java-based language,
which could be used to rewrite Fig. 2 to Fig. 10(a). The
class IntCell (Fig. 11) is used to emulate the HTML element
and follows the getter-setter manner in OO design rather than
accessing a field directly; it might be used to wrap a GUI
component in existing libraries by extending a class such as the
JTextField in Swing. Behavior is a class representing signals,
the usage of which, such as extractValueB and insertValueB,



1 public class PlusSheet
2 extends Sheet {
3 private IntCell a1 = null;
4 private IntCell b1 = null;
5 private IntCell c1 = null;
6 public PlusSheet() {
7 super(2, 3);
8 setHeaders("A1", "B1", "C1");
9 a1 = new IntCell(0);

10 b1 = new IntCell(0);
11 c1 = new IntCell(0);
12 Behavior b = b1.extractValueB();
13 Behavior c = c1.extractValueB();
14 Behavior a = b + c;
15 a1.insertValueB(a);
16 add(a1);
17 add(b1);
18 add(c1);
19 pack();
20 }
21 public static
22 void main(String[] args) {
23 PlusSheet p = new PlusSheet();
24 p.show();
25 }
26 }

(a)

1 public class PlusSheet
2 extends Sheet {
3 private IntCell a = null;
4 private IntCell b = null;
5 private IntCell c = null;
6 public PlusSheet() {
7 super(2, 3);
8 setHeaders("A1", "B1", "C1");
9 a = new IntCell(0);

10 b = new IntCell(0);
11 c = new IntCell(0);
12 add(a);
13 add(b);
14 add(c);
15 pack();
16 b.setValue += this.changed;
17 c.setValue += this.changed;
18 this.changed += this.updateA;
19 }
20 public void changed(int v);
21 public void updateA(int v) {
22 a.setValue(b.getValue() + c.getValue());
23 }
24 public static
25 void main(String[] args) {
26 PlusSheet p = new PlusSheet();
27 p.show();
28 }
29 }

(b)

1 public class PlusSheet
2 extends Sheet {
3 private IntCell a = null;
4 private IntCell b = null;
5 private IntCell c = null;
6 public PlusSheet() {
7 super(2, 3);
8 setHeaders("A1", "B1", "C1");
9 a = new IntCell(0);

10 b = new IntCell(0);
11 c = new IntCell(0);
12 add(a);
13 add(b);
14 add(c);
15 pack();
16 {_} += this.updateA();
17 }
18 public void updateA() {
19 a.setValue(b.getValue() + c.getValue());
20 }
21 public static
22 void main(String[] args) {
23 PlusSheet p = new PlusSheet();
24 p.show();
25 }
26 }

(c)

Fig. 10. Using Flapjax-like pseudocode (a), DJ (b), and RDJ (c) to implement the sheet example

1 public class IntCell {
2 private int value = 0;
3 public void setValue(int v) { this.value = v; }
4 public int getValue() { return this.value; }
5 public Behavior extractValueB() { ... }
6 public void insertValueB(Behavior b) { ... }
7 :
8 }

Fig. 11. The source code of IntCell

is the same as in Fig. 2. Line 14 shows the merit of reactive
programming: the propagation among signals can be simply
described.

Fig. 10(b) is the DJ version, where only events are used.
Note that no additional event declaration is needed since
the getter/setter declarations in DJ can also be considered as
the events declared for getting/setting the field. Line 14 of
Fig. 10(a) is now described in terms of getters and setters
as shown in Line 22 of Fig. 10(b). However, the handler
ha (updateA) will not be automatically executed to update
the value of a. We need to check the body of ha and find
eb and ec by ourselves as mentioned in Sec. II. Here the
events eb and ec are b.setValue and c.setValue respectively
since we know the relation between getter and setter. Then
we can bind the handler this.updateA to them individually, or
prepare a higher-level event this.changed as shown in Line 20
for event composition (Lines 16–17) and bind this.updateA
to this.changed (Line 18). This program works well as the
Flapjax version in Fig. 2, but the inference is not automatic and
the binding is explicit. Once the body of updateA is modified,
we have to carefully check the bindings in order to make them
consistent with the events inside the body.

Fig. 10(c) shows the RDJ version. Most lines of code are
the same as the DJ version, but the bindings and the higher-
level event in Lines 16–18,20 of Fig. 10(b) are eliminated. Note
that we still need a binding to enable the automation in the
handler (Line 16 of Fig. 10(c)), otherwise the compiler cannot
know whether it is the implicit style used in reactive program-
ming or the explicit style used in event-driven programming.

1 public class Sheet {
2 private int b, c, d;
3 public void updateA() {
4 int a;
5 a = this.b + this.c;
6 this.d = a;
7 }
8 public void count(int s) {
9 ...

10 }
11 :
12 }

(a)

1 public class Sheet {
2 private int a, d, e;
3 public void updateA(int b) {
4 int c;
5 :
6 this.a = b + c;
7 }
8 public void notify() {
9 updateA(this.d + this.e);

10 }
11 :
12 }

(b)

Fig. 12. Only fields are taken into account

We use the new syntax given by RDJ to automatically infer all
the involved events in the handler this.updateA and implicitly
bind the handler itself to them. By comparing Fig. 10(a) with
Fig. 10(c), it is also easy to see how a signal can be translated
to a field as we discussed in Sec. III. The signal assignment
for a in Line 14 of Fig. 10(a) is moved to a method slot
updateA (Lines 18–20 of Fig. 10(c)), and an additional line
for enabling its automation must be stated outside of it (Line 16
of Fig. 10(c)). On the other hand, programmers do not have to
explicitly specify which ones are signals, and transformations
to/from constant values such as insertValueB/extractValueB
are not necessary. RDJ expands the events in DJ to make a
step towards reactive programming.

D. The limitations of RDJ

In this subsection we discuss the limitations of RDJ, which
are not the limitations of the extension we proposed in Sec. III
but might occur when implementing it on an OO language such
as DJ.

Only fields can be translated to signals. In Sec. III, we
described a signal as a field or a variable that is written in
a handler with the automation, but in RDJ we ignore variables
(i.e. local variables and parameters). There is a limitation that
a local variable in RDJ cannot work as signals. As shown in
Fig. 12(a), the assignment of the local variable a (Line 5)



cannot be translated to a handler with the automation and
passed to other method slots. The reason is that the braces
operator is used for method slots, while a method slot in RDJ
is an object’s property and cannot be declared inside a method
slot body like an inner method or closure. If the assignment
in Line 5 of Fig. 12(a) can be wrapped in a local method slot,
the braces operator could enable the automation in the local
method slot to let a be used as a signal later.

Only fields are used to infer involved events. In RDJ, local
variables and parameters are not involved in the inference.
For example, using the braces operator on the method slot
updateA in Fig. 12(b) cannot select involved events inside
b and c. Since RDJ is a Java-based language, where the
arguments are evaluated with pass-by-value strategy, a special
class [26], [17] or a first-class method slot might be necessary
to wrap the expressions passed to updateA.

The usage of the braces operator is not declarative. In
RDJ, the automation of a handler is dynamically enabled
by a statement in a method slot body rather than statically
declared in its owner class. This means the concern of en-
abling the automation might be tangled with other concerns.
This issue can be considered as a consequence of allowing
dynamically inferring events at runtime. The braces operator
can be regarded as a kind of event detector, but it is not
separated from other code [4]. For example, if the automation
of updateA in Fig. 6 must be enabled for all object instances
of Sheet, programmers have to add the binding statement to
the constructor of Sheet. However, this statement is used to
enable the automation in updateA but not directly related to
the construction of a Sheet object. A new modifier for method
slots, for example reactive, could be introduced as syntax
sugar to make it declarative. However, this design limits the
way to give arguments and only the involved events in the
default closure can be inferred.

Difficult to filter only the events for value change. As we
mentioned in Sec. III an expanded system should be able to
infer the events for value change or more broadly write access
since the former is a subset of the latter. However, in RDJ there
is no easy way to filter out the events occurred when writing
fields with the same values; it is hard to get only the events
for value change. A possible solution is to check the values
in the fields at the beginning of the handler or insert another
handler to check whether the handler should be called or not,
but programmers have to manage the history of the values for
fields. The history-based language features for AOP such as
[1] or CEP (Complex Event Processing) [16], [12], [8] might
be better solutions to resolve this issue in such an expanded
event system.

Propagation loop cannot be totally avoided. When a field
is not only read but also written in a handler, enabling the
automation in this handler might cause a propagation loop. In
current design of RDJ, the compiler can avoid such a case by
excluding a handler from the involved events for itself. For
example, even if the updateA in Fig. 6 is modified to:

public void updateA() { a += b + c; }

enabling the automation does not bind updateA to itself. In
this case the intention is clear since an update is not expected to
trigger itself again. However, if two handlers are set to trigger

each other, it is hard to know programmers’ intention. For
example, suppose that we have one more method slot named
updateB in the class Sheet in Fig. 6:

public void updateB() { b = a + c; }

and the automation in updateA and updateB are both enabled.
When updateA is called, an endless loop will happen. In
modern spreadsheet programs such circular reference can be
detected and a warning will be shown. However, in program-
ming it is hard to detect such propagation loop until runtime. A
static analysis of the dependencies between fields should help
detect endless loops, but a loop might only appear depending
on certain conditions at runtime. This issue also happens
in FRP languages, and might remind readers of the advice
loops in AspectJ. What currently RDJ supports is similar to
applying the concept of !cflow(advicexecution()) in AspectJ
to handlers. A more generic solution to this issue might be
introducing execution levels [28] to reactive programming.

V. EVALUATION

Since in Sec. IV-C the usability of such an expanded event
system has been shown by rewriting the motivating example,
in this section we further translate complex use cases of signals
to evaluate its capability. Before that, we briefly go through
the RDJ compiler implementation to explain how it works, and
measure the impact of introducing the automation to DJ.

A. Preliminary microbenchmarks

In the current RDJ implementation2, the inference is di-
vided into two parts. At compile-time for every default closure
the reference to all its writer method slots are prepared. At
runtime the braces operator collects the reference carried by
the closures in the given method slot as described in Fig. 7.
Note that only the default closure is used to determine whether
a method slot is a writer or not. For example, the compiler
prepares the reference to b.setValue and c.setValue for the
default closure of updateA in Fig. 10(c). Then at runtime
all the reference carried by the closures in this.updateA are
collected. If we add a closure calling another method slot
o.debug, the reference carried by the closures in o.debug
will be recursively collected.

To measure the impact of enabling the automation in
method slots we can consider only the inference overheads
since a binding using the braces operator is eventually boiled
down to the bindings that are manually enumerated in DJ. For
example, the binding in Line 16 of Fig. 10(c) is boiled down
to the following bindings by inference:

b.setValue += this.updateA();
c.setValue += this.updateA();

The cost of these bindings in RDJ is the same as in DJ
except that a closure must be dynamically created to hold
the arguments passed to the handler. Since the arguments
passed to the handler might be non-literal and thus need to
be dynamically evaluated, it is not able to create the closure

2The prototype compiler of RDJ is built on top of DJ and JastAddJ [10],
and available from the project webpage.



!"#$%&'()!*+,

the default closure 

the closure added by 
assignment operators 

-%(*.&/,

.%$*!0)1&*,

2%$*!0)1&*,

!"#$%&!"#$%"&'()%*"+,"-.+/'*%/"0&"#$%"(%#$+1"/.+#"

'(")*%&!"#$%"&'()%*"+,"

(%#$+1"/.+#/"-2**0%1"0&"

#$%"1%,2'.#"-.+/'*%"

*"+%&!"#$%"&'()%*"+,"$+3/"#$*+'4$"#$%"

-.+/'*%/"211%1")5"2//04&(%&#"+3%*2#+*/"

2)11,

2)
33
4
,

Fig. 13. The metrics for measuring the impact

in advance. A way to avoid the additional overheads is to
prohibit programmers from giving non-literal arguments to the
handler. In the following preliminary microbenchmarks we
compare the two implementations to separate the overheads
of creating the handler closure from the inference overheads:
RDJ1 always creates the handler closure while RDJ2 does not;
though in both cases no arguments are given. The three metrics
we use to measure the impact of the inference are shown
in Fig. 13. We bind and then unbind a method slot to the
involved events of another method slot one million times to
get the average. The results of running the microbenchmarks
on OpenJDK 1.7.0 65 with Intel Core i7 2.67GHz 4 cores
and 8GB memory are shown in Fig. 14. Note that the DJ
compiler was version 0.2 taken from DominoJ project web
site, and the result shown in each graph includes the time
of performing a binding and an unbinding. Fig. 14(a) shows
that binding and then unbinding the same number of method
slots in RDJ1 always takes three times as long as in DJ. On
the other hand, the performance of RDJ2 is very close to
DJ; the inference overheads are negligible and do not grow
with the breadth. The difference can be considered as the
overheads of creating the handler closure. In Fig. 14(b) we
inserted a number of closures that call a method slot whose
default closure carries no reference to measure the overheads
of iterating a closure. The result is linear and shows that the
average of iterating a closure carrying nothing is about 30ns
in both RDJ1 and RDJ2. In Fig. 14(c) the only one method slot
is selected through a number of method slot calls. Similarly,
the result is also linear in both implementations, and shows the
overheads of traversing an object are about 217ns. To benefit
from both the implementations the current version of RDJ
compiler allows arbitrarily giving arguments, but automatically
optimizes when no arguments need to be evaluated; the impact
is not significant. Furthermore, the inference overheads only
appear in binding or unbinding a handler.

B. Translation examples

We have shown typical translation examples of signals, but
it might be interesting to check if it is possible to translate
complex use cases such as the examples given in the REScala
paper [26]. REScala is a hybrid event system that supports both
events and signals, and provides conversion API as primitives
for complex usage of signals. Translating such complex use
cases in REScala to RDJ not only evaluates the feasibility of
the extension we proposed in Sec. III but also gives a good
understanding of such kinds of primitives for signals.
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Fig. 14. The three microbenchmarks

The signals and primitives given in REScala can be lowered
to fields, method slots, and bindings in RDJ according to
the following translation rules. A Var is translated to a field
with the same type. A Signal is translated to a field and a
method slot (handler), and the automation for that method slot
should be enabled if any Var or Signal is used in the signal
assignment. An evt (event) is translated to a method slot that
is bound to all the events given in the event declaration by
using operator +=. In general, one line for declaring a Signal
in REScala will be translated to three lines in RDJ, and one
line for declaring an evt in REScala will be translated to at
least two lines in DJ and RDJ. For a Signal, RDJ needs one
line for declaring a field, one line for declaring a method slot
for updating the value in the field, and one line for enabling
the automation in the method slot. For an evt DJ and RDJ
need one line for declaring a method slot and at least one line
for binding; if there are more than one event given at the right-
hand side of the event declaration, more bindings are needed
for event composition.

The first example we are going to check is the direct
conversion from a signal to an event as shown in Fig. 15(a).
Note that the signal canLive in Lines 3–5 of (a) is translated
to the field canLive, the method slot updateCanLive, and
the binding for enabling the automation in updateCanLive
as shown in Lines 3–7,10 of (b); the event shouldDie in
Line 6 of (a) is translated to the method slot shouldDie3 and
the bindings for it as shown in Lines 8,11–12 of (b). The
function changed used in Line 6 of (a) is a primitive used
to convert the signal canLive to an event, which is exactly
the call to the handler updateCanLive in (b) since changed
means the event when the given signal is updated. Such a
REScala code can be translated to RDJ code step by step,

3The keyword $retval in DJ is used to get the value returned by the previous
closure in the same method slot.



1 val age = new Var(0)
2 val size = new Var(1)
3 val canLive: Signal[Boolean] = Signal {
4 (age()<=maxAge) && (size()<=3000) && (size()>=1)
5 }
6 evt shouldDie = canLive.changed && !canLive() || killed

(a)
1 int age = 0;
2 int size = 1;
3 boolean canLive = true;
4 boolean updateCanLive() {
5 canLive = (age<=maxAge) && (size<=3000) && (size>=1);
6 return !canLive;
7 }
8 boolean shouldDie() { return $retval; };
9 // then within the body of a method slot

10 {_} += this.updateCanLive();
11 this.updateCanLive += this.shouldDie;
12 this.killed += this.shouldDie;

(b)

Fig. 15. Rewriting the changed example (a) to (b)

1 evt click: Event[(Int, Int)] = mouse.click
2 val circle: Var[(Int, Int),Int] = Var((1,1),10)
3 val lastClickOnCircle: Signal[Boolean] = Signal{
4 over(click.hold(), circle())
5 }

(a)
1 void click(Point p);
2 Circle circle = new Circle(new Point(1,1), 10);
3 Point holdClick = new Point(0,0);
4 void updateHoldClick() { holdClick = p; }
5 boolean lastClickOnCircle = false;
6 void updateLastClickOnCircle() {
7 lastClickOnCircle = over(holdClick, circle);
8 }
9 // then within the body of a method slot

10 mouse.click += this.click;
11 this.click += this.updateHoldClick;
12 {_} += this.updateLastClickOnCircle();

(b)

Fig. 16. Rewriting the hold example (a) to (b)

though the lexical representation tends to be a little longer. The
next example is shown in Fig. 16(a), where the function hold
is a primitive for converting an event to a signal. Here how to
translate of click, circle, and lastClickOnCircle (Lines 1–3)
is the same as the steps in the previous example. However,
click.hold() in Line 4 is an anonymous signal converted from
the event click, so that we need an extra field holdClick and
an extra method slot updateHoldClick for updating holdClick
as shown in Lines 3–4 of Fig. 16(b). Furthermore, we need
an extra statement that binds updateHoldClick to the event
click (Line 11) since function hold means updating the value
of the anonymous signal when the given event occurs. The
third example is function fold as shown in Fig. 17(a), which
is a primitive used to perform stateful conversion of events
to signals. The function fold in Line 2 takes an initial value
0 and a function that is used to evaluate the value of the
signal nClick when the event click occurs. In this case, the
function taken by fold is exactly the handler for updating
the field nClick—the method slot updateNClick in Line 3
of Fig. 17(b). Furthermore, the event at the left-hand side of
fold, click, is the event that updateNClick must be bound to as
shown in Line 6 of (b). The last example we want to discuss
here is function snapshot, which is a primitive introduced
to integrate signals into event-driven computations. In Line 3
of Fig. 18(a) function snapshot returns a signal to lastClick
whose value is updated according to the value of another signal

1 evt click: Event[(Int, Int)] = mouse.click
2 var nClick: Signal[Int] = click.fold(0)( (x, ) => x+1 )

(a)
1 void click(Point p);
2 int nClick = 0;
3 void updateNClick(Point p) { nClick++; }
4 // then within the body of a method slot
5 mouse.click += this.click;
6 this.click += this.updateNClick;

(b)

Fig. 17. Rewriting the fold example (a) to (b)

1 evt clicked: Event[Unit] = mouse.clicked
2 val position: Signal[(Int,Int)] = mouse.position
3 val lastClick: Signal[(Int,Int)] = position snapshot clicked

(a)
1 void clicked();
2 Point position = new Point(0,0);
3 void updatePosition() { position = mouse.position; }
4 Point lastClick = new Point(0,0);
5 void updateLastClick() { lastClick = position; }
6 // then within the body of a method slot
7 mouse.clicked += this.clicked;
8 {_} += this.updatePosition();
9 this.clicked += this.updateLastClick();

(b)

Fig. 18. Rewriting the snapshot example (a) to (b)

position when the given event clicked occurs. In RDJ, it means
assigning the value of position to lastClick when the event
clicked occurs. Thus, what we need to do is to set the value
of position to lastClick in the body of updateLastClick as
shown in Line 5 of (b) and bind updateLastClick to the event
clicked (Line 9 of (b)).

To conclude, these complex use cases of signals in REScala
can be translated to RDJ code step by step according to the
translation rules we explained above. It might give a clear
understanding of such primitives for signals since the RDJ
code shows how to describe them in an event system where
the signal notation is not given. It also shows the automation
we proposed is sufficient even in these complex use cases
and then the primitives for signals can be simply translated
to handler bindings. Although the number of lines of code in
RDJ is increased, it can be expected and does not explode; it
is generally two or three times as long as in REScala. Note
that the drawback that the binding in RDJ is not declarative is
not a limitation of the extension proposed in Sec. III but the
limitation of DJ. As a consequence of allowing the addition or
removal of closures in a method slot at runtime, the binding
must be a statement within the body of a method slot rather
than a declaration.

VI. RELATED WORK

In the world of events, more and more techniques are
introduced to make events more powerful and expressive. For
example, Ptolemy [25] supports quantification and type for
events, EventJava [13] considers event correlation, and EScala
[14] discusses implicit events found in AOP. However, such
advanced event systems still lack the implicit style in reactive
programming. Other research activities such as Frappé [7]
and SuperGlue [19] can be regarded as examples of using
events and signals together since they use signals in specific



components. The signals are considered as objects’ properties.
This approach allows using signals in a limited scope at
language level for a specific usage.

Other examples of using events along with signals include
the library approach such as Flapjax [20]. This approach
makes it easy to use signals in existing languages since
signals are represented by existing elements in the languages.
There are also several libraries developed for the reactive
support in collections. The incremental list in Scala.React
[17] is a functional-reactive data structure for Scala [23],
which can automatically propagate incremental change. The
Reactive Extensions for .NET [21] is a library for writing
asynchronous and event-based programs with LINQ. Although
in these libraries signals might be implemented through events
underneath, the involved events cannot be automatically in-
ferred. Programmers need to manually specify which fields or
variables are signals in order to ask the underneath to create
handler bindings properly.

VII. CONCLUSION

We analyzed the essentials of reactive programming from
the viewpoint of event-driven programming, and pointed out
the need of implicit binding in existing event systems. To
satisfy this need we proposed an extension that enables the
automation of handler bindings to support the implicit style
in reactive programming. Then we gave an implementation
to show the feasibility of such an extension. Although the
implementation is a prototype that has several limitations,
it showed the advantages over the event system without the
automation. The design decisions and limitations happening
when implementing the extension on OO languages are dis-
cussed as well.
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