
Calculation Coverage Testing
in Scientific Applications

Yoshiki Sato
Information Technology Center

The University of Tokyo
2-11-6 Yayoi, Bunkyo-ku

Tokyo, Japan
yoshiki@cc.u-tokyo.ac.jp

Shumpei Hozumi
Graduate School of

Information Science and
Technology

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku

Tokyo, Japan
hozumi@csg.ci.i.u-

tokyo.ac.jp

Shigeru Chiba
Graduate School of

Information Science and
Technology

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku

Tokyo, Japan
chiba@acm.org

ABSTRACT
A typical implementation of scientific applications includes a
large number of iterative calculations. For performance opti-
mization, these calculations are often partitioned, grouped,
and reordered for execution. Since this refactoring is repeat-
edly performed during development, it is one of the major
source of bugs and thus tool support is necessary for debug-
ging. This study discusses this problem and proposes tool
support through a testing framework. This testing frame-
work can help developers perform the tests we call calculation
coverage testing. It investigates whether the grouped calcu-
lations cover all the calculations performed by the original
(and often naively implemented) program. It also investigates
whether their execution order is correct. To demonstrate
this idea, we also presents HPCUnit, our prototype testing
framework for Java, and then reports an empirical study
applying it to the Java Grande Forum Benchmark Suite.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools

General Terms
Design, Languages, Verification

Keywords
Aspect oriented programming, domain specific language, sci-
entific computation, unit testing

1. INTRODUCTION
Typical scientific applications involve programs that ana-

lyze and solve scientific problems on a large scale high perfor-
mance computer. Their computation, referred to as stencil

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

computation [12], comprises iterations of massive numbers of
calculations to simulate the temporal changes of a physical
model. The physical model is often implemented using itera-
tive finite-difference techniques over a spatial grid. A typical
implementation of the spatial grid is a multi-dimensional
array if the simulation is implemented in a programming lan-
guage such as C, C++, Fortran, and Java. At each iteration
for each time tick, the next value of every element of the
array is calculated from its previous value and the values of
its neighboring elements.

A naively implemented scientific application is a program
with a simple structure, with only the mathematics in the
program being complex. However, since execution perfor-
mance is a crucial concern in this application domain, the
programs of real scientific applications are written with vari-
ous complex programming techniques for performance tuning,
for example, for improving cache hit ratios and hiding com-
munication latency. Hence, the resulting programs are often
extremely complicated and debugging the implementation
of these techniques consumes large amount of development
time.

This study discusses tool support required for this type
of debugging. First, we argue that programming techniques
for performance tuning share a common idea. The kernel
computation of most scientific applications applies a simple
calculation to every element of a large array. Performance-
tuning techniques partition the elements and group them
with their neighbors. Next, they reorder the execution of
the calculations applied to the elements by considering the
groups. Calculations in the same group are executed together
on the same node, in particular, if they exist on a distributed
memory machine. In NVIDIA Compute Unified Device
Architecture (CUDA), a group of 32 threads calculations
composes a warp. This reordering enhances data locality
and achieves a better cache hit ratio than a naive ordering,
for example, iterating over the elements from first to last.

This grouping, referred to as calculations grouping, is a
major source of difficulty in coding and debugging. Since the
grouping is often complex, it can be difficult for developers
to test whether the grouping is consistently implemented. A
typical bug caused by calculation grouping is an incorrect
specification of the boundary of a group of elements. The
boundaries of some groups might overlap, or they might be
separate, and some elements might not belong to any group

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
c© 2015 ACM. 978-1-4503-3620-8/15/07...

http://dx.doi.org/10.1145/2771783.2771807

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
IS
S
TA
*
Ar

tifact *
A
E
C

350

(and thus the values of the elements would not be calculated
at all). Such a coverage gap bug often occurs while the
developer is modifying the program to reorder calculations.
Developers must attempt various types of reordering on a
trial-and-error basis to achieve the best performance.

This study proposes the need for tests to detect such a
coverage gap bug, referred to as calculation coverage testing.
Such a testing framework must support developers to ensure
that the values of all the elements are calculated without
duplication or loss. Such a framework has received little
attention from the software engineering perspective. To
illustrate an example of such a framework, we present our
testing framework, named HPCUnit, which is our initial
prototype for calculation coverage testing of Java programs.
The framework allows the developer to specify in a domain-
specific language, i.e., which part of the code implements the
kernel calculation of each element. Next, it automatically
translates the Java program to include the logging code of the
kernel calculations. After the program is run, the generated
logs are collected and analyzed by the Java program written
by the developer to verify that the calculation grouping is
correct.

The remainder of the paper is organized as follows. Sec-
tion 2 shows the motivation for calculation grouping, and
then describes calculation coverage gap. Section 3 introduces
the idea of the calculation coverage testing and the design
of the HPCUnit, which it evaluates through an empirical
study on the Java Grande Forum Benchmark Suite (JGF), a
suite of popular real world scientific applications. Section 4
discusses related work. Section 5 concludes the paper.

2. TECHNIQUES FOR PERFORMANCE OP-
TIMIZATION

First, this section presents typical optimization techniques
in scientific applications and shows that they are based on
the same idea we call calculation grouping. The typical
computation of a scientific application comprises a number
of small kernel calculations and optimization techniques that
divide the calculations into small groups and execute every
group in an appropriate order. Next, we describe calculation
grouping as a frequent bug source. This type of bug is called
a coverage gap bug since it arises from the resulting groups
that do not exactly cover all the calculations.

2.1 Calculation Grouping

2.1.1 Loop Optimization
Loop optimization, also known as loop tiling, is similar

to cache blocking and is a well-known calculations grouping
technique for improving cache hit ratios in scientific appli-
cations. It attempts to partition the iterations of a loop for
executing kernel calculations into smaller groups fitting the
cache size to exploit locality. The grouped calculations are
spread over both spatial and temporal dimensions until the
data size required by the calculations exceeds the size of cache
memory. Code 1 shows an example code of two-dimensional
matrix transposition. After calculations are grouped using
loop tiling, the steps of the original i, j-loops are changed
from 1 to bs, with the result that the loops are grouped into
bs × bs matrices, as shown in Figure 1. In the newly created
ii, jj-loops, the read accesses to the matrix B are efficiently
performed as long as the sequential accesses to the matrix
data are within the processor cache line sizes.

1/∗ Before t i l i n g ∗/
2f o r (i =0; i<x s i z e ; i++)
3f o r (j =0; j<y s i z e ; j++)
4A[i] [j] = B[j] [i] ;
5
6/∗ After t i l i n g ∗/
7f o r (i =0; i<x s i z e ; i+=bs)
8f o r (j =0; j<y s i z e ; j+=bs)
9f o r (i i=i ; i i <min(i+bs , x s i z e) ; i i ++)
10f o r (j j=j ; j j<min(j+bs , y s i z e) ; j j++)
11A[i i] [j j] = B[j j] [i i] ;

Code 1: Loop tiling

Figure 1: Calculations are grouped into a tile

A calculation grouping similar to the one seen in loop
tiling is also observed in optimized code of stencil computa-
tion, which exploits cache blocking [23] or time skewing [27,
26, 20, 9]. Code 2 illustrates a simplified five-point stencil
computation, which sums up the values of neighbors. After
stencil computation is spatially grouped along i, j-loops
similar to the previous example, the original iterations are
partitioned into smaller sets of calculations by the inner-most
ii, jj-loops, whose sizes are specified by xsize and ysize.
Time skewing is a more effective loop tiling optimization that
allows more calculations to be processed for improving tem-
poral locality among temporal iterations. With time skewing
applied, calculation groups are extended to include the calcu-
lations at different time steps. The calculation groups by ii,
jj-loops in the five-point stencil code are enlarged to include
the calculations executed at several consecutive time steps
(the number of the steps is specified by tsize). Thus, some
calculations will be executed before all the calculations as
the previous time steps are executed.

2.1.2 Using a Third-party Library
Scientific applications implemented using third-party li-

braries might also involve calculation grouping. Such a sce-
nario is found in the implementation of real-space density-
functional theory (RSDFT) [44, 15] from first-principles quan-
tum mechanical electronic structure calculations. Its core
program module, called Gram-Schmidt (GS) orthonormal-
ization, a method for orthonormalizing a set of vectors in an
inner product space is implemented using the basic linear
algebra subprogram (BLAS) [10] library to exploit access
locality. BLAS is a set of low-level subroutines for linear
algebra operations such as matrix multiplication. One of the
advantages of BLAS is that it is highly tuned to achieve the
best cache hit ratios using various programming techniques
including loop optimization as mentioned previously. Other
advantages are the maturity of its implementation and its
large user base.

To use the BLAS library, calculation grouping must be
modified to fit the inputs accepted by BLAS. For example, the
calculations of GS orthonormalization are divided into groups
processed using the matrix-multiplication function, groups
using the matrix-vector multiplication function of BLAS, and

351

1// Or ig ina l code
2f o r (t=0; t<t imesteps ; t++)
3f o r (i =1; i<xs i ze −1; i++)
4f o r (j =1; j<ys i ze −1; j++)
5C[i] [j] =
6s t e n c i l (C[i +1] [j] + C[i −1][j] +
7C[i] [j] +
8C[i] [j +1] + C[i] [j −1])) ;
9
10// After applying cache b lock ing
11f o r (t=0; t<t imesteps ; t++)
12f o r (i =1; i<xs i ze −1; i+=bx)
13f o r (j =1; j<ys i ze −1; j+=by)
14f o r (i i =1; i i <min(xs i ze −1, i+bx) ; i i ++)
15f o r (j j =1; j j<min(ys i ze −1, j+by) ; j j++)
16C[i i] [j j] =
17s t e n c i l (C[i i +1] [j j] + C[i i −1][j j] +
18C[i i] [j j] +
19C[i i] [j j +1] + C[i i] [j j −1]) ;
20
21// After applying time skewing
22f o r (i =1; i<xs i ze −1; i+=bx)
23f o r (j =1; j<ys i ze −1; j+=by)
24f o r (t=0; t < t s i z e ; t++) {
25tc = t s i z e − t − 1
26xmin = max(0 , i−2∗t) ;
27xmax = min(x s i z e+2∗tc , i+bx−2∗t)
28ymin = max(0 , j−2∗t) ;
29ymax = min(y s i z e+2∗tc , i+by−2∗t)
30f o r (i i = xmin ; i i < xmax ; i i ++)
31f o r (j j = ymin ; j j < ymax ; j j++)
32C[i i] [j j] =
33s t e n c i l (C[i i +1] [j j] + C[i i −1][j j] +
34C[i i] [j j] +
35C[i i] [j j +1] + C[i i] [j j −1]) ;
36}

Code 2: 5-point stencil computation

Figure 2: The calculations by the triple loops of GS orthonor-
malization. The right illustrates the case in which the calculations
are grouped to use the BLAS library

others. A simple implementation of GS orthonormalization
uses triple-loop calculations, as shown in Code 3, where A

and B are an array of N vectors, whose size is M. Line 9
is the kernel calculation of GS. The entire calculation, an
iterative calculation over a triangular prism constructed by
the loop parameters i, j, and k, is illustrated in the upper
figure in Figure 2. The lower figure in Figure 2 shows the
calculations of the modified program shown in the lower
part of Code 3. The quadrangular and small triangular
prisms represent the calculations processed using the general
matrix multiplication (GEMM) and the general matrix-vector
multiplication (GEMV) of BLAS, respectively.

2.1.3 Offloading
The last calculation grouping scenario is observed in dis-

tributed computing through the Message Passing Interface
(MPI),the existing standard of inter-node communication in
scientific computing. In this scenario, calculations are of-
floaded onto multiple distributed processors. Since MPI does
not provide shared memory abstraction, an array must be
partitioned into sub arrays on every processing element (PE),
and the calculations must also be partitioned and grouped
on every PE. Figure 3 illustrates the calculation grouping of
GS orthonormalization program distributed and parallelized
using MPI. In the MPI, an array index for accessing array

1// Or ig ina l code
2f o r (i =0; i<N; i++)
3f o r (j =0; j<i ; j++) {
4ip=0;
5f o r (k=0; k<M; k++)
6/∗ inner product ∗/
7ip+=A[j] [k] ∗ B[i] [k] ;
8f o r (k=0; k<M; k++)
9/∗ orthogonal p r o j e c t i on subtract ∗/
10A[i] [k] −= A[j] [k]∗ ip ;
11}
12/∗
13∗ normal i zat ion code f o r
14∗ A[i] /= |A[i] |
15∗ copying vec to r s in i , j−l oops
16∗/
17
18}
19
20// Optimized by us ing GEMM and GEMV
21f o r (i s=i s t a r t ; i s<=iend ; i s+=L1) {
22i e = min(i s+L1−1, iend) ;
23i l = ie−i s +1;
24f o r (j s=j s t a r t ; j s<=jend ; j s+=L1) {
25j e = min(j s+L1−1, jend) ;
26j e = min(je , je −1);
27j l = je−j s +1;
28i f (j l <=0) cont inue ;
29i f (i s>=je+1)
30gsGemm(is , ie , j s , j e) ;
31e l s e i f (i l <=L2)
32gsGemv(i s , ie , j s) ;
33e l s e {
34gs (i s , ie , j s , je ,max(L2/2 ,L1)) ;
35}
36}
37}

Code 3: Gram-Schmidt orthonomalization

Figure 3: The calculations of GS orthonormalization are parti-
tioned along the k-axis if the program is parallelized by MPI

elements must be appropriately shifted on every PE, since
the index of the first element of every sub array is zero. This
is also a source of bugs.

Calculation grouping will be more complicated if the stencil
computation with loop tiling is offloaded over multiple PEs
using MPI. Since the calculations on the boundary of each
tile must access values of elements of adjacent tiles, which
might be located on remote PEs, a naive implementation will
cause the calculations to stall as a result of communication
latency for fetching values from remote PEs. A well-known
technique for hiding this communication latency is to use
a shadow region. The sub array on each PE is enlarged to
hold copies of elements on adjacent PEs required to calculate
the PE border elements. The region holding the copies is
called a shadow region as shown in Figure 4. Next, at every
time tick, the values in the shadow region are asynchronously
fetched from the adjacent regions and, while waiting for
the completion of the fetching, the calculations that do not
require the fetched values are executed first. Calculations
depending on the fetched values are executed last. Overlap-
ping some calculations with data communication hides the
communication latency, but the calculation grouping must
be modified. Code 4 shows the code for stencil computation
so that calculation will be overlapped with communication.

Offloading some of the calculations onto hardware acceler-
ators, such as a General Purpose Graphic Processing Unit

352

1f o r (i =1; i<xs i ze−1+2∗sw ; i++)
2f o r (j =1; j<ys i ze−1+2∗sw ; j++)
3i f ((i >=1 && i < sw) | |
4i >= xs i z e+sw && i <xs i ze−1+2∗sw)
5s t enc i l shadow (1 , sw , x s i z e+sw , xs i ze−1+2∗sw)
6e l s e
7C[i] [j] =
8s t e n c i l (C[i +1] [j] + C[i −1][j] +
9C[i] [j]
10C[i] [j +1] + C[i] [j −1]) ;
11
12void s t enc i l shadow (in t xs , i n t xe ,
13in t ys , i n t ye) {
14/∗ Exchanges array data with
15ne ighbor ing PEs in p a r a l l e l ∗/
16exchange data (C, xs , xe , ys , ye) ;
17
18f o r (i =1; i<xs i ze−1+2∗sw ; i++)
19f o r (j =1; j<ys i ze−1+2∗sw ; j++)
20i f ((i >=1 && i < sw) | |
21i >= xs i z e+sw && i <xs i ze−1+2∗sw)
22C[i] [j] =
23s t e n c i l (C[i +1] [j] + C[i −1][j] +
24C[i] [j]
25C[i] [j +1] + C[i] [j −1]) ;
26}

Code 4: The stencil computation where calculation is
overlapped with communication

Figure 4: Every PE allocates a shadow region and holds copies
of border elements of adjacent PEs

(GPGPU) also requires modifying the calculation grouping.
For example, NVIDIA CUDA [29] has multiple streaming
multi-processors (SMs) containing multiple CUDA cores for
SIMD operations. Every SM has local memory space shared
among its CUDA cores. To exploit this architecture, cal-
culations must be partitioned as in the case of the MPI.
Furthermore, memory coalescing is important in obtaining
the best performance in GPGPU programming, but it re-
quires a specialized calculation grouping, i.e., loop tiling.
The calculations distributed to every SM are divided into
several warps of 32 threads each. A warp can access ev-
ery successive 128 bytes of memory in a single transaction.
Hence, calculations accessing successive memory must be
grouped and allocated to the same warp. Code 5 shows the
implementation of matrix multiplication in CUDA. matmul
is a function executed by each thread, which calculates a
single element of the resulting matrix C. The second matmul

function considers shared memory and memory coalescing.
First, it loads several successive elements of A and B onto
shared memory _A and _B in collaboration with other adja-
cent threads. Next, it calculates an element of C and writes
it considering memory coalescing.

2.2 Coverage Gap Bugs
As shown above, implementing complex calculation group-

ing is error-prone. Next, we mention possible bugs relevant to
calculation grouping. We call them coverage gap bugs. Since
optimization techniques are gradually applied to a program,

1// Matrix mu l t i p l i c a t i o n
2g l o b a l void
3matmul (f l o a t ∗ C, f l o a t ∗ B, f l o a t ∗A, in t N) {
4in t y = blockIdx . y ∗ blockDim . y + threadIdx . y ;
5i n t x = blockIdx . x ∗ blockDim . x + threadIdx . x
6
7f l o a t tmp = 0 ;
8f o r (k=0; k<N; k++) tmp += A[y∗N+k] ∗ B[k∗N+x] ;
9c [y∗N+x] = tmp
10}
11
12// Matrix mu l t i p l i c a t i o n with memory coa l e s c i n g
13g l o b a l void
14matmul (f l o a t ∗ C, f l o a t ∗ B, f l o a t ∗A, in t N) {
15in t by = blockIdx . y ∗ y t i l e ;
16in t bx = blockIdx . x ∗ x t i l e ;
17in t y = threadIdx . y ;
18in t x = threadIdx . x ;
19
20f l o a t tmp = 0 ;
21s h a r e d f l o a t A [y t i l e] [x t i l e] ;
22s h a r e d f l o a t B [y t i l e] [x t i l e] ;
23
24f o r (bk=0; bk<N; bk+=x t i l e) {
25A [y] [x] = A[(by+y)∗N+bk+x] ;
26B [y] [x] = B[(bk+k)∗N+bx+x] ;
27s yn c th r e ad s () ;
28f o r (k=0; k<x t i l e ; k++) tmp += A [y] [k]∗ B [k] [x] ;
29}
30syn c th r e ad s () ;
31C[(by+y)∗N+bx+x] = tmp ;
32}

Code 5: The CUDA kernel of matrix multiplication

often on a trial-and-error basis, a developer must implement
multiple types of grouping during the development. This
increases the risk of creating bugs.

2.2.1 Calculation Leaks
A calculation leak leads to a severe but common bugs in

iterative calculations. This is likely to occur because of errors
in an initial value, a termination condition, or a step value of
a loop. If a calculation is included in an incorrect group, it
might not be critical, as it will be processed sooner or later.
Specifying an incorrect calculation group size in CUDA kernel
code will cause a calculation leak, but this will merely result
in lower memory bandwidth utilization. Furthermore, in the
case of a communication-overlapping example, it may only
cause more MPI communication required than the developer
had expected.

However, if no other group covers leaked calculation, the
application will never obtain the result of that calculation.
A typical kernel calculation in scientific applications reads
neighboring elements of an array as a five-point stencil cal-
culation needs the results of top, bottom, right, left, and
itself. This indicates an incorrect calculation result propa-
gating throughout the calculations. Therefore, even a small
calculation leak could lead to a totally incorrect application
program result. Let us return to the matrix transposition
example in Code 1. If the matrix size defined by xsize and
ysize has a gap with tile size bs in other words, if it is not
a multiple of the tile size, and the loop tiling is implemented
without the two inner loops at lines 9 and 10 in Code 1, then
the program will be as follows.

2f o r (i =0; i<x s i z e ; i+=bs)
3f o r (j =0; j<x s i z e ; j+=bs)
4A[i] [j] = B[i] [j] ;

Some calculations will be leaked and never executed. This is
a simple example, but this type of calculation leak is easy to
reproduce.

2.2.2 Duplicated Calculations
An overlap between calculation groups causes a duplicated

calculation. It is an opposite type of coverage gap. In general,
similar human errors on loop optimization create this gap
through the development process. On the other hand such a

353

coverage gap is not always harmful. It is sometimes purposely
produced in a case such as communication overlapping. As
mentioned in the previous section, a shadow region contains
duplicated calculations containing copies of calculations from
the neighboring PEs. The primary purpose of this duplication
is to reduce frequent communication for data exchanges
between PEs. Next, which calculation belongs to which
group will be designed with the utmost care.

On the other hand, an incorrect calculation duplication
that developers do not intend wastes computational resources,
such as processors, memory, and network bandwidth. For
instance, returning to the matrix transposition example again,
if the calculation group of the two innermost loops created for
the loop tiling in Code 1 has incorrect termination conditions,
as follows.

7f o r (j =0; j<y s i z e ; j+=bs)
8f o r (i =0; i<x s i z e ; i+=bs)
9f o r (i i=i ; i i <x s i z e ; i i ++)
10f o r (j j=j ; j j<y s i z e ; j j++)
11A[i i] [j j] = B[j j] [i i] ;

then the tiled calculations always reach the boundary of
the matrix. As a result, the number of executions of the
kernel calculation is estimated to be xsize × ysize × the
number of tiles, where the number of calculations amounts
to the greater of either xsize/bs or ysize/bs. This type
of duplication cannot be regarded as a bug, because it does
not result in an incorrect value in each calculation. How-
ever, the original motivation of grouping calculations is to
improve runtime performance. Such unnecessary execution
of duplicated calculations without any benefit is wasteful
code modification.

2.2.3 Out-of-Order Calculation
The last type of bug discussed herein is the out-of-order

calculation, occasionally caused by coverage gaps, such as
calculation leaks and duplications. An advanced optimiza-
tion for improving cache hit ratios is performed by reordering
calculation groups and their member calculations. For in-
stance, when program execution reaches the end of the tile,
loop tiling changes the order of each calculation to align
them in the orthogonal direction. Time skewing causes more
aggressive changes in calculation order, which exchanges a
calculation beyond an outer-most loop controlling each time
step.

Out-of-order calculations are frequently observed in sci-
entific applications exploiting optimization by calculation
groups. The use of the BLAS library often leads to out-
of-order calculations, for example, when matrix functions
GEMM and GEMV are used together, the calculation groups
are modified to fit the inputs to the functions.

Incorrect calculation orders can cause a performance draw-
back. For example, access locality to arrays may decrease
compared to the expectation of the developer. Let us con-
sider the stencil calculation loop tiling example again in the
middle of Code 2. If the order of the iterations of the ii,
jj-loops is changed as follows.

13f o r (j j =1; j j< min(ys i ze −1, j+by) ; j j++)
14f o r (i i =1; i i <min(xs i ze −1, i+bx) ; i i ++)
15C[i i] [j j] =
16s t e n c i l (C[i i +1] [j j] + C[i i −1][j j] +
17C[i i] [j j] +
18C[i i] [j j +1] + C[i i] [j j −1]) ;

then the iterations will not perform well since the successive
accesses in the jj-loop are not performed on contiguous array
elements if the two dimensional array is alined in the manner
of C, rather than Fortran. This will decrease the cache hit
ratio.

A worse scenario of out-of-order calculations is observed
in the time skewing example at the bottom of Code 2. If the
time order is reversed.

23f o r (t = t s i z e −1; t >= 0; t−−) {
24tc = t s i z e − t − 1
25xmin = max(0 , i−2∗t) ;
26xmax = min(x s i z e+2∗tc , i+bx−2∗t)
27ymin = max(0 , j−2∗t) ;
28ymax = min(y s i z e+2∗tc , i+by−2∗t)
29f o r (i i = xmin ; i i < xmax ; i i ++)
30f o r (j j = ymin ; j j < ymax ; j j++)
31C[i i] [j j] =
32s t e n c i l (C[i i +1] [j j] + C[i i −1][j j] +
33C[i i] [j j] +
34C[i i] [j j +1] + C[i i] [j j −1]) ;
35}

then the order of the calculations in the ii, jj-loops is
changed, and some calculations are executed with incorrect
values of neighboring array elements, which have not been
updated. This will result in an incorrect output by the
application program.

3. CALCULATION COVERAGE TESTING
Our observation is that the problems mentioned in the

previous section result from coverage gaps, which are incor-
rectly produced when developers create groups of iterative
calculations and then reorder them for runtime optimization.
Optimized implementation by grouping and reordering cal-
culations is difficult verify without knowing the developers’
intention, since coverage gaps are sometimes prepared with
a clear purpose, such as duplication for a shadow region to
hide the latency of communication, as previously described.

Until now, this type of verification has been conducted
by developers who look over the entire result of calculations
manually or automatically. Manual checking of an enormous
number of results is beyond human recognition capability,
but several researchers have actually attempted to detect
incorrect calculation coverage by detecting error results while
reducing problem size. Writing script code that screens aber-
rant results, rather than screening it by eye, is a reasonable
approach, but, it is insufficient because the results of the
original and the optimized kernel calculations may differ if
the calculations include floating-point arithmetic and/or data
initialization with random numbers as pointed out in [5].

Our proposal is to provide a coverage testing tool special-
ized for validating calculation coverage, not focusing on an
implementation of each calculation. This approach is similar
to but different from code coverage testing, which measures
what percentage of subroutines or code statements have been
exercised by a test suite. It does not consider functional
aspects of a program, but instead, measures code coverage
while launching several separately developed test operations.
Our proposed calculation coverage testing process also checks
whether a calculation group correctly covers parameter spaces.
We assume that coverage of iterative calculations is always
preserved as long as it is optimized by regrouping and re-
ordering. We assume that a set of calculations never changes
even if complicated loop tiling, which produces entirely dif-
ferent calculation groups, is applied. Under this assumption,
coverage gaps could be detected by equivalence checking of
calculation groups between an optimized program and an
original one.

Our idea is that a calculation can be identified with its
runtime context log during the execution, which includes the
actual values of parameters, such as function parameters and,
local and global variables. Therefore, the calculation coverage
testing tool must reify an abstract model of calculation groups
in set form. To make it easy to compare the reified model

354

with the model corresponding to the correct grouping, the
testing tool must provide basic set operations such as union,
intersection, difference, and subset. It must also provide
advanced set operations including filter, map, and fold. Next,
the testers can define an invariant that is to be preserved to
avoide leaks, duplication, and incorrect calculation orders.

To further investigate this idea, we have developed a test-
ing framework, HPCUnit, a prototype framework for Java
programs. We present it in the rest of this section.

3.1 HPCUnit
HPCUnit is a unit-testing framework for supporting a

calculation coverage test in Java. It is implemented as an
extension to JUnit [13], a popular unit-testing framework,
and thereby allows developers to check calculation cover-
age, along with ordinary function testing by JUnit. The
HPCUnit provides for developers’ annotations and helper
classes to describe which method is a kernel function and
which invocations to the kernel functions are logged with
their arguments to construct a calculation group. A test
method for the HPCUnit takes several sets as parameters.
Each parameter is an ordered set of log entries representing
a calculation group. Its definition is given by an annotation
attached to the parameter. A typical test method takes two
sets as parameters, one representing the calculation group
obtained during the execution of an original intuitive pro-
gram and the other representing those obtained during the
execution of a program optimized by reordering calculations.
The test method compares these sets given as arguments and
verifies that the calculation groups do not involve a coverage
gap. The HPCUnit provides helper classes for comparison
and verification.

Here, we present an example of test code for the HPCUnit
in Code 6. It tests the optimized GS orthonormalization
program in Figure 2. The test code contains a test-driver
method (lines 6-10) and a test method (lines 14-28). The test
driver is annotated to launch the tested program before run-
ning coverage testing (lines 6-8). The parameters to the test
method are also annotated to specify the calculation group
represented by the parameter (lines 15-17, 18-20, and 21-23).
The annotations for the parameters can describe a complex
rule for logging the invocations of the kernel functions only
in the specific contexts, such as within a particular control
flow and within a particular method body. When the tested
program is launched, the logging code is embedded in the
program by the HPCUnit before the execution, so that the
specified invocations of the kernel functions are recorded as
logged calculations. Then, the test methods are individually
executed to investigate the logged calculations passed as
arguments (lines 26, 27).

3.1.1 Annotations for Collecting Logs
The calculation groups are declaratively specified with

annotations. The specifications are given as arguments to
the annotations and they are described in a syntax similar to
set-builder notation in mathematics. The properties that the
set elements satisfy are described in a pointcut-like language
in AspectJ [21], as shown in Table 1. The properties specify
which method invocations are logged with which arguments
and target. Each invocation is recorded as a tuple of the spec-
ified values and the tuple is an element of the set representing
a calculation group.

1/∗ Test s u i t e d e c l a r a t i on ∗/
2@RunWith(HUTestRunner . c l a s s)
3c l a s s GSTest {
4
5/∗ Test d r i v e r ∗/
6@HUBeforeClass void testRun () {
7@HUTarget GS gs1 = new NormalGS () ;
8@HUTarget GS gs2 = new OptimizedGS () ;
9gs1 . c a l c () ;
10gs2 . c a l c () ;
11}
12
13/∗ Test method ∗/
14@HUTest pub l i c void testCoverageGS (
15@HUTrace(”{ (i , j , k) |
16c a l l (void ke rne l (i n t i , i n t j , i n t k))
17&& within (NormalGS)}”) HUList cor rec t ,
18@HUTrace(”{ (i , j , k) |
19c a l l (void ke rne l (i n t i , i n t j , i n t k))
20&& cf low (c a l l (dgemm(. .)) } ”) HUList squares ,
21@HUTrace(”{ (i , j , k) |
22c a l l (void ke rne l (i n t i , i n t j , i n t k))
23&& cf low (c a l l (dgemv (. .)) } ”) HUList t r i a n g l e s)
24{
25HUList n u l l s e t = HUList . getNul l () ;
26a s s e r t (cor rec t , i s (squares . union (t r i a n g l e s))) ;
27a s s e r t (nu l l e s t , i s (squares . intxn (t r i a n g l e s))) ;
28} }

Code 6: A test example with HPCUnit

Table 2: Reserved words available in intensional definitions
Word Description
count Executed number
time Started time
threadID ID of thread
mpiRank Rank number of MPI
mpiSize Size of MPI processes

In Code 6, the definitions of calculation groups are de-
scribed as the arguments to the HUTrace annotations. The
method parameters correct, squares, and triangles of the
test method testCoverageGS are annotated with HUTrace.
While the tested method calc in NormalGS or OptimizedGS

class is running, the arguments i, j, and k to the kernel

method called within the NormalGS class, within the control
flow of the dgemv method, or within the control flow of the
dgemm method, construct a tuple and they are stored in the
HUList objects correct, squares, or triangles, respectively.
The parameter correct represents the calculation group il-
lustrated by the left prism in Figure 2, whereas squares and
triangles represent the group denoted by the matrix-matrix
and matrix-vector in the right prism, respectively.

A member of the tuples stored in the HUTrace objects can
be a method argument or a target object. In the current
design of HPCUnit, the values of local variables or object
fields cannot be logged. Thus, all the values needed for
constructing a tuple have to be explicitly passed to the
kernel function as arguments.

Besides the method arguments, a few reserved keywords
are available for obtaining other types of useful values in
the running execution contexts as listed in Table 2. For
instance, if an application program is an MPI program, the
processor-element number is bound to the reserved keyword
mpiRank. The following annotation specifies a set of tuples
with four elements.

@HUTrace(”{
(mpiRank , i , j , k)

| c a l l (void ke rne l (i n t i , i n t j , i n t k)) }”)

The first element is the processor-element number and the
other elements are the arguments passed to the kernel func-
tion.

3.1.2 Coverage Testing APIs
The test method receives as arguments and investigates

the sets of tuples representing calculation groups by calling
methods in the HUList class. These methods implement
basic set operations such as union and intersection as listed

355

Table 1: Pointcut-like annotations in HPCUnit
Annotation Description
call (MethodPattern) Kernel calculations of method invocations specified by MethodPattern
within (TypePattern | MethodPattern) Kernel calculations in a type matched by TypePattern or in a method of MethodPattern
cflow (Annotation) Kernel calculations in a control flow of any calculation specified by Annotation
receiver (TypePattern) Kernel calculations where the currently executing object is an instance of TypePattern

in Table 3. Some methods are used to create an empty set or
a set representing a simple calculation group. In Code 6, the
test method verifies that the union of squares and trian-

gles matches correct and squares and triangles do not
have any intersection (lines 25-27). Successful verification
reveals that the calculations have been consistently reordered
between the original program and the optimized program.

The HUList class provides the map (flat map) method,
which applies a given operation to each element of the set
and returns a flattened set. It can be used for creating
a subset of the given set. The following code uses map to
compute a subset whose elements are tuples recorded during
the first iteration (i.e., if the first element count is 1), the
code is as follows:

@HUTrace(”{
(count , i , j , k)

| c a l l (void ke rne l (i n t i , i n t j , i n t k)) }”)

g s f i r s t = g s a l l .map(
new HUMapper<HUTuple4<..> ,HUTuple3<..>>(){

HUTuple3<..> apply (HUTuple4<..> t) {
i f (t0 == 1) return new HUTuple3<>

(t . e l1 , t . e l2 , t . e l 3) ;
}}) ;

Note that the resulting set holds tuples with three elements,
where count is a reserved keyword referring to the iteration
count of the program execution.

The map method is also useful when testing an MPI pro-
gram. As described in section 2.1.3, a scientific application
to be distributed using the MPI has separate calculation
groups for each PE. Thus, the calculation group of the orig-
inal non-distributed program must be compared with the
union of all the groups for each PE. However, the array
indices in the tuples must be appropriately shifted before
computing the union. The map method is useful for shifting
the indices. Assume that the GS program processes vectors
with k elements each and that the length of the vectors k is
nine million, as shown in Figure 2. Next, assume that the
program is modified to use MPI, as in Figure 3, and that
every vector is divided into three sub-vectors allocated on a
different PE. In a typical MPI program, the range of k on
every node is from 0 to 300,000. Hence, when computing the
union of the calculation groups, the loop index k recorded in
a tuple has to be shifted by the offset rank × 300,000. This
can be implemented as follows:

gs = gs mpi .map(
new HUMapper<HUTuple4<..> ,HUTuple3<..>>(){

HUTuple3<..> apply (HUTuple4<..> t) {
return new HUTuple3<>

(t . e l1 , t . e l2 , t . e l 3 + t . e l 0 ∗ 300000) ;
}}) ;

The set gs_mpi contains four-element tuples, with the first
element being mpiRank. Using the map method, we show the
complete test code in Code 7 for testing an MPI program
previously in Figure 4. The code verifies that the program
involves neither calculation leaks nor duplications.

The HUList class also provides the fold method, which
performs a reduction operation. A HUList object represents
an ordered set, where the tuples are ordered using their
recorded time. The fold method is used to investigate
whether the order of tuples satisfies given properties. This
investigation is useful for detecting a performance bug due
to losing memory access locality. For example, for better

1f o r (i n t n = 0 ; n < mpiSize ; n++) {
2rank = n ;
3HUList r = mpiResults . get (n) .map(
4new HUMapper<HUTuple3<..> ,HUTuple2<..>>(){
5HUTuple2<..> apply (HUTuple3<..> t) {
6i f (t . e l 0 == rank)
7return new HUTuple2<>(t . e l 1+t . e l 0 ∗xs i ze , t . e l 2) ;
8}
9}) ;
10i f (rank > 0) {
11ovlp = ovlp == nu l l ? r
12: ovlp . union (nonovlp . intxn (r)) ;
13}
14nonovlp =
15nonovlp == nu l l ? r
16: nonovlp . d i f f (ovlp) . union (r . d i f f (ovlp)) ;
17}
18
19a s s e r t (nonovlp . union (ovlp) , i s (c o r r e c t)) ;
20a s s e r t (nonovlp . union (ovlp)) . d i f f (c o r r e c t) , i s (empty)) ;

Code 7: Coverage testing for shadow regions

memory-access locality, GS orthonormalization requires that
the calculations be executed in descending order on i, as in
Figure 2. The test method executes the following code.

gs . f o l d (
new HUFolder<HUTuple3<..> ,HUTuple3<..>>() {

boolean apply (HUTuple3<..> org ,
HUTuple3<..> cur) {

return org . e l 1 > cur . e l 1 ;
}}) ;

The anonymous class of HUFolder implements a function for
testing that every pair of adjacent tuples in the set preserves
some property. The apply function above examines that the
value of i is descending. The fold method returns true if
all the tests succeed. This example can also be extended
to compute the interval between the indices of adjacent
calculations and to evaluate the memory-access locality. If
the average interval is shorter, the locality is better and
improves the cache hit ratio.

3.1.3 Integration with Other Development Tools
The HPCUnit has been developed to be integrated with

JUnit. An advantage of integration with JUnit is that the
test code of calculation coverage can coexist with other or-
dinary unit tests. The calculation coverage testing must be
performed after the tested application program passes most
unit tests. JUnit provides a mechanism for incorporating a
user-defined test runner and the RunWith annotation is shown
in Code 6 (line 2). The HPCUnit intercepts the loading pro-
cess of the classes of the tested program and then loads them
using a dedicated class loader so that the logging code will
be embedded in them. Since this dedicated class loader is
used only by the HPCUnit, other normal unit tests run with
the tested program without logging code embedded in them.
No runtime penalties because of logging are involved when
the normal unit tests are running.

The HPCUnit also provides several MPI-specific annota-
tions. Developers can select whether calculation coverage
testing is performed on every PE as distributed computing
or on the central PE, such as the PE with rank zero. It is
selected by HUDistributedTest or HUGatheredTest instead
of the HUTest annotation. The test on the central PE is easy
to write since the HPCUnit automatically gathers all the sets
on the central PE from the other PEs if the centralized test
is selected. On the other hand, the distributed test can deal
with larger size sets, which will be generated when the tested

356

Table 3: Set operations in the HUList APIs
Log Manipulation API Description
boolean equals(Object o) Checks equivalence against a given log object.
HUList〈T〉 union(HUList〈T〉 logs) Returns an union set against a given log object
HUList〈T〉 intxn(HUList〈T〉 logs) Returns an intersection set against a given log object
HUList〈T〉 diff(HUList〈T〉 logs) Returns a difference set against a given log object
〈U〉 HUList〈U〉 map(HUMapper〈T, U〉 mapper) Applies a given method defined in HUMapper
〈U〉 U fold(HUFolder〈T, U〉 folder, U origin) Recombines logs using a given method defined in HUFolder

Log Creation API
static 〈U〉 HUList〈U〉 getNull () Creates a null set
static HUList〈HUTuple1〈Integer〉〉

getLine(int L1) Creates a zero to L1 line segment
static HUList〈HUTuple2〈Integer, Integer〉〉

getSquare (int L1) Creates a zero to L1 square
static HUList〈HUTuple2〈Integer, Integer〉〉

getTriangle (int L1, int L2) Creates an L1×L2 rectangular triangle
static HUList〈HUTuple3〈Integer, Integer, Integer〉〉

getCube (int L1) Creates an L1 cube
static HUList〈HUTuple3〈Integer, Integer, Integer〉〉 Creates an triangular prism which face is L1×L2

getTriangularPrism (int L1, int L2, int L3) rectangular triangle, length is L3

application program performs a large number of calculations.
Furthermore, the HPCUnit supports mock testing. If the
HUSkip annotation is added with the HUTrace annotation,
the HUList object passed to the test method is constructed
according to the annotation without executing the tested
program. This is useful when the developer wants to unit-
test an MPI program without running it in a distributed
environment.

3.2 Empirical Study with Benchmarks
This section reports an empirical study to evaluate how

calculation coverage testing is applied to a real world scientific
application. We use JGF [35] developed by the Edinburgh
Parallel Computing Centre (EPCC) group at the University
of Edinburgh, which includes several applications aimed at
evaluating the performance of typical implementations of
scientific applications. It provides not only a sequential
program, but also a parallel one with shared memory (multi-
threaded), and one with distributed memory, where the
kernel calculations are partitioned depending on the number
of processing threads or MPI processes, since it has been
developed to measure different execution environments. The
distributed version is based on MPJ, an MPI-like message
passing interface for Java mentioned in Section 2.1.2. This
empirical study has been practiced in the following steps.

(a) Extracting a kernel calculation as a method named
HUKernel from each benchmark application because of
the limitation of the current HPCUnit implementation,
which only recognizes a method known as kernel calcu-
lations logged for constructing a calculation group. If
a kernel calculation is composed of a set of sub-kernel
calculations, each block of code is extracted as a differ-
ent method with an extra parameter used as a tag for
distinguishing sub-kernels.

(b) Defining calculation groups of all benchmark applica-
tions. Every group can be simply specified with a
tuple of method arguments extracted during execution.
Note that the logs for sub-kernels include the values of
an additional tag, such as {(tag,i,j)|call(void HUK-

ernel(int tag,int i,int j)}) such that it is easily
filtered at the test step.

(c) Developing two types of unit test to prove that parallel
and distributed versions of the benchmark have no

calculation coverage gap compared to the sequential
one.

(d) Measuring the runtime overhead caused by collecting
logs, and the execution time of the test spent for com-
paring logs and verifing calculation groups between
different versions.

Table 4 lists the number of lines of code (LoC) of eight
benchmark applications and their test code. The LoC of the
test code is approximately 30 with six annotations. The test
code includes a test driver to launch benchmarks in sequential,
parallel, and distributed manners. The test methods for
comparing logged data are nearly identical, with only the
annotations being unique to consider the number and the
type of the tuples representing kernel calculations. The test
code of the distributed version of the programs includes
boilerplate code for initialization and finalization of MPI
processes.

Through the empirical study with JGF, we found dupli-
cation of calculations in both the parallel and distributed
versions of MD, whereas all the other applications passed the
test. MD is a molecular dynamics simulation that models
particles interacting with each other under a Lennard-Jones
potential in a cubic spatial volume. A kernel calculation
of MD is composed of multiple sub-kernels, such as moving
particles, computing forces, updating forces, and velocities.
We confirmed that one of the sub-kernels for calculating
the average of velocities is redundantly processed by all the
threads on all the particles. To avoid the redundancy, each
thread must calculate the value by accessing only its local
particles. To double-check a coverage gap discovered in the
test, we modified the step value of this sub-kernel loop to
eliminate the gap. The modified MD simulation produced
the same result as the original one. This fact shows that
the coverage gap we found causes redundant runtime calcu-
lations. This would explain why this coverage gap has long
been overlooked..

We measured the runtime overheads and the execution
time of the calculation coverage tests for JGF. The logging
code written with the HPCUnit API was embedded in the
benchmark programs by the AspectJ compiler instead of the
HPCUnit translator. This is done to avoid a bug in the cur-
rent implementation of the HPCUnit system. All the experi-
ments were measured on OpenJDK 1.7.0 25 64-bit with server
JIT, running on a machine with Linux kernel 2.6.32. The ma-
chine had dual Intel Xeon E5-2687W processors eight cores

357

Table 5: Runtime overheads incurred by collecting logs and test execution time

Benchmark Calculation Sequential Overheads Parallel Overheads Distributed Overheads Test for Test for
size with log[s] [%] with log[s] [%] with log[s] [%] Parallel[s] Distributed[s]

Series 999,999 704.72 0.05 59.34 1.96 59.97 0.99 0.18 5.16
LUfact 1,652,472 4.06 55.58 4.75 1689.26 3.04 76.09 0.78 11.14
SOR 399,200,400 160.04 8460.14 748.59 509579.66 32.35 2121.52 41.22 143.35
Crypt 12,500,000 3.21 69.88 9.93 5458.99 2.35 513.25 1.3 26.82
Sparse 500,000,000 49.52 1368.23 230.21 77478.43 20.77 49.37 17.11 48.5
MD 409,600 13.32 0.92 14.11 285.92 3.59 61.27 0.13 1.27
MC 60,000 8.77 0.01 1.31 31.71 8.07 8.57 0.06 0.41
RT 250,000 12.61 3.13 1.47 20.54 2.67 47.01 0.11 1.87

Table 4: The number of lines of code of benchmark
applications and test code

Benchmark Sequential Parallel Distributed

Series1 356 440 449
LUfact2 721 1,092 895
SOR3 206 344 415
Crypt4 613 708 720
Sparse5 221 337 317
MD6 625 915 697
MC7 3,115 3,181 3,203
RT8 1,265 1,483 1,346
Annotation + Test code 6+30 6+35
1 Fourier coefficient analysis
2 LU Factorization
3 Successive over-relaxation
4 IDEA encryption
5 Sparse Matrix multiplication
6 Molecular Dynamics simulation
7 Montecarlo Simulation
8 3D RayTracer

each. The command line parameters for launching Java were
-Xmx28g -Xms28g -Xmn24g -XX:SurvivorRatio=10. We ran
all the benchmarks with the maximum data size given by
the suite. The parallel versions of the benchmarks ran with
16 threads, while the distributed versions ran with 16 MPI
processes on a single node. Table 5 lists the results. All
the data are the average values of ten repetitions, ignoring
both maximum and minimum results. The results show that
the performance penalties of SOR and Sparse are extremely
large, since these benchmarks execute a large number of
small kernel calculations. The penalties mostly depend on
the number of calculations to be collected for logging. Fur-
thermore, it was observed that the runtime overheads of
the parallel versions of Series, LUFact, SOR, Crypt, Sparse,
and MD were greater than their sequential versions. The
primary reason for the extra overheads is that the log data
collected during the execution are stored in the shared object
in the current HPCUnit implementation. This fact causes
non-negligible synchronization costs for accessing the object.
The distributed versions of the benchmarks showed relatively
smaller overheads than the parallel ones since the logs were
stored in separate memory spaces although they involved
overheads because of network communication. Regarding the
test execution, the elapsed time of the calculation coverage
testing, excluding the logging time, would be acceptable in
practice for both parallel and distributed versions. The log
object in the current HPCUnit implementation is a multiple
set object of Apache Commons CollectionsTM called Bag.
Instead of a large Java object, using a primitive array would
reduce the runtime overheads and the cost of test execution.
However, that requires changing the HPCUNit API design,
which we carefully designed for application development pro-
ductivity. We plan to apply several optimizing techniques
to reduce overheads for collecting runtime logs [37] and to
reduce the Java collections memory footprint [13].

From the overall study using realistic application bench-
marks, we found that writing only a relatively small amount
of code for parallelization significantly improves the execution
performance. The coverage testing code by the HPCUnit is
even smaller than the parallelization code. For example, the
parallel version of the Series benchmark is 12 times faster
on a 16-core machine than on the sequential one, but the
parallel version includes only 120 (440 - 356 + 36) extra lines
of code, including the test code.

4. RELATED WORK
There have been a number of approaches to verify spec-

ification and runtime behaviors of application software in
several research areas. Those general verification mecha-
nisms possibly have the potential to be used for checking
coverage gaps by verifying the behavior of an application
itself. Our main contribution is to raise the necessity of a
domain-specific testing approach and tool support, which
can reduce the development costs for prototyping, tuning,
and testing of scientific applications that mostly comprises
iterative calculations.

According to recent surveys of testing tools in scientific
applications [31, 43], various testing frameworks are currently
available even for the high-performance computing (HPC)
community [39, 38, 2, 11]. A unit-testing framework such as
JUnit [7] is used to test individual program modules of the
source code to ensure that they work as the developers intend.
In particular, the National Aeronautics and Space Admin-
istration has been developing two unit testing frameworks
pFUnit and FUnit for Fortran 95 based scientific applica-
tions [39, 38]. The aims of both tools are to provide a port of
JUnit supporting the ability to launch MPI tests and report
results back as a single test. It might be possible to perform
calculation coverage testing on top of these tools. However,
since it has no dedicated supports for calculation coverage
testing, this will require developers to write a substantial
amount of code to collect, record, and compare runtime con-
text logs for each calculation. The same discussion can be
applied to code coverage test tools for HPC [14, 24].

Model checking [8] is widely recognized as the primary
technique for verifying the behavior of concurrent programs.
In fact, several model-checking approaches have been applied
in HPC, although their main focus is to verify the correctness
of the MPI-based parallel/distributed program design [31,
25, 33, 32, 34, 30, 40, 41]. Previous studies using the SPIN
model checker [17] found it difficulty to create an accurate
model of the program being verified [25, 33, 32, 34]. In recent
studies, several model-checking approaches directly verify
the MPI programs [30, 40, 41]. These studies are useful
for verifying that all the potential interleavings of the MPI
programs work without errors.

358

Runtime verification aims at combining testing with formal
methods, verifing at runtime the behavior and histories of
program events. A large number of runtime verification ap-
proaches such as MaC [22], PathExplorer [16], MOP [3], and
Tracematches [1] have been developed. These approaches
enable validation using code automatically generated from
formal specifications and then invoking user-defined code at
any point in a program at runtime. In principle, the speci-
fication, which is usually described using a domain-specific
language, can refer to historical information at a specified
program point. Therefore, some runtime verification tools
could be used for calculation coverage testing. However, they
have not been clearly reported to have sufficient capability to
validate the histories of specified arguments within a specified
program control-flow through comparison with others.

Metamorphic testing [4], first proposed by Chen, attempts
to verify non-testable programs [42] including numerical and
scientific computations, for which testers can not decide
whether the results of a program are correct. Instead of veri-
fying a test output of the target function, metamorphic test-
ing generates follow-up test cases based on domain-specific
properties (in particular, metamorphic relations in the con-
text of metamorphic testing), and then verifies whether a
set of their outputs is correct, which has been applied to
various application domains, such as machine learning [28],
bioinformatics [6], and web services [36]. Chen et. al. have
also applied metamorphic testing to partial differential equa-
tions since it is difficult to validate the correctness of outputs
from that type of numerical program because of truncation
and rounding errors [5]. They identified an invariant as a
metamorphic relation preserved even if the densities of mesh
grids increase. Calculation coverage could be regarded as a
new metamorphic relation in scientific applications, which
requires a special treatment to record and manipulate the
histories of specified context data of a program.

The preliminary work of this research has been presented
at local workshops where the papers are not reviewed or
published [18, 19]. This study is an extended version of
these papers to discuss the fundamental idea behind the
HPCUnit and a case study.

5. CONCLUSION
This study introduced calculation grouping for optimizing

scientific applications and problems resulting from coverage
gaps caused by partitioning and reordering to improve the
runtime performance. We pointed out the necessity of cal-
culation coverage testing in addition to ordinary software
testing, such as unit and code coverage testing. To demon-
strate this idea, we presented a Java-based testing framework,
the HPCUnit. We illustrated concrete examples of test code
for detecting several calculation gaps. Our preliminary ex-
periment showed that the runtime overheads and memory
consumption were one of the primary topics to be considered
for developing a practical framework for calculation coverage
testing. Although calculation coverage testing focuses only
on iterative calculations, it is an essential aspect of scientific
applications from the programming perspective.

6. ACKNOWLEDGMENT
We would like to express our deep gratitude to the anony-

mous reviewers. Jun-Ichi Iwata provides us his RSDFT code
and gives a lecuture on that. This research was partly sup-
ported by the CREST program of JST and JSPS KAKENHI
Grant Number 26870165.

7. REFERENCES

[1] C. Allan and P. Avgustinov. Adding trace matching
with free variables to AspectJ. Conference on
Object-Oriented Programming Systems, Languages, and
Applications, 2005.

[2] J. S. Anil Kumar. CUnit. http://cunit.sourceforge.net,
2004.

[3] F. Chen and G. Roşu. Mop: An efficient and generic
runtime verification framework. Conference on
Object-Oriented Programming Systems, Languages, and
Applications, 2007.

[4] T. Chen, S. Cheung, and S. Yiu. Metamorphic Testing:
A New Approach for Generating Next Test Cases.
Technical Report HKUST-CS98-01, Department of
Computer Science, The Hong Kong University of
Science and Technology, 1998.

[5] T. Chen, J. F. J. Feng, and T. Tse. Metamorphic
testing of programs on partial differential equations: A
case study. Proceedings 26th Annual International
Computer Software and Applications, 2002.

[6] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie. An
innovative approach for testing bioinformatics
programs using metamorphic testing. BMC
bioinformatics, 10:24, 2009.

[7] Y. Cheon and G. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way.
ECOOP 2002–Object-Oriented Programming, 2002.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking, volume 52 of Lecture Notes in Computer
Science. MIT Press, 1999.

[9] K. Datta, M. Murphy, and V. Volkov. Stencil
computation optimization and auto-tuning on
state-of-the-art multicore architectures. Supercomputing
Conference, 2008.

[10] J. Dongarra and J. D. Croz. A set of level 3 basic linear
algebra subprograms. ACM Transactions on
Mathematical Software (TOMS), 1990.

[11] M. Feathers. CUnit. http://cppunit.sourceforge.net/,
2000.

[12] I. Foster. Designing and building parallel programs.
Addison Wesley Publishing Company, 1995.

[13] J. Gil and Y. Shimron. Smaller footprint for Java
collections. ECOOP 2012–Object-Oriented
Programming, 2012.

[14] GNU Compiler Collection. Gcov.
http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc 8.html.

[15] K. Hasegawa, Y., Iwata, J. I., Tsuji, M., Takahashi, D.,
Oshiyama, A., Minami and M. Yokokawa.
First-principles calculations of electron states of a
silicon nanowire with 100,000 atoms on the K
computer. Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2011., 2011.

359

[16] K. Havelund and G. Roşu. An overview of the runtime
verification tool Java PathExplorer. Formal methods in
system design, 2004.

[17] G. Holzmann. The SPIN model checker: Primer and
reference manual. 2004.

[18] S. Hozumi, Y. Sato, and S. Chiba. A Tool to Test
Calculation Completeness and Orders for HPC
Applications (In Japanese). IPSJ SIGHPC Technical
Report, 2013-HPC-140, 1-7, 2013.

[19] S. Hozumi, Y. Sato, and S. Chiba. HPCUnit: An Unit
Testing Framework to Test Completeness of
Calculation Divisions During the Optimization Process
of Sicentific Applications (In Japanese).
JSSST-SIGPPL Workshop, 2014.

[20] S. Kamil, K. Datta, S. Williams, and L. Oliker. Implicit
and explicit optimizations for stencil computations.
Proceedings of the 2006 workshop on Memory system
performance and correctness, 2006.

[21] G. Kiczales, E. Hilsdale, and J. Hugunin. An overview
of AspectJ. European Conference on Object-Oriented
Programming, 2001.

[22] M. Kim, M. Viswanathan, and S. Kannan. Java-MaC:
A run-time assurance approach for Java programs.
Formal methods in system design, 2004.

[23] M. Lam, E. Rothberg, and M. Wolf. The cache
performance and optimizations of blocked algorithms.
ACM Sigarch Computer Architecture News, 1991.

[24] LDRA Sofware Technology. LDRA Testbed.
http://www.ldra.com/testbed.asp.

[25] O. Matlin, E. Lusk, and W. McCune. SPINning parallel
systems software. Model Checking Software, 2002.

[26] J. McCalpin and D. Wonnacott. Time skewing: A
value-based approach to optimizing for memory locality.
1999.

[27] K. McKinley, S. Carr, and C. Tseng. Improving data
locality with loop transformations. ACM Transactions
on Programming Languages and Systems, 1996.

[28] C. Murphy, G. Kaiser, L. Hu, and L. Wu. Properties of
Machine Learning Applications for Use in Metamorphic
Testing. In Proceedings of the 20th International
Conference on Software Engineering and Knowledge
Engineering ({SEKE08}), pages 867–872, 2008.

[29] Nvidia, CUDA. Programming guide, 2008.

[30] S. Pervez and G. Gopalakrishnan. Practical
model-checking method for verifying correctness of mpi
programs. Parallel Virtual Machine / Message Passing
Interface, 2007.

[31] S. Pervez, G. Gopalakrishnan, R. M. Kirby, R. Thakur,
and W. Gropp. Formal methods applied to

high-performance computing software design : a case
study of MPI one-sided communication-based locking.
Software: Practice and Experience, 40(December
2009):23–43, 2010.

[32] S. Siegel. Efficient verification of halting properties for
MPI programs with wildcard receives. Verification,
Model Checking and Abstract Interpretation, 2005.

[33] S. Siegel and G. Avrunin. Verification of MPI-based
software for scientific computation. International
Workshop on Model Checking of Software, 2004.

[34] S. Siegel and A. Mironova. Using model checking with
symbolic execution to verify parallel numerical

programs. International Symposium on Software
Testing and Analysis, 2006.

[35] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel
java grande benchmark suite. In Proceedings of the
2001 ACM/IEEE conference on Supercomputing
(CDROM) - Supercomputing ’01, pages 8–8, New York,
USA, Nov. 2001. ACM Press.

[36] C.-a. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and
T. Chen. Metamorphic Testing for Web Services:
Framework and a Case Study. 2011 IEEE International
Conference on Web Services, pages 283–290, 2011.

[37] N. Tallent and J. Mellor-Crummey. Scalable
fine-grained call path tracing. Proceedings of the
international conference on Supercomputing, 2011.

[38] The National Aeronautics and Space Administration.
FUnit. http://nasarb.rubyforge.org/funit, 2001.

[39] The National Aeronautics and Space Administration.
pFUnit.
http://opensource.gsfc.nasa.gov/projects/FUNIT,
2005.

[40] S. Vakkalanka, G. Gopalakrishnan, and R. Kirby.
Dynamic verification of MPI programs with reductions
in presence of split operations and relaxed orderings.
Computer Aided Verification, 2008.

[41] A. Vo, S. Vakkalanka, and M. DeLisi. Formal
verification of practical MPI programs. ACM Sigplan,
2009.

[42] E. J. Weyuker. On testing non-testable programs.
Computer Journal, 25(4):465–470, 1982.

[43] D. Worth, C. Greenough, and L. Chin. A Survey of C
and C++ Software Tools for Computational Science.
Science and Technologies Facilities Council, 2009.

[44] J.-I. I. Yabana, D. Takahashi, A. Oshiyama, T. Boku,
K. Shiraishi, S. Okada, and Kazuhiro. A
massively-parallel electronic-structure calculations
based on real-space density functional theory. Journal
of Computational Physics, 2010.

360

