
THE UNIVERSITY OF TOKYO
Graduate School of Information Science and Technology

Department of Creative Informatics

博士論文

Pragmatic Extensions for Language Embedding
Using Load-Time Metaprogramming

（言語埋込みのためのロード時メタプログラミングを用いた実用的拡張）

Doctoral Dissertation of:
Maximilian Pascal Scherr

シシシェェェアアア　　　マママクククシシシミミミリリリアアアンンン　　　パパパスススカカカルルル

Academic Advisor:
Shigeru Chiba
千千千葉葉葉　　　滋滋滋

June 2015

i

Acknowledgments

This thesis is the result of my three years of research under the supervision of Prof.
Shigeru Chiba in the Department of Creative Informatics. I am very lucky that a fair
mixture of struggle and fortunate coincidences lead me to engage in postgraduate
studies and research at the University of Tokyo.

I am greatly indebted to my advisor Prof. Chiba for welcoming me into his
research group as a doctoral student and supporting me in my research endeav-
ors. On countless occasions throughout my time under his supervision he offered
invaluable advice and guidance that was crucial to the completion of this thesis.

I would also like to express my gratitude to the members of my thesis commit-
tee: Prof. Kenji Yamanishi, Prof. Kei Hiraki, Prof. Shinichi Honiden, Prof. Hiroshi
Esaki, Prof. Toshiya Hachisuka, and Prof. Shigeru Chiba. They provided me with
valuable insights and comments on how to improve and clarify my arguments and
presentation.

Of course, my gratitude also extends to all members of the Core Software
Group, in particular Prof. Yoshiki Sato, Fuminobu Takeyama, YungYu Zhuang,
Kazuhiro Ichikawa, Thanh-Chung Dao, Hiroshi Yamaguchi, Masayuki Ioki, and
Ryo Fukumuro.

Thanks also to my family and friends, whose assistance and company have been
a great source of energy, joy, and comfort throughout all of my studies and my work
on this thesis.

Finally, without the scholarship provided by Japan’s Ministry of Education,
Culture, Sports, Science and Technology (MEXT) I would not have been able to
come to this country and fulfill my goals. I am deeply thankful for it.

MAXIMILIAN PASCAL SCHERR

Tokyo, Japan
June 2015

iii

Abstract

This dissertation details my research on the improvement of techniques for em-
bedding domain-specific languages (DSLs) in a general-purpose host language. Stan-
dalone, dedicated DSLs provide a high-level abstraction to problem solving. Their
embedding by using existing host-language constructs and language features not
only reduces the initial implementation effort but also opens avenues to enrich
traditional programming-library interfaces.

Historically this idea evolved from compile-time metaprogramming techniques
such as syntactic macros. In modern high-level languages one can find a tendency
of avoiding such so-called impure techniques. Instead, language constructs that have
a fixed run-time behavior are preferred and often sufficient. This pure embedding
is arguably easier for authors as well as (and maybe more importantly) users of
embedded DSLs (EDSLs) due to the predictable, uniform behavior of the employed
constructs or abstraction mechanisms.

Still, existing manual implementation approaches suffer from tradeoffs in terms
of reliability, performance, and usability. The major cause for this is found in the
low-level emulation of high-level embedded-language aspects. Ultimately, EDSLs
are non-citizens in their general-purpose host language, which leads to missed
opportunities for eliminating the aforementioned tradeoffs.

My proposal is to raise the status of EDSLs to almost first-class citizens by means
of meta-level, semi-linguistic support. It lies in the nature of doing so to tamper
with the workings of the host language, essentially extending it. This is prone to
lead to heavyweight designs unlikely to appeal to mainstream users. Also, many of
the strengths of language embedding may be weakened when interfering with the
host-language front end. As an alternative, load-time metaprogramming offers a good
compromise for realizing a pragmatic form of language extension in our context.

The initial milestone is to turn EDSLs into explicit entities with ownership of as-
sociated host-language constructs such as methods. I address this with the so-called
implicit-staging approach, which is rather abstract in nature. Based on a prototype
framework and closer investigation I conclude that further restrictions and doc-
umentation mechanisms are necessary to render EDSLs more reliable and useful.
This is explored with a concrete framework that, in addition to load-time metapro-
gramming, relies on Java’s annotation feature to enable control and communication
of staged-EDSL behavior.

Contents

List of Figures viii

List of Code Listings x

List of Tables xii

1 Introduction 1
1.1 Motivating Problems . 3
1.2 Position and Contributions . 6
1.3 Organization . 9

2 Background 11
2.1 The Essentials . 11

2.1.1 Motivations for Language Embedding 12
2.1.2 The Role of the Host Language 14

2.2 Implementation Techniques . 15
2.2.1 Source-Code Preprocessing . 16
2.2.2 Active Libraries . 16
2.2.3 Compiler Plugins . 17
2.2.4 Syntactic Macros . 17
2.2.5 Template Metaprogramming . 19
2.2.6 Shallow Embedding . 20
2.2.7 Deep Embedding . 23
2.2.8 Tagless-Final Embedding . 25
2.2.9 Hybrids . 28

2.3 Staged Embedded Languages . 28
2.3.1 Staging . 29
2.3.2 The Design Space . 32
2.3.3 Pitfalls of Manual Implementations 32

2.4 Comparison . 39

3 Toward Higher-Level Support 45
3.1 Explicating the Embedded Language 46
3.2 Implicit Staging of EDSL Code . 48

3.2.1 Static Token Reinterpretation . 49
3.2.2 The Approach’s Potential . 49
3.2.3 Design Aspects . 51

iv

CONTENTS v

3.3 Load-Time Metaprogramming . 51
3.4 Proof-of-Concept Implementation . 52

3.4.1 Overview . 53
3.4.2 Staging: Expression Extraction 54
3.4.3 Processing: Expression Translation 60
3.4.4 Unstaging: Relinking Expression Sites 63

3.5 Evaluation . 63
3.5.1 Reliability . 63
3.5.2 Performance . 64
3.5.3 Usability . 70
3.5.4 Comparison with Related Work 70

3.6 Discussion and Summary . 74
3.7 Acknowledgments . 76

4 Almost First-Class Embedding 77
4.1 Support for Dynamically Staged EDSLs 78

4.1.1 The @Stage Annotation . 79
4.1.2 Materialization Triggers . 82
4.1.3 From Expression DAGs to Values 83
4.1.4 Global Carrying . 87
4.1.5 Language-Boundary Customization 89
4.1.6 Suppression of Staging Behavior 89
4.1.7 Visibility Control . 90
4.1.8 Static @Stage Inheritance . 90
4.1.9 Static Information . 92

4.2 Behind the Scenes . 95
4.2.1 The Case for Load Time . 95
4.2.2 System Overview . 95
4.2.3 Constant Analysis . 96
4.2.4 The Stage Graph . 97
4.2.5 Token-Representation Generation 98
4.2.6 Weave Analysis and Weaving . 99
4.2.7 Run-Time Support . 99

4.3 Examples . 100
4.3.1 Centroid Calculation (Vector EDSL) 100
4.3.2 Radar (Region EDSL) . 102
4.3.3 Connections (ImmutableList-Processing EDSL) 107

4.4 Evaluation . 108
4.4.1 Reliability . 109
4.4.2 Performance . 109
4.4.3 Usability . 111
4.4.4 Comparison with Related Work 111
4.4.5 Scala-Virtualized . 112

4.5 Discussion and Summary . 113
4.6 Acknowledgments . 115

5 Conclusions 117

vi CONTENTS

5.1 Limitations . 119
5.2 Future Work . 120

A Matrix EDSL Experiment Expressions 123
A.1 Randomly Generated Expression . 124

A.1.1 Shallow Embedding and Implicit Staging 124
A.1.2 Deep Embedding . 128

A.2 Biased-Randomly Generated Expression 134
A.2.1 Shallow Embedding and Implicit Staging 134
A.2.2 Deep Embedding . 138

B Tame-Staging Experiments 143
B.1 Centroid-Calculation Experiment . 143
B.2 Radar Experiment . 144
B.3 Connections Experiment . 144

B.3.1 Compiler Implementation . 145
B.4 Vector EDSL Overhead Experiment . 149

C Tame-Staging Reference 151
C.1 Language Classes . 151
C.2 Annotations . 152

C.2.1 @Stage . 152
C.2.2 @Accept and @Accept.This 153
C.2.3 @Suppress . 153
C.2.4 @Configure . 154

C.3 Expressions . 154
C.4 Static Information . 156
C.5 Closures . 157

Bibliography 159

List of Figures

1.1 EDSL implementation and usage roles . 2

2.1 Duality of language-embedding motivations 13

3.1 Implicit-staging overview . 48
3.2 Implicit-staging prototype overview . 53
3.3 Extracted expression AST . 56
3.4 Translated to tree of Callables . 61
3.5 Aggregated (random) benchmark results 65
3.6 Depth 1 and 2 (random) benchmark results 66
3.7 Depth 3 and 4 (random) benchmark results 67
3.8 Depth 5 (random) benchmark results . 68
3.9 Aggregated (biased-expressions) benchmark results 69

4.1 Tame-staging overview . 78
4.2 Carrying-level transitioning . 88
4.3 Stage graph for Figure 4.2 . 97
4.4 Expression hierarchy . 98
4.5 Centroid-calculation benchmark results . 102
4.6 Named-regions visualization . 105
4.7 Radar benchmark results . 106
4.8 Connections-query benchmark results . 108
4.9 Benchmark results (linear and logarithmic scale) 110

5.1 Three-dimensional placement of embedding approaches 119

viii

List of Code Listings

1.1 Haskell’s map and filter functions for list processing 3
1.2 Connection query (implicit operation chains) 4
1.3 Explicit, reified operation chains . 4
1.4 Manual query implementaion . 5

2.1 Signatures as syntax (by static typing) 14
2.2 Trivial lazy-evaluation example in Haskell 15
2.3 Rewrite rule for map fusion in Haskell (GHC) 17
2.4 Vector EDSL as macros . 18
2.5 Vector DSL shallowly embedded in Lisp 20
2.6 Vector (Vec) DSL shallowly embedded in Java 21
2.7 Region DSL shallowly embedded in OCaml 22
2.8 Region DSL deeply embedded in OCaml 23
2.9 Vector DSL deeply embedded in Java (interface only) 24
2.10 Vector EDSL as a type class and example program 25
2.11 Tagless evaluator and viewer . 26
2.12 Tagless reifier . 26
2.13 Tagless-final embedding in Scala . 27
2.14 Tagless-final embedding in Java . 28
2.15 Region DSL implemented with MetaOCaml’s explicit annotations . 30
2.16 Non-staged and staged power function in LMS 31
2.17 Deeply embedded vector DSL usage example 33
2.18 Non-compositional staging . 33
2.19 Opaque workflow-phase overlapping example 34
2.20 Mini factorial . 37
2.21 Vector EDSL redundancy example . 38

3.1 Matrix EDSL deep-embedding interface 46
3.2 Matrix (Mat) DSL shallowly embedded in Java 47
3.3 Deep EDSL context example (eager) . 50
3.4 Deep EDSL context example (lazy) . 50
3.5 Core interface . 53
3.6 Glue code in $execute method . 61
3.7 AddN and Scale . 62
3.8 Worst-case matrix expression . 69
3.9 Project Lancet JIT tools (selection of interfaces) 72

x

LIST OF CODE LISTINGS xi

3.10 Vector EDSL JIT macros (rough sketch) 73
3.11 Distant and dynamic EDSL-code composition 75

4.1 @Stage annotation type declaration . 79
4.2 Usage example . 80
4.3 Annotated (i.e. @Staged) Vec methods 80
4.4 Transformation example . 81
4.5 Dynamic boundary-decision example (L1 ≠ L2) 82
4.6 Trivial compiler skeleton . 83
4.7 Language class (VecL) . 85
4.8 Language class (VecL) for Scala compiler 85
4.9 Optimizing compiler in Scala . 86
4.10 Global carrying example . 87
4.11 VecE as a global carrier . 88
4.12 @Accepting . 89
4.13 @Configure annotation type declaration 90
4.14 Abstract Functor and implementation example 91
4.15 Mini tokens . 93
4.16 Mini analyzer . 94
4.17 Faulty Mini factorial . 95
4.18 Constant analysis . 96
4.19 Weighted vector (temporary container) 100
4.20 Centroid-calculation method . 101
4.21 @Staged region EDSL . 103
4.22 Simulated “radar” . 104
4.23 Named regions (excerpt) . 105
4.24 Custom expansion (derived region) . 106
4.25 ImmList definition . 107

A.1 Matrix EDSL benchmark loops . 123

B.1 Centroid-calculation benchmark . 143
B.2 Radar benchmark . 144
B.3 Connections benchmark . 144
B.4 Random entries factory . 145
B.5 Overhead (Vec) benchmark (run) . 149
B.6 Overhead (Vec) benchmark . 149

List of Tables

2.1 Comparison of implementation approaches 41

3.1 Implicitness and explicitness . 46
3.2 Comparison of implementation approaches 71

4.1 Comparison of implementation approaches 112

xii

CHAPTER 1
Introduction

The defining goal of computer languages has always been to enable the commu-
nication of non-tangible, thought-up ideas, plans, problems and their solutions
between man and machine. Thanks to extensive research and the desire to lower
the barrier of entry into the field of computer science, the level and quality by which
this communication may be conducted has increased significantly since the era of
punch-card programming.

However, despite the existence of high-level programming languages there has
not yet been found a single, universal programming language, despite efforts to
do so. One may argue that any significantly large and feature-rich language can
fulfill that role and this is true when one considers theoretical properties such as
computability. However, when it comes to suitability to express and solve certain
classes of problems this claim loses its weight. Furthermore, modern software
systems have grown so large that it is not possible to simply sweep under the rug
concerns of modularity, code reuse, and genericity.

The very fact that various programming paradigms are competing with each
other, have emerged, disappeared, and reemerged, appears to be a strong indication
that a single general-purpose language is unlikely to become the single best tool
for every task, for every user, and for every type of environment (e.g. sequential
vs. concurrent). The same seems to be the case for data-description languages and
computation and storage paradigms in general. If there is such a thing as a universal
solution to everything we do not seem to be close to finding it.

While it still makes sense to consider and investigate the general (-purpose)
case, i.e. to look for novel features that cover as many use cases and concerns as
possible, for the time being it seems just as worthwhile to focus on very limited,
special problem areas and instances and simplify their solution. This gives rise
to the concept of domain-specific languages (DSLs), i.e. computer languages that are
designed with a specific application domain in mind.

The concept is neither novel nor surprising. So-called “little languages” [20] have
been around for a long time and most notably find use in Unix shell programming.
Their success can be attributes precisely to their domain specialization. On the other
hand many modern general-purpose languages and runtime systems have started out

1

1. INTRODUCTION

FIGURE 1.1: EDSL implementation and usage roles

with certain domains in mind: ML [110] was designed to support theorem proving,
Prolog’s [114] initial application domain was natural language programming, and
Lisp [75, 97] had its mark set on artificial-intelligence applications. To some extent
even more modern systems like Smalltalk [47] and Java [49] started out with a
specific focus, though with general-purpose applications in mind. The former was
envisioned for use in education, the latter for targeting embedded systems.

Notable examples among DSLs in modern use are Graphviz’s dot [1], POV-
Ray’s SDL [2], SQL [28], and the R language [77]. Interestingly, due to various
feature extensions the latter two are already reaching the arguably fuzzy boundary
between domain specialization and general-purpose programming. On the other
hand, we find general-purpose languages increasingly allowing for more domain
specialization with libraries in combination with clever uses of language features.
This philosophy has been explored since the days of Lisp and its dialects [52, 72].
A more modern example for this case is Python [3] with its extensive libraries for
numerical and symbolic computation for scientific applications [4].

Looking at programming libraries from a DSL perspective leads to the concept
of embedded domain-specific languages (EDSLs1). One may try to discover and dis-
cuss language-like properties in existing libraries but arguably a more intriguing
endeavor is to contemplate the novel design or redesign of libraries as EDSLs, i.e.
with a language-like nature in mind. Such library-interface designs lead not only to
improved ease-of-use and readability (compared with traditional libraries) but can
offer better reliability (e.g. illegal states may be avoided by proper EDSL design)
and performance benefits through domain-specific optimizations.

The emergence of EDSLs and their popular dissemination in recent years (e.g.
as found in the books by Fowler [38] and Ghosh [44]) has lead to a sort of democra-
tization of programming-language design. After all, developing a language with its
own parser and compiler or interpreter just for the sake of solving a small problem
is a much more daunting task than extending a language’s feature in the form of
a library. The latter has been common practice and received attention in the form
of linguistic support (e.g. module systems, interfaces, encapsulation, information
hiding, etc.) for a long time. It is thus only logical to consider language embedding
as a means both to simplify DSL implementation as well as to improve library
interfaces.

Treating EDSLs similar to traditional libraries helps entice programmers to
engage in lightweight language design and usage. While this is a welcome devel-
opment in the field of software engineering and programming languages it comes
with a flaw: EDSLs ought to provide a high-level abstraction, yet the foundation for

1Or sometimes abbreviated as DSELs [59].

2

1.1. Motivating Problems

their implementation is not supporting this. Concretely, what looks like a language
is not bound to actually behave like a language or offer the same advantages. This is
only natural and inherent to the idea since EDSLs or the concept of a language-like
library are often a matter of (subjective) perspective.

This thesis is about improving the foundation of EDSL development by means
of targeted, pragmatic host-language extensions for EDSL abstraction to help their
authors and users (see Figure 1.1) alike.

1.1 Motivating Problems

Language embedding entails the reuse of a general-purpose language’s constructs
and abstraction mechanisms. Depending on the choice of host language the author
of an EDSL may choose between a small selection of various implementation and
design approaches. The easiest and most widely available approach is to directly
match the syntax elements, i.e. the tokens of the EDSL, with the semantics of the host
language. This requires no special language support whatsoever and is virtually
indistinguishable from a traditional library when ignoring that snippets of its usage
code may look like snippets of a small language.

LISTING 1.1: Haskell’s map and filter functions for list processing

1 map :: (a -> b) -> [a] -> [b]
2 map f [] = []
3 map f (x : xs) = f x : map f xs
4

5 filter :: (a -> Bool) -> [a] -> [a]
6 filter p [] = []
7 filter p (x : xs) | p x = x : filter p xs
8 | otherwise = filter p xs

A good examples for such an embedding is the type of list processing commonly
found in functional programming languages [62, Chapter 7] using immutable
lists and higher-order functions. Listing 1.1 shows the two central list processing
functions in the lazy and pure (here referring to the absence or restriction of side
effects) functional programming language Haskell [60].

Modern Java also supports higher-order functions in the form of lambda expres-
sions for so-called functional interfaces. This allows me to introduce an illustrating
example in Java. The use case is a database of direct (travel) connections between
locations and information on pricing and employed vessels. The connections are
stored in an immutable list (of type ImmutableList from the Guava library [5]).

The method in Listing 1.2 uses my own definition of the map and filter
functions (highlighted by underlining) to query the database for connections with
one little twist: The type of vessel (e.g. ship, train, plane) is only considered if there
are more than ten results fulfilling the other criteria. The result is a list of strings
containing only part of the information per connection.

While this is easy to use, readable, and concise, it will yield subpar performance
due to the creation of many intermediate results. In addition, admittedly the EDSL
nature is not immediately obvious here. However, it does appear when considering

3

1. INTRODUCTION

LISTING 1.2: Connection query (implicit operation chains)

1 import static ⋯.ImmList.map;
2 import static ⋯.ImmList.filter;
3 ⋯
4 public ImmutableList<String> query(String from, String to,
5 double maxPrice,
6 Vessel.Type vesselType) {
7 ImmutableList<Connection> l = this.connections;
8 l = filter(l, c -> c.getFrom().equals(from));
9 l = filter(l, c -> c.getTo().equals(to));

10 l = filter(l, c -> c.getVessel().getCapacity() > c.getBooked());
11 l = filter(l, c -> c.getPrice() <= maxPrice);
12

13 int count = l.size();
14 if (count > 10) {
15 l = filter(l, c -> c.getVessel().getType() == vesselType);
16 }
17

18 return map(l, c -> "(" + c.getId() + ", "
19 + c.getVessel().getType() + ", "
20 + c.getPrice() + "$)");
21 }

what happens in this query when limiting our view to the behavior of the two EDSL
tokens: Chains of several filter and map operations.

This leads us to a more indirect style of language embedding where this chaining
of operations, or in general the composition of operations, is made explicit. The
syntax of the EDSL is not directly linked to its semantics anymore and the actual
computation is delayed until the constructed chain of operations is evaluated.
Consider the new query method in Listing 1.3 which uses two auxiliary tokens:
of, which lifts input lists to values of type ImmListE, and eval, which triggers
evaluation. Note that filter and map no longer directly perform filtering or

LISTING 1.3: Explicit, reified operation chains

1 public ImmutableList<String> queryReified(⋯) {
2 ImmListE<Connection> lE = ImmListE.of(this.connections)
3 .filter(c -> c.getFrom().equals(from))
4 .filter(c -> c.getTo().equals(to))
5 .filter(c -> c.getVessel().getCapacity() > c.getBooked())
6 .filter(c -> c.getPrice() <= maxPrice);
7

8 ImmutableList<Connection> l = lE.eval();
9 lE = ImmListE.of(l);

10 int count = l.size();
11 if (count > 10) {
12 lE = lE.filter(c -> c.getVessel().getType() == vesselType);
13 }
14

15 return lE.map(c -> ⋯).eval();
16 }

4

1.1. Motivating Problems

LISTING 1.4: Manual query implementaion

1 public ImmutableList<String> queryManual(⋯) {
2 ArrayList<Connection> temp = new ArrayList<>();
3 for (Connection c : this.connections) {
4 if (c.getFrom().equals(from)
5 && c.getTo().equals(to)
6 && c.getVessel().getCapacity() > c.getBooked()
7 && c.getPrice() <= maxPrice) {
8 temp.add(c);
9 }

10 }
11

12 ImmutableList.Builder<String> resBuilder = ImmutableList.builder();
13 int count = temp.size();
14 if (count > 10) {
15 for (Connection c : temp) {
16 if (c.getVessel().getType() == vesselType) {
17 resBuilder.add(⋯);
18 }
19 }
20 } else {
21 for (Connection c : temp) {
22 resBuilder.add(⋯);
23 }
24 }
25

26 return resBuilder.build();
27 }

mapping. Instead, they are constructing the explicit filtering and mapping chain.
The reification (as in turning something abstract into something concrete) of

these little EDSL subprograms (at run time) as data enables their analysis, domain-
specific optimizations, and run-time code generation to speed up performance
tremendously, comparable to a manually optimized implementation of this query
as shown in Listing 1.4. On the other hand, the implementation of this optimizing
EDSL is not as straightforward anymore and can easily lead to issues that are hard
to debug on both the EDSL author’s as well as the user’s side. For instance, if
the generated code is not cached there will be processing overhead every time
evaluation is triggered or just-in-time compilation might not kick in at all, resulting
in subpar performance yet again.

Furthermore, for a user it is unclear at first sight what actually happens in the
EDSL-token methods. For instance, do they only contribute to the construction of
the chain or do they already perform partial optimizations? Also, is it possible to
share and reuse parts of the chain to build a bigger one without problems? These
questions can be addressed by diligent design and documentation. However, it
would be better if these common EDSL concerns could be handled in a common,
uniform way both EDSL authors and users alike can rely on.

In order to overcome the performance limitations of the initial direct language-
embedding style we not only have to sacrifice reliability of the used abstraction (i.e.
procedural abstraction versus possibly non-uniform program reification) we also

5

1. INTRODUCTION

end up negatively affecting usability. Arguably, the EDSL in Listing 1.2 is easier to
use than the one in Listing 1.3 for the following reasons:

• It does not require the introduction of an additional type (ImmListE).

• It does not require auxiliary tokens.

• It does not require considering program reification.

• It does not require thinking about evaluation triggering.

There are ways out of this dilemma by straying from the described pure-embedding
techniques [59], i.e. by using various methods of user-program preprocessing. How-
ever, this often entails heavyweight, ad-hoc, makeshift solutions or inbuilt metapro-
gramming support by the host language (and its compiler) such as syntactic macros.
But while these address certain parts of the usability concerns such as direct usage,
they sacrifice other parts. It is my contention that most existing approaches are
either too powerful, i.e. generally not tailored to EDSLs, and thus do not provide
reliable abstractions for language embedding, or suffer from their compile-time or
pre-compile-time nature.

1.2 Position and Contributions

In this thesis I address the concerns of reliability, performance, and usability en-
countered in the design and implementation of EDSLs. My goal is to alleviate
the tradeoff effect between these concerns, where an ideal solution would allow
meeting all these concerns while minimizing negative impacts.

Concretely, I propose the evolution of semi-linguistic extensions for the explicit,
high-level support of language embedding in a general-purpose language with
focus on controlled EDSL-program reification. By itself this idea appears to be at
odds with the very notion of EDSLs as entities that merely inherit host-language
features. However, in the past this argument has not stopped general-purpose
languages and research projects [89] to add features that while general in appearance
find use mostly in language embedding. For instance, generalized algebraic data
types [29, 116] (GADTs), as found in OCaml [6] and Haskell, most commonly find
application in encoding higher-order abstract syntax [85] (HOAS) for use in EDSLs
[46, 102]. Embedded DSLs have also been considered during the design of the
Scala language [80] with liberal rules on method naming (e.g. akin to operator
overloading) and the optionality of spelling out syntax like ⋯.⋯ or (⋯) in many
cases. However, the intention of the approach presented in this thesis is to go one
step further and consider EDSLs as almost first-class entities.

To further justify my endeavor within the realm of EDSLs, I propose to utilize
load-time metaprogramming [30] techniques. This type of metaprogramming
is commonly explored and pursued in the context of Java, low-level bytecode
instrumentation or transformation, and the Java Virtual Machine (JVM). So do
I for the target of my extensions. However, note that the concepts would also
be applicable to other environments with a similar design. I posit that load-time
metaprogramming makes my approach pragmatic in the following sense: Just

6

1.2. Position and Contributions

like embedding approaches that do not rely on user-program preprocessing the
compilation process remains unaffected. Here, i.e. on the syntax level, the nature of
EDSLs as inheriting host-language features is preserved. Meta-level processing of
user-programs and in extension that of potentially embedded-DSL subprograms is
delayed until code loading (corresponding to Java-class loading) occurs as part of
the eventual application execution.

The fact that the proposed extensions are augmentations to the host language
and not fully integrated language features (i.e. not a new language yet) ultimately
means that my undertaking cannot be considered pure. However, their evolution
and development is approached by looking through the lens of pure DSL embed-
ding. The motivation for this is that pure embedding techniques at the very least
provide strong behavioral guarantees for the basic building blocks (i.e. lingusitic
abstractions) such as function calls, data access, and type-based syntax constraints.

The individual contributions of this thesis do not necessarily correspond one-to-
one to chapter names. They are described in the following:

Exploring Concerns and Pitfalls. I identify concerns and deficiencies when de-
signing and implementing EDSLs for the role of rich library interfaces. Concretely,
while conceptually EDSLs are often proposed, explored, and presented as high-level
abstractions, they may easily fail to live up to their expectations due to potentially
leaky concrete implementations. The cause for this is found in the ad-hoc, manual
nature of most existing language-embedding approaches. In other words, the high-
level concept of a language within another language is manually emulated with
lower-level linguistic abstractions.

Explicit EDSL Entities for Automation. To address and eliminate the problems
of manual approaches, I propose the consideration of meta-level mechanisms for
guiding the implementation and usage of EDSLs, in particular the reification of
EDSL programs so as to avoid problems such as unclear boundaries or overlap
between various embedded DSLs. The first step towards this is to turn EDSLs
themselves into concrete entities with a declaration of token membership and thus
delimitation, as well as the encapsulation of their programs’ processing phase.

Implicit Staging. I explore the first step toward automation with the so-called
implicit-staging approach. It was originally motivated by the goal to enable EDSL-
program optimization without having to resort to run-time reification, which is
seen as an impairment on (seamless) usability and performance. Implicit staging
thus attempts to approach what is called deep embedding (see Section 2.2.7) while
having programs look like ones of a so-called shallow embedding (see Section 2.2.6).

In a nutshell, it separates and extracts domain-specific code from general-
purpose code in user programs and allows its custom processing by EDSL authors.
This requires program analysis before a user program is executed.

EDSL-Program Reification at Load-Time. Most existing DSL-embedding imple-
mentations that require static preprocessing choose compile time to do so. This
affects the maintainability of programs using such EDSLs: If a bug is detected in

7

1. INTRODUCTION

the EDSL implementation every program that uses the EDSL has to be recompiled
using an updated, bug-fixed version. Furthermore, some information that could
be worthwhile for reification and processing is not yet available at compile time.
For implicit staging, load time is a viable alternative to compile time. Hence, as
outlined earlier in this section, I concretely explore implicit staging as a pragmatic
extension for Java using load-time metaprogramming. The developed prototype
framework is tested, evaluated, and compared with other approaches.

Shortcomings of Implicit Staging. The prototype is a good first step toward
improving DSL embedding through automation. However, it has two shortcomings.
Firstly, the interface for defining explicit EDSL entities is open to abuse and may
cause bad surprises for users of an EDSL. Secondly, the purely static nature of
implicit staging comes both with advantages as well as drawbacks: On one hand
run-time-reification overhead is eliminated, but on the other hand the situation (i.e.
ad-hoc implementations) is not improved for EDSLs desiring to provide dynamic
program generation for the sake of adaptiveness or run-time configuration.

Almost First-Class Embedding. The lessons learned from the implicit-staging
prototype directly lead to a culmination of the previous ideas in my so-called
tame-staging framework. It is a concrete implementation for guiding the run-time
reification of EDSL programs. One major improvement over the implicit-staging
prototype is the mechanism for designating Java methods or fields as EDSL tokens.
It uses a so-called @Stage Java annotation that clearly associates its targets with a
statically known explicit EDSL entity represented by a Java class.

Guiding is established by automatically and transparently transforming user
code so that it performs dynamic EDSL-program reification when executed. Full
seamlessness is only achieved within the local scope of a method body and is called
local carrying. However, it is still possible to use the other advantages of the frame-
work beyond the method-local scope using so-called global carrying, however at the
cost of sacrificing some amount of seamlessness. Among these other advantages
are for instance the guarantee of predictable EDSL-program-fragment composition
as well as the automatic caching and reuse of EDSL-program-processing results.

The framework is evaluated and tested using several example EDSLs and com-
pared with other approaches. The evaluation yields good results for the concerns
of reliability and usability, while some issues with performance remain. These
may be addressed by more aggressively exploiting static situations in user code or
improving other details of the implementation such as the caching mechanisms.

Opportunities for Native Support. Just like the implicit-staging prototype, the
tame-staging framework uses load-time metaprogramming behind the scenes. This
proves to be a good, pragmatic choice for extending the host language (Java) for the
purpose of my research. However, it leaves some room for improvements that could
be achieved by a full-fledged, native (as opposed to “almost first-class”) language
feature for DSL embedding. I discuss some of these opportunities as part of the
treatment of the tame-staging framework.

8

1.3. Organization

1.3 Organization

The thesis is organized into five chapters (and three appendices). The current
chapter combined with Chapter 2 forms the motivation and background-discussion
part, in which the main definitions, concerns, approaches for language embedding,
together with their advantages and shortcomings, and the basis of comparison are
laid out. More concretely, the approaches of compile-time as well as pre-compile-
time preprocessing are discussed, followed by more widely available ones that
rely only on run-time behavior. Whichever is chosen, the common feature of
performance-oriented EDSLs is that their programs’ execution is not immediate but
delayed to allow for an intermediate optimization step. The difficulty of designing
user-friendly DSL embedding stems from this necessity and its realization. Detailed
comparisons are presented at the end of Chapter 2 and further supplemented near
the ends of the two following chapters.

Chapter 3 introduces the notion of turning EDSLs and their tokens’ language
membership into explicit entities. This enables an approach for performing con-
trolled, static reification of EDSL programs and customized, author-defined pro-
cessing. Subsequently, this is concretely explored in the form of a load-time code-
transformation framework in Java. Evaluation and discussion indicate shortcomings
in terms of uniformness and stresses the approach’s limitation to static processing
only. This chapter is largely based on my research published in co-authorship with
Prof. Chiba at the 28th European Conference on Object-Oriented Programming
(ECOOP 2014) [93].

The issues of Chapter 3’s approach are addressed in Chapter 4. It takes the
idea of token-to-language association to an easier-to-use, restricted interface using
Java’s annotation mechanism. Furthermore, the scope of EDSL-program reification
and composition is extended beyond the expression level and made dynamic. One
supported usage style allows for a method-local, transparent form of reification and
evaluation triggering, while a second one is more explicit. Both are accomplished
and enhanced by static knowledge (internal to the framework). The approach is
illustrated and evaluated on several examples. This chapter as well as Section 2.3.3
of Chapter 2 are largely based on my research to be published in co-authorship
with Prof. Chiba at the 2015 International Conference on Generative Programming:
Concepts and Experiences (GPCE 2015) [92].

Chapter 5 summarizes the presented work and reiterates some of its limitations
and potential future directions. Three appendices follow, which contain supple-
mentary data to the experiments conducted in Chapter 3 and 4, as well as minimal
documentation for using the framework introduced in Chapter 4.

9

CHAPTER 2
Background

To embed a domain-specific language has come to mean the focused use of general-
purpose features, i.e. (linguistic) abstractions, to emulate a language, or at least what
feels like one, as a guest within another. While this nomenclature might still be
disputed1 “embedded DSL” is the one chosen here.

Admittedly, the concept can be somewhat elusive. If we were discussing the
integration of guest languages with their own syntax [63, 83], semantics [109]
and specific compilation process we could perhaps more easily find satisfying
answers to the question of what a guest language in this context means and what
its delimitations are. However, traditionally EDSLs have decidedly not been about
involving that degree of integration and delimitation. Instead, they are rather about
adapting one’s perspective than they are about clear cuts.

This chapter attempts to establish terminology and introduce approaches to
language embedding. For the sake of further discussion some aspects are refined
or have their definitions adapted, while others will have to remain somewhat
underspecified. The goal is to draw enough of the big picture and focus on selected
details to enable the evaluation of this thesis’s motivation and results.

2.1 The Essentials

Wide use of language embedding in general emerged first in the Lisp community.
Graham [52] provides good examples for how this is accomplished with little
effort, including a Lisp-embedded implementation of Prolog. The reason Lisp
deserves the honor as the breading ground for embedded languages is found in
the language’s minimalism. Its syntax, i.e. S-expressions, coincides directly with
its abstract syntax and opens its users’ minds to considering programs as data in
an immediate fashion. New language features are introduced via extensions, i.e.
syntactic macros, that directly build upon this idea. In this fashion a new language
feature looks no different from existing features. It would not be surprising to

1Instead of EDSL, some prefer the term internal DSL as opposed to external, i.e. standalone, ones
[38], others use both [44], and others may recognize the term but avoid its usage.

11

2. BACKGROUND

encounter Lisp programmers thinking nothing special of EDSLs because having
new language features and combinations thereof just comes natural to them.

Hudak and others [35, 37, 59, 61] took the idea of embedded languages to the
world of statically typed functional programming languages. The general idea is to
simple use existing language features and abstraction mechanisms, e.g. procedural
and data abstraction, to implement DSLs. It is argued that one can “inherit the
infrastructure of some other language [and tailor] it in specific ways to the domain
of interest” [59], thereby avoiding the trouble and effort of building a DSL from
scratch. Furthermore, there is a stress on the purity of DSL embedding, e.g. one that
does not rely on a “preprocessor, macro-expander, or generator” [59], but on sound
(run-time) abstractions and the type system of the host language.

Of course, whereas EDSLs in Lisp would naturally fit into the already crude
S-expression look of the host-language and maybe appear like a first-class language
feature, in a language like Haskell having an embedded language be expressed by
function calls is potentially less natural. However, it may be argued that retaining
the look-and-feel of a core (i.e. the host) language specifically helps users approach
DSLs more openly as one part of a bigger program as well as enable seamless usage
and switching of several DSLs at the same time [59].

In whichever way DSLs are embedded in detail (e.g. with which degree of pu-
rity) the notion dictates that large parts of a general-purpose host language’s syntax,
its semantics, and compile-time analyses are reused to simplify both development
as well as usage of the DSL. The effect of naturally enabling easy interfacing and
intermixing of domain-specific and general-purpose code is also not to be underes-
timated.

2.1.1 Motivations for Language Embedding

The described form of language piggybacking has been embraced by various
programming-language communities ranging from compiled as well as interpreted,
functional as well as imperative, statically as well as dynamically typed, niche as
well as mainstream languages [5, 7, 8, 38, 39, 44, 45, 101]. One can categorize the
focus of research and development interest within the field of DSL embedding into
two different motivations:

• Embedded DSLs in Lieu of Standalone DSLs. Instead of building new ded-
icated languages from scratch either by hand or supported by parser and
compiler generators, a sufficiently powerful host language and supporting
frameworks within it can be used to the same or even better effect [73, 87,
88, 89, 100]. In other words, the goal is to simplify prototyping and close-to-
standalone DSL implementation. The resulting DSLs are used like standalone
DSLs that just happen to be embedded.

• Rich High-Level Library Interfaces. Traditional programming libraries whose
usages fit or can be made to fit into a language-like understanding can be
equipped with a richer, high-level interface that exposes and exploits this
nature [8, 19, 35, 38, 39, 45, 53, 59, 61, 67, 68]. In other words, the goal is to
turn libraries into DSLs that, thanks to embedding, can remain part of the
(host) language just like normal libraries.

12

2.1. The Essentials

FIGURE 2.1: Duality of language-embedding motivations

As mentioned before, EDSLs are about perspective. The former motivation
takes the perspective that standalone DSLs are simply (restricted) languages with
their own syntax and semantics, both of which can be abstracted away by cleverly
expressing both within a general-purpose language. Likewise, the latter motivation
takes the perspective that programming libraries, which after all are already being
specific to a domain, sometimes just lack the language aspect of a DSL, or alterna-
tively they have it but it is not exploited well (e.g. for performance or reliability).

Figure 2.1 shows the duality between these two motivations. In the case where
focus lies on realizing a single DSLs as an embedding, general-purpose code serves
both as a scaffolding to make the EDSL work, as well as allowing for interfacing
with the outside world. The expectation is that the amount of EDSL code dominates
the amount of general-purpose code.

In the case of libraries turned into rich language-like interfaces the expectation
is that the majority of code is general-purpose code with library accesses, i.e. EDSL
usages, sprinkled in between, often but not necessarily involving several different
EDSLs. Note that this corresponds with traditional views on library usage. With
these language-like interfaces, composition of library functionality is expressed as
EDSL-code (snippet) composition.

In reality the separation does not have to be as black and white as this extreme
depiction makes it seem. Furthermore, the motivations are not necessarily mutually
exclusive. After all, support frameworks, proposed for turning planned external
DSLs into embedded ones, may certainly be useful for EDSL development in general
and thus for library-interface EDSLs as well. Likewise, in principle it is possible
to use EDSLs not initially developed with library-interface use in mind as such,
though arguably more indirectly than if they had been designed for this purpose.

Yet, the choice of motivation (or its weight) can have an effect on EDSL design.
For instance, an EDSL program intended to be run like a dedicated, standalone DSL
program, i.e. one that acts as a one-time code generator or compiler, is at liberty to
ignore issues such as how to handle the presence of other (non-anticipated) EDSLs’

13

2. BACKGROUND

code or how to avoid redundancies when the same EDSL snippet is executed
repeatedly, as might occur with EDSLs used as library interfaces.

2.1.2 The Role of the Host Language

The choice of host language affects the ability to design and use EDSLs. As men-
tioned in the introduction of this section, the nature of Lisp’s syntax has enabled
its extensibility and openness to the concept of embedded DSLs. On the other
hand its syntax (e.g. prefix operators) is not necessarily inviting to domain-expert
newcomers to Lisp programming. To some extent this is inherent to all EDSLs and
intentional (to maintain a common look-and-feel). Haskell and Scala have addressed
this in their own ways by offering flexibility in expressing function applications as
well as the usage of custom operator names.

More important than the precise expression of concrete syntax on the surface is
the ability to influence and guide the syntax of EDSL programs. Unfortunately, the
term “syntax” is heavily overloaded. In the context of embedded languages in this
thesis, “EDSL syntax” refers to the permitted compositions of EDSL tokens and not
to the concrete syntax at the host-language front end.

With dynamically typed host languages like Lisp, Python, or Ruby [9], there
is hardly anything that enables the guiding of EDSL syntax in an easy fashion. It
should be noted that Lisp-style macros can in fact be used to check and report syntax
errors2 in individual EDSL expressions but this requires additional consideration
and manual implementation.

LISTING 2.1: Signatures as syntax (by static typing)

1 // Integer expressions
2 public static IntV intVar (String name) { ⋯ }
3 public static IntE intLit (int a) { ⋯ }
4 public static IntE mul (IntE a, IntE b) { ⋯ }
5 ⋯
6 // Boolean expressions
7 public static BoolE eq (IntE a, IntE b) { ⋯ }
8 public static BoolE and (BoolE a, BoolE b) { ⋯ }
9 ⋯

10 // Statements
11 public static Stmt intAssign(IntV v, IntE e) { ⋯ }
12 public static Stmt whileDo (BoolE test, Stmt s) { ⋯ }
13 ⋯

Static typing provides an easy way to restrict the syntax of a host language’s
constituent guest EDSLs. Take for instance the simple Java method signatures
(including return type) presented in Listing 2.1 for a small imperative EDSL. It is
clear and lamented at compile time that an expression such as

intAssign(intLit(1), and(⋯))
is not valid syntax. This is a supporting example for Hudak’s [59] call to inherit
host-language infrastructure, in this case the static-typing infrastructure. So it

2Some macro systems even enable the implementation of statically typed self extensions [107].

14

2.2. Implementation Techniques

makes sense to choose a host language (and not to forget an associated community)
that already offers as much infrastructure as possible, including tools such as IDEs.
The idea of restricting syntax has also been explored in the context of automated
generation of typed as well as untyped EDSLs [117]. Note that expressing and
checking domain-specific type systems as well as semantics (e.g. whether a variable
within the EDSL was assigned before usage or not) in this fashion is much harder or
impossible. Dependently typed languages [23, 24, 79] look like promising candidates
for filling this gap. However, for the time being, in mainstream languages such
checking is commonly deferred until run time.

A host language’s evaluation strategy is another aspect heavily influencing
EDSL design. Most commonly found is call-by-value or strict, eager evaluation where
argument expressions of a function call are evaluated (usually from left to right) to
values to be used as actual arguments within the called function. With call-by-name,
a non-strict strategy, this evaluation does not occur before the call. Instead, the
argument expressions are merely substituted within the body of the called function.
Lazy evaluation or call-by-need, as employed for instance by Haskell, is similar to
call-by-name where expression are also substituted but evaluated at most once.

LISTING 2.2: Trivial lazy-evaluation example in Haskell

1 ifThenElse :: Bool -> a -> a -> a
2 ifThenElse test trueBr falseBr = if test then trueBr else falseBr
3 ⋯
4 let x = ⋯
5 y = ⋯
6 in ifThenElse (3 > x) (x + y) (x ^ 2 + y ^ 2)

In the example of Listing 2.2 only one of (x + y) or (x ^ 2 + y ^ 2) is
evaluated depending on the result of (3 > x). In strict languages like Python,
C, Java, or OCaml all three argument expressions would be evaluated before the
call. It is possible to simulate something akin to call-by-name strategy by requiring
explicit (first-class) functions as arguments but this usually results in more verbose
expressions. Scala supports call-by-name out of the box, e.g. by specifying a formal
parameter as (x: => A) (for some type A) instead of (x: A). Note that syntactic
macro “calls” do not really fall into any of these categories as their expansion and
thus semantics is entirely customizable.

A consequence of lazy evaluation on a global scale throughout the programming
language is that it requires freedom from unanticipated side effects. This has
advantages for language embedding as it avoids unpredictable behavior when
intermixing with general-purpose code. On the other hand, it also requires general
users to adapt to a specific, potentially unfamiliar style of programming. Without
taking sides on which programming paradigm is best, let us merely reiterate here
that it affects EDSL design and usage.

2.2 Implementation Techniques

Based on the various implementation techniques and examples already mentioned,
by now the reader has hopefully developed a rough intuition for the core concepts

15

2. BACKGROUND

of EDSLs. However, it is still crucial to consider the details of the various existing
approaches to gain a better understanding of the design space and the challenges
involved. In the following I will first consider what Hudak [59] might have called
impure embedding techniques and then shine more light on pure embeddings as well
as somewhat orthogonal concerns.

2.2.1 Source-Code Preprocessing

If all that is inherited by a host language for EDSL development is the concrete and
abstract syntax, one can implement an EDSL by writing a source-code preprocessor
(or source-to-source compiler) that needs to be applied to user programs. In this case
the degree of inheritance of host-language infrastructure is rather small. What sepa-
rates this from an approach with entirely custom-syntax DSLs inside host-programs
is that at the very least the lexical and syntactic analysis components can be reused
if publicly available. Even if unavailable, it is fairly easy to generate parsers from
language specifications using parser generators [84] or parser-combinator libraries
[74].

The reification of entire user programs with general-purpose as well as domain-
specific code portions allows for a great deal of freedom to custom-tailor the EDSL
including semantic analyses and optimization strategies for its programs. However,
the disadvantages are immediately evident:

• Implementation is heavyweight and hard to maintain. For instance, con-
sider what happens when a new language feature is introduced to the host
language.

• Only pre-compile-time information is available. For instance, target architec-
ture of the final compilation cannot automatically be taken into consideration
for optimizations.

• Language interactions between various preprocessor-implemented EDSLs are
entirely unclear.

• The connection between the original program and the processed program is
lost, hampering the debugging of the original (unprocessed) programs.

• The preprocessing and its effects are a global whole-program black box.

In effect, such preprocessor-implemented EDSLs are closer to a new general-purpose
language and too custom to be considered a general abstraction pattern, let alone
(linguistic-) abstraction mechanism.

2.2.2 Active Libraries

Standalone source-code preprocessors become more viable when they provide gen-
eral abstraction mechanisms for EDSLs. One such example is CodeBoost [19] which
enables the definition of domain-specific rewrite rules for optimizing combinations
of specific operators and functions (belonging to DSLs) embedded in C++ [99]. It is
reusable and the black-box issue is mostly eliminated by documenting and limiting
the scope of rewriting.

16

2.2. Implementation Techniques

Another example for such a framework is the source-to-source Broadway com-
piler for C [53, 69] which allows library authors to define their own static analyses
(using the concept of typestate [98]) and optimizations based on them via condi-
tional rewriting. It is more wide-reaching than CodeBoost (and in fact many other
traditional approaches) due to the custom data-flow analysis aspect and thus its
departure from syntactic-only approaches.

Both CodeBoost and the Broadway compiler essentially incorporate the idea
of (and enable) so-called active libraries (i.e. “libraries which take an active role
in generating code and interacting with programming tools” [112] as part of the
compilation process) but stop short of making the realization, verbalization, or step
toward the concept of libraries as EDSLs. In both frameworks focus lies more on
small optimization steps than customizing EDSL subprograms as a whole. Likewise,
it is important for us to keep in mind the connection between active libraries and
the motivation of EDSLs as richer library abstractions or interfaces.

One example for a lightweight active-library mechanism in active use can be
found in modern versions of the popular Glasgow Haskell Compiler (GHC) [54] in
the form of language-integrated rewrite rules. Listing 2.3 shows an example taken
directly from the official documentation [10].

LISTING 2.3: Rewrite rule for map fusion in Haskell (GHC)

1 {-# RULES
2 "map/map" forall f g xs. map f (map g xs) = map (f . g) xs
3 #-}

2.2.3 Compiler Plugins

Customizable preprocessing integrated into the compiler itself is a step up from
standalone preprocessors. This integrated preprocessing is usually found in the
form of a compiler-plugin feature as for instance provided by the Scala compiler.

This feature is not always explicitly given the name “compiler plugin”. Some
languages like Racket [11, 107] and (experimentally in) Scala [25] offer support for
types of macros that have a bigger scope beyond that of only expressions. This
makes them closer to compiler plugins than expression-level syntactic macros.

The big difference between compiler plugins and standalone source-code prepro-
cessors is that parts of the host-language infrastructure are indeed directly inherited
and can be reused, at least in principal. This may range from basic parsing to
type-checking or even further semantic-analysis phases.

2.2.4 Syntactic Macros

Syntactic macros are a means to customize compilation in an expression-local
way. Unlike whole-program preprocessors or compiler plugins it is possible for
people to reason about their programs that use known linguistic abstractions (macro,
procedural, or otherwise) and only where an unknown macro occurs they encounter
a form of black-box behavior. As mentioned above, this enables the host language

17

2. BACKGROUND

to gradually expand in a seamless fashion. This flexibility can be seen as the big
appeal of Lisp while at the same time has made it prone to fragmentation.

Due to their significant role in the development of the embedded-language
concept let us take a closer look. Consider a library for addition (vec-plus)
and scaling (vec-times) of vectors represented as lists. We can consider these
operations to be tokens of a little language and exploit this nature.

LISTING 2.4: Vector EDSL as macros

1 (defun vec-plus-n-ext (e)
2 (cond
3 ((atom e) (list e))
4 ((eq (car e) ’vec-plus-n)
5 (cadr e))
6 (t (list e))))
7

8 (defun vec-opt (e)
9 (cond

10 ((atom e) e)
11 ((eq (car e) ’vec-plus)
12 ‘(vec-plus-n ,(append (vec-plus-n-ext (vec-opt (cadr e)))
13 (vec-plus-n-ext (vec-opt (caddr e))))))
14 ((eq (car e) ’vec-times)
15 ‘(vec-times ,(vec-opt (cadr e)) ,(caddr e)))
16 (t e)))
17

18 (defun vec-opt-emit (e)
19 (cond
20 ((atom e) e)
21 ((eq (car e) ’vec-plus-n)
22 ‘(mapcar ’+ ,@(mapcar ’vec-opt-emit (cadr e))))
23 ((eq (car e) ’vec-times)
24 ‘(mapcar (lambda (x) (* x ,(caddr e))) ,(vec-opt-emit (cadr e))))
25 (t e)))
26

27 (defmacro vec-plus (v1 v2)
28 (vec-opt-emit (vec-opt ‘(vec-plus ,v1 ,v2))))
29

30 (defmacro vec-times (v s)
31 (vec-opt-emit (vec-opt ‘(vec-times ,v ,s))))

Listing 2.4 shows the implementation of this language and a simple optimiza-
tion: Binary additions are flattened into one application of mapcar. Furthermore,
expression semantics are inlined at the macro’s call (or expansion) site. For instance,

(vec-plus (vec-plus v1 (vec-times v2 2)) v3))

would, at compile time, be turned into:

(mapcar ’+ v1 (mapcar (lambda (x) (* x 2)) v2) v3)

The restriction to the expression level is not always a real hindrance as even
more complex programs can be expressed as expressions. Scala’s implementation
of syntactic macros can also work on the block level. In Scala it is also possible to

18

2.2. Implementation Techniques

retrieve some contextual information such as typing and location (line numbers).
Individual implementations have different properties and features but the concept
remains the same: Subtrees of a program’s abstract syntax tree (AST) are entirely
reified at compile time and at the command and mercy of the macro author.

While great for EDSL authors in terms of customizability and for users in terms
of performance and usability, there is a loss in terms of reliability. After all, within
these customized subtrees, general assumptions and expectations for the workings
of the host language need not necessarily apply anymore, e.g. the evaluation strategy
may change. To top it off, writing macros in a way that does not interfere with the
rest of the program is not an easy task [52, Chapter 10].

It would be unfair to generally judge macros negatively for all of these byprod-
ucts of the (necessary) power bestowed to them by design. However, one may
question whether their entire power is required for EDSL implementation, just like
custom preprocessors are an excessive solution for achieving what macros provide.

2.2.5 Template Metaprogramming

Template metaprogramming is yet another form of compile-time metaprogramming
usable for language embedding. Originally introduced for generic types in C++,
this way of metaprogramming encodes compile-time computations within the type
system [16, 32]. Unlike other mechanisms like generics in Java that look similar on
the surface, template-type-level computations are very powerful and allow precise
specialization of data-structures as well as operation implementations.

So-called expression templates [111] can be used to transform expressions, e.g.
for the sake of optimizations. Czarnecki et al. [32] describe this in the context of
language embedding of a vector DSL similar to the one used for our syntactic macro
example. It involves statically expressing the abstract syntax of an EDSL expres-
sion within the type system and building templates that combine and eventually
transform it. The process of expressing and handling the computation is clever
but rather unintuitive, cumbersome, and limited [32]. It is questionable whether a
system essentially intended for parametric polymorphism ought to be shoe-horned
(using template-coding tricks [16, 96]) into a type-level abstract syntax processor.

There also exists “template metaprogramming” for Haskell with an extension
called Template Haskell [96]. Though similar in name, it is quite different from tem-
plate metaprogramming in C++. In fact, Template Haskell rather falls somewhere
in between the concepts of preprocessors and syntactic macros since it “allows
the programming to alter the semantics of a program by transforming it into a
different program before it reaches the compiler” [32]. It provides mechanisms for
code reification (e.g. of declarations, expressions, etc.), generation, composition,
and reflection (i.e. splicing in code). As such it can of course be used to implement
and transform embedded DSL programs at compile time [95], and it is arguably
much easier to do so than with template metaprogramming in C++. However,
EDSL authors and users face the same issues as with compiler plugins and syntactic
macros, but with additional boilerplate (i.e. the $(⋯) splice operator and [|⋯|]
quotation).

19

2. BACKGROUND

2.2.6 Shallow Embedding

Let us now turn to pure embedding techniques. They avoid the type of meta-
programming covered in the previous sections and rely on language features and
abstraction mechanisms that have a clearly defined behavior at run time, i.e. the
tokens of these pure EDSLs work with various kinds of values at run time.

Shallow embedding is the most obvious embodiment of this idea. In this approach
an embedded language “is defined directly in terms of its semantics” [46]. In other
words, there is a direct mapping between the syntax of the EDSL and its semantics
in the host language [102]. For this thesis I find it worthwhile to further divide
this embedding style into two subcategories, namely immediate and delayed, with
nuanced differences as described in the following.

2.2.6.1 Immediate: (Non-Computational) Data Composition

The easiest way to understand a shallowly embedded DSL is when it is merely pro-
viding functionality for combining (and possibly manipulating) non-computational
data [106]. The connection between function call and resulting value is immediate
even if the host language’s evaluation strategy itself is not strict. In most cases it
is indistinguishable from a traditional library that offers utility functions and its
language nature merely derives from a (small) selected range of operations that
(visually) fit together well.

Take for instance the vector EDSL from Listing 2.4 that was used to showcase
syntactic macros. If we implement this EDSL with functions (defun) as shown in
Listing 2.5 instead of macros (defmacro) we get an immediate shallow embedding.
The combined values are in fact “just” lists.

LISTING 2.5: Vector DSL shallowly embedded in Lisp

1 (defun vec-plus (v1 v2)
2 (mapcar ’+ v1 v2))
3

4 (defun vec-times (v s)
5 (mapcar (lambda (e) (* e s)) v))

We can further limit the extent of this language by restricting the data types to
custom ones. While possible in Lisp it is more useful in a language where static
type checking enforces this and limits the range of combinations. Consider what is
essentially the same EDSL but with an (externally or publicly) immutable Vec data
type, implemented in Java as presented in Listing 2.6.

Implementing this kind of embedding is very simple, easy to use (i.e. users work
only on values) and reliable (i.e. there are few surprises). Of course, the method
bodies themselves are black boxes but the use of procedural abstraction, which
follows the common laws of the host language, makes it easy to reason about the
programs of such an EDSL. However, it is not possible to apply domain-specific
optimizations related to the structure of an EDSL program as we could with macros.

20

2.2. Implementation Techniques

LISTING 2.6: Vector (Vec) DSL shallowly embedded in Java

1 public final class Vec {
2 final double[] elements;
3 private Vec(double[] elements) { this.elements = elements; }
4

5 public static Vec create(double... elements) {
6 return new Vec(Arrays.copyOf(elements, elements.length));
7 }
8

9 public Vec plus(Vec vec) {
10 double[] ds = new double[elements.length];
11 for (int i = 0; i < ds.length; i++) {
12 ds[i] = elements[i] + vec.elements[i];
13 }
14 return new Vec(ds);
15 }
16

17 public Vec times(double s) {
18 double[] ds = new double[elements.length];
19 for (int i = 0; i < ds.length; i++) {
20 ds[i] = elements[i] * s;
21 }
22 return new Vec(ds);
23 }
24 }

2.2.6.2 Delayed: Computation Composition

In many modern programming languages functions or closures are first-class citi-
zens. These represent computations or computational values that commonly cannot
be decomposed (at least not straightforwardly). Despite their somewhat indirect
nature, EDSLs that at their core combine these computations are still commonly
classified as shallowly embedded [46, 102].

To illustrate this type of embedding let us implement a language for two-
dimensional geometric regions in the spirit of the one introduced by Carlson et al.
[27], a common choice of example [26, 57, 102]. A region is defined as a function
taking two-dimensional coordinates and returning either true or false, i.e. it
is the characteristic function for a set of points. There are primitive regions such
as circles and squares of a fixed size and combinators that transform or compose
regions, such as scaling and intersection. Listing 2.7 shows an implementation in
OCaml.

Programs of this EDSL are mere combinations of function values. So it is true
that the mapping to the semantics of the host language is direct. However, the
actual computation that is expressed by these regions is delayed until is_inside
is called. In fact we do not even need this computation-triggering function in this
direct representation. It is mere decoration here but it could be useful if we wanted
to wrap and hide the internal representation of a region as a function.

This embedding is still easy to implement and use. However usability does
suffer slightly from the delayed nature. For instance, it might become hard to debug
errors that occur deeply nested within one of the delayed computation combinations.

21

2. BACKGROUND

LISTING 2.7: Region DSL shallowly embedded in OCaml

1 type region = float -> float -> bool
2

3 (* Primitives *)
4 let empty =
5 fun x y -> false
6 let circle =
7 fun x y -> sqrt (x *. x +. y *. y) <= 1.0
8 let square =
9 fun x y -> abs_float (x *. x) <= 1.0 && abs_float (y *. y) <= 1.0

10

11 (* Combinators *)
12 let scale (r : region) sx sy =
13 fun x y -> r (x /. sx) (y /. sy)
14 let translate (r : region) tX tY =
15 fun x y -> r (x -. tx) (y -. ty)
16 let outside (r : region) =
17 fun x y -> not (r x y)
18 let intersect (ra : region) (rb : region) =
19 fun x y -> (ra x y) && (rb x y)
20 let union (ra : region) (rb : region) =
21 fun x y -> (ra x y) || (rb x y)
22

23 (* Checking *)
24 let is_inside (r : region) =
25 fun x y -> r x y

Such errors cannot always be avoided like in the regions example. Furthermore, the
EDSL author is still not able to implement optimizations based on the structure of
EDSL programs. For instance, a simple (desirable but not expressible) optimization
would be to transform an expression like

intersect (union (⋯) (⋯)) empty

into the expression

empty

in order to avoid the computational effort of checking the irrelevant (left) subex-
pression due to the eager host-language evaluation strategy. The opaque nature of
the computational (function) values prevents this.

Another characteristic of shallow embeddings is that they only allow for a
fixed number of interpretations, usually a single one. In the case of our region
language this interpretation is region-member checking. However, it might also be
interesting to perform different interpretations such as calculating the total covered
area of a region. Gibbons [46] rightly points out that it is possible to add more
interpretations by expanding value types to tuples, performing all interpretations,
and then projecting the values of interest. This is rather cumbersome and may cause
redundant computations (depending on the host language’s evaluation strategy).

22

2.2. Implementation Techniques

LISTING 2.8: Region DSL deeply embedded in OCaml

1 (* Abstract syntax *)
2 type region_e =
3 | Empty_e
4 | Circle_e
5 | Square_e
6 | Scale_e of region_e * float * float
7 | Translate_e of region_e * float * float
8 | Outside_e of region_e
9 | Intersect_e of region_e * region_e

10 | Union_e of region_e * region_e
11

12 type region = region_e
13

14 (* Primitives *)
15 let empty = Empty_e
16 let circle = Circle_e
17 let square = Square_e
18

19 (* Combinators *)
20 let scale (r : region) sx sy = Scale_e (r, sx, sy)
21 let translate (r : region) tx ty = Translate_e (r, tx, ty)
22 let outside (r : region) = Outside_e r
23 let intersect (ra : region) (rb : region) = Intersect_e (ra, rb)
24 let union (ra : region) (rb : region) = Union_e (ra, rb)
25

26 (* Checking *)
27 let rec is_inside (r : region) = fun x y ->
28 match r with
29 | Empty_e -> false
30 | Circle_e -> sqrt (x *. x +. y *. y) <= 1.0
31 | Square_e -> abs_float (x *. x) <= 1.0 && abs_float (y *. y) <= 1.0
32 | Scale_e (re, sx, sy) -> is_inside re (x /. sx) (y /. sy)
33 | Translate_e (re, tx, ty) -> is_inside re (x -. tx) (y -. ty)
34 | Outside_e re -> not (is_inside re x y)
35 | Intersect_e (rea, reb) -> (is_inside rea x y) && (is_inside reb x y)
36 | Union_e (rea, reb) -> (is_inside rea x y) || (is_inside reb x y)

2.2.7 Deep Embedding

What prevents optimizations and having a multitude of interpretations is the fact
that although computation is in fact reified in the case of delayed shallow em-
bedding, the computation cannot be inspected (i.e. no intensional analysis). The
technique of deep embedding addresses this by making the EDSL tokens construct
and combine custom-defined abstract syntax at run time. This commonly repre-
sents computation but is open to different interpretations. The approach can be
considered a not-so-distant relative of the so-called interpreter pattern [42, Chapter 5].

Listing 2.8 shows a deep embedding of the region language in OCaml with
region_e being an algebraic data type (or variant) mirroring the EDSL tokens. The
function is_inside is an interpreter of the abstract syntax tree generated from the
tokens of the EDSL. It is easy to imagine interpreters that take into account aspects
of the semantics such as for instance the operands of Intersect_e and change

23

2. BACKGROUND

behavior accordingly. One could even go so far as to write a compiler, e.g. to C [36].
It is also rather common to implement optimization at the time of abstract-syntax

construction by using so-called smart constructors [36]. In our example this refers to
the token functions themselves which could (but in our example do not) perform
rewriting based on the provided operands’ abstract syntax.

Compared to delayed shallow embedding there is not much difference in terms
of usability. However, implementation is a little bit more involved and the ability to
wrangle abstract syntax could more easily lead to bugs and unreliable behavior on
the user side as well.

LISTING 2.9: Vector DSL deeply embedded in Java (interface only)

1 // Base value
2 public final class Vec {
3 ⋯
4 public VecE toVecE() { ⋯ }
5 }
6

7 // Abstract syntax
8 public class VecE {
9 ⋯

10 public VecE plus (VecE vE) { ⋯ }
11 public VecE times(double s) { ⋯ }
12 public Vec toVec() { ⋯ }
13 }

The difference to immediate shallow embedding is more significant. Let us
show this on a sketched deep embedding of the vector DSL in Java. Listing 2.9
shows the modified skeleton of Vec as well as VecE, which represents and is to
house the language’s abstract syntax (not actually shown here). Operations are not
immediately performed on the vector values anymore. Instead, the idea is to first
lift a value to a literal (with toVecE) and then perform operations defined on the
abstract syntax (VecE). The actual calculation is delayed until toVec is invoked.3

In general, just by looking at the interface it is not possible to determine whether
computation is in fact delayed. However, assuming that this is what the EDSL’s
documentation says, users need to become aware of this syntax construction and
composition as opposed to the simplicity of a shallowly embedded version. Users
cannot ignore this even temporarily and might experience a degradation of usability.
After all, there is an additional, visible indirection layer in between the desired
computation and its actual expression as well as execution.

In some host languages it is possible to hide some of the deep-embedding
aspects using type inference as well as implicit conversions (in Scala). One could also
hide deep-embedding behavior behind the Vec type itself, but this is only possible
when the type is custom-defined (or freely extensible) and when computation is
intended to be delayed in a truly lazy fashion, e.g. until vector elements are accessed.
It is questionable whether entirely hiding the exact behavior from users is always
helpful or an improvement to the overall interface.

3The design choice of using instance methods here instead of static methods is not related to the
style of embedding. However, it requires the author to be in control of the data type’s implementation.

24

2.2. Implementation Techniques

Let us finally compare deep embedding with impure embedding techniques: In
a certain sense, deep embedding is an emulation of syntactic macros at run time.
EDSL subprograms are reified as data just like any other data in the host language
is created and constructed. This happens entirely at run time and while it enables
dynamic program composition, it also incurs some overhead as it does not benefit
from static preprocessing.

This is counterweighted by the wide availability of the approach as well as the
ability to adapt computation and EDSL handling to the actual run-time system
or environment. For instance, if a bug is found in a macro’s implementation it
becomes necessary to recompile all the source files using that macro. With deep
embedding, at least in a dynamically linked library environment, this is not necessary.
Furthermore, deep embedding extends beyond static expressions, i.e. programs can
be freely constructed (at run time) using the host language’s inbuilt mechanisms.
It is also possible to implement auxiliary methods that accept, build, combine,
and return abstract syntax. Note that only data types that are designed for EDSL-
program composition can be affected, which is a safety improvement over the
black-box effects of macros on arbitrary source code within their scope.

2.2.8 Tagless-Final Embedding

So far I have only discussed rather rigid implementation approaches either with or
without explicit reification of EDSL programs. However, there are also orthogonal
concerns of modularity, flexibility and type safety. To this end, so-called tagless-final
embedding has been proposed by Carette et al. [26] (inspired by Reynolds [86]).

Recall that in deep embedding flexible interpretations of (reified) EDSL pro-
grams are made possible by implementing interpreters that dispatch behavior on
the actual abstract syntax elements. The core idea of tagless embedding is that this
flexibility in dispatching can be achieved without EDSL-program reification.

LISTING 2.10: Vector EDSL as a type class and example program

1 type Vec = [Double]
2 class VecL repr where
3 lit :: Vec -> repr Vec
4 plus :: repr Vec -> repr Vec -> repr Vec
5 times :: repr Vec -> Double -> repr Vec
6

7 v1 = [1, 2]
8 v2 = [3, 4]
9 v3 = [5, 6]

10

11 program :: VecL repr => repr Vec
12 program = (lit v1 ‘plus‘ (lit v2 ‘times‘ 2)) ‘plus‘ lit v3

This is best explained by example. The Haskell type class [113] VecL in Listing
2.10 shows a language definition or rather its interface. Programs can be expressed
by using only knowledge of the signatures in the type class but have no meaning by
themselves. The example program can be “run” by providing instances of VecL
and forcing program’s’ tagless interpretation to occur with these instances.

25

2. BACKGROUND

LISTING 2.11: Tagless evaluator and viewer

1 newtype Val a = Val Vec
2 instance VecL Val where
3 lit v =
4 Val v
5 plus (Val v1) (Val v2) =
6 Val (map (\(x, y) -> x + y) (v1 ‘zip‘ v2))
7 times (Val v) s =
8 Val (map (\x -> x * s) v)
9

10 eval (Val a) = a
11

12 newtype Str a = Str String
13 instance VecL Str where
14 lit v =
15 Str (show v)
16 plus (Str v1) (Str v2) =
17 Str ("plus(" ++ v1 ++ ", " ++ v2 ++ ")")
18 times (Str v) s =
19 Str ("times(" ++ v ++ ", " ++ (show s) ++ ")")
20

21 view (Str a) = a

Listing 2.11 shows two tagless interpreters. The expression (eval program)
causes evaluation of the EDSL program, (view program) yields a textual repre-
sentation. Although there is flexibility of interpretation, from an implementation
standpoint the two interpreters are simply realizations of shallow embedding. This
solves the issue of fixed and rigid shallow-embedding interpretations at the cost of
boilerplate code, though arguably in Haskell this is only of minor concern.

However, domain-specific optimizations still require at least some degree of
EDSL-program reification. The tagless-final approach allows for any type of inter-
pretation including ones that realize deep embedding. Listing 2.12 shows a simple
reifying interpreter that accomplishes this.

Note that our simple examples only expose the main properties of tagless
embedding and there is certainly more to explore in terms of expressive strength

LISTING 2.12: Tagless reifier

1 data Exp a = Lit a
2 | Plus (Exp a) (Exp a)
3 | Times (Exp a) Double
4 deriving(Show)
5

6 instance VecL Exp where
7 lit v = Lit v
8 plus v1 v2 = Plus v1 v2
9 times v s = Times v s

10

11 reif :: Exp Vec -> Exp Vec
12 reif e = e

26

2.2. Implementation Techniques

LISTING 2.13: Tagless-final embedding in Scala

1 trait VecL {
2 type Repr[+T]
3 def lit (v: Vec): Repr[Vec]
4 def plus (v1: Repr[Vec], v2: Repr[Vec]): Repr[Vec]
5 def times(v: Repr[Vec], s: Double): Repr[Vec]
6 }
7

8 trait Program { this: VecL =>
9 val v1, v2, v3 = ⋯

10 def run() = plus(plus(lit(v1), times(lit(v2), 2)), lit(v3))
11 }
12

13 trait Eval extends VecL {
14 type Repr[+T] = Vec
15 def lit (v: Vec) = v
16 def plus (v1: Vec, v2: Vec) = ⋯
17 def times(v: Vec, s: Double) = ⋯
18 }

and usefulness as a general implementation technique (not only for EDSLs) [26]. The
concept has inspired a variant of tagless embedding called polymorphic embedding in
Scala [57]. A closely related, similar concept (or perspective) in the object-oriented
programming (OOP) community is put forward by so-called object algebras [51, 82].

In Scala, one way of implementing tagless embedding is by using mixin com-
position [22, 81] as for instance employed by the Lightweight Modular Staging
framework [87] using traits (in combination with abstract type members and typed
self references). Listing 2.13 presents this. The EDSL program (encoded inside the
Program trait) can be “run” with an evaluator as follows:

new Program with Eval {}.run()

In cases where type-constructor polymorphism [76] (or higher-kinded types) and mul-
tiple inheritance of state are not necessary, Java is sufficiently expressive to realize a
restricted, first-order variant of this approach. Listing 2.14 presents this. Instead
of traits one can use interfaces and default methods. Due to restrictions regarding
multiple-interface anonymous classes in Java, “running” Program requires the
slightly verbose definition of an explicit, named class, e.g. as follows:

class P implements Program<Vec>, Eval {} ⋯ new P().run()

As mentioned before, although tagless embedding lends itself to flexible EDSL-
program interpretation as well as modular EDSL design, it comes with boilerplate
code and associated usage (and usability) limitations. As such it appears to be much
more well-suited for the “EDSL in lieu of standalone DSL” line of thinking than for
directly enriching traditional library interfaces. After all, despite (or I should rather
say because of) its flexibility, tagless-final embedding is not as directly usable and
seamless as either straightforwardly implemented shallow or deep embedding as
part of a general-purpose program.

27

2. BACKGROUND

LISTING 2.14: Tagless-final embedding in Java

1 interface VecL<R> {
2 R lit (Vec v);
3 R plus (R v1, R v2);
4 R times(R v, double s);
5 }
6

7 interface Program<R> extends VecL<R> {
8 default R run() {
9 Vec v1, v2, v3 = ⋯;

10 return plus(plus(lit(v1), times(lit(v2), 2)), lit(v3));
11 }
12 }
13

14 interface Eval extends VecL<Vec> {
15 default Vec lit (Vec v) { return v; }
16 default Vec plus (Vec v1, Vec v2) { ⋯ }
17 default Vec times(Vec v, double s) { ⋯ }
18 }

2.2.9 Hybrids

It is of course possible to mix various forms of language embedding. For instance,
not all tokens of an EDSL have to correspond to (reified) abstract syntax in deep
embedding. Some approaches use the concept of a core language with some EDSL
tokens directly constructing corresponding syntax data while others merely abstract
over and combine core-language elements [89, 102].

It is also possible to implement EDSLs that dynamically adjust whether behind
the scenes of a seemingly deep embedding immediate evaluation occurs or not. In
fact, the same may apply to seemingly shallow embeddings.

Another form of hybridization, in fact the direction also taken by this thesis,
can be found in the form of mixing impure with pure embeddings, i.e. static with
dynamic program reification. For instance, this is provided by Yin-Yang [68], which
mixes syntactic macros and deep embedding in order to improve usability.

With this form of hybridization some aspects or partial EDSL programs may
be handled statically while others may be delayed until later. They pose a slight
challenge to the understanding and notion of the language-embedding perspective
the more host-language infrastructure has to be discarded.

2.3 Staged Embedded Languages

All but the simplest EDSLs, i.e. those using immediate shallow embedding, explicitly
construct and compose computation.4 This leads to a separation of EDSL-related
computation into distinct stages. For instance, with syntactic macros EDSL-program
reification is automated at compile time, the processing of the program happens
in one stage, and the execution is a future one (happening at run time). With deep

4This even applies when no explicit analysis or transformation is performed as for instance in
delayed shallow embedding.

28

2.3. Staged Embedded Languages

embedding all computation happens at run time but is still staged, just in a more
ad-hoc fashion: Procedure calls create abstract syntax, its evaluation is a future
stage.

With this concept in mind, I deem it fitting to classify embedded languages that
make use of this type of separation as staged embedded languages. The following
will shed more light on the term “staging” (in the context of multi-stage program-
ming (MSP) [104]) and its interpretation for this thesis. This is followed by an
overview of the design space and a thorough treatment of various pitfalls that may
be encountered with traditional, i.e. manual, implementations of staged EDSLs.

2.3.1 Staging

The term “staging” has come to stand for many concrete notions and implementa-
tions that involve stages. Let us trace back its origin in the context of programming
languages. Taha simply states that “in essence, staging is altering a program’s
order of evaluation in order to change the cost of its execution” [105, Chapter 2].
While this may be too general a definition it captures the core idea of multi-stage
programming quite well. It is closely related to partial evaluation [65], which aims to
automatically and transparently find program parts that can be evaluated ahead
of (e.g. at compile time) other parts to precompute and transform the program
accordingly.

Taha concretizes that a multi-stage program “involves the generation, compi-
lation, and execution of code, all in the same process” [104], while Czarnecki [32]
only seems to require delay and does not ask for execution to be part of the same
process (since he includes template metaprogramming). Likewise, syntactic macros
have also been considered a form of multi-stage programming [43, 104]. The compi-
lation step also does not seem crucial for the concept of staging considering that
some implementations of multi-stage programming leave open whether generated
computation is interpreted or compiled [87].

2.3.1.1 Syntactic Annotation

To find an interpretation fitting to our concept of staged EDSLs, let us first illustrate
Taha’s realization of safe, controlled multi-stage programming. The core idea is
to allow the explicit construction of general-purpose program fragments at run
time with ways to combine these fragments by splicing. Their compilation with
subsequent execution must be triggered explicitly. The main contribution is that
this is supported by a static type system that ensures already at the initial time of
compilation that dynamically composed program fragments are type-safe and their
compilation later at run time will not cause type errors [32, 104, 105, 115].

This concept has been explored with several languages as bases, including Java
[115] and OCaml [32]. Let us here present the latter, called MetaOCaml. In addition
to OCaml’s standard features it offers three syntactic staging annotations:

• Brackets (.<⋯>.) for constructing code of the enclosed expression.

• Escape (.~⋯) for splicing, i.e. combining, code fragments.

• Run (.!⋯) for compiling and subsequently executing code.

29

2. BACKGROUND

LISTING 2.15: Region DSL implemented with MetaOCaml’s explicit annotations

1 type region = float code -> float code -> bool code
2

3 (* Primitives *)
4 let empty =
5 fun x y -> .<false>.
6 let circle =
7 fun x y -> .<sqrt (.~(x) *. .~(x) +. .~(y) *. .~(y)) <= 1.0>.
8 let square =
9 fun x y -> .<abs_float (.~(x) *. .~(x)) <= 1.0 && ⋯>.

10

11 (* Combinators *)
12 let scale (r : region) sx sy =
13 fun x y -> r .<.~(x) /. sx>. .<.~(y) /. sy>.
14 let translate (r : region) tx ty =
15 fun x y -> r .<.~(x) -. tx>. .<.~(y) -. ty>.
16 let outside (r : region) =
17 fun x y -> .<not .~(r x y)>.
18 let intersect (ra : region) (rb : region) =
19 fun x y -> .<.~(ra x y) && .~(rb x y)>.
20 let union (ra : region) (rb : region) =
21 fun x y -> .<.~(ra x y) || .~(rb x y)>.
22

23 (* Checking (code generation) *)
24 let is_inside (r : region) =
25 (.! .<fun x y -> .~(r .<x>. .<y>.)>.)

Note how bracketing and running resemble lambda abstraction and function ap-
plication. Escaping may be, somewhat crudely, emulated by application or simple
value usage. To illustrate multi-stage programming in MetaOCaml let us consider a
direct conversion of the delayed shallowly embedded region DSL from Listing 2.7.

The multi-stage version shown in Listing 2.15 does not look so much different.
Now, instead of functions, code fragments are combined but in both versions
is_inside returns a function to check membership of a point in a given region.
However, since in the staged version this function is actually compiled it is expected
to perform significantly faster than before.

The safety of MetaOCaml derives not from type checking alone but also from
the fact that the generated code is not inspectable or transformable by users [32,
87]. This is another similarity with lambda abstraction: Both mechanisms involve
the reification of computational fragments as data with the internal representation
(commonly) not being accessible or at least not modifiable.

2.3.1.2 Type-Based Annotation

While syntactic annotations have shown to be useful for multi-stage programming
they require a custom, heavyweight language implementation with special syntax.
Lightweight Modular Staging (LMS) [87] addresses this concern by offering a
pure framework implementation of multi-stage programming for Scala. Instead of
explicit annotations on expressions it is based on staging expressions and values
by “annotating” their types, i.e. wrapping them in the framework’s Rep type and

30

2.3. Staged Embedded Languages

LISTING 2.16: Non-staged and staged power function in LMS

1 // Standard power function
2 def pow(x: Double, y: Int): Double =
3 if (y == 0) 1.0 else x * power(x, y - 1)
4

5 // Scaffolding for multi-stage programming in LMS
6 trait Program { this: Arith =>
7 // Staged power function
8 def pow(x: Rep[Double], y: Int): Rep[Double] =
9 if (y == 0) 1.0 else x * pow(x, y - 1)

10 }

relying on type inference for the rest of the mechanism.
Listing 2.16 shows a standard implementation as well as a multi-stage version

of the power function. In LMS, the fact that x is of type Rep[Double] means that
it represents computation of type Double and instead of normal multiplication a
version for Rep[Double] defined in Arith is used. The return value 1.0 is lifted
to the proper (return) type by an implicit conversion also defined in that trait. Being
a form of tagless embedding (see Section 2.2.8) this eventually requires a concrete
implementation for Arith.

LMS comes with an extensible system for providing and handling an intermediate
representation (IR) that automatically eliminates (where possible) common subex-
pressions during construction. It also enables optimizations by rewriting in method
implementations and offers machinery to define code emission and compilation.
Unlike in MetaOCaml, custom transformation of reified computation is a crucial
selling point of this approach (at the potential cost of safety).

Ultimately, LMS provides a sort of generalized framework for deep embedding,
which has made it very popular for DSL implementations [7, 88, 100, 101]. It is
further improved by Scala-Virtualized [89], a custom branch of the Scala compiler
that adds features to customize Scala’s inbuilt constructs depending on involved
types.

2.3.1.3 A Comprehensive Definition

In both MetaOCaml as well as LMS, multi-stage programming seems to imply some
degree of user-level control over which parts are staged and which parts are not.
However, this criterion should not exclude other forms of staging from the term’s
definition. For instance, in simple deeply embedded EDSL library-interface designs
it is the author who decides on abstract-syntax construction. However, it is still the
user who decides to use the EDSL in the first place and where to use it.

So what is common to syntactic macros, template metaprogramming, delayed
shallow embedding, deep embedding, and staging with explicit annotations? For
this thesis let us define staging as: The guided and controlled reification of compu-
tation as data for the sake of optional custom processing and eventual execution.

The optionality aspect is important or MetaOCaml might not be part of the
definition. Likewise, if it were forbidden in general, neither LMS nor template
metaprogramming would qualify. Also, note that unlike in the initially presented

31

2. BACKGROUND

definition by Taha, performance is not necessarily the main goal here. There are
also other important aspects such as domain-specific analysis and error checking.

2.3.2 The Design Space

In light of the various approaches for staging, let us consider the overall design space
for staged EDSLs based on the previous discussions of implementation techniques.
Without evaluatively assessing merit it can be roughly outlined on the basis of the
following main properties or rather dimensions:

• Scope: Describes how far the employed staging approach can reach within
user programs. It may be limited to the expression level (as with syntactic
macros), global, or restricted to some form of local scope, e.g. to a function
body. One may also understand this dimension as the distance that reified
computation may be carried across a host-language program.

• Delimitation: Describes the available means for maintaining boundaries be-
tween reified computation of various languages, including the host language.
This not only relates to the extent of affecting user programs but also to the
concern of safety and information hiding in regard to intensional analysis at the
back end of embedded-language implementations.

• Staticity: Expresses how much of the staging process exploits or enables
utilization of static information (inherently or optionally), independent of the
run-time environment.

• Dynamicity: Expresses how much of the staging process exploits or enables
utilization of dynamic information (inherently or optionally), depending on
the run-time environment.

• Transparency: Inversely indicates the extent of how obvious and visible the
staged nature of an EDSL is. For instance, syntactic macros lead to a quite
hidden form of staging, whereas deep embedding (especially in a statically
typed host language) usually makes staging more obvious and explicit.

The aforementioned list will be useful and revisited later for a comparison of ap-
proaches. Here it mainly serves the purpose of summarizing important differences
and characteristics for our ongoing discourse.

2.3.3 Pitfalls of Manual Implementations

Manual implementations of staged EDSLs always entail the emulation of concep-
tually higher-level EDSL programs by lower-level language mechanisms such as
macros or function calls. This may also apply to approaches that are already spe-
cialized for domain-specific optimizations such as rule-based preprocessors (see
Section 2.2.2), since even they commonly work in absence of the notion of whole
staged-EDSL programs of a given language. Consequently, EDSLs can easily turn
into unreliable abstractions, which is illustrated by the following pitfalls.

32

2.3. Staged Embedded Languages

2.3.3.1 Non-Compositional Staging

With manual deep-embedding implementations the mechanisms in charge of con-
structing an intermediate representation (IR), i.e. abstract syntax, are free to realize
staging in any imaginable way. Unfortunately this also means that EDSL users must
not make across-the-board assumptions about the staging process. This includes
the expectation of compositionality for EDSL-program construction.

LISTING 2.17: Deeply embedded vector DSL usage example

1 static void example(Vec a, Vec b, Vec c) {
2 VecE aPlusB = a.toVecE().plus(b.toVecE());
3 out.println(aPlusB.toVec());
4 VecE aPlusBtimes5 = aPlusB.times(5.0);
5 out.println(aPlusB.toVec());
6 out.println(aPlusBtimes5.toVec());
7 }

Consider the example in Listing 2.17 and let us assume for the sake of argument
that Vec instances are immutable and toVec performs a side-effect-free and sound
execution of constructed EDSL programs. We still cannot draw the conclusion that
lines 3 and 5 yield the same output, since the EDSL programs to be executed might
differ themselves. As contrived as this may seem, a non-compositional-staging
implementation is easily sketched as shown in Listing 2.18.

LISTING 2.18: Non-compositional staging

1 public class VecE {
2 private final Vec base;
3 private final List<Consumer<double[]>> ops = new ⋯;
4

5 VecE(Vec base) { this.base = base; }
6

7 public VecE plus(VecE vE) {
8 ops.add(ds -> {
9 double[] elements = vE.toVec().elements;

10 for (int i = 0; i < ds.length; i++) { ds[i] += elements[i]; }
11 });
12 return this;
13 }
14 public VecE times(double s) {
15 ops.add(ds -> {
16 for (int i = 0; i < ds.length; i++) { ds[i] *= s; }
17 });
18 return this;
19 }
20 public Vec toVec() {
21 double[] ds = Arrays.copyOf(base.elements, ⋯);
22 for (Op op : ops) { op.accept(ds); }
23 return new Vec(ds);
24 }
25 }

Note that it is common to implement so-called builders [21, Chapter 2] in a some-

33

2. BACKGROUND

what similar fashion. With builders the general consensus may lie on repeatedly
mutating an intermediate data structure from which to subsequently construct
a final (often immutable) one. However, with staged EDSLs it is arguably more
reasonable for the goal and consensus to lie on the safe construction and assembly
of EDSL-program fragments.

It is quite surprising that non-compositionality manifested in the form of self-
mutation with a subsequent return this statement seems to be the current norm
or principle for fluent interface [38, Chapter 4] EDSL designs.

One easy way for EDSL authors to ensure compositionality is to choose im-
mutable, persistent data structures for the IR and avoid side effects within the
staging functions or methods (i.e. the tokens) of the EDSL. However, note that this
is not a definitive necessity. It may very well make sense to judiciously employ side
effects, for instance in order to achieve a form of common-subexpression elimination
(CSE) [87], as long as compositionality is not impaired.

2.3.3.2 Opaque Workflow

Closely related to (yet not interdependent with) non-compositional staging is the
issue of unpredictable existence, division, or overlap between the phases of the
staged-EDSL workflow wherein program reification, processing, and execution are
separate. For instance, naming conventions and type signatures may indicate the
roles of methods and their workflow phases, but their actual behavior has to be
inferred from documentation or source code. That is, if documentation and source
code are made available and understandable at all.

For instance, from the interface definition (see Listing 2.9) it is not even estab-
lished that the methods in VecE do in fact perform IR construction. They might
just trivially wrap Vec values and act as proxies to a non-staged embedding. The
same applies to execution. For instance, in our vector EDSL in Java, the evaluation
of constructed IR could be delayed further, e.g. until one of its elements is accessed.
Note that this can even affect seemingly shallowly (but in fact deeply) embedded
DSLs that work on custom data types. Ultimately, for users it is not immediately
obvious what kind of embedding they are dealing with.

LISTING 2.19: Opaque workflow-phase overlapping example

1 public VecE plus(VecE vE) {
2 if (/* this is the 5th addition in a row */) {
3 return this.toVec().toVecE().plus(vE);
4 } else {
5 return /* default IR construction */;
6 }
7 }

To illustrate the issue with opaque overlapping of workflow phases, consider
Listing 2.19. The staging method for the plus token here performs conditional
evaluation. From an EDSL user’s perspective, any time IR elements are handed
to an EDSL-token method (at staging time) it could potentially entail an internal
decision to (partially) evaluate early on. This is an issue for users since they cannot

34

2.3. Staged Embedded Languages

clearly anticipate and decide when a potentially costly (or effectful) computation is
initiated, impairing program understanding and design.

Another form of overlap with similar consequences is encountered with on-the-
fly processing such as IR-transforming optimizations within (smart-constructor)
EDSL tokens as mentioned in earlier sections, e.g. to remove multiplication with a
constant 1. While this is a clever idea, it may hinder the reusability of EDSL snippets
and complicate debugging. Furthermore, certain optimization opportunities may
be lost: Ones that rely on inspecting the entire EDSL program in its original form.

2.3.3.3 Fuzzy Language Boundaries

Conceptually, language boundaries manifest when terms of an EDSL are intermixed
with those of different EDSLs or those of the general-purpose parts of the host
language. Of course, since with manual implementations EDSLs are not explicit
entities, neither are language boundaries.

This may lead to issues of unclear delimitation, which become further pro-
nounced when staging itself occurs in a hidden fashion. This hidden staging is
sometimes desired for the sake of simplifying EDSL usage [68, 102] and is, for in-
stance, easily enabled by syntactic macros. However, even in the case of traditional
deep embedding, it is possible to make the staged nature of an EDSL less obvious
by not fully exploiting static type checking, by design of the host-language (i.e. one
without it) or that of constituent EDSLs (i.e. using an overly general static type like
Java’s Object across the EDSL).

Despite potential advantages for seamless EDSL usage, the described conceal-
ment makes the communication (to users) as well as the enforcement of language
boundaries hard. After all, the secondary general-purpose mechanisms that could
emulate language boundaries are abandoned.

To illustrate this pitfall, consider the following expression (’(⋯) stands for
(quote (⋯))), sharing some token names with the ones presented in Listing 2.4
but not necessarily following their implementation:

(vec-times (vec-times ’(0 0) (e)) (+ (f) (* x y)))

One could provide a language labeling of the above expression where H stands for
the host language or general-purpose external code. Let us here consider arithmetic
operations as part of their own language:

s1³¹¹¹·¹¹¹µ
(L1 (L1 (H (H H)) (H)) (L2 (H) (L2 H H))

´¹¹¹¸¹¹¶
s2

)

Syntactic macros (as well as preprocessors and compiler plugins) are not bound to
ignore foreign-language parts. After all, for the vec-times macro of L1 the parts
belonging to H and L2 are just as inspectable as those belonging to L1.

For instance, the macro implementation might decide that ’(0 0) is indifferent
to scalar multiplication and replace (vec-times ’(0 0) (e)) with ’(0 0).
This is a problem if (e) causes a side effect that might affect the result of (f)
and the rest of the host program. Likewise, the implementation might fuse the

35

2. BACKGROUND

arithmetic operations of L2 or decide to interpret them differently, e.g. with (or
without) overflow checks, again affecting more than L1 should be allowed to. An
inner-scope expression (s2) cannot prevent its tampering by an outer-scope macro
(s1), so assuming L2 here to be another macro-based EDSL implementation, it
cannot force L1 to leave its programs alone.

It is not rare to encounter bugs with macro implementations [52, Chapter 10]. It
certainly is not hard to cause them, for instance by missing some cases in macro-
implementation conditionals. However, tracking them down is rather difficult.

With deep embedding in dynamically typed host languages, or situations to
the same effect in statically typed host languages, one may encounter similar
problems. In that case IR elements can be handled by any IR-processing function
since boundaries between languages only exist to the extent of ignorance (i.e. one
language not knowing another language’s IR). However, at the very least it is not
possible to affect general-purpose code as is the case with macros. Also, visibility
restriction (like private in Java) on the internal IR representation may prevent
inspection even in a dynamically typed setting.

Of course, one may readily blame sloppy macro implementations for causing
the described issues. However, this only supports the claim of unreliability of
lower-level abstractions for language embedding. Arguably, for both EDSL authors
and users it would be beneficial to have clear language-boundary guarantees. It
would allow them to rely on the fact that transformations can only occur within a
language and do not cross over to others. The following informal sketch makes this
idea more concrete:

v1 =(quote (0 0)) = ’(0 0)

v2 =(e)
s′2 = v3 =(+ (f) (* x y))

s′1 =(vec-times (vec-times v1 v2) v3)

The contents of the foreign-language expressions would be hidden and at the time
of L1’s processing result to take effect (i.e. at run time), the foreign-language subex-
pressions would have been already evaluated to the values v1, v2, and v3. Whatever
the EDSL implementation decides to do internally with the above expression (s′1), it
is not able to depend on or affect the structure, values, and effects of external parts.
In the case of compile-time data constants (e.g. v1) inspection could be allowed
without affecting safety.

Diligent EDSL implementations that adhere to the above mitigation scheme can
help avoid transgressions but implementing this scheme is a little cumbersome.
Even with a support library to simplify this, EDSL users will still not gain general,
hard guarantees independent of the macros’ implementations.

2.3.3.4 Loss of Static Context

Dynamic staging makes it hard to associate an IR element with the static context
(e.g. source location) in which it was constructed. One use case for this would be
debugging: While at the time of processing one can detect the source of an error

36

2.3. Staged Embedded Languages

LISTING 2.20: Mini factorial

1 static int factorial(int x) {
2 IntV n = intVar("n");
3 IntV a = intVar("a");
4

5 return intAssign(n, intLit(x))
6 .then(intAssign(a, intLit(1)))
7 .then(whileDo(leq(intLit(1), n),
8 intAssign(a, mul(a, n))
9 .then(intAssign(n, add(n, intLit(-1)))))

10).intRun(a);
11 }

within a reified EDSL program, this alone is of little help to EDSL users who want
to investigate where and why a bug was introduced at staging time.

Consider the code in Listing 2.20. It shows the factorial function implemented
in the simple, imperative EDSL introduced in Listing 2.1, which I will call Mini.
As mentioned in the very beginning of this chapter in Section 2.1.2, while static
typing can impose limitations on the EDSL’s syntax, aspects like definite-assignment
analysis [50, Chapter 16] obviously need to be deferred to run time when dealing
with dynamically staged programs.

In a traditional setting intRun may perform an analysis on the constructed
EDSL program and issue an error message. Consider the situation where line 6 in
Listing 2.20 has been omitted. The error message might contain the constructed
EDSL program and say where within it the error occurs. However, it is not possible
to tell the user that the issue can be traced back to line 8 where the unassigned
variable a would be used first. This example only shows a small instance for the
sake of brevity. However, the benefits that retaining static context would provide
should become apparent when considering EDSL-program construction that spans
several methods and larger code blocks.

Depending on the capabilities of the host language there may be ways to retrieve
and conserve such knowledge with support of the language runtime, e.g. by inspect-
ing stack traces in IR-constructing methods, but they may slow down staging and
ought to be considered crude workarounds. Here, using syntactic macros may help,
e.g. in the case of Scala where such context information is retrievable. However,
one could claim yet again that using a macro system may introduce uncertainty as
described in Section 2.3.3.3. Some approaches [89] propose the addition of language
features for this very purpose.

For entirely statically staged EDSLs this pitfall is less of a concern since the
disconnect between the point of staging and processing is not as drastic and context
information may be readily available.

2.3.3.5 Redundant Processing

It is reasonable to assume that EDSL-program processing involves a non-negligible
amount of computational effort. Some programs may undergo significant analysis
and optimization or are even compiled and offloaded (e.g. to a GPU). In general,

37

2. BACKGROUND

this is worthwhile when the EDSL-program execution or evaluation is expected
to be significantly slower without prior processing, e.g. when dealing with fixed
computation to be performed on large data sets as in our motivating example in
Chapter 1. A related example of such processing in a general-purpose setting is just-
in-time (JIT) compilation [18, 33, 94] that may be triggered heuristically depending
on many factors such as overall code size and method-calling frequency.

An advantage of dynamic staging is that these programs are specialized based
on EDSL-external, user-defined conditions. One may look at dynamic staging as
a form of configuration of a library’s implementation at run time. For instance,
database queries or vector calculations are dynamically constructed and the library
back end dynamically decides how to treat these various issued “commands”.

If handled naively this is bound to cause repeated processing overhead for
programs that have already been constructed and processed before. For instance,
consider frequent calling of the method in Listing 2.21. Only two different EDSL
programs (with different vector inputs) are ever generated here, requiring very
similar processing every time they are evaluated.

LISTING 2.21: Vector EDSL redundancy example

1 static void example(boolean b, Vec v) {
2 VecE e = v.toVecE().plus(v.toVecE());
3 if (b) {
4 e = e.plus(v.toVecE());
5 }
6 out.println(e.toVec());
7 }

Furthermore, it is not uncommon to encounter dynamically staged EDSLs used
in a static fashion as in Listing 2.20 (or Listing 2.21 if the conditional were omitted).
In that case a naive processing unnecessarily has to deal with the same program,
excluding its specific input values, over and over. Also, the dynamic nature of the
staging phase itself becomes conceptually unnecessary and a cause for overhead.

It is easy to see how ignoring this concern may either be detrimental to the run-
time performance or alternatively, unnecessarily limits the scope and usefulness of
the EDSL as a rich library interface (i.e. when users may shy away from using an
EDSL for its redundant processing). While it is certainly possible to devise a manual
caching solution, it complicates the EDSL’s implementation and design despite its
being a common aspect of the higher-level staged-EDSL abstraction itself.

For statically staged EDSLs this is mostly a non-issue, i.e. when processing is
limited to one time only. In this sense, only static (or mixed) staging approaches are
able to optimally address the case of statically occurring EDSL programs.

Note that this pitfall is not about caching or memoization of results based on
input values, but about the caching or memoization of the EDSL program’s pro-
cessing. Consider traditional method calls, which afford various general-purpose
optimizations such as inlining [17], devirtualization [64], or polymorphic inline caches
[58] to speed up the calling (or dispatch) of subroutines. With EDSLs the granularity
is such that a constructed EDSL program itself becomes equivalent to the concept of
a subroutine. Now, when method calls are used for staged-EDSL implementations,

38

2.4. Comparison

optimizations may apply, but only on the lower-than-EDSL-program level. The
notion of “calling” a whole EDSL program is not automatically exploited.

2.3.3.6 Summary

Some aspects of the presented pitfalls may be avoidable by EDSL authors with
the right combination of host-language selection, discipline to follow strict design
and documentation guidelines, and additional implementation effort. However,
even so, the pitfalls mean that EDSL user have to check and trust the provided
documentation on very basic behaviors of the EDSL.

Like manual implementations of other abstractions, manual staged-EDSL imple-
mentations forgo predictability, ease-of-implementation, and automatic optimiza-
tion opportunities, in favor of potential flexibility and clever manual optimizations.
This can be likened to manual procedure calls in low-level languages (e.g. assembly)
based on convention (e.g. order of argument placement on a stack). It requires the
trust by procedure authors that the code is properly called with arguments placed
on the stack in the expected order, and the trust by users that called code performs
proper argument retrieval and cleanup before returning.

2.3.3.7 Acknowledgments

This section on embedding pitfalls reproduces in part and extends the motivation
section of a paper [92] to be presented at GPCE 2015, of which I am the main author.

2.4 Comparison

Having introduced the pitfalls one might encounter when using and implementing
staged EDSLs, let us recapitulate and compare the language-embedding approaches
introduced in the first half of this chapter. The difficulty with such a comparison lies
in its broadness and the lack of direct correspondences between the properties of
one approach and those of another. I have distilled the approaches’ core properties
using the staged-EDSL design space described in Section 2.3.2. However, note that
even this cannot provide a full picture without some additional explanations.

I will accompany this discussion with an evaluative comparison of reliability,
performance, and usability from an EDSL user’s point of view. For this comparison
these criteria are defined as follows:

• Reliability is determined by two factors:

– Safeness: Refers to how well a given approach allows for maintaining
general-purpose guarantees, such as type safeness, and more impor-
tantly domain-specific ones, such as respecting and enforcing language
boundaries.

– Uniformness: Refers to how uniform a given approach generally be-
haves. Uniformness allows users to make assumptions and reason about
common EDSLs aspects. The pitfalls of non-composable staging as well
as opaque workflow are (negatively) related to this. In general, the more
black-box-like an approach may act the less likely it is uniform.

39

2. BACKGROUND

• Performance is about run-time execution time and is determined by the fol-
lowing three factors:

– Overhead: Refers to the amount of overhead incurred. This is related to
the pitfall of redundant processing. A “good” or “high” rating for this
characteristic means that there is little overhead. Purely static staging
approaches generally have little (run-time) overhead.

– Optimization: Refers to the freedom and extent to which domain-specific
optimizations can be implemented, or in other words the expected power
of optimizations. Note that this usually inversely related to the ease of
expressing these optimizations (by authors).

– Adaptiveness: Refers to how well an approach allows the adaptation
and specialization of EDSL-program execution to the run-time system,
configurations, or to a heterogeneous environment. This requires the
ability to process whole EDSL programs.

• Although all concerns relate to overall user experience, there are certain
characteristics that directly relate to ease-of-use as follows:

– Seamlessness: Refers to how many obstacles there are for the writing
and reading of an EDSL program. The ability to directly interface with
an EDSL is one indicator of good usability [68, 87, 89, 102]. Usage of
auxiliary data types and scaffolding boilerplate negatively affects this.

– Maintenance: Refers to how easy it is to maintain applications that
contain EDSL programs. For instance, approaches that modify source
code at compile time are unlikely to be as maintainable as the pure
embedding approaches that simply work on data constructed at run
time. When the EDSL evolves (or is bug-fixed), the former requires
recompilation and reduces modularity (due to limited ability to perform
separate compilation), the latter does not (in a dynamic-linking setting).

– Debugging: Refers to how the debugging of client code is affected by
the presence of EDSLs as well as how easily EDSL programs can be
debugged. The latter is (negatively) related to the pitfall of static-context
loss. Problems with the former may be encountered with systems that are
able to freely transform source code and mangle debug information such
that users cannot trace back the source of an error within the original
(unprocessed) source code.

– Documentation: Refers to the self-documentation qualities of an ap-
proach, or in other words how easy it is to find out about the behavior
(e.g. of staging) of EDSL tokens. This is important for both hidden and
obvious staging. This is related to uniformness such that a system that is
not uniform in its behavior is unlikely to be good at self-documentation.

The comparison overview is presented in Table 2.1. The symbols M and N are to
be understood as a “good” rating, the symbols ♦ and � are to be understood as a
“fair” rating, and the symbols O and H are to be understood as a “bad” rating. The

40

2.4. Comparison

former versions stand for cumulative ratings for the three overall criteria, but hide
the details and are only meant as a quick summary.

The selection of compared approaches is slightly condensed from the approaches
presented in earlier sections. Note that only pure Lightweight Modular Staging
(LMS) is considered here. As already mentioned in Section 2.3.1.2, there also exists
an understanding of LMS which relies on a custom branch of the Scala compiler,
called Scala-Virtualized [89]. This and other hybrid approaches have been omitted
from the current comparison but will be revisited in later chapters.

Note that all the ratings pertain to criteria that, for the most part, directly affect
EDSL users. It is very possible that a comparison with a different focus or different
criteria definitions may lead to a different assessment.

TABLE 2.1: Comparison of implementation approaches

G Global

M
an

ua
lP

re
pr

oc
es

si
ng

R
ul

e-
Ba

se
d

Pr
ep

ro
ce

ss
in

g

Sy
nt

ac
ti

c
M

ac
ro

s

Te
m

pl
at

e
H

as
ke

ll

C
++

Te
m

pl
at

es

Sh
al

lo
w

(I
m

m
ed

ia
te

)

Sh
al

lo
w

(D
el

ay
ed

)

M
an

ua
lD

ee
p

LM
S

L Local
E Expression

N None
R Rule
O Opaque
T Typing

`/N High/Good
�/� Fair
a/H Low/Bad

STAGED-EDSL DESIGN

Scope G G E G E G G L
Delimitation N R N N T O T T
Staticity ` ` ` ` ` a a a
Dynamicity a a a a a ` ` `
Transparency ` ` ` � a � a �

EVALUATIVE COMPARISON

Reliability O ♦ O O ♦ M M O ♦
Safeness H H H H � N N � �
Uniformness H N � � � N � H �

Performance M ♦ M M ♦ O O M M
Overhead N N N N N N � � H
Optimization N � N N � H H N N
Adaptiveness � H � � H H H N N

Usability O M O O O M ♦ O ♦
Seamlessness N N N � � N � H �
Maintenance H H H H H N N N N
Debugging � � � � � N � H H
Documentation H N H H H � H H �

41

2. BACKGROUND

Manual Preprocessing. Usually the whole program (containing EDSL code) is
available and can be freely transformed. Of course, this depends on the host
language and what kind of guarantees an EDSL author wants to maintain, but
in general there is no inherent limitation of scope. Delimitation between code of
different EDSLs is nonexistent. Preprocessing and “staging” (it is very questionable
whether this sort of uncontrolled reification ought to be called staging at all) is static
and all its aspects can be hidden.

The evaluative-comparison ratings should be mostly self-explanatory from the
previous discussions. Adaptiveness is limited since staging is static and the run-
time environment is not known ahead of time. Uniformness is rated “bad” since
it is entirely unclear how a preprocessor behaves. In case of a compiler plugin at
least the staged IR could be expected to be uniform, but even then being a whole-
program black box makes it hard to expect uniform behavior when several EDSLs
(and with them several manual preprocessors) get mixed and act together.

Rule-Based Preprocessing. Rule-based preprocessing as in Broadway [53], Code-
Boost [19], or GHC may have varying scope up to carrying the effect of optimizations
and transformation rules across the whole program (Broadway, GHC). Delimitation
may be possible on a rule-by-rule basis, e.g. precedence, but is bound to be very
limited and unlike other approaches (like macros) might not even be compensatable
or reinforceable with manual-implementation diligence.

The rating for uniformness and documentation are high since rule application
commonly follows a fixed routine and it should in principle be easily possible to
generate documentation for it. The limited rewriting framework limits optimiza-
tions and run-time system specialization since EDSL programs are not processable
in their entirety.

Syntactic Macros. Syntactic macros are generally limited to expression scope and
provide no mechanism for supporting (embedded) language delimitation.

The rating for uniformness is “fair” as opposed to “bad” since although a macro
constitutes a black box, the subject expression is reified uniformly to a common
IR. As with other static approaches the overhead is generally low since processing
occurs at compile time. Similar to other static approaches, debugging is complicated
by the lack of delimitation but aided by locality and static context.

Template Haskell. With Template Haskell it is not only possible to quote expres-
sions. One can also reify existing declarations of types and functions. This makes it
have a sort of global scope of staging reach. Some reification (as well as reflection
and splicing) can occur in a hidden fashion while reification with quotations is more
obvious, which slightly impairs transparency. There is no mechanism to support
language delimitation.

As with syntactic macros the rating for uniformness is “fair” since code is reified
uniformly to a common IR. Template Haskell’s seamlessness rating is “fair” as
opposed to “good” due to the use of splicing and quotation.

42

2.4. Comparison

C++ Templates. C++ templates provide a form of limited staging in expression
scope [32] and can use the type system to support language delimitation. Trans-
parency is somewhat impaired due to the use of template types.

Reification occurs rather uniformly and is limited in terms of intensional analysis
[32]. However, this limits optimizations and also makes specialization to a run-time
environment hard. The mentioned transparency issue directly translates to a “fair”
seamlessness rating.

Immediate Shallow Embedding. Immediate shallow embedding is by definition
not staged in any way. Its reliability and usability ratings are high because there is
only limited potential for behavioral surprises. This embedding style leads to an
ideal, direct-use interface but does nothing for improving performance based on
(domain-specific) optimizations or specialization.

Delayed Shallow Embedding. Delayed shallow embedding performs a very triv-
ial form of staging at run time. The constructed computation can be carried as
far as type signatures allow across the whole program and delimitation is trivially
achieved by total opaqueness of anonymous functions or their equivalent (unless
advanced reflection features are available and used). Transparency may be impaired
slightly since function types are introduced and computation is manually (delayed
and) triggered (i.e. function application).

Uniformness is affected due to potential dynamic decisions made by smart
constructors but still at a “fair” rating since their decisions cannot be based on
intensional analysis of their arguments. On the other hand, this means that neither
optimizations nor run-time system adaptations are possible. Yet, slight overhead
might be encountered in very dynamic situations. Documentation has a “bad”
rating due to an insufficient degree of uniformness and little self-documentation
beyond potential argument and return-type information.

Manual Deep Embedding. Like delayed shallow embedding, the scope of man-
ual deep embedding is global: Staged terms of the embedded language can be
carried around at will. Delimitation can be supported by static typing if the host
language is statically typed. However, this also impairs transparency due to custom
types together with wrapping or lifting of values and evaluation triggering.

Uniformness is not guaranteed as illustrated by the pitfall of non-compositional
staging, which again negatively affects the documentation rating. Language bound-
aries can also remain slightly fuzzy, impairing safeness. The overhead of staging
depends on whatever is performed in the staging and processing methods but can
be somewhat mitigated with some effort.

Lightweight Modular Staging. The scope of LMS can be considered to be (semi-)
local. Here this does not mean that staging is limited to a method body but that it
can occur throughout the traits and classes involved. Again, delimitation can be
achieved with Scala’s type system. While LMS is a form of deep embedding (on
top of tagless-final embedding), transparency is not as clearly impaired: Scala’s
type inference and implicit conversions, which make LMS possible in the first place,

43

2. BACKGROUND

do in fact hide staging quite well [87]. On the other hand, having to write trait
extensions precludes direct usage [68, 89] and leads to a different kind of usage than
normal deep embedding and is not perfectly suited for a library interface.

While the above results in only a “fair” seamlessness rating, the trait system
and IR management of LMS does provide for a certain degree of uniformness and
documentation. However, things are still manual enough that a “good” rating is
not granted. Using several languages in the same code requires combining them
to a larger one. Language boundaries then only exist between the host-language,
i.e. the “present stage”, and the combined-EDSL code, i.e. the “next stage”, as a
whole. When using a custom tagless interpreter for this combined EDSL, intensional
analysis of all staged code becomes possible barring visibility restrictions.

If an EDSL user combines several existing tagless interpreters that exist in
isolation the type system can largely ensure that they cannot inspect the internal
IR representations of each other. However, in some cases it is still possible to cross
these boundaries using casts (if the internal representation is not properly made
private). Also, in highly modular situations it can become hard to follow which
traits’ behaviors prevail. Hence, there is potential for users not to be aware of where
language boundaries manifest and what happens there, resulting in only a “fair”
safeness rating.

Note that the ability of LMS to combine various EDSLs to form a new one is
one of its strengths in the context of modular EDSL construction and prototyping.
However, the focus of this comparison is the user’s view for which I deem this to
be of secondary concern.

The integrated common-subexpression elimination and other such background
behavior is bound to produce overhead during staging. Aside from that, LMS
allows for ample opportunity to optimize EDSL programs and adapting them to
the run-time system or heterogeneous architectures.

44

CHAPTER 3
Toward Higher-Level Support

The discussions of Chapter 2 indicate that there is ample room for improvement of
language-embedding techniques. In particular for employing EDSLs as rich library
interfaces, e.g. to be (boilerplate-) freely intermixed with general-purpose code and
other EDSLs, existing approaches fail to simultaneously provide a high degree of
reliability, performance, and usability.

While some issues and concerns may be inherent to the idea of language embed-
ding as a whole (and may not escape the influence of the tradeoffs causing this state
of affairs), it is still worthwhile to look for better techniques. Barring yet unforeseen
developments in the general-purpose expressiveness of mainstream languages,
these techniques are likely to emerge as hybrid systems mixing impure-embedding
aspects such as compile-time metaprogramming with pure-embedding ones that
make general-purpose host-language infrastructure lift some of the heavy work.

In this chapter I will investigate such an approach. It is to be realized as a
“middleweight”, pragmatic extension to the host language, taking effect during code-
loading time when a program is run by end users. This lays the basic groundwork
for the higher-level support for EDSLs that will be expanded on in Chapter 4. The
key idea is simple enough: Explicate the concept of an embedded language and rely
on this to statically extract EDSL programs. Subsequently, these EDSL programs
can be processed in a custom fashion by EDSL authors.

The elaboration of a proof-of-concept implementation is followed by its evalua-
tion and summary discussion toward the end.

45

3. TOWARD HIGHER-LEVEL SUPPORT

3.1 Explicating the Embedded Language

In traditional, manual embedding approaches the embedded language itself remains
implicit and so does the role of methods as tokens. A language only exists as a
collection of (lower-level) host-language constructs that together may or may not
be viewed as constituting an EDSL. The user-facing interfaces of these tokens may
or may not advertise their membership to such a loose, implicit language.

LISTING 3.1: Matrix EDSL deep-embedding interface

1 public static MatE lit(Mat m) { return new Lit(m); }
2 public static MatE add(MatE l, MatE r) { return new Add(l, r); }
3 public static MatE mul(MatE l, MatE r) { return new Mul(l, r); }
4 public static MatE sca(int dim, double s) { return new Sca(dim, s); }

Consider the shallow embedding of a matrix EDSL in Java as shown in Listing
3.2. Its static types alone do not show which methods are tokens and which are not.
In fact, it does not matter, for instance, whether we consider create a token or not.
Expressions written with these tokens are themselves implicit anyway.

Let us turn to a deep embedding as sketched in Listing 3.1. Expressions become
explicit to the EDSL author when the MatE.eval instance method, not shown here,
is called. It triggers evaluation or materialization, where the term “materialization”
refers to the fact that a staged expression or program represents a value or effects
that are yet to materialize.

TABLE 3.1: Implicitness and explicitness

Shallow Embedding Deep Embedding ? ?

Language implicit implicit explicit explicit
Interface implicit explicit implicit explicit
Programs implicit explicit explicit explicit

Still, such an interface is only explicit to its human users. A meta-level observer
like the compiler remains clueless about its intent. After all, it is only an EDSL
program’s run-time behavior that causes the reification that makes it explicit. Any
approach or concrete system that desires to handle EDSL programs in a special way,
e.g. in order to mitigate implementation and usage pitfalls, would need to know
that lit, add, mul, sca, and eval are tokens and belong to the same language.

Only this understanding of language cohesion opens the door to a higher-level
view and treatment of (explicit) EDSL programs, whether the interface be of an
implicit or explicit nature (see Table 3.1). To this end an embedded language needs
to become an explicit entity that can be referred to as such and stands in relationship
to its tokens, which then can also be designated explicitly. Furthermore, common
concerns such as the entry point for the processing of an (explicit) embedded
language’s programs can be grouped with and encapsulated in the language itself
instead of remaining dispersed in methods like eval.

46

3.1. Explicating the Embedded Language

LISTING 3.2: Matrix (Mat) DSL shallowly embedded in Java

1 public final class Mat {
2 final int dimM;
3 final int dimN;
4 final double[][] elements;
5

6 Mat(int dimM, int dimN, double[][] elements) {
7 this.dimM = dimM;
8 this.dimN = dimN;
9 this.elements = elements;

10 }
11

12 public static Mat create(int dimM, int dimN, double... elements) { ⋯ }
13

14 public static Mat sca(int dim, double s) {
15 double[][] ds = new double[dim][dim];
16 for (int i = 0; i < dim; i++) {
17 ds[i][i] = s;
18 }
19

20 return new Mat(dim, dim, ds);
21 }
22

23 public static Mat add(Mat l, Mat r) {
24 ⋯
25 double[][] ds = new double[l.dimM][l.dimN];
26 for (int i = 0; i < l.dimM; i++) {
27 for (int j = 0; j < l.dimN; j++) {
28 ds[i][j] = l.elements[i][j] + r.elements[i][j];
29 }
30 }
31

32 return new Mat(l.dimM, l.dimN, ds);
33 }
34

35 public static Mat mul(Mat l, Mat r) {
36 ⋯
37 double[][] ds = new double[l.dimM][r.dimN];
38 for (int i = 0; i < l.dimM; i++) {
39 for (int j = 0; j < r.dimN; j++) {
40 for (int k = 0; k < r.dimM; k++) {
41 ds[i][j] += l.elements[i][k] * r.elements[k][j];
42 }
43 }
44 }
45

46 return new Mat(l.dimM, r.dimN, ds);
47 }
48 ⋯
49 }

47

3. TOWARD HIGHER-LEVEL SUPPORT

3.2 Implicit Staging of EDSL Code

Building on the notion of explicit embedded languages, I propose an approach
called implicit staging that is motivated by the idea of reducing the explicitness of
user-facing, language-embedding interfaces to a minimum where it is a hindrance,
i.e. the IR construction and materialization triggering, and retaining it where it is
desirable, i.e. customized IR processing by EDSL authors [93].

It necessitates an outside, static, meta-level view and transformations on user
programs. While it may resemble a syntactic-macro system and other metapro-
gramming approaches, it aims at providing a more reliable form of (static) staging
relying on embedded-language cohesion. In fact, the envisioned kind and degree of
reliability is to be equal or even superior to a well-implemented deep embedding in
a statically typed setting.

With the exception of languages that allow arbitrary self modification, implicit
staging can typically occur only once before the execution of a user program. Figure
3.1 shows the general, conceptual overview of an implicit-staging system for a given
program and EDSL:

1. Staging: Domain-specific parts are automatically extracted, reified, and made
available for processing to the EDSL’s author in the form of an IR.

2. Processing: The result of this customized processing forms a so-called residue
of the domain-specific computation.

3. Unstaging1: The residue is reflected within the original program, yielding a
new, transformed program.

FIGURE 3.1: Implicit-staging overview

The staging step fits our earlier definition of “controlled reification” but with the
additional knowledge of language membership. However, at this conceptual level
it is not specified how tokens are assigned to the language, how the staging process
can be configured, and what the IR and its processing actually encompass. The
processing step is to be entirely defined and customized by the EDSL’s author to
form a desired residue, which is also not specified on the conceptual level, suitable
for unstaging. Like the staging step, the unstaging step might also be guided by
some form of configuration, which is to be kept simple.

1This is not to be confused with the “unstaging” presented by Choi et al. [31], which refers to a
sort of inversion of staging (i.e. considering the unstaged version of a multi-stage program) for the
purpose of improving static-analysis implementations.

48

3.2. Implicit Staging of EDSL Code

3.2.1 Static Token Reinterpretation

The extraction of domain-specific code can be approached by statically simulating
dynamic (run-time) staging behavior to varying degrees. Since EDSL tokens are
elements of the host language, they commonly have a defined run-time behavior
(i.e. method bodies). However, during implicit staging, tokens may be regarded as
mere markers and identifiers for domain-specific computation.

If we assume a representation of the input user program that retains token
identifiability, even if it does not retain all the original source-code structure, the
tokens can be reinterpreted as performing the construction of a generic IR. However,
unlike run-time interpretation or execution, as is the case with pure embedding
approaches, this staging reinterpretation is to be performed statically and abstractly.

The IR can be further augmented with data-flow and control-flow information,
providing detailed information on the static context in which domain-specific
computation occurs.2 For instance, this might include type information, uses and
definitions, or value ranges. During processing of the IR, EDSL authors could use
this to improve the residue generation, e.g. perform better optimizations. Some
of it might even be necessary for the unstaging step, for instance to perform type
conversions for the residue.

It may seem somewhat ironic to frame staging and static token reinterpretation
like this, considering that deep embedding itself may be viewed as a run-time
emulation of syntactic macros. However, recall that from a safety perspective deep
embedding is superior to macros due to delimitation to general-purpose (host-
language) code and, if well designed, other EDSLs as well. Also, recall that the
scope of deep embedding extends beyond the expression level due to the actual flow
of data, so in principal, statically emulating deep embedding seems worthwhile.

3.2.2 The Approach’s Potential

Implicit staging provides the basis for exposing a refined view on the structure
of domain-specific computation and only that (i.e. excluding irrelevant external
aspects). In particular, this means that deep-embedding-style freedom can be
approximated for traditionally shallowly embedded DSLs. For instance, in an
expression like add(mul(a, b), mul(a, b)) the common subexpression can
be eliminated during processing if the EDSL author chooses to do so. However,
implicit staging does not necessarily have to stop there. In fact, it can become an
extension to both shallow as well as deep embedding.

The fact that implicit staging may provide contextual information about the
input program and contained EDSL subprograms opens the door to optimizations
that are not possible with pure embedding approaches on their own. After all,
even with deep embedding, what can be inspected during (run-time) IR process-
ing is only what has been dynamically constructed. For instance, in the deeply
embedded expression add(mul(lit(a), lit(b), mul(lit(a), lit(b)))
the fact that there is a common subexpression may eventually be discovered, but
this is redundantly and possibly repeatedly done at run time. With implicit staging
it could be optimized in the residue to help reduce run-time staging overhead.

2Note that on a conceptual level it is not specified what the IR looks like.

49

3. TOWARD HIGHER-LEVEL SUPPORT

If we can extend our view even further, assuming an IR that provides informa-
tion on dependencies between compound EDSL expressions, further optimization
opportunities arise. More generally, implicit staging could not only be used to sepa-
rate domain-specific computation from general purpose one, but help incorporate
the relation between the two levels of computation into the EDSL’s design and
implementation. After all, unlike for dedicated, standalone DSLs, code snippets live
within a general purpose program with its own data flow and control flow. With an
appropriate interface for EDSL authors, global optimizations could be applied to
EDSL programs that are intermixed and dispersed in user code.

Sometimes, the purpose of dynamically staging an EDSL program at run time is
to gather as big a program as makes sense in order to increase the chance of finding
redundant code and other optimization opportunities. Recall the deeply embedded
matrix DSL from Section 3.1 and consider the user code in Listing 3.3. It might be
wise to ever-so-slightly alter the surrounding user program in a restricted, uniform,
and safe fashion to maintain as much of the dynamically generated EDSL program
as possible until a matrix result needs to be materialized, i.e. when EDSL-external
code needs it. For instance, there could be a potential code path in which cE and
dE end up pointing to aE and bE respectively.

LISTING 3.3: Deep EDSL context example (eager)

1 MatE aE, bE, cE, dE;
2 ⋯
3 Mat e = add(aE, bE).eval();
4 out.println(mul(lit(e), add(cE, dE)).eval());
5 out.println(e);

Listing 3.4 shows such a lazier version. However, if it is (statically) known that
optimizable situations will not occur, are unlikely, or that eval does not perform
optimizations in this situation in the first place, it might be worthwhile to stay with
the eager version of Listing 3.3 or make different changes.

LISTING 3.4: Deep EDSL context example (lazy)

1 MatE aE, bE, cE, dE;
2 ⋯
3 MatE eE = add(aE, bE);
4 out.println(mul(eE, add(cE, dE)).eval());
5 out.println(eE.eval());

It is my vision for implicit staging, with a sufficiently rich IR and powerful
unstaging process, to eventually make it possible for EDSL developers to transpar-
ently adapt user programs in the described fashion. This would free EDSL users
from the burden to consider the implementation details of the EDSL at hand (in our
example the eval method). The biggest challenge lies in finding a way to achieve
this without impairing uniformness and safeness. For now the imagined level of
power will remain elusive.

50

3.3. Load-Time Metaprogramming

3.2.3 Design Aspects

Designing an actual framework for implicit staging requires careful consideration
of the following aspects:

• The choice of host language determines the kind of host-language elements
that can be used as EDSL tokens. Furthermore, properties such as dynamic
linking and potential self-modification capabilities may limit the extent of
implicit staging. This means that not all host languages are equally well suited.
Generally speaking, any language that makes static code analysis hard would
seem unlikely to be a good candidate.

• The timing of performing IR construction is mainly determined by the type
of representation in which user programs can be provided to the framework.
While preprocessing of source code is an option, it usually comes with restric-
tions regarding the deployment and maintenance (as mentioned in Chapter 2)
of both the EDSL itself as well as end-user applications, e.g. upgrades require
recompilation. Additionally, working entirely at compile time restricts data
sharing and encourages a premature code-generation phase.

• The scope of the IR, its contained contextual information, and its construction
greatly influence implementation difficulty for both the framework developer
as well as EDSL authors. This is one of the main hurdles anticipated for fully
realizing the vision outlined in Section 3.2.2.

3.3 Load-Time Metaprogramming

While the concept of implicit staging does not mandate the exact time of program
analysis, there are good reasons for choosing a time very close to execution time. The
attempt at approximating pure-embedding approaches is one of them. Java’s class-
loading time serves this exceptionally well, as it is a language environment where
compilation, class loading, and run time are closely related. Compilation yields
lower-level, stack-machine-based bytecode [48] that retains sufficient language-level
information (e.g. class, method, and field names). Its loading occurs on demand at
run time, i.e. when a class or an element of a class is first needed.

Java has neither full-fledged compile-time metaprogramming facilities (beyond
annotation processors), nor does it allow for simple compiler customization without
relying on a custom compiler. However, it does allow for customized bytecode
transformation at load time, i.e. when a .class file is loaded by the Java Virtual
Machine (JVM). Using tool support for load-time metaprogramming by libraries
such as Javassist [30], it is possible to build an extension such as (an instance
of) implicit staging in a pragmatic fashion. It has the following advantages over
compile-time preprocessing:

• Seamless Workflow Integration. There exists a dedicated mechanism to per-
form bytecode transformations at load time on the JVM. Hence, setting up an
implicit staging implementation is not expected to be harder than using other
bytecode instrumentation tools and is not expected to substantially impair
software development and usage workflows.

51

3. TOWARD HIGHER-LEVEL SUPPORT

• Infrastructure Inheritance. The compilation from source code to bytecode
remains unaffected. The expression of EDSL tokens follows the tradition of
EDSLs as just being common language elements. This means that tools like
IDEs and type checkers can mostly be used as usual. However, unfortunately
some tools might not always yield correct results and need to be configured
to account for the effects of the latter processing. The initial semantics (e.g.
method bodies) of tokens is retained up until the bytecode is analyzed, the
tokens are reinterpreted (see Section 3.2.1), and changes are reflected.

• Run-Time System Adaptation. User programs and contained EDSL programs
in bytecode remain as is until they are loaded on a specific run-time system,
i.e. machine. The processing of their IR can be specialized dynamically to
that run-time system. For instance, in presence of specific libraries, drivers, or
hardware, EDSL expressions could be compiled to exploit these, and in their
absence a fallback implementation could be used.

• Shared Environment. Loaded user programs share the same environment
(including the heap) throughout the staging, IR processing, and unstaging
phases. This establishes a form of cross-stage persistence [32, 87, 104, 115], which
allows for sharing data between processing and actual execution of EDSL
programs. This grants both the developers of an implicit-staging framework
as well as EDSL authors various freedoms and ease-of-use as compared to
systems that would necessitate workarounds such as serialization.

• EDSL Deployment, Maintenance, and Evolution. Any upgrade or patch of
an EDSL’s implementation (as well as of an implicit-staging framework itself)
can be supplied modularly. There is no need to recompile user programs
from Java source files with updated library versions. For instance, this is
useful in cases where user programs are only deployed as binaries and cease
to be maintained. Implicit staging at load time enables the evolution and
improvements of an EDSL to still be reflected in such cases.

Of course there also remain disadvantages and challenges. Working with Java
comes with the issues of late binding (i.e. virtual method calls), and dynamic linking
itself, which restrict whole-program analysis. However, these issues are shared
with other OOP language environments. Being able to work at load time is in so
far beneficial as it allows us to consider more information on the actual state of the
whole program when it is run than at compile time. However, the main technical
challenge lies in having to process low-level (i.e. machine-language-like) bytecode
instead of structured source code.

3.4 Proof-of-Concept Implementation

In order to concretely illustrate and evaluate implicit staging at load time, I devel-
oped a simple and limited proof-of-concept implicit-staging framework for DSL
embedding in Java. It is restricted to the reification of EDSL expressions only, i.e.
individual Java expressions that are composed of EDSL tokens either in a nested or
chained fashion.

52

3.4. Proof-of-Concept Implementation

3.4.1 Overview

Aside from providing a language’s interface, i.e. skeleton token implementations, an
EDSL author is required to provide an implementation of the TokenDeclaration
interface to specify the set of tokens of the embedded language, as well as an
implementation of the ExpressionCompiler interface to specify how EDSL ex-
pressions are to be translated. The former implicitly configures the staging step,
the latter corresponds directly to the custom-processing step mentioned in Sec-
tion 3.2. Together they form the definition of an explicit embedded language
(EmbeddedLanguage) as shown in Listing 3.5.

LISTING 3.5: Core interface

1 public interface TokenDeclaration {
2 boolean isToken (CtMethod method);
3 boolean hasTokens(CtClass clazz);
4 }
5

6 public interface ExpressionCompiler {
7 void compile(ExpressionSite expressionSite);
8 }
9

10 public abstract class EmbeddedLanguage {
11 public abstract TokenDeclaration getTokenDeclaration();
12 public abstract ExpressionCompiler getExpressionCompiler();
13 }

Figure 3.2 shows a simplified, combined workflow for the usage as well as
the inner workings of the prototype. EDSL users, e.g. application developers,
may write EDSL expressions as they traditionally would with pure embedding
approaches. After all, the tokens (i.e. method calls) may exist independently of the
implicit staging framework. User programs are compiled as usual and deployed
with application startup configured to use the implicit-staging framework.

At the core of the prototype lies a custom Java agent (for bytecode instrumenta-
tion as described in the java.lang.instrument package) that intercepts class

FIGURE 3.2: Implicit-staging prototype overview

53

3. TOWARD HIGHER-LEVEL SUPPORT

loading. When an end user starts the application, the JVM feeds classes to be loaded
to the agent and subsequently finalizes the loading of the returned, potentially
transformed classes. Staging, processing, and unstaging are all performed within
this agent.

During the staging phase, the bytecode in method bodies is analyzed and
all contained EDSL expressions are extracted according to the token declaration
provided by the EDSL developer. Note that in the interest of simplicity, Figure
3.2 only shows this simplified for a single expression. Then, for the EDSL-specific
custom processing all expressions are eventually translated to static methods one by
one using the provided expression compiler. Finally, unstaging consists of replacing
the original EDSL expressions with calls to the corresponding methods.

3.4.2 Staging: Expression Extraction

The staging process is configured and guided by the token declaration of an EDSL. It
specifies which methods3 belong to the EDSL and is provided as an implementation
of the TokenDeclaration interface with the following methods:

• boolean isToken(CtMethod method), a characteristic function for mem-
bership of a method in the set of EDSL tokens.

• boolean hasTokens(CtClass clazz), a method to help quickly exclude
classes that do not contain EDSL tokens.

The prototype uses the hasTokens method to skip the analysis of classes which do
not refer to classes containing EDSL tokens. It only serves optimization purposes.
The classes CtMethod and CtClass are reified method and class types similar to
java.lang.reflect.Method and java.lang.Class, provided by Javassist
[30] used in our implementation. Additionally, the prototype offers a default imple-
mentation of the TokenDeclaration interface, which allows simple registration
of tokens and implements the interface by standard semantics for superclass and
interface lookup.

Being equipped with the information necessary to distinguish between general-
purpose and EDSL-specific parts of a user program, the prototype can perform
staging by means of a simple abstract-interpretation, forward-flow data-flow analy-
sis approach [17, 71]. This is similar to the analysis used for backwards compatibility
in the JVM’s bytecode verifier, which relies on type inference [50, Section 4.10.2]. In
fact, the prototype’s implementation is based on an existing type analyzer found in
Javassist (javassist.bytecode.analysis). A trivial linear scan of the input
bytecode is not sufficient, since compound EDSL expressions are not guaranteed to
be neatly clustered after compilation and depend on the flow of data and control,
even with the restriction of only handling expression scope.

Recall that the idea of implicit staging extends beyond mere syntactic extraction.
Instead, it attempts to statically interpret tokens as if they were deeply embedded
and thus retrieve a static, anticipated shape of EDSL expressions, though limited
it may currently be. Furthermore, static analysis is necessary in order to retrieve
information on the static context of an extracted expression.

3This could be extended to fields but the current implementation is limited to methods.

54

3.4. Proof-of-Concept Implementation

3.4.2.1 Intermediate Representation

The staged IR in terms of section 3.2 is simply a collection of the contained EDSL
expressions’ ASTs. In the following I will discuss their representation. Every
instance of Expression, the prototype’s AST data type, represents what would be
a value during an actual execution of the bytecode. It holds at least:

• Its positions, i.e. the positions of the instructions that caused the original
expressions to be placed on the operand stack (before a potential merge).

• Its type, i.e. the type of the value the expression would have during actual
execution (as specific as this can be determined statically).

• Its value number, i.e. a number that can be used to determine whether two
expressions would yield the same concrete result during execution.

Type analysis and value-number analysis are performed as part of the same
data-flow analysis. The latter is very simple and not to be confused with full-fledged
global value numbering [91]. It rather resembles an alias analysis or pointer analysis [55].
It only tracks storing and loading of local variables and some stack operations such
as duplication. Type analysis follows the mentioned component already present in
Javassist. Hence, for the sake of brevity, a detailed description of these analyses will
be omitted for the rest of the description.

Local variables, or StoredLocal (loc) instances, store the same information
with the difference that it holds stored-by positions instead of positions, i.e. the
positions of the instructions that caused the storing of the local variable.

There is only one concrete subtype of Expression that is considered EDSL-
specific: InvocationExpression (inv). In addition to the general information, it
holds both the EDSL-token method and its arguments represented as expressions.

A similar expression type is ConversionExpression (cnv) that wraps a con-
vertee expression. It integrates with the arguments of invocation expressions to
bookkeep for potential type conversions. i.e. casting as well as boxing of primitive
types and unboxing of their reference-type counterparts).

Instances of the following expression types constitute the terminal leaves of
a resulting expression AST and are considered argument expressions or parameter
expressions (ParameterExpression) as they stand for (and only occur as) the
arguments to domain-specific computation:

• LocalAccessExpression (lac) holds the stored local variable that is ac-
cessed and its potential indices in the (containing method’s) local-variable
array.

• StringConstantExpression (str) and NullExpression (nul) stand for
(and hold) constant values. This could be easily extended to other kinds of
constants.

• StandaloneExpression (sta) wraps an expression, including the EDSL-
specific inv , that is to be treated as “standalone”.

55

3. TOWARD HIGHER-LEVEL SUPPORT

• UnknownExpression (>) stands for a value resulting from unknown, usu-
ally EDSL-external, computation.

The StandaloneExpression type requires additional explanation. Consider
the expression add(a, d = mul(b, c)). The mul(b, c) part is required to be
considered standalone since it could be shared with EDSL-external code.4 In the
prototype only uniquely used argument expressions are directly exposed to EDSL
authors. For the current discussion sta can be considered equivalent to >.

FIGURE 3.3: Extracted expression AST

Figure 3.3 shows the AST that would be yielded by extracting the following
expression from the bytecode of a method body:

add(add(a, b), mul(c, sca(5, 3.0)))

The reason for the two rightmost leaf expressions being > is that the prototype
currently does not handle numeric constants as indicated earlier. We would get the
same result if the two values came from non-EDSL method calls or other external
code, as for instance in the following expression:

add(add(a, b), mul(c, sca(i + j
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
>

, Math.sqrt(9.0)
´¹¹¸¹¹¹¶

>

)))

3.4.2.2 Abstract Interpretation (Transferring States)

The abstract interpretation of Java bytecode models stack-frame (of the call stack, not
to be confused with the operand stack alone) states, i.e. the states of the operand
stack and local variables at given program points. As previously mentioned, in the
prototype the abstract domain of the modeled “values” are expressions (and stored
local variables). As is common in data-flow analysis, a so-called transfer function
models the effects of bytecode instructions by transferring a subject state before
interpreting an instruction to that after it.

The following describes those aspects of the transfer function that are specific to
the expression extraction in the prototype:

4The reason this comes up in the first place here is due to the translation of the shown idiom in
bytecode as stack-top duplication with subsequent storing to a local variable.

56

3.4. Proof-of-Concept Implementation

(i) If an invocation instruction for a method m is encountered, it is first checked
whether m is a token of the EDSL using isToken. If so, the arguments for
this method are popped from the stack and used to create a new invocation
expression (inv) (in combination with the instruction’s position and m), which
is subsequently added to a (global) collection of extracted expressions. If the
method returns a value (i.e. its return type is not void), the expression is
additionally pushed onto the stack. If m is not a token but one of the boxing
and unboxing methods, an expression is popped from the stack, wrapped into
a conversion expression (cnv) (with the instruction’s position), and pushed
onto the stack. Checked-cast instructions are handled in a similar fashion.5

(ii) If a store instruction is encountered, an expression is popped from the stack
and a stored local variable (loc) is created (with the store instruction’s position)
and placed into the (modeled) local-variable array of the stack frame. In
addition, the positions of the popped expression are marked as standalone.

(iii) In case of a load instruction, the associated stored local variable (loc) is re-
trieved, a new local access expression (lac) is created (containing this loc as
well as the load instruction’s position), and pushed onto the stack.

(iv) Handling the various constant instructions is trivial.

(v) Any other bytecode instruction or case that causes popping of the stack marks
the popped expression’s positions as standalone. Any push onto the stack
that is not part of the aforementioned cases causes an unknown expression (>)
with the instruction’s position to be pushed onto the stack.

The abstract interpretation also performs a so-called occurs check in cases of expres-
sion creation that depends on itself as an argument. In that case the argument will
be considered standalone (as per the purpose of sca). This situation is rare, and
does not occur with code generated by Java’s standard compiler javac.

3.4.2.3 Abstract Interpretation (Merging States)

The transfer function is not sufficient for data-flow analysis. The reason for this is
that when the abstract interpretation encounters a branching instruction, it needs
to explore all the branches. This is usually done by adding the targets of jump
instructions to a (global) queue which contains the potential next instructions (or
rather their positions) to be handled, i.e. transferred. In the linear, non-jump cases
simply the following instruction is considered. This only happens in case of a
preceding state change and the overall abstract interpretation continues until this
queue is empty.

When the mentioned branches join back together (e.g. after an if statement),
the states of these branches need to be merged. This is achieved by not only adding
next-instruction positions to the queue, but also merging the “out” state with the
“in” states existing for these target positions. In the prototype the stack frames are

5In the prototype primitive conversions are simply considered unknown (>).

57

3. TOWARD HIGHER-LEVEL SUPPORT

merged by element-wise merging of the contained expressions and local variables
using a merge function. It can be summarized as follows:

merge l̄(loc1, loc2) = loc with locpos1 ∪ locpos2

merge ē(inv1, inv2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inv with invpos1 ∪ invpos2 , if invmethod
1 = invmethod

2

invmethod
1 , and n = invargN1 = invargN2

merge ē(invarg11 , inv
arg1
2),

merge ē(invarg21 , inv
arg2
2),

⋮
merge ē(invargn1 , inv

argn
2),

>with invpos1 ∪ invpos2 otherwise

merge ē(str1, str2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

str with strpos1 ∪ strpos2 , if strvalue1 = strvalue2

strvalue1

>with strpos1 ∪ strpos2 otherwise

merge ē(nul1,nul2) = nul with nulpos1 ∪ nulpos2

merge ē(ē1, ē2) = >with ēpos1 ∪ ēpos2 if e1 ≠ e2 or e1 = > or e2 = >
merge ē(lac1, lac2) = lac with lacpos1 ∪ lacpos2 ,

mergel̄(laclocal1 , laclocal2),
lacindices1 ∪ lacindices2

merge ē(cnv1, cnv2) = cnv with cnvpos1 ∪ cnvpos2 ,

merge ē(cnvconvertee1 , cnvconvertee2)

(i) Positions and local-variable indices are merged using set union.

(ii) Merging stored local variables (loc) yields a stored local variable (loc) with
merged elements.

(iii) Merging invocation expressions (inv) yields an invocation expression (inv)
with merged elements (arguments, etc.) if they share the same token, otherwise
>with merged positions.

(iv) Merging constant expressions yields the same constant if they share the same
value and are of the same kind, otherwise >with merged positions.

(v) Merging different types of expressions and merging any expression with >
always yields >with merged positions.

(vi) Merging expressions of the same kind and not of the aforementioned cases
yields the same expression with merged elements.

Merging with a yet undefined element of the stack frame is realized simply by
overwriting. Merging stack frames of different size should not happen and when
detected produces an error.

58

3.4. Proof-of-Concept Implementation

3.4.2.4 Postprocessing

After a fixed point is reached, i.e. transferring and merging of states do not produce
new results, the data-flow analysis stops. In a final postprocessing step the global
collection of expressions is then purged of true subexpressions. Also, expressions
whose positions have been marked as standalone during transfer are turned into
standalone (sta) expressions.

Having introduced the general workings, I can now exemplify the effects of the
abstract interpretation. Consider the following expression in source and bytecode:

mul(a, x > 0 ?

e1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
add(b, c) :

e2³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
mul(b, c)

´¹¹¹¸¹¹¶
merge ē(e1, e2)

)

pos1→ o1 : aload ai
o2 : iload xi
o3 : ifle o8

pos2→ o4 : aload bi
pos3→ o5 : aload ci
pos4→ o6 : invokestatic Mat.add

o7 : goto o11

pos5→ o8 : aload bi
pos6→ o9 : aload ci
pos7→ o10 : invokestatic Mat.add
pos8→ o11 : invokestatic Mat.mul

Java’s ternary operator is not reconstructed by the analysis. Instead, the analysis
deals with this situation by merging the stack frames at the end of the two con-
ditional branches. For the case that x is greater than zero we have the following
expression AST at the top of the abstract, modeled operand stack:

e1 = inv({pos4},Mat.add, [lac({pos2},bloc ,{bi}), lac({pos3},cloc ,{ci})])

For the case that x is at most zero we get the following AST at the top of the stack:

e2 = inv({pos7},Mat.mul, [lac({pos5},bloc ,{bi}), lac({pos6},cloc ,{ci})])

The data-flow analysis needs to merge these two expressions when control flow
merges, yielding >({pos4,pos7}). Hence, the outer expression will be:

e3 = inv({pos8},Mat.mul, [lac({pos1},aloc ,{ai}),>({pos4,pos7})])

This means that the analysis would yield and eventually list all three expressions
e1, e2, and e3 separately. Note that if both e1 and e2 were invocations of the same
method this would not be the case, since both would merge into a true subexpression
of an expression similar to e3 but with a known second argument.

59

3. TOWARD HIGHER-LEVEL SUPPORT

3.4.3 Processing: Expression Translation

The expressions resulting from staging are wrapped into so-called expression sites
(ExpressionSite) one by one and supplied to the expression compiler provided
by the EDSL instance. Expression sites represent the place and context in which an
expression was staged and offer methods to support expression translation.

3.4.3.1 Translation to Source Code

Implementing the ExpressionCompiler interface directly allows EDSL develop-
ers to provide meaning to staged expressions in the form of Java source code. This
interface only requires one method to be implemented:

void compile(ExpressionSite expressionSite)

Connecting parameter expressions with run-time values is accomplished indi-
rectly. Namely, the passed ExpressionSite instance offers utility methods to
generate source code for value access from ParameterExpression nodes.

The translated code for the whole expression is passed back to the given expres-
sion site via an instance method called setCode. This is a rather low-level way of
performing translation.

3.4.3.2 Translation to Live Objects

To simplify translation and to exploit the shared heap at load time the prototype
offers a higher-level alternative to the aforementioned to-source-code compila-
tion: Translation to live objects. EDSL authors can implement such a translation
by extending the abstract class ExpressionToCallableCompiler, which itself
implements the low-level ExpressionCompiler interface.

It requires a concrete implementation of the compileToCallable method,
which returns an instance of type Callable. Eventually, the prototype framework
will replace the original EDSL expression (site) with a call to the call method of
the returned Callable instance. The Callable interface is similar to the interface
of the same name found in the Java API but its call method takes an argument of
type Environment. During execution time, this environment serves as storage for
the actual execution-time arguments passed to the staged EDSL expression.

Environment elements can be accessed through instances of the Variable
class, which trivially implements the Callable interface. Internally, these vari-
ables are wrapped indices into the environment and provide access methods. The
ExpressionToCallableCompiler class provides factory methods to create vari-
ables from parameter expressions or fresh ones that can be used as intermediate
values. There will only be one entry Callable instances per expression site that
might be shared by several threads during execution. Hence, an intermediate value
should usually not be stored in a field of a Callable instance unless it is wrapped
into a ThreadLocal instance.

Glue code generated by the framework implementation establishes that, dur-
ing execution time, retrieving the value of a variable created from a parameter
expression will yield the value of the associated argument. The high-level compiler
internally implements the low-level compile method in three steps:

60

3.4. Proof-of-Concept Implementation

1. The EDSL-author-implemented compileToCallable is called.

2. An accessor class is created and the return value from the first step is written
to a static field of this accessor class (using Java’s run-time reflection facilities).

3. Glue code is generated. It creates an Environment instance filled with the
expression’s arguments and calls the Callable instance via its accessor class.
This code includes boxing, unboxing, and checked casting if required.

As a concrete illustration, consider an expression representation for our matrix
EDSL as a tree with node types Add, Mul, and Sca, which implement the Callable
interface with semantics close to the shallow-embedding methods of similar names
introduced in Section 3.1. We also consider two additional types: AddN, representing
n-ary matrix addition (using a single accumulator), and Scale, representing the
scaling of a matrix by a given factor (see Listing 3.7).

Consider again the expression of Figure 3.3):

add(add(a, b), mul(c, sca(5, 3.0)))

A high-level compiler can be defined to optimize and translate this expression’s
AST (for instance, using the visitor pattern [42]) to the mentioned Callable tree,
yielding the structure presented in Figure 3.4.

FIGURE 3.4: Translated to tree of Callables

As described, the compiler keeps a mapping between parameter expressions
and variables for generating the correct glue code to fill the environment with
values. Listing 3.6 shows this glue code, assuming the generated accessor class is
called $CallableAccessor. Glue-code generation happens behind the scenes
and can safely be ignored by EDSL authors. All of this allows the custom definition
of a staged expression’s semantics via an essentially static, computational-object
entry point. What this looks like internally is in the hands of the EDSL author.

LISTING 3.6: Glue code in $execute method

1 private static Mat $execute(Mat u, Mat v, Mat w, int x, double y) {
2 Object[] values = { u, v, w, Integer.valueOf(x), Double.valueOf(y) };
3 Environment env = $CallableAccessor.createEnvironment(values);
4 return (Mat) $CallableAccessor.callable.call(env);
5 }

61

3. TOWARD HIGHER-LEVEL SUPPORT

LISTING 3.7: AddN and Scale

1 class AddN implements Callable<Mat> {
2 final Callable<Mat>[] matCs;
3

4 public AddN(Callable<Mat>... matCs) {
5 this.matCs = matCs;
6 }
7

8 public Mat call(Environment env) {
9 Mat[] mats = new Mat[this.matCs.length];

10 for (int i = 0; i < ms.length; i++) {
11 mats[i] = this.matCs[i].call(env);
12 }
13

14 int dimM = mats[0].dimM;
15 int dimN = mats[0].dimN;
16 ⋯
17 double[][] ds = new double[dimM][dimN];
18 for (int k = 0; k < mats.length; k++) {
19 for (int i = 0; i < dimM; i++) {
20 for (int j = 0; j < dimN; j++) {
21 ds[i][j] += mats[k].elements[i][j];
22 }
23 }
24 }
25

26 return new Mat(dimM, dimN, ds);
27 }
28 }
29

30 class Scale implements Callable<Mat> {
31 final Callable<Integer> dimC;
32 final Callable<Mat> matC;
33 final Callable<Double> factorC;
34

35 public Scale(Callable<Integer> dimC, Callable<Mat> matC,
36 Callable<Double> factorC) {
37 this.dimC = dimC;
38 this.matC = matC;
39 this.factorC = factorC;
40 }
41

42 public Mat call(Environment env) {
43 Mat mat = matC.call(env);
44 double factor = factorC.call(env));
45 ⋯
46 double[][] ds = new double[mat.dimM][mat.dimN];
47 for (int i = 0; i < mat.dimM; i++) {
48 for (int j = 0; j < mat.dimN; j++) {
49 ds[i][j] = mat.elements[i][j] * factor;
50 }
51 }
52

53 return new Mat(mat.dimM, mat.dimN, ds);
54 }
55 }

62

3.5. Evaluation

3.4.4 Unstaging: Relinking Expression Sites

Having translated all expressions and provided method bodies (e.g. as shown in
Listing 3.6) for the expression sites, the framework then needs to establish the
appropriate, corresponding links in the user program. This corresponds to the
conceptual unstaging phase of implicit staging.

For each expression site a (uniquely named) static method (like $execute in
Figure 3.3 and Listing 3.6) with the expression site’s combined, thus flattened, type
signature is added to the surrounding class, and its body is endowed with the
provided source code. Javassist comes with an inbuilt, custom compiler that makes
this possible. Subsequently, every instruction associated with non-parameter (sub-)
expressions of an EDSL expression site are removed from the bytecode (i.e. replaced
by nop instructions). Finally, a call to the associated method is inserted at the
expression site’s position.

For the sake of brevity, I omitted the description of some minor details of the
implementation here, like the exact method of bytecode editing and the treatment of
issues such as a potential exceeding of the maximum number of method parameters6

(255, as imposed by the JVM).

3.5 Evaluation

The evaluation of the implicit-staging proof-of-concept implementation is split into
four parts, the first three of which cover the discussion of reliability, performance,
and usability aspects. The last part compares with recent, closely related work.

3.5.1 Reliability

In principle, the described staging process can establish safeness via language cohe-
sion. This means that only tokens of the same embedded language will be reified
together and exposed to the author-defined processing, i.e. the expression compiler.
Conceptually it realizes the scheme for avoiding fuzzy language boundaries that
was proposed in Section 2.3.3.3 of Chapter 2.

This is foiled by the fact that the implicit-staging prototype is not designed to
handle (and resolve) several EDSLs at the same time. Instead, it handles different
EDSLs in sequence. However, nothing prevents a method to be assigned to several
embedded languages. Then the end result depends on the order of handling the
various EDSLs supplied to the framework. The problem lies with the mechanism
for token declaration, which is also to be blamed for shortcomings in the provision
of uniformness guarantees: A TokenDeclaration instance is entirely free to
(dynamically) change its behavior, i.e. that of the characteristic function. Hence it is
a black box that may, though unlikely, arbitrarily redefine the EDSL during staging.

These issues result from an overly liberal interface and could be addressed by
simply restricting and fixing the way tokens are defined. It does not seem that the
current degree of freedom in declaring tokens is actually necessary. With minimal
effort and reasonable diligence the described issues are easily avoided, which raises
the reliability ratings (barely) to “fair”.

6In short, this is tackled by generating a class for passing surplus arguments in its instances.

63

3. TOWARD HIGHER-LEVEL SUPPORT

3.5.2 Performance

The overhead incurred by staging and processing at load time is expected to be quite
significant, though specific to the implementation of both the prototype framework
as well as the EDSL at hand. However, barring class reloading this overhead is only
incurred once when an end-user application is run. On the other hand, there is no
execution-time overhead for staging or processing, as would be incurred in the case
of deep embedding.

Optimizations, at least on the expression level, can be implemented freely. As is
also the case with syntactic macros and other static staging approaches, run-time
values (at AST leafs or parameter expressions in the prototype) are not inspectable
and EDSL programs cannot be dynamically constructed.

However, load-time metaprogramming brings a different kind of dynamicity.
At the time of processing values specific to the run-time system can be accessed
and constants of already initialized classes are available. Processing (and possibly
offloading code generation) can easily be adapted on the fly.

In order to further investigate the claims regarding overhead and optimizations,
experiments were performed, which are described in the following. However,
note that in practice results will vary between EDSLs and, as mentioned before,
implementation approaches are not always directly comparable. Any experiment
will not be able to prove that one approach is generally always better than another.

Three versions of the matrix EDSL were implemented using shallow embed-
ding (S), deep embedding (D), and the described prototype (with compilation to
Callable) imitating the look-and-feel of the shallowly embedded version (P). The
latter two perform optimizations as indicated in Section 3.4.3.2, i.e. fusion of binary
additions and turning multiplications with scaling matrices into scaling operations
with further fusion when applicable. I made the utmost effort to keep these imple-
mentations as comparable as possible to each other. In the deep embedding the
optimization are implemented as on-the-fly rewriting. The goal was to be as fair
and conservative as possible. Optimizing only during evaluation would have lead
to costly re-traversals and unfairly advantaged the implicit-staging version.

The goal of the experiment was to assess the amount of execution time saved
in comparison with shallow embedding as well as deep embedding applied to
static expressions, while still exposing the same interface as shallow embedding.
In order to model a wide variety of situations and opportunists for optimization,
randomly generated expressions up to a depth of 5 (Mat-typed variables and sca
expressions are counted as leaves here) were considered. For each depth 30 such
expressions were generated, each occurring once in a warm-up loop and once in a
loop for which execution time was measured. The warm-up loop is necessary to
ensure that before measuring JIT compilation of the staging methods (i.e. optimizing
variants of the ones shown in Listing 3.1) and MatE.eval has occurred (or not) in
the deeply embedded version. For the implicitly staged version the same applies to
the evaluate method of the various Callable implementations. The amount of
iterations to be used for warm-up was established by experimenting with various
hand-written expressions of the matrix EDSL. Additionally, random 8 × 8 matrices
and scalar values of type double were generated to serve as arguments for these
expressions and were assigned to local variables as literal-generation time was of no

64

3.5. Evaluation

interest. The generated benchmark code was also adapted for the deeply embedded
language version. All randomness was only part of the benchmark-code generation.

The benchmark code was run three times for each version with 10,000,000 loop
iterations for warm-up and measurement, each on a 3 GHz Intel Core i7 machine
with 8 GB of RAM with JRE 7 (Java HotSpotTM 64-Bit Server VM). Figure 3.5 shows
the results, aggregated by averaging over all 30 expression execution times per
expression depth. See Figure 3.6, 3.7, and 3.8 for per-depth results.

FIGURE 3.5: Aggregated (random) benchmark results

Let us summarize: For expressions at depth 1, the implicit-staging version was
faster than shallow embedding for 7 of the 30 expressions and faster than deep
embedding for 21 of the 30 expressions. This can be explained by the low rate
(or probability) of optimization opportunities for expressions of depth 1 and the
added overhead of boxing and Callable calling. Still, the maximum slowdown
experienced at depth 1 was only by about 6.1% compared to shallow embedding
and 4.7% compared to deep embedding. On average, implicit staging was 22.9%
faster than shallow embedding and 7.6% faster than deep embedding.

For expressions at depths 2 to 5, implicit staging was faster than shallow em-
bedding for more than 25 of the 30 expressions each. At depth 2, deep embedding
was still faster than implicit staging for 17 of the 30 expressions, but for deeper
expressions implicit staging was faster than deep embedding for more than 26 of the
30 expressions each. It appears that in the cases where deep embedding was faster,
boxing of double values is to blame for the slowdown. Overall (depth averages),
implicit staging sped up execution compared to shallow embedding at minimum by
22.9% and at maximum by 74.3%. Compared to deep embedding, implicit staging
sped up execution at minimum by 2.5% and at maximum by 10.8%.

The benchmark on randomly generated expression was supplemented with a
similar version wherein the generated expressions had a bias toward containing
optimizable structures, e.g. an addition expression is likely to become part of another
addition. It is no surprise that shallow embedding did not fare well in this biased
experiment. Even deep embedding seems to fare worse than it did in the non-biased
expressions experiment. Even so, there are cases, i.e. expressions, where implicit

65

3. TOWARD HIGHER-LEVEL SUPPORT

Depth 1 Depth 2

FIGURE 3.6: Depth 1 and 2 (random) benchmark results

66

3.5. Evaluation

Depth 3 Depth 4

FIGURE 3.7: Depth 3 and 4 (random) benchmark results

67

3. TOWARD HIGHER-LEVEL SUPPORT

Depth 5

FIGURE 3.8: Depth 5 (random) benchmark results

68

3.5. Evaluation

staging was slower than shallow embedding (at maximum by 7.6%) and slower
than deep embedding (at maximum by 7.9%). Again, these cases can most likely
be attributed to the aforementioned boxing overhead. Overall (depth averages),
implicit staging sped up execution compared to shallow embedding at minimum
by 100.4% and at maximum by 257.5%. Compared to deep embedding, implicit
staging sped up execution at minimum by 9.4% and at maximum by 29.7%. Figure
3.9 presents the aggregated results for the biased-expressions benchmark version.

FIGURE 3.9: Aggregated (biased-expressions) benchmark results

Worst-case performance for the three EDSL implementations was also briefly
examined by running a benchmark on the expression shown in Listing 3.8. It
lends itself as a worst-case specimen due to the many scalar arguments and since
no optimizations were implemented specifically for speeding up the addition of
scaling matrices.

LISTING 3.8: Worst-case matrix expression

1 mul(
2 mul(
3 add(sca(5, 2.0), sca(5, 2.0)),
4 add(sca(5, 2.0), sca(5, 2.0))
5),
6 add(sca(5, 2.0), sca(5, 2.0))
7)

Implicit staging was 103.2% slower than shallow embedding. However, deep
embedding fared no better with a slowdown by 104.5%. This indicates that the
interpretative overhead caused by expression-tree evaluation is significant. In
order to further test this case, I implemented a lower-level expression compiler
that simply generates Java code identical to the original expression instead of a
tree of Callable instances. This implementation was only 1.1% slower (for our
worst-case expression) than shallow embedding. Hence it seems advisable to move
away from the compilation to Callables for final versions of an implicitly staged
EDSL implementation.

69

3. TOWARD HIGHER-LEVEL SUPPORT

3.5.3 Usability

The usage of an EDSL that is implicitly staged with the prototype is very seamless,
which means that users are not constantly reminded of the staged nature of EDSL
expressions. After all, not only is the user interface implicit (i.e. equal to that of a
shallow embedding), the framework also only really comes into effect when a user
program is run, not when it is compiled. As described in Section 3.3, the load-time
nature also positively affects maintenance and long-term evolution concerns.

As is common with static-staging approaches, some limited static context can
be retained for use in debugging or avoiding redundant behavior. In the described
prototype, bytecode positions of IR elements can be used but translating them to
(source-code) line-number information has to be done manually (if detailed error
messages are to be emitted during processing).

The aforementioned issues with token declaration can make it hard to really
anticipate how far an EDSL extends, which may end up impairing both debugging
as well as documentation in a similar fashion as syntactic macros. There are virtually
no self-documentation facilities.

3.5.4 Comparison with Related Work

There are two recent developments in supporting EDSL implementations that are
closely related to implicit staging and the load-time prototype framework: Yin-Yang
[68] for Scala and JIT macros in the experimental Java VM of Project Lancet [90]
implemented in Scala. Table 3.2 shows a comparison (along the lines of Section 2.4
in Chapter 2), whose details are expanded on in the following.

3.5.4.1 Yin-Yang

Yin-Yang is a preprocessing, generative, and compile-time-metaprogramming ap-
proach that is mainly motivated by the reduced ease-of-use of deep embeddings, in
particular LMS-style EDSLs, which leak implementation details (such as Rep types,
traits, etc.) and may lead to cryptic error messages (at compile time as well as at
run time). In a nutshell this issue is addressed as follows:

1. The EDSL author defines a direct (i.e. shallow) embedding.

2. Yin-Yang is used to generate an LMS-style deep embedding from the shallow
interface of this EDSL.

3. The author defines a macro (usually named after the EDSL) from which a Yin-
Yang-provided transformation mechanism is invoked. It translates shallow
EDSL programs to deep versions. Additionally, it also performs error checking
and allows only constructs of the designated EDSL to be used.

4. At run time the deep-embedding code, translated via the macro at compile
time, is processed and compiled. In principle, it should be possible to (make
the EDSL macro expand to) cache this result to reduce overhead.

Fuzzy language boundaries are avoided by excluding the usage of foreign-
language constructs altogether. Optimizations or other adjustments to the EDSL’s

70

3.5. Evaluation

semantics can be freely implemented on the generated deep-embedding mirror
version of the shallow interface. This freedom may lead to problems of non-
compositional staging and opaque workflow, though easy to avoid when following
the general patterns of LMS. However, in principle it is possible for EDSL authors
to tamper with the internals of the deep embedding as well as the syntactic-macro
code. This reduces the reliability ratings of the approach.

TABLE 3.2: Comparison of implementation approaches

G Global

Yi
n-

Ya
ng

JI
T

M
ac

ro
s

(P
ro

je
ct

La
nc

et
)

Im
pl

ic
it

-S
ta

gi
ng

Pr
ot

ot
yp

e

L Local
E Expression

D Declaration
I EDSL Interface
T Typing

`/N High/Good
�/� Fair
a/H Low/Bad

STAGED-EDSL DESIGN

Scope L G E
Delimitation I T D
Staticity ` ` `
Dynamicity � ` �
Transparency ` � `

EVALUATIVE COMPARISON

Reliability ♦ O ♦
Safeness � H �
Uniformness � � �

Performance M M M
Overhead � N N
Optimization N N N
Adaptiveness � N �

Usability M O M
Seamlessness N � N
Maintenance � � N
Debugging N H �
Documentation � H H

Maintenance and evolution is possible. After all, the deep embedding can
change as long as existing (shallow-to-deep) translations remain valid. However,
feature improvements in the overall Yin-Yang framework will not automatically
propagate to already compiled code. Debugging is well supported by automatic
error messages as well as by retaining static-context information.

71

3. TOWARD HIGHER-LEVEL SUPPORT

Documentation depends on how much of the target deep embedding is shown
(at least on the interface level). Users may identify a generated Yin-Yang EDSL
macro and then, assuming that tampering on generated code was not too heavy
they can infer the target of its translation and from that may make guesses about
the behavior (like in LMS). The EDSL-delimited (macro) blocks have implications
on seamlessness. It is true that the approach is more seamless than LMS and deep
embedding which is why it deserves a “good” rating. However, the named block
does take away a little bit from this. Ultimately, this is a necessary design decision
that limits staging to static blocks and aids language delimitation.

3.5.4.2 JIT Macros (Project Lancet)

Project Lancet is an ambitious endeavor to implement a Java VM with heavy
metaprogramming support, based on and relying on the Graal JIT compiler [12].
The main goal of this approach is to put manual tools into the hands of programmers
for precisely guiding the compilation of programs at run time.7

For instance, there are directives for inlining (e.g. to disable Project Lancet’s
default behavior of inlining non-recursive method calls), loop unrolling, and so-
called freezing, which causes the supplied argument to be evaluated at JIT-compile
time. These features are implemented by simple Scala-method syntax and become
effective when JIT-compilation is triggered using compile (see Listing 3.9).

LISTING 3.9: Project Lancet JIT tools (selection of interfaces)

1 def compile[T,U](f: T => U): T => U
2

3 def freeze[T] (f: => T): T
4 def unroll[T] (xs: Iterable[T]): Iterable[T]
5 ⋯
6 def inlineNever[T] (f: => T): T
7 def inlineAlways[T](f: => T): T
8 def inlineNonRec[T](f: => T): T
9 ⋯

In fact, these directives are implemented as so-called JIT macros, which are
essentially registered callback hooks that are invoked with (arguments of) a form of
decompiled-bytecode IR. A LMS-based IR (i.e. Rep, Exp, Def) is used for this since
its internals heavily rely on LMS. In essence, the normal execution mode of the VM
is implemented as a usual bytecode interpreter while JIT compilation is achieved
via LMS-style multi-stage programming as follows:

1. “Decompilation” of bytecode is accomplished by using a staged version of
the bytecode interpreter (“staged” here refers to the fact that it will perform
staging when run), which performs LMS-style code generation (i.e. the staged
interpreter approach [32, 103]). In other words, staged interpretation yields the
original program represented in the LMS-based IR. In fact, this is essentially a
variant of the so-called first Futamura projection [40, 41] known from partial

7While one may call this JIT compilation, it strays from the customary JIT-compilation concept
present in current VMs, which is more transparent, automatic, and heuristical.

72

3.5. Evaluation

evaluation [65, Chapter 4, Section 4.3.3]: “[S]pecializing an interpreter with
respect to a source program has the effect of compiling the source program”,
just that the target of “compilation” here is the LMS-style IR.8 I will use
the following set of equations to illustrate how to derive decompilation of
a source program and final compilation to a target back end by turning a
normal bytecode interpreter into a staged one:

JsourceProgKJVM = JinterpKScala [sourceProg]
= q(JspecKL [interp, sourceProg])yScala

= q(JstageScala
LMS (interp)KScala [sourceProg])yLMS

= q(JstagedInterpKScala [sourceProg])yLMS

= q
compileLMS

T (JstagedInterpKScala [sourceProg])y
T

= JtargetProgKT

2. Abstract interpretation and optimizations such as inlining could be performed
on the resulting IR in a separate step. However, in Project Lancet this is
actually interleaved with the first one.

3. The IR is compiled to a desired language and back end, which could for
instance range from Java, Scala, and C++ to CUDA [13].

It is rather straightforward to see how this process can enable the implementa-
tion of callback hooks to customize processing. Listing 3.10 roughly presents what
an optimizing JIT macro for the vector EDSL of Chapter 2 might look like. When
the (shallow-interface) Vec.plus method is encountered during JIT compilation,
the corresponding registered macro implementation method is called. This allows
for the deep inspection of IR nodes and on-the-fly transformations.

LISTING 3.10: Vector EDSL JIT macros (rough sketch)

1 // Assume that this is declared in the right context (or scope)
2 object VecMacros {
3 ⋯
4 def plus[T](self: Rep[Vec], v: Rep[Vec]): Rep[Vec] = (self, v) match {
5 case (Def(PlusN(vs1)), Def(PlusN(vs2))) => PlusN(vs1 ++ vs2)
6 ⋯
7 case (Def(Plus(v1, v2)), v3) => PlusN(Seq(v1, v2, v3))
8 case (v1, Def(Plus(v2, v3))) => PlusN(Seq(v1, v2, v3))
9 case (v1, v2) => Plus(v1, v2)

10 }
11 ⋯
12 }
13 ⋯
14 // Register macro callback hook
15 Lancet.install(classOf[Vec], VecMacros)

8Note that in LMS the default framework with built-in staged versions of Scala constructs essen-
tially makes this IR a versatile representation of Scala code.

73

3. TOWARD HIGHER-LEVEL SUPPORT

The freedom bestowed on EDSL authors to identify and modify code with
JIT macros is not unlike the one granted by syntactic macros, which leads to a re-
duced safeness rating. However, while the inspection of host-language, i.e. general-
purpose, code appears to be unrestricted, Scala’s encapsulation mechanisms can be
used to prevent cross-EDSL code inspection. Uniformness is not guaranteed either
but is not much different from LMS and is less of a concern if standard LMS-based
implementation practices are followed.

While overhead is certainly incurred during Project Lancet’s explicit JIT com-
pilation, all overhead when running the compiled code is eliminated. As a JVM
implementation in full control of meta-level concerns, there is ample opportunity
to exploit dynamic information of the run-time environment. Furthermore, spe-
cialization to various back ends that might be available at run time makes EDSL
implementations with Project Lancet very adaptive.

On the usability side there are several disadvantages. While the staged nature
of EDSL is well hidden from users, the framework of manually triggering and
directing JIT compilation, which is required for JIT macros to come into effect,
impairs seamlessness. Maintenance issues present themselves in the experimental
nature of the custom JVM implementation and the Graal compiler. This may not be
a general property of the approach but in the current discussion we have to consider
that the approach (in particular its current manifestation) is more heavyweight than
even, for instance, compiler plugins.

Although internally static information is heavily used, there does not appear
to be any support for employing it in EDSL-program debugging. JIT macros are
installed and configured dynamically and JIT compilation may fail often, as much
of its workings are (not always safely) in the hands of users. The limited safeness
and uniformness of JIT macros arguably further complicate the identification of
bugs. The concern of documentation suffers from the same issues.

3.6 Discussion and Summary

By design, the idea of implicit staging is rather general and abstract with a broad
vision and potential. Concrete explorations like the implemented prototype are
necessary. However, it is nowhere near fully achieving the ideas outlined in Section
3.2.2. One limitation is that only compound expressions are extracted and no further
relationship between separate, shared, or referenced ones is fully considered.

There actually were experimentations with allowing the inspection of variable
accesses (lac) to offer some level of expression-external view. Take for instance
the code snippet in Listing 3.11. During expression processing the prototype (ex-
perimentally) allows authors to inspect the accesses to t in order to optimize all
multiplications referring to it, e.g. to perform appropriate scalar scaling instead of
matrix multiplication.

However, it is challenging to devise an easy-to-use API that would also allow
dealing with the removal of line 1: Whether it can be removed or not depends on
the EDSL and whether it is actually inlined by all other expressions and at EDSL-
external uses. This would necessitate the provision of more details (for instance as a
graph of shared expression usage) to EDSL authors.

74

3.6. Discussion and Summary

LISTING 3.11: Distant and dynamic EDSL-code composition

1 Mat t = sca(5, 3.0);
2 Mat u = mul(a, t);
3 if (⋯) {
4 u = mul(u, t);
5 } else {
6 u = add(u, t);
7 }
8 Mat m = add(u, u);

Note that with deep embedding the aforementioned case is not an issue as the
default behavior is to inline, which shifts the responsibility to users. Furthermore,
at the end of the given code snippet, u would be a dynamically staged program that
depends on the actual flow of control. Of course, in a mostly static setting (as in im-
plicit staging) it is not possible to predict which path will be taken. One way around
this would be to explore all possible expressions and specialize the surrounding
code accordingly. However, in the general case this is likely to cause intractable
code explosion and in the presence of cyclic data flow (i.e. via loops) this fails. One
idea to solve this is to somehow switch between dynamic construction (only) were
static approximation fails. In fact, Chapter 4 will briefly explore something similar
but in the opposite direction.

In the context of this thesis, the most severe limitation of the prototype lies
elsewhere: Recall the previous discussion on reliability and usability. It is not
enough to perform staging or code modification transparently. Hidden staging
ought to be a convenience feature for ease-of-use, along the lines of how type
inference allows the omission of type annotations. It should still follow a uniform,
predictable pattern. So, any approach that allows a powerful API, e.g. for making
expression-inlining decisions, also ought to document and expose the behavior to
aid code comprehension when an EDSL user decides to investigate.

The black-box token declaration of the prototype presented in this chapter is
an example for the described issue. There are no hard, consistent guarantees as to
which EDSL, if at all, a method call belongs. The interface’s ad-hoc nature does not
allow for a reliable generation of (self-) documentation.

Finally, let us summarize the prototype’s worthwhile parts:

• The explication of EDSLs leads to a higher-level treatment of performance-
oriented language embedding, leading to rich library interfaces.

• Choosing load-time metaprogramming enables a pragmatic implementation,
which can easily be made available to end users. In terms of maintenance it
can be seen as a middle ground between compiler plugins and custom VMs.

• While limited, the interface of having a short number of entry points to EDSL-
program processing (in fact only one, i.e. ExpressionCompiler, in the
prototype) is simple and can improve the encapsulation of EDSL concerns.

The bottom line is that the presented prototype constitutes an improvement over
traditional embedding techniques, yet is still an overly low-level extension.

75

3. TOWARD HIGHER-LEVEL SUPPORT

3.7 Acknowledgments

The contents of this chapter are, in large part, based on and reproducing the research
published in co-authorship with Prof. Chiba at the 28th European Conference on
Object-Oriented Programming (ECOOP 2014) under the title “Implicit Staging of
EDSL Expressions: A Bridge between Shallow and Deep Embedding” [93]. I was
the first author of this paper.

76

CHAPTER 4
Almost First-Class Embedding

Chapter 3 laid out a very basic approach for indirectly but pragmatically extending
Java for improved language-embedding support. However, the investigated load-
time implicit-staging prototype ought to be considered merely an intermediate step
toward providing a more refined linguistic abstraction.

The goal of the present chapter is to explore a pragmatic extension that raises
the abstraction pattern of language embedding close to the level of a first-class
language feature. Of course it would be possible to take the existing implicit-
staging prototype and remove its discovered, obvious flaws. Unfortunately, doing
so would not readily lead to a more encompassing design: For instance, while the
API may be tweaked for more safety and documentation, it would still be limited
to static staging. The existing implementation does little to improve the quality of
dynamically staged EDSLs.

Why is dynamic staging of interest? Recall the first motivating examples in
Chapter 1. Ideally, domain-specific programs such as the one presented in Listing
1.2 are to be directly expressed by users while at the same time allowing EDSL
authors to implement their optimization. This requires dynamic staging to be
hidden in a safe and comprehensible fashion. As discussed in Chapter 2, manual
deep embedding does not provide reliability guarantees, so the program in Listing
1.3 comes with issues beyond merely its verbose explicit-staging nature.

The extension explored in this chapter reuses the ideas of explicating embedded
languages and employing static analysis for extracting domain-specific computation.
This is complemented by forcing EDSL authors to clearly and visibly mark the
tokens of their EDSLs with membership information and other settings.

Secondly, the aspects of dynamic EDSL-program staging and their execution
triggering are abstracted away, i.e. they are removed from the direct control of
authors, in order to avoid the pitfalls of manual implementations. The author-
defined EDSL-program processing occurs by way of indirection to a common
interface for IR compilation, similar to ExpressionToCallableCompiler.

Like the implicit-staging prototype, the implementation of the present ideas
relies on load-time metaprogramming for the sake of pragmatism. Thanks to
using static analysis and code transformations, static-context information can be

77

4. ALMOST FIRST-CLASS EMBEDDING

retained and provided to EDSL authors. Moreover, the design allows for a potential
straightforward subsumption of static staging and processing.

I will spend the largest part of this chapter on explaining the user-level workings
of the extension followed by a behind-the-scenes discussion, evaluation, and several
examples to clarify the usage and supplement the evaluation.

4.1 Support for Dynamically Staged EDSLs

Recall the workflow of using a deeply embedded DSL. It can be divided into the
following run-time phases that sometimes overlap in practice:

1. (Dynamic) Staging: IR construction and composition.

2. Processing: Analysis, optimization, run-time compilation, etc.

3. Materialization: Evaluation to a base-value result or side effect.

As discussed multiple times, in the interest of usability, it is desirable to make
these phases transparent yet uniform. Implicit staging was designed to achieve
this in a static setting. However, in order to provide an all-encompassing linguistic
abstraction for language embedding it is important not to curtail the dynamic-
staging nature. After all, not only are dynamic situations sometimes unavoidable,
they are useful for specializing EDSL programs to run-time conditions.

This means that the above phases should still occur at run time. Additionally,
similar to implicit staging, for the sake of reliability, the phases should be properly
separated and only the processing phase should be exposed to EDSL authors. My
approach is called tame staging and its overview is shown in Figure 4.1.

FIGURE 4.1: Tame-staging overview

78

4.1. Support for Dynamically Staged EDSLs

The upper portion corresponds to the conceptual overview of implicit staging.
However, the processing is internal and not exposed to EDSL authors. The result
of the internal processing is a collection of transformation directives that, when
applied to or woven into the program code (as in aspect-oriented programming [70]),
essentially defer staging to run time. Although the lower right portion appears
simple, this is generally more complicated than merely replacing expressions.

The approach was implemented in the form of a prototype framework for Java.
However, there is little preventing the adoption of the ideas in other host languages.

4.1.1 The @Stage Annotation

Like implicit staging the present framework hinges on the ability to discern be-
tween staged and non-staged domain-specific parts of a program. By placing an
@Stage annotation, whose declaration is shown in Listing 4.1, on a field or method
declaration, EDSL authors can designate these to become tokens.

This may be considered another example of inheriting host-language infras-
tructure. Then again, annotation system like Java’s are designed for adding such
meta information. It is a more elegant and restricted way to designate language
membership than the token-declaration interface of Chapter 3.

LISTING 4.1: @Stage annotation type declaration

1 @Documented
2 @Retention(RetentionPolicy.RUNTIME)
3 @Target({ ElementType.METHOD, ElementType.FIELD })
4 public @interface Stage {
5 Class<? extends Language<?>> language();
6 boolean isStrict() default false;
7 StaticInfo.Element[] staticInfoElements() default {};
8 }

An @Staged token is always associated with an explicit language, represented
by a Java class marked1 with the Language interface. This association is used for
language-boundary checks and indirection to IR processing. This corresponds to the
EmbeddedLanguage instances in the implicit-staging prototype. However, instead
of (object) instances, the static type of a class known at compile-time is used. This
means that a language must be present and named at the time tokens are declared
using @Stage, which simplifies documentation. The isStrict (immediate mate-
rialization) and staticInfoElements (specifying additional static information
to be retained) options will be revisited in more detail later.

From a user’s operational perspective, when they invoke an @Stage-annotated
method (or likewise, access such a field) the original Java behavior is ignored
and instead an abstract representation (of type Expression.Staged, ES) is con-
structed. As mentioned before, the framework accomplishes this by transforming
user programs accordingly prior to execution.

Composing complex terms within the same embedded language is trivially
understood: Argument terms simply become children of a newly constructed term

1No abstract methods are declared on the Language interface.

79

4. ALMOST FIRST-CLASS EMBEDDING

LISTING 4.2: Usage example

1 static void sink(Vec v0, Vec v1, Vec v2) { ⋯ }
2

3 static Vec example(int n, Vec a, Vec b, Vec c) {
4 a = a.plus(b);
5

6 if (n > 10) {
7 a = a.plus(a);
8 }
9 sink(a, b, a);

10

11 for (int i = 0; i < n; i++) {
12 c = c.times(5 + i);
13 }
14 return c;
15 }

node in a tree-like structure (actually a rooted graph) just like in manual deep em-
bedding. However, foreign terms undergo a prior conversion step: Host-language
ones are always externalized as input values and lifted (to an Expression.Value,
EV), and by default, terms of a different embedded language are materialized as
values and subsequently lifted as well.

To illustrate the effect of using @Staged language constructs, consider the
annotated vector EDSL presented in Figure 4.3, which omits the implementation
details of Listing 2.6 in Chapter 2, together with the usage example in Listing 4.2.
Note the shallow-embedding-like usage, which in the absence of the annotations (or
the framework altogether) would cause standard, immediate method invocation.

However, with the framework and the annotations in place, the example
method’s code is transformed prior to its execution. Listing 4.4 presents a simplified,
conceptual description of the transformations and the resulting IR construction that
will occur at run time. The type placeholder E stands for the IR data type. Other
notation used here is explained as follows:

• The symbol indicates the result (i.e. what actually happens at run time) of
having transformed the line above it (i.e. what the user wrote).

• Double brackets (J⋯K) here indicate materialization triggering. This notation
was chosen for its frequent use for providing meaning to syntax [65, 78].

LISTING 4.3: Annotated (i.e. @Staged) Vec methods

1 public final class Vec {
2 ⋯
3 @Stage(language = VecL.class)
4 public Vec plus(Vec v) { ⋯ /* ignored */ }
5

6 @Stage(language = VecL.class)
7 public Vec times(double s) { ⋯ /* ignored */ }
8 }

80

4.1. Support for Dynamically Staged EDSLs

LISTING 4.4: Transformation example

1 static void sink(Vec v0, Vec v1, Vec v2) { ⋯ }
2

3 static Vec example(int n, Vec a, Vec b, Vec c) {
4 a = a.plus(b);

 E ta = ES(VecL,Vec.plus, [EV (a),EV (b)]);
5

6 if (n > 10) {
7 a = a.plus(a);

 ta = ES(VecL,Vec.plus, [ta, ta]);
8 }
9 sink(a, b, a);

 sink(JtaK, b, JtaK);
10

 E tc = EV (c);
11 for (int i = 0; i < n; i++) {
12 c = c.times(5 + i);

 tc = ES(VecL,Vec.times, [tc,EV (5 + i)]);
13 }
14 return c;

 return JtcK;
15 }

Reading and writing of local variables transfers the staged-EDSL terms as is.
Hence, the resulting IR is a directed acyclic graph (DAG) of Expression instances,
whose structure follows from the bindings in the user program. This is different
from the implicit-staging prototype that essentially treated variable assignment
as external consumption or usage of a staged term. Also note that the current
framework was written from scratch and uses a different Expression-IR imple-
mentation despite sharing the same type name.

Arguably, especially in light of the existence of potential side effects in the
general-purpose host-language program, this kind of hidden dynamic staging
would seem like a recipe for disaster. The following aspects make it not so:

• The @Stage annotation and its configuration provide sufficient documenta-
tion so that even with only basic tool support (e.g. Javadoc, quick jumps to
definitions in an IDE, etc.) users can understand which parts of their programs
are subject to staging as part of an EDSL.

• Referencing terms of default-annotated tokens (within the same language) is
uniform, i.e. causes inlining. Different behavior might be desirable. Although
this is currently not implemented, conceptually there is no reason why a
future version could not offer more options within the @Stage annotation to
configure (and document) this behavior.

• The scope of staging or rather of staged-IR transfer is limited to the body of
the method (for now). The staged terms are locally carried, which means that
they either remain (externally) unused or get materialized when externally
used (e.g. by sink), i.e. upon attempting to escape the method’s local scope. I
will introduce globally carried terms in Section 4.1.4.

81

4. ALMOST FIRST-CLASS EMBEDDING

4.1.2 Materialization Triggers

For locally carried terms, materialization is triggered lazily when encountering
a language boundary. At the call sink(a, b, a) (line 9) in Listing 4.4, materi-
alization of the first occurrence of a’s corresponding term ta is triggered before
the second one. Similar to thunks in other on-demand evaluation schemes, in the
present framework EDSL-term instances are materialized only once. Subsequent
materializations yield cached result values.

By the nature of this scheme, materialization will by default only happen when a
term is actually consumed (and not at all if unused) EDSL-externally. This behavior
can be changed with the isStrict setting on an @Stage-annotation instance. Set-
ting it to true causes immediate materialization where the so-annotated language
construct occurs. Methods with void return type always show this behavior. Note
that there is no need for the framework (or an EDSL author) to specially support an
explicit triggering construct for locally carried terms. Any non-@Staged identity
function can fulfill this role, for instance:

public static <T> T materialize(T t) { return t; }

Above I illustrated the frequent but special case of host-language boundaries.
Boundaries between two different staged EDSLs, or rather between their terms,
need different handling. They occur when a term of an embedded language L1

takes an argument of an embedded language L2 that is not accepted (this is further
discussed in Section 4.1.5) at the given parameter position. By default, a term
accepts terms of its own language. Trivially staged, lifted values (EV) are always
accepted and for them materialization merely means unlifting, i.e. retrieving the
contained, original value.

LISTING 4.5: Dynamic boundary-decision example (L1 ≠ L2)

1 @Stage(language = L1)
2 public static int dec(int i) { return i - 1 }
3

4 @Stage(language = L2)
5 public static int inc(int i) { return i + 1; }
6

7 static void example(int i) {
8 if (i > 0) {
9 i = dec(i);

10 } else {
11 i = inc(i);
12 }
13

14 return inc(i);
15 }

In general, the language of a staged-EDSL-term argument cannot always be de-
termined statically. Consequently, the decision on boundary-based materialization
triggering is made dynamically. Listing 4.5 illustrates this on a simple, fictitious
example: There is no way of statically telling the language of the argument term in
line 14. If ti comes from line 9, it will be materialized and lifted, if it comes from

82

4.1. Support for Dynamically Staged EDSLs

line 11 it will just be incorporated normally. This decision will have to be made by
checking whether the argument term for inc in line 14 is a member of L2 or not.

4.1.3 From Expression DAGs to Values

Materialization involves intermediate processing that turns staged abstract syntax
into meaningful computation. In short, EDSL authors have to write a compiler2

similar to the one sketched in Figure 4.6. However, there is quite a bit of scaffolding
whose understanding is necessary for this code example to make sense.

LISTING 4.6: Trivial compiler skeleton

1 class VecLCompiler implements Expression.Visitor {
2 private final Binder binder;
3 private ObjectClosure<Vec> closure;
4

5 VecLCompiler(Environment.Binder binder) { this.binder = binder; }
6

7 public ObjectClosure<Vec> getClosure() { return closure; }
8

9 public void visit(MethodInvocation staged) {
10 staged.getArgument(0).accept(this);
11 ObjectClosure<Vec> a0 = closure;
12

13 switch (staged.getMember().getName()) {
14 case "plus": {
15 staged.getArgument(1).accept(this);
16 ObjectClosure<Vec> a1 = closure;
17

18 closure = env -> {
19 Vec v0 = a0.evaluate(env);
20 Vec v1 = a1.evaluate(env);
21 double[] ds = new double[v0.elements.length];
22

23 for (int i = 0; i < ds.length; i++) {
24 ds[i] = v0.elements[i] + v1.elements[i];
25 }
26

27 return new Vec(ds);
28 }
29

30 break;
31 }
32 case "times": ⋯
33 }
34 }
35 ⋯
36 public void visit(ObjectValue value) {
37 closure = value.bind(binder);
38 }
39 }

2Just like in the implicit-staging prototype.

83

4. ALMOST FIRST-CLASS EMBEDDING

Cached Processing. The first waypoint to materialization is the creation of a
closure object representing the EDSL program’s computation. Only its eventual
evaluation is to yield the result of materialization. The Closures of the tame-
staging framework correspond to the Callables of the implicit-staging prototype.

This indirection allows the framework to cache (or preprocess) the closures
associated with EDSL programs that only differ in their lifted, dynamic input values
(EV) but not their particular shape. The term “shape” here refers to a specific
composition of staged-EDSL constructs (ES). Consider the following term:

ES(VecL,times, [ES(VecL,plus, [EV (x),EV (y)]),EV (z)])

Its shape ranges over all possible value instantiations for x, y, and z. When the
materialization of a staged-EDSL program is triggered, first a cache is probed for an
existing mapping from an isomorphic expression DAG to a closure object: If present
the existing closure is reused, if absent the author-defined processing mechanism is
invoked.

The latter causes dispatch to a static method on the language (class) of the
expression DAG’s root node. It depends on the expected type of the materialized
value and follows a naming convention and type signatures as follows:

• ObjectClosure makeObjectClosure(Staged, Binder, boolean),
if the (return) type of the root node’s token is a reference.

• DoubleClosure makeDoubleClosure(Staged, Binder, boolean),
if the (return) type of the root node’ token is double.

• Similarly for the other primitive Java types.

If an author can exclude the case of some type ever being materialized in their
language there is no need to provide a processing method for it.

EDSL authors implement these methods as needed at their discretion. However,
they need to mind the fact that the results are cached: Processing ought only to de-
pend on a given expression DAG’s shape and not some external state. The supplied
boolean argument indicates whether the resulting closure will be permanently
cached (i.e. memoized). This will be the case when the shape of an EDSL program
is known statically. With this we see one way in which the framework subsumes
aspects implicit staging was also concerned with: Exploiting static knowledge to
reduce overhead.

Value-Access Indirection. To accomplish the separation of expression-DAG shape
and concrete instances, lifted-value nodes cannot be inspected for their actual con-
tents (without at the same time disabling caching) unless they are constants. Instead,
the supplied Binder instance is used to create value-access closures from lifted-
value nodes (see Listing 4.6, line 37).

Caching and reusing closures requires injecting the actual input-value instances
as arguments at materialization time. The methods (evaluate) of the closure
interfaces take a single Environment-typed argument housing the input values
found in the expression DAG to be materialized (cf. Section 3.4.3.2 of Chapter 3):

84

4.1. Support for Dynamically Staged EDSLs

double evaluate(Environment environment)
⋮

These environments are isomorphic in the same way cached expression graphs
are. For instance, an environment could be backed by an array of values with the
binder-generated value-access closures being mere indices. However, unlike for
the implicit-staging prototype, where such a backing was used, one now has to
account for the dynamic nature of the present framework: Extracting and flattening
all values every time is costly. I found that making the access closures simply
graph-walk to value nodes turns out to be a faster solution in most cases. With this
design the environment is simply housing the dynamically staged “input-value”
expression DAG. This is an implementation detail worthy of future investigation.

Example. Finally, the reader may revisit Listing 4.6, showing a part of a trivial
compiler for the vector EDSL of Listing 4.3 that does not implement optimizations.
Listing 4.7 shows the definition of the explicated vector EDSL.

LISTING 4.7: Language class (VecL)

1 class VecL implements Language<VecL> {
2 public static ObjectClosure makeObjectClosure(
3 Expression.Staged staged,
4 Environment.Binder binder,
5 boolean permCached) {
6 VecLCompiler compiler = new VecLCompiler(binder);
7 staged.accept(compiler);
8 return compiler.getClosure();
9 }

10 }

Note that while this shows translation using the visitor pattern, the framework
is not concerned with how traversal occurs in detail. For instance, I also created a
support package for implementations in Scala using pattern matching.

LISTING 4.8: Language class (VecL) for Scala compiler

1 class VecL implements Language<VecL> {
2 public static ObjectClosure makeObjectClosure(
3 Expression.Staged staged,
4 Environment.Binder binder,
5 boolean permCached) {
6 VecLScalaCompiler compiler = new VecLScalaCompiler(binder);
7 return (ObjectClosure) compiler.compile(staged);
8 }
9 }

Listing 4.9 shows a full Scala implementation of an optimizing compiler that
fuses additions and scalar multiplications (Listing 4.8 shows the adapted VecL
class). The @Supress annotation is used to prevent staging so that the shallow-
embedding plus and times methods can be reused in lines 18 and 25 respectively.
I will discuss this feature in more detail in Section 4.1.6.

85

4. ALMOST FIRST-CLASS EMBEDDING

LISTING 4.9: Optimizing compiler in Scala

1 class VecLScalaCompiler(implicit binder: Binder) {
2 case class PlusN(vecs: Array[ObjectClosure[Vec]])
3 extends ObjectClosure[Vec] {
4 override def evaluate(env: Environment): Vec = {
5 var v = vecs(0).evaluate(env)
6 val ds = util.Arrays.copyOf(v.elements, v.elements.length)
7 for (i <- 1 to vecs.length - 1) {
8 v = vecs(i).evaluate(env)
9 for (j <- 0 to ds.length - 1) { ds(j) = ds(j) + v.elements(j) }

10 }
11 new Vec(ds)
12 }
13 }
14 class Plus(left: ObjectClosure[Vec], right: ObjectClosure[Vec])
15 extends PlusN(Array(left, right)) {
16 @Suppress(languages = Array(classOf[VecL]))
17 override def evaluate(env: Environment) = {
18 left.evaluate(env).plus(right.evaluate(env))
19 }
20 }
21 case class Times(vec: ObjectClosure[Vec], s: DoubleClosure)
22 extends ObjectClosure[Vec] {
23 @Suppress(languages = Array(classOf[VecL]))
24 override def evaluate(env: Environment) = {
25 vec.evaluate(env).times(s.evaluate(env))
26 }
27 }
28

29 def compile[T <: Closure[_]](expression: Expression): T = {
30 expression match {
31 case MethodInvocation(CtMethod("plus"), _, List(leftE, rightE)) =>
32 (compile[ObjectClosure[Vec]](leftE),
33 compile[ObjectClosure[Vec]](rightE)) match {
34 case (PlusN(lVecs), PlusN(rVecs)) => PlusN(lVecs ++ rVecs)
35 case (PlusN(vecs), rightC) => PlusN(vecs :+ rightC)
36 case (leftC, PlusN(vecs)) => PlusN(leftC +: vecs)
37 case (leftC, rightC) => Plus(leftC, rightC)
38 }
39

40 case MethodInvocation(CtMethod("times"), _, List(vecE, sE)) =>
41 (compile[ObjectClosure[Vec]](vecE),
42 compile[DoubleClosure](sE)) match {
43 case (Times(vec, s), sC) => Times(vec, new DoubleClosure {
44 override def evaluate(env: Environment): Double = {
45 sC.evaluate(env) * s.evaluate(env)
46 }
47 })
48 case (vecC, sC) => Times(vecC, sC)
49 }
50

51 case MethodInvocation(_, _, List(e) => compile(e)
52 case ObjectValue(oC) => oC
53 case DoubleValue(dC) => dC
54 }
55 }.asInstanceOf[T]
56 }

86

4.1. Support for Dynamically Staged EDSLs

4.1.4 Global Carrying

The description until now still only covers hidden staging limited to the local scope
of a method’s body, i.e. local carrying. Not having to be confronted with explicit
staging and materialization can be good for users. Yet, sometimes a more obvious
and global style of staging as traditionally seen with deep embedding is in fact
desirable. For instance, this is arguably better suited for EDSLs that deal with
mutable input, since users have to decide precisely where to trigger EDSL-program
execution. Furthermore, in some embedded languages, not every fragment bears
meaning on its own. Local carrying is problematic for these cases since every single
term may hit a language boundary and cause its materialization.

Hence, it is desirable for a linguistic-abstraction feature for dynamically staged
EDSLs to also provide support for this style. In the following I will describe how a
small addition to the framework described so far accomplishes this by permitting
terms to be globally carried. Figure 4.10 shows global carrying in action using the
explicit, deeply embedded version of the vector DSL. The term in rE is carried
over to times2, which acts as a sort of “macro expansion” at run time. Leaving
example’s scope does not cause automatic materialization.

LISTING 4.10: Global carrying example

1 static VecE times2(VecE vE) { return vE.times(2.0); }
2

3 static Vec example(int n, Vec a, Vec b, Vec c) {
4 VecE rE = a.toVecE().plus(b);
5 Vec r = times2(rE).toVec();
6 if (n > 5) {
7 return c;
8 }
9 return r;

10 }

Recall that with traditional deep embedding EDSL authors define their own
types (like VecE) and data structures for representing abstract syntax. In the
present framework EDSL authors can instead simply declare a type extending the
GlobalCarrier class. An instance of a global carrier can have two meta states:

• An actual value of the data type as defined at the author’s discretion.

• Abstract syntax, i.e. it literally carries an expression DAG.

Hybrid states are possible but usually not recommended.
Defining an @Stage-annotated token with (return) type GlobalCarrier, or

preferably a subtype thereof, suffices to signal that the returned instance shall
carry the constructed term. The code in Listing 4.11 completely defines VecE and
adds relevant annotations. When an @Stage-annotated construct (or rather its
term construction) receives a carrier-typed argument this will first be checked for
carrying a staged term and if so move on to language-boundary checks. For a
foreign-language globally carried term its carrier will be lifted as a value instead of
contributing to the complex-term composition.

87

4. ALMOST FIRST-CLASS EMBEDDING

LISTING 4.11: VecE as a global carrier

1 public final class Vec {
2 ⋯
3 @Stage(language = VecEL.class)
4 public VecE toVecE() { ⋯ /* ignored */ }
5 }
6

7 public final class VecE extends GlobalCarrier {
8 @Stage(language = VecEL.class)
9 public VecE plus(VecE vE) { ⋯ /* ignored */ }

10

11 @Stage(language = VecEL.class)
12 public VecE times(double s) { ⋯ /* ignored */ }
13

14 @Stage(language = VecEL.class)
15 public Vec toVec() { ⋯ /* ignored */ }
16 }

Recall that with the default local carrying materialization is triggered implicitly
on demand. Globally carried terms do not exhibit this behavior. Instead, material-
ization is inducible in two ways:

• By using a strict (isStrict) EDSL token designated to be an explicit trigger
(as usual in traditional deep embedding).

• By transitioning to a locally carried token, which may lead to subsequent
implicit materialization.

Let us interpret Figure 4.10 with the latter behavior, i.e. toVec returns Vec, a
locally carried value. Since toVec is not strict there is only one point where materi-
alization could happen: At the return statement in line 9 if it is reached during
execution. Note that thanks to the way the methods are named and structured in
the EDSL, one could simply reuse the compiler of Figure 4.6.

FIGURE 4.2: Carrying-level transitioning

The local and global carrying scheme affords an interesting design opportunity:
If instead of VecEL.class we use VecL.class as language in the annotations,
we can intermix local carrying (i.e. methods on Vec) with global carrying, as shown
in Figure 4.2. Since there are no language boundaries besides the host-language one,
the composition will result in a term that can be handled by the the same compiler.
While this may seem contrived, a use case for such an arrangement may arise in
EDSLs where some tokens require explicit handling by users while others do not.

88

4.1. Support for Dynamically Staged EDSLs

4.1.5 Language-Boundary Customization

For the sake of modularity it is desirable to make EDSL syntax composable, i.e.
reusing the tokens of another language. This has not been a big focus for the tame-
staging framework. However, at the very least basic support for it requires a means
for changing the default boundary behavior of terms only accepting language
constructs of the same language.

To this end the framework provides the @Accept annotation, which is to be
placed on the individual parameters of @Staged constructs for which the default
(self-) acceptance behavior is to be overridden. Its only element (languages) is an
array of language classes that will be interpreted as the set of languages accepted at
the given parameter. Recall the example of Listing 4.5. We could annotate the inc
token to also accept L1 as shown in Listing 4.12 (line 2). This would mean that L2’s
compiler also needs to handle dec tokens.

LISTING 4.12: @Accepting

1 @Stage(language = L2)
2 public static int inc(@Accept(languages = { L1, L2 }) int i) { ⋯ }
3

4 @Stage(language = L2)
5 public static int inc(@Accept(languages = { L1 }) int i) { ⋯ }
6

7 @Stage(language = L2)
8 public static int inc(@Accept(languages = {}) int i) { ⋯ }

It is also possible to make inc not accept its own language (line 5) or not accept
any language at all (line 8), i.e. always force materialization of the argument. The
latter is especially useful for cutting off staging early: Imagine the familiar vector
DSL had a token that returns a double-typed value, e.g. to retrieve an element.
An author might deliberately not want to handle the case where this is fed into
times’s scalar argument.

Currently, it is not possible to denote acceptance of any language. There might
be use cases for it and this feature ought to be considered in future work. However,
for the time being it seems too welcoming to reliability and documentation issues.
For instance, an EDSL author might not want their tokens to be accepted by others.
This is possible and will be introduced shortly. For now, consider what would
happen if a token signals that it accepts all languages. In fact it would only mean to
accept “all languages that do not deny it”. Without this feature it is a lot easier to
clearly see exactly which languages are accepted where.

The system of languages and their boundaries (together with their customiza-
tions) may be viewed as a sort of tacked on, mixed dynamic and static type system:
If languages correspond to types then their tokens roughly correspond to values.
However, languages exist on a separate level, parallel to the traditional types.

4.1.6 Suppression of Staging Behavior

In most of the examples in this chapter the method bodies of @Staged EDSL tokens
were omitted. This was done because their implementation was not relevant (i.e.

89

4. ALMOST FIRST-CLASS EMBEDDING

ignored): Using such a token is not linked to its original implementation anymore.
As in implicit staging it is reinterpreted.

However, I found that there are use cases where EDSL users might want to
switch between a staged and a non-staged interpretation, e.g. for benchmarking or
reusing existing implementations as was done in Listing 4.9. Of course, the EDSL
author has to account for this case, i.e. implement the method bodies. Staging can
be suppressed with the @Suppress annotation. Like @Accept it takes an array of
language classes for which suppression should be effective. It can be placed both
on methods as well as types and is effective in their scopes (but not inherited).

Without the suppression of staging in Listing 4.9, the implementing method
bodies would yet again be transformed, in turn leading to staging yet again. The
original implementation would never be reached.

4.1.7 Visibility Control

An EDSL author might not want users to suppress staging of their language. Like-
wise, allowing just anyone (i.e. other authors) to add tokens to an existing language
with the @Stage annotation is dangerous. After all, the author of the EDSL should
not by default be forced to consider additional language constructs (added after the
fact) when building their compiler. Similar issues apply to @Accept as mentioned
in Section 4.1.5.

LISTING 4.13: @Configure annotation type declaration

1 @Documented
2 @Retention(RetentionPolicy.RUNTIME)
3 @Target({ ElementType.TYPE })
4 public @interface Configure {
5 boolean hasRestrictedAcceptAccessibility() default false;
6 boolean hasRestrictedStageAccessibility() default false;
7 boolean hasRestrictedSuppressAccessibility() default false;
8 }

A simple solution is to follow the EDSL tradition of inheriting host-language
infrastructure by relying on Java’s visibility control: Setting the language class non-
public solves the issue. However, sometimes this might be too drastic, for instance
when suppression should be allowed “publicly” while prohibiting the usage of the
other annotations. To this end, yet another annotation, called @Configure (see
Listing 4.13), was added, which may be placed on a language class. Using this
an EDSL author can individually set whether its access is restricted for @Stage,
@Accept, or @Suppress. This configuration only affects annotation usage outside
of the Java package that contains the @Configured language class.

4.1.8 Static @Stage Inheritance

The framework’s interpretation of a construct as either staged or not is static, i.e.
early bound. This simplifies implementation and arguably increases predictability
and consistency for EDSL users: They can statically determine whether staging will
occur and which language a token belongs to.

90

4.1. Support for Dynamically Staged EDSLs

Inheritance of @Staged methods is permitted. For the sake of consistency it
behaves similar to visibility-inheritance rules in Java: Just like a method’s visibility
cannot be reduced by inheritance, so can an @Staged construct not become non-
staged. This applies to fields as well for consistency. However, currently it is
allowed to change languages or @Accept options as it might prove useful for
specialization on a lower level of a class hierarchy. Future investigations ought to
determine whether reliability concerns should outweigh this freedom. It might also
be worthwhile to consider providing a setting on @Stage for limiting inheritance.

Let us look at an example that showcases how @Stage inheritance can be used
to provide optimizations on a family of concrete constructs. Consider Haskell’s
Functor type class defined as follows [66, Chapter 6]:

class Functor f where fmap :: (a -> b) -> f a -> f b

Its instances are all to obey the following identities:

fmap id = id
fmap (f . g) = (fmap f) . (fmap g)

These open up the door to optimizing nested applications of fmap, for instance by
rewrite rules (cf. Section 2.2.2 in Chapter 2).

LISTING 4.14: Abstract Functor and implementation example

1 public abstract class Functor<A> {
2 @Stage(language = FunctorL.class)
3 public abstract Functor fmap(
4 @Accept(languages = {}) Function<? super A, ? extends B> function);
5 }
6

7 public class FunctorList<T> extends Functor<T> {
8 private final ArrayList<T> list;
9

10 private FunctorList(ArrayList<T> list) { this.list = list; }
11

12 public FunctorList(List<T> list) { this.list = new ArrayList<>(list); }
13

14 public <U> FunctorList fmap(
15 Function<? super T, ? extends U> function) {
16 return new FunctorList<>(
17 list.parallelStream()
18 .map(function)
19 .collect(Collectors.toCollection(ArrayList::new))
20);
21 }
22 }

In Java we could emulate this type class with an abstract class as shown in
Listing 4.14, which also shows an example class (FunctorList) extending it.
Using the present framework it is possible to implement (dynamic) rewritings for
all subclasses of Functor. The crucial idea is that the fmap method is associated
with a staged-EDSL class, here named FunctorL.

91

4. ALMOST FIRST-CLASS EMBEDDING

A compiler for FunctorL can be written that for all Functor implementations
(i.e. subclasses) turns a method chain of fmap calls into a closure that performs
a single fmap call with the composition of all the argument functions. Note that
we have to make use of @Suppress(languages = FunctorL.class) in that
compiler implementation (i.e. for the generated closure) because we need to be able
to actually use the original, late-bound implementation of fmap.

4.1.9 Static Information

The framework automatically exploits static knowledge and provides some of it to
EDSL authors, e.g. constant input values. Retaining additional information from
the static context in which an EDSL term was constructed can be very useful for
debugging, error reporting, and optimization.

To capture some of this information, the staticInfoElements value of the
@Stage annotation may be set by EDSL authors. Currently, there only is support
for collecting two types of information:

• StaticInfo.Element.ORIGIN, the origin, i.e. method, line number, and
bytecode position of a constructed term.3

• StaticInfo.Element.INFERRED_TYPES, the inferred types of a token’s
arguments and (return) type.

The actual information can be retrieved from Expression.Staged (subtype)
instances as Optional<StaticInfo> values.

One might wonder why the framework does not simply collect all available
information all the time. One reason is that obviously it costs memory and time to
add additional information to every constructed term. A more pressing reason is
that static information needs to be considered part of an expression DAG’s shape.
After all, an EDSL author can inspect it and thus it may affect the cached result
of expression-DAG processing. Now, if every EDSL term were to contain static
information, the amount of redundant processing would be bound to increase since
fewer expression graphs would end up being isomorphic to each other.

For an example of using staticInfoElements, recall the Mini EDSL of Sec-
tion 2.1.2 and Section 2.3.3 in Chapter 2. Listing 4.15 shows the full definition of
its tokens using the tame-staging framework. The language class MiniL is simple
and omitted here together with its compiler. What is important here is that before
compilation we can perform a simple definite-assignment analysis directly on the
abstract syntax. Its important bits are shown in Listing 4.16. It is very crude and
simply throws a run-time exception when a non-assigned variable is read.

Alas, when the faulty factorial program in Listing 4.17 is run, the analyzer
will complain with the error message: Variable not initialized near:
ORIGIN(⋯.factorial(int), pos, start + 5), where pos stands for bytecode
position and start denotes the first line of the method. This could be made more
accurate if more tokens were set to collect static information.

3It serves a similar purpose as Scala-Virtualized’s SourceContext [89].

92

4.1. Support for Dynamically Staged EDSLs

LISTING 4.15: Mini tokens

1 public final class Mini { Mini() {}
2 public abstract static class BoolE extends GlobalCarrier { BoolE() {} }
3 public abstract static class BoolV extends BoolE { BoolV() {} }
4 public abstract static class IntE extends GlobalCarrier { IntE() {} }
5 public abstract static class IntV extends IntE { IntV() {} }
6 public abstract static class Stmt extends GlobalCarrier { Stmt() {}
7 @Stage(language = MiniL.class, staticInfoElements = ORIGIN)
8 public Stmt then(Stmt v) { ⋯ }
9 @Stage(language = MiniL.class, isStrict = true,

10 staticInfoElements = ORIGIN)
11 public int intRun(IntV e) { ⋯ }
12 @Stage(language = MiniL.class, isStrict = true,
13 staticInfoElements = Element.ORIGIN)
14 public boolean boolRun(BoolV e) { ⋯ }
15 }
16

17 @Stage(language = MiniL.class)
18 public static IntE add(IntE a, IntE b) { ⋯ }
19 @Stage(language = MiniL.class)
20 public static IntE mul(IntE a, IntE b) { ⋯ }
21 @Stage(language = MiniL.class)
22 public static BoolE eq(IntE a, IntE b) { ⋯ }
23 @Stage(language = MiniL.class)
24 public static BoolE leq(IntE a, IntE b) { ⋯ }
25 @Stage(language = MiniL.class)
26 public static BoolE and(BoolE a, BoolE b) { ⋯ }
27 @Stage(language = MiniL.class)
28 public static BoolE or(BoolE a, BoolE b) { ⋯ }
29

30 @Stage(language = MiniL.class)
31 public static IntE neg(IntE a) { ⋯ }
32 @Stage(language = MiniL.class)
33 public static BoolE not(BoolE a) { ⋯ }
34

35 @Stage(language = MiniL.class, staticInfoElements = ORIGIN)
36 public static IntV intVar(String name) { ⋯ }
37 @Stage(language = MiniL.class, staticInfoElements = ORIGIN)
38 public static BoolV boolVar(String name) { ⋯ }
39

40 @Stage(language = MiniL.class)
41 public static Stmt intAssign(IntV v, IntE e) { ⋯ }
42 @Stage(language = MiniL.class)
43 public static Stmt boolAssign(BoolV v, BoolE e) { ⋯ }
44

45 @Stage(language = MiniL.class)
46 public static IntE intLit(@Accept(languages = {}) int a) { ⋯ }
47 @Stage(language = MiniL.class)
48 public static BoolE boolLit(@Accept(languages = {}) boolean a) { ⋯ }
49

50 @Stage(language = MiniL.class)
51 public static Stmt whileDo(BoolE test, Stmt s) { ⋯ }
52 }

93

4. ALMOST FIRST-CLASS EMBEDDING

LISTING 4.16: Mini analyzer

1 class MiniLAnalyzer implements Expression.Visitor {
2 private final Environment.Binder binder;
3 private final HashSet<Expression> initVars = new HashSet<>();
4 private StaticInfo lastStaticInfo;
5

6 MiniLAnalyzer(Environment.Binder binder) { this.binder = binder; }
7

8 public void visit(Expression.MethodInvocation staged) {
9 CtMethod m = staged.getMember();

10 switch (m.getName()) {
11 case "add": case "mul": case "eq": case "leq":
12 case "and": case "or": {
13 staged.getArgument(0).accept(this);
14 staged.getArgument(1).accept(this);
15 break;
16 }
17 case "neg": case "not": {
18 staged.getArgument(0).accept(this);
19 break;
20 }
21 case "intVar": case "boolVar": {
22 if (!initVars.contains(staged)) {
23 Expression.ObjectValue<String> name =
24 (Expression.ObjectValue<String>) staged.getArgument(0);
25 throw new RuntimeException("Variable not initialized near: "
26 + lastStaticInfo.getOrigin().get());
27 }
28 break;
29 }
30 case "intLit": case "boolLit": {
31 staged.getArgument(0).accept(this);
32 break;
33 }
34 case "intAssign": case "boolAssign": {
35 staged.getArgument(1).accept(this);
36 initVars.add(staged.getArgument(0));
37 break;
38 }
39 case "whileDo": {
40 HashSet<Expression> oldInitVars = new HashSet<>(initVars);
41 staged.getArgument(0).accept(this);
42 staged.getArgument(1).accept(this);
43 initVars.retainAll(oldInitVars);
44 break;
45 }
46 case "then": case "intRun": case "boolRun": {
47 staged.getArgument(0).accept(this);
48 lastStaticInfo = staged.getStaticInfo().get();
49 staged.getArgument(1).accept(this);
50 break;
51 }
52 }
53 }
54 ⋯
55 }

94

4.2. Behind the Scenes

LISTING 4.17: Faulty Mini factorial

1 static int factorial(int x) {
2 IntV n = intVar("n");
3 IntV a = intVar("a");
4

5 return intAssign(n, intLit(x))
6 .then(whileDo(leq(intLit(1), n),
7 intAssign(a, mul(a, n))
8 .then(intAssign(n, add(n, intLit(-1)))))
9).intRun(a);

10 }

4.2 Behind the Scenes

As introduced in Section 4.1, behind the scenes of the tame-staging framework there
is an on-the-fly code-transformation mechanism inspired by implicit staging and
its simple proof-of-concept implementation. Again, through the use of load-time
metaprogramming and by reusing host-language infrastructure, now including
annotations, EDSL-abstraction becomes an almost first-class feature.

Ideally, it would be supported natively by the compiler and runtime (e.g. JVM) as
an actual first-class feature. However, an entirely new, heavyweight language just for
exploring and prototyping this framework is is not pragmatic due to development
and maintenance concerns as well as the initial hurdle (for users) of switching to a
novel language implementation.

4.2.1 The Case for Load Time

The advantages of using load time have already been discussed in Section 3.3 of
Chapter 3. Let us here make the case for it again with special regard to the issues at
hand in the tame-staging framework’s implementation:

• The framework implementation needs to hide certain methods during compile
time but establish that they are public after user-code transformation (i.e. when
the transformed code is executed).

• Classes need to be adapted without leaking this nature to source files. Per-
forming these adaptations and transformations on the fly keeps source-level
tampering (by EDSL users and authors) at bay.

• By transforming bytecode as it is loaded, processing can be delayed as long
as possible. This fits very nicely into the rest of the design rationale, e.g.
on-demand materialization of locally carried terms.

4.2.2 System Overview

When a new class is loaded into the system its methods are quickly and superficially
scanned for containing usages of @Staged constructs. Only if present the system
performs several proper static data-flow analyses on bytecode in the following
order:

95

4. ALMOST FIRST-CLASS EMBEDDING

1. Type-Inference Analysis: Yields type approximations.

2. Value-Flow Analysis: Relates the creations and consumptions of values.

3. Constant Analysis: Marks values as constant (or not).

4. Stage Analysis: Builds a stage graph (see Section 4.2.4) from @Staged tokens.

5. Weave Analysis: Determines necessary directives for bytecode adaptations.

The first three analyses are independent of language-embedding concerns but relied
on by the latter two. All of them are iterative forward-flow data-flow analyses
based on the same basic principals as the one used in the implicit-staging prototype.
However, here phases are separated more clearly instead of having everything
combined into one process. Moreover, they are largely written from scratch using a
slightly different traversal order.

Everything is finalized with a weaving step that performs the necessary trans-
formations before the class is handed to the class loader. The agent that does all that
is contained in a JAR file to be used with the -javaagent:⋯ JVM option.

4.2.3 Constant Analysis

Constant analysis is interesting as it can actively exploits the load-time aspect of
the implementation: Accesses to final static fields of classes are considered
constant (at compile time we do not always know yet whether a field access will
be constant or not), and if the classes in question have already been loaded and
initialized, the available actual values can be used to improve the constant analysis.

LISTING 4.18: Constant analysis

1 public class A {
2 public static int f = 3;
3

4 public static void main(String[] args) {
5 out.println(B.f);
6 C.m(args.length);
7 }
8 }
9

10 public class B {
11 public static final int f = A.f + 2;
12 }
13

14 public class C {
15 public static void m(int i) {
16 int x = 5;
17 if (i > 2) {
18 x = B.f;
19 }
20 out.println(x);
21 }
22 }

96

4.2. Behind the Scenes

Let us look at the example in Listing 4.18 with method A.main as the program’s
entry point. By the time class C will be loaded by the JVM, class B will have been
initialized and its static field B.f constantly set to 5. For the sake of argument
assume that the constant analysis is run on method C.m. It could detect that at line
20 where x is consumed, its value will be 5. Of course this is only the case here
but might change depending on the situation at load time. This is why at compile
time this analysis is not possible. For instance, due to dynamic linking there is no
guarantee that all classes use the same version as where seen during compilation.

Note that this analysis may become problematic in a setting where classes can
be reloaded dynamically. Supporting this would require invalidation of previous
analyses and transformations and subsequent recursive reloading. Run-time re-
flection may also affect this analysis negatively. It might be necessary to limit this
analysis or make it configurable in the future. In case of a native language feature,
the concerns above could be addressed on the VM level.

4.2.4 The Stage Graph

Together mainly with the results of value-flow analysis and annotation lookup, the
stage analysis yields a graph that represents both the data and control flow between
the EDSL tokens contained in a method and also external value generations (or
sources) and consumptions (or uses).

FIGURE 4.3: Stage graph for Figure 4.2

Figure 4.3 shows an example graph for the code in Listing 4.2 of Section 4.1.1.
Rounded rectangles represent EDSL terms, triangles represent their host-language
uses, and circles represent host-language input. Dashed lines represent control
flow, solid ones represent data flow. This graph can be used to analyze interactions
among only those primitives relevant for the contained staged programs (with
control-flow dependent shapes) and ignore everything else that goes on externally.

For instance, one analysis on the stage graph determines which parts will
never take different shapes and can thus be permanently cached (or potentially
preprocessed). Simplified, these are the terms stemming from constructs that have
no dynamic dependencies and are strict or at least used once externally. In the
graph of Figure 4.3 this applies to the plus nodes but not the times one.

Note that this comes close to a rich (static) IR as envisioned in Section 3.2.2
of Chapter 3 though it is only used framework-internally. It is still too crude and
does not isolate separate EDSLs, which is only achieved by the framework’s further
processing. The actual graph contains more detailed information on the nodes than
the simplified depiction above.

97

4. ALMOST FIRST-CLASS EMBEDDING

4.2.5 Token-Representation Generation

Every @Staged token is represented by its own class that is generated on the
fly before weaving. Figure 4.4 shows the Expression hierarchy in which token
representations are made to extend one of the three Expression.Staged classes.4

FIGURE 4.4: Expression hierarchy

Token-representation-specific code for materialization contains the logic for
cache lookup, environment and binder creation, and dispatch to the processing
methods on the EDSL’s class representation (e.g. VecL.makeObjectClosure).
Additionally, a factory method is generated that performs checked incorporation of
its arguments. This includes:

• Unloading of expression DAGs from GlobalCarrier and LocalCarrier
instances. The latter is mainly used internally to locally carry reference-typed
terms, but can also be used by authors like GlobalCarrier.

• Enforcing language boundaries. The accepted languages per argument are
statically known and stored as static fields on the token-representation class.

• Extracting raw versions of conversion-wrapped expression roots. This is
necessary because sometimes, in order to maintain soundness externally,
terms may be wrapped in internal-use-only conversion expressions.

Without this code generation one would need to provide additional informa-
tion for every IR-node instantiation (i.e. factory-method call site) and use many
conditionals or rely on run-time reflection.

4There is no (visible) conversion expression like the implicit-staging prototype had. In the current
implementation downcasts force materialization while upcasts, boxing, and unboxing have no effect.

98

4.2. Behind the Scenes

4.2.6 Weave Analysis and Weaving

The weaving step entails injecting bytecode for lifting, materialization, term (i.e.
token-representation) construction, and carrier instantiation and loading. Here
again, working on the bytecode level is beneficial as it is much less restrictive than
source code. Yet, for good reasons, bytecode is still type-checked and restrictive
enough that adjustments are necessary: For instance, suppose one has determined
that a value, originally double-typed, will have been lifted at a certain program
point. Then all instructions working on that value need to be changed into ones
suitable for reference types. The following shows a similar situation and weaving
result for the code in Listing 4.5:

0 : iload 0 0 : iload 0
1 : ifle 6 1 : ifle 7
2 : iload 0 2 : iload 0

 3 : invokestatic liftint
3 : invokestatic dec 4 : invokestatic factorydec
4 : istore 0 5 : astore 0
5 : goto 9 6 : goto 11
6 : iload 0 7 : iload 0

 8 : invokestatic liftint
7 : invokestatic inc 9 : invokestatic factoryinc
8 : istore 0 10 : astore 0
9 : iload 0 11 : aload 0
10 : invokestatic inc 12 : invokestatic factoryinc

 13 : invokestatic materint
11 : ireturn 14 : ireturn

Similar changes have to be performed all over to satisfy the JVM’s bytecode
verifier, e.g. value lifting before control-flow merges as in line 10 of Listing 4.4. The
main task of the prior weave analysis is to determine where these adaptations are
needed and direct the weaving pass accordingly.

The implementations of the analysis and weaving itself are somewhat involved.
After all, there are more aspects in need of handling as for instance compared with
the implicit-staging prototype’s unstaging step. However, the exact details and
edge cases are not particularly interesting here and beyond the scope of this thesis’s
discussions.

4.2.7 Run-Time Support

The framework’s run-time support consists mainly of a collection of static methods
in a hidden, i.e. non-public, class called Dispatcher, which is made public only at
the start of the Java agent.

Carrier subclasses are modified in such a way that only the internals of the frame-
work implementation can construct “empty” instances to carry abstract syntax. This
is ensured by adding a new constructor (on the fly) accepting a special parameter
type that itself is generated at load time. Carriers contain a payload field of type

99

4. ALMOST FIRST-CLASS EMBEDDING

Expression that is written (loaded) and read (unloaded) using hidden methods
in the dispatcher class.

The dispatcher class also contains methods to persist data between the time
of transforming (the methods in) a class and its actual initialization. It is used to
temporarily store and retrieve static information (e.g. line numbers etc.) to be added
to expression-DAG nodes in client code without relying on run-time reflection (and
causing potential class-loading issues). During transformation of a method this
static information is stored using a persistence method which returns an integer ID.
Static fields are then added to the declaring class of the method that is transformed
together with field-initialization code that retrieves the data from the persistent
storage (and frees its alloted spot) using the previously generated ID.

Permanent caching works by using static (closure-holder) fields on the declaring
class of a woven method. Their contents are provided to token-representations
instances when they are created. For default, non-permanent caching a size-limiting
cache implementation (provided by Guava [5]) is used.

4.3 Examples

Tame staging was introduced with several small code examples for the sake of
simple illustration. In this section I will show slightly more meaningful examples.
However, keep in mind that these are still specifically constructed with the frame-
work in mind. Considering even larger examples would be of interest. However,
the goal of the present work is not to provide functionality for a specific EDSL but
for language embedding in general. As such, no single example alone, big or small,
would be able to convince of its usefulness.

4.3.1 Centroid Calculation (Vector EDSL)

Consider a collection of high-dimensional, immutable weighted vectors (see Listing
4.19), or a point cloud, for which we want to determine its centroid. This is a simple
calculation in which all the weighted vectors are added and divided by their total
number. Listing 4.20 shows an implementation of this as a method taking a variable
amount of weighted vectors.

LISTING 4.19: Weighted vector (temporary container)

1 public final static class WeightedVec {
2 private final Vec vec;
3 private final double weight;
4

5 public WeightedVec(Vec vec, double weight) {
6 this.vec = vec;
7 this.weight = weight;
8 }
9

10 public Vec getVec() { return vec; }
11 public double getWeight() { return weight; }
12 }

100

4.3. Examples

LISTING 4.20: Centroid-calculation method

1 public static Vec centroid(WeightedVec... weightedVecs) {
2 if (weightedVecs.length == 0) {
3 throw new IllegalArgumentException();
4 }
5

6 double w = weightedVecs[0].getWeight();
7 Vec v = weightedVecs[0].getVec();
8

9 if (w != 1.0) {
10 v.times(w);
11 }
12

13 for (int i = 1; i < weightedVecs.length; i++) {
14 w = weightedVecs[i].getWeight();
15

16 if (w != 0.0) {
17 if (w == 1.0) {
18 v = v.plus(weightedVecs[i].getVec());
19 } else {
20 v = v.plus(weightedVecs[i].getVec().times(w));
21 }
22 }
23 }
24

25 if (weightedVecs.length > 1) {
26 return v.times(1.0 / (double) weightedVecs.length);
27 } else {
28 return v;
29 }
30 }

The execution time was benchmarked on a 3 GHz Intel Core i7 machine with
8 GB of RAM with JRE 8 (Java HotSpotTM 64-Bit Server VM) for 20 randomly
generated arrays of weighted vectors of size 100,000. Warm-up and measurement
were performed in a 1,000 iterations loop, respectively, where one of the 20 weighted-
vector arrays was chosen in a cyclic fashion.

Figure 4.5 shows the results when using shallow embedding (S), tame-staging
local carrying (L), manual deep embedding (D), and tame-staging global carrying
(G). The latter two were run on a slightly adapted version of the code using VecE
instead of Vec. The optimizations implemented by all staged-EDSL (i.e. excluding
shallow embedding) follow the ones shown in Listing 4.9. For each version ten
measurements were collected and aggregated.

It is no surprise that the results show shorter execution times for the staged,
optimized versions as compared to the shallow embedding. For smaller amounts
of data (i.e. vector dimensions) this might not hold, as discussed in Section 3.5.2 of
Chapter 3. Comparing the averaged results, both L and G were about 36% faster
than S. They were also marginally (0.2%) faster than D, however this is unlikely to
be significant. At least in this benchmark the framework-assisted embeddings were
not slower than the manual ones.

101

4. ALMOST FIRST-CLASS EMBEDDING

FIGURE 4.5: Centroid-calculation benchmark results

In all staged versions materialization is delayed until exiting the method body.
Unfortunately this is not without problems. If the list of weighted vectors is very
large, the reified programs (i.e. expression DAGs) will also be very large. In fact,
they might become so large that isomorphism checks (let alone author-defined
processing) fail due to limited call-stack size when deeply traversing the constructed
programs.

There is no easy way out. One could try to impose a size limit and, for the
locally carried case, automatically trigger materialization. This has bad effects
on uniformness, since potential points of materialization become less predictable.
Allowing this through an optional setting on tokens might be a good compromise
in the future. Alternatively, users who anticipate the creation of large programs
can manually trigger materialization with an identity function, which however is
detrimental to seamlessness.

4.3.2 Radar (Region EDSL)

The region EDSL introduced in Section 2.2.6.2 of Chapter 2 can be defined using the
tame-staging framework and its @Stage annotation as shown in Listing 4.21. The
(delayed-) shallow-embedding implementations are omitted for the sake of brevity
and avoiding redundancy. They can be easily derived from the earlier descriptions.

For this implementation, global carrying is used together with a hybrid-state
carrier. While this is usually not recommended it can sometimes be helpful: The
core EDSL here is defined without an @Staged token for region-membership check-
ing. Instead, the materialization can only be triggered by Region.asFunction.
The Region.isInside method is an auxiliary EDSL construct, which only mate-
rializes “itself”, i.e. the carried abstract syntax, if necessary, before performing the
region-membership check.

The fact that it is not annotated can be seen by EDSL users to whom it commu-
nicates standard method behavior, requiring reading the author’s documentation.

102

4.3. Examples

LISTING 4.21: @Staged region EDSL

1 public final class Region extends GlobalCarrier {
2 private BiFunction<Float, Float, Boolean> function;
3

4 private Region(BiFunction<Float, Float, Boolean> function) {
5 this.function = function;
6 }
7

8 @Stage(language = RegionL.class)
9 public static Region empty() { ⋯ }

10 @Stage(language = RegionL.class)
11 public static Region circle() { ⋯ }
12 @Stage(language = RegionL.class)
13 public static Region square() { ⋯ }
14

15 @Stage(language = RegionL.class)
16 public static Region scale(Region region, float scaleX,
17 float scaleY) { ⋯ }
18 @Stage(language = RegionL.class)
19 public static Region translate(Region region, float transX,
20 float transY) { ⋯ }
21

22 @Stage(language = RegionL.class)
23 public static Region outside(Region region) { ⋯ }
24 @Stage(language = RegionL.class)
25 public static Region intersect(Region regionA, Region regionB) { ⋯ }
26 @Stage(language = RegionL.class)
27 public static Region union(Region regionA, Region regionB) { ⋯ }
28

29 @Stage(language = RegionL.class, isStrict = true)
30 public BiFunction<Float, Float, Boolean> asFunction() { ⋯ }
31

32 // Not annotated!
33 public boolean isInside(float x, float y) {
34 if (function == null) {
35 function = this.asFunction();
36 }
37

38 return function.apply(x, y);
39 }
40 }

On the other hand, the annotated tokens have a clearly defined behavior, while of
course the result of materialization depends on the EDSL author’s processing.

The compiler for this language is not shown here. As an obvious, simple
optimization it detects redundant unions and intersections and uses constant in-
formation where available. Furthermore, instead of creating a composition of
Closure instances, it actually generates Java source code that is compiled using
Javassist’s inbuilt compilation feature [14], i.e. it avoids interpretation overhead like
the MetaOCaml implementation in Section 2.3.1.1.

The original use case for this EDSL as described by Carlson et al. [27] was
sensing and tracking real-world objects. Let us explore this again here by defining
a very simple system that checks a defined set of regions for contained objects

103

4. ALMOST FIRST-CLASS EMBEDDING

LISTING 4.22: Simulated “radar”

1 public class Radar {
2 private final List<NamedRegion> namedRegions;
3 private final List<TrackedObject> trackedObjects;
4

5 public Radar(List<NamedRegion> namedRegions,
6 List<TrackedObject> trackedObjects) {
7 this.namedRegions = namedRegions;
8 this.trackedObjects = trackedObjects;
9 }

10

11 public List<TrackingData> track(long duration, int width, int height) {
12 List<TrackingData> res = new LinkedList<>();
13 Random r = new Random(42);
14

15 Region combined = empty();
16 for (NamedRegion n : namedRegions) {
17 combined = combined.union(n.getRegion());
18 }
19

20 long time = 0;
21 while (time < duration) {
22 for (TrackedObject t : trackedObjects) {
23 if (r.nextBoolean()) {
24 t.setX(r.nextInt(width) - width / 2);
25 t.setY(r.nextInt(height) - height / 2);
26 }
27

28 if (combined.isInside(t.getX(), t.getY())) {
29 for (NamedRegion n : namedRegions) {
30 if (n.getRegion().isInside(t.getX(), t.getY())) {
31 res.add(new TrackingData(time, n.getName(), t.getId()));
32 }
33 }
34 }
35 }
36

37 time += 10;
38 }
39

40 return res;
41 }
42 }

and logs this information. Listing 4.22 shows its implementation, omitting the
implementations of NamedRegion, TrackedObject, and TrackingData. The
sensing and tracking functionality is only simulated by making a random decision
to update a tracked objects coordinates (randomly) and by a simple, incremental
progression of time up until a time limit is reached. The collected tracking data is
returned as a list.

This implementation was also benchmarked. Listing 4.23 excerpts the kind of
named regions used for the benchmark. In total there are 14 regions, outlining
(fictitious) zones and structures at a small civilian airport. Figure 4.6 visualizes all

104

4.3. Examples

LISTING 4.23: Named regions (excerpt)

1 NamedRegion r1 = new NamedRegion("Airfield A",
2 translate(scale(square(), 60.0f, 4.0f), -20.0f, 60.0f)
3);
4

5 NamedRegion r2 = new NamedRegion("Airfield A Danger Zone",
6 translate(
7 intersect(
8 outside(scale(square(), 64.0f, 6.0f)),
9 scale(square(), 80.0f, 20.0f)

10),
11 -20.0f, 60.0f
12)
13);
14

15 NamedRegion r3 = new NamedRegion("Airfield A Inner Proximity Zone",
16 translate(annulus(64.0f, 90.0f), -20.0f, 60.0f)
17);
18 ⋯
19 NamedRegion r13 = new NamedRegion("Hangar E",
20 translate(scale(square(), 9.0f, 6.0f), -20.0f, -220.0f)
21);
22

23 NamedRegion r14 = new NamedRegion("Area Proximity Zone",
24 translate(annulus(300.0f, 400.0f), 80.0f, -50.0f)
25);

FIGURE 4.6: Named-regions visualization

105

4. ALMOST FIRST-CLASS EMBEDDING

the subject regions combined in a single grid. The definitions also contain calls to
a yet undefined method called annulus. Due to global carrying, like times2 in
Section 4.1.4, this method can be defined as shown in Listing 4.24. In the work by
Carlson et al. [27] this is used as an example for a derived region.

LISTING 4.24: Custom expansion (derived region)

1 public static Region annulus(float innerRadius, float outerRadius) {
2 return intersect(
3 outside(
4 circle(innerRadius)
5),
6 circle(outerRadius)
7);
8 }

For the benchmark, a Radar instance was created with the list of named re-
gions and 100,000 randomly generated objects to be tracked with random positions.
Tracking was done for 1,000 simulated time units. Only a delayed shallow embed-
ding (S) and the annotated, tame-staging implementation (A) were compared, with
warm-up (SW , AW) and cold (SC , AC), where in the former case a single tracking
pass was done before the measured one.

FIGURE 4.7: Radar benchmark results

Figure 4.7 shows the aggregated results of ten runs per version.5 Removing
the overhead of function application (i.e. “interpretation” in the context of delayed
shallow embedding) by compilation had the desired (and not unexpected) result.
The annotated version was 60% faster than the shallowly embedded one when
comparing the warmed-up benchmark results, and 47.3% faster in the cold-startup
benchmark.

5The experimental hardware and software setup remains unchanged from that of the other
experiments in this section.

106

4.3. Examples

Note that similar results can surely be achieved with manual deep embedding.
However, there will not be any guarantees for staging behavior, no constant input
can be detected and used, and redundant processing is not automatically avoided.
Moreover, the compiler for RegionL was implemented as a simple traversal and
code emission from the auto-generated IR. With manual deep embedding, EDSL
authors would need to define their own IR data types and correctly implement IR
construction in the EDSL tokens.

4.3.3 Connections (ImmutableList-Processing EDSL)

For the final example let us revisit the scenario and EDSL for processing immutable
lists presented in Section 1.1 of Chapter 1. Listing 4.25 defines the syntax of a locally
carried (hiddenly staged) EDSL with tokens map and filter, which directly work
on Guava’s ImmutableList data type.

LISTING 4.25: ImmList definition

1 public final class ImmList { private ImmList() { }
2 @Stage(language = ImmListL.class)
3 public static <F, T> ImmutableList<T> map(
4 ImmutableList<F> list,
5 @Accept(languages = {}) Function<? super F, T> function) {
6 ImmutableList.Builder<T> b = ImmutableList.builder();
7 for (F f : list) { b.add(function.apply(f)); }
8 return b.build();
9 }

10 @Stage(language = ImmListL.class)
11 public static <T> ImmutableList<T> filter(
12 ImmutableList<T> list,
13 @Accept(languages = {}) Predicate<? super T> predicate) {
14 ImmutableList.Builder<T> b = ImmutableList.builder();
15 for (T t : list) { if (predicate.apply(t)) { b.add(t); } }
16 return b.build();
17 }
18 }

The reason the function and predicate arguments are annotated with @Accept
has to do with the fact that since their types are interfaces, there is no guarantee
that they are not global carriers. Making them hard language boundaries avoids
the need for dynamic checking.

Again, the processing of ImmListL comes in the form of compilation to Java
code with its own overhead as well of that of additional class loading. However,
scenarios like that of Section 1.1 are ideal for it, since we can expect the list of
connections6 to be large enough for the initial effort to (likely) pay off.

Likewise, very similar queries may be encountered repeatedly. Hence, it is
imperative that compilation results are cached in some fashion or other. Fortunately,
the tame-staging framework takes care of this. In fact, the implementation of
both syntax and meaning of ImmListL is about 20% shorter than the roughly
corresponding deep embedding.

6Admittedly, in practice a more suitable data structure than lists (or arrays) would be used.

107

4. ALMOST FIRST-CLASS EMBEDDING

An experiment was conducted for the query methods introduced in Section 1.1.
The “database” was randomly initialized with 2,000,000 entries. Plane connections
from Tokyo to Frankfurt costing up to 2,500$ were queried 100 times in succession.
The shallow-embedding (S) and tame-staging (AD) versions of the EDSL were run
on the code of Listing 1.2. Additionally, a slightly modified query method was run
with tame staging, where materialization is explicitly forced (AF) right before line
13 (using an identity function, i.e. l = materialize(l)). The compiled deep-
embedding (DC) implementation was run on the query method of Listing 1.3 and a
version (DI) using Guava’s FluentIterable EDSL was run on a similar-looking
method. Finally, the handwritten search (M) of Listing 1.4 was also benchmarked.

FIGURE 4.8: Connections-query benchmark results

Figure 4.8 shows the aggregated results of ten runs per EDSL (and query)
implementation. Switching to the tame-staging version (AD) for running the
shallow-embedding query sped it up by about 14.9%. However, the compiled
deep-embedding version fared much better. It was about 48% faster than shallow
embedding. Similar is true for the handwritten M . The reason why AD is not on par
with the others is because of the inlining behavior of staged-term composition. After
evaluating the first part of the result for checking its size, the other implementations
all explicitly reuse the already generated list, while AD reruns the operations, then
with an added filtering. As mentioned above this is easily fixed by adding one line,
so AF is on par with DC and M . Despite looking nearly identical to the query used
for DC , the (non-compiling) FluentIterable version (DI) was even slower than
AD, which illustrates again how much difference compilation can make.

4.4 Evaluation

With the introduction of the tame-staging framework and some of its use cases we
are now well equipped to evaluate its merits and shortcomings along the lines of
the previous chapters.

108

4.4. Evaluation

4.4.1 Reliability

The @Stage annotation and the other framework features enable hidden and deep-
embedding style dynamic staging in a safe and uniform way. Strict language
boundaries (and @Accept) are maintained and the behavior when they manifest
is clearly defined. Furthermore, the system is in full control of how staging occurs
and what IR is used. As the EDSL author has no say in these matters, it is easy to
establishing the compositionality of staging.

Black-box behavior is largely avoided through the same means, making the
approach very uniform. Why not completely uniform? This is a matter of perspec-
tive: For locally carried terms this is always a hard guarantee. However, allowing
global carrying means that for better or worse some, i.e. auxiliary, tokens do not
necessarily have uniform, predictable behavior, e.g. cause internal materialization.
This is an inherent property of global carrying and cannot be addressed in a general
fashion (i.e. while providing the same freedom). However, note that even in this
setting EDSL users can still rely on the “basic” @Staged tokens’ behaviors.

Many cases of auxiliary or derived tokens are meant for the purpose of expansion
or rewriting. In the future it may be worthwhile to add an @Rewrite annotation
which acts similarly to @Stage for rewriting while staging and follows fixed rules
(cf. Section 2.2.2 in Chapter 2). While this is again reminiscent of the opaque-
workflow pitfall, at least it would document and restrict rewriting behavior.

4.4.2 Performance

The freedom of performing optimizations is on the same level as deep embedding.
However, the introduced indirection is slightly limiting. For instance, with manual
deep embedding it is possible to inspect some values during staging and make
further staging decisions internally, thus exploiting more information than just the
EDSL-program shape. Essentially, programs can be specialized to very specific input
values. Of course, as mentioned in Section 2.3.3 of Chapter 2 this is detrimental
when attempting to avoid redundant processing.

Tame staging strikes a balance where only the shape and actually constant
values (but not variable values) ever become subject to author-defined processing.
While this indirection is limiting and causes overhead it also opens up the door
to avoiding dynamic staging where applicable. Currently the result of processing
statically known programs is permanently cached, but the IR construction still
occurs dynamically. In the future, such cases could be handed over to the author-
defined processor at load-time to remove the dynamic-staging overhead similar to
implicit staging.

The benchmarks in Section 4.3 showed favorable results. However, it would be
disingenuous to sweep under the rug the run-time overhead of language-boundary
enforcement, carrier unlaoding, and other checks during staging, combined with
the indirection of processing, i.e. isomorphism checks and cache lookup, and closure
execution, i.e. environment creation and value access.

Benchmarking the simple, initial code example of Listing 4.2 (and an adapted
version) in this chapter illustrates this issue. Here, five EDSL implementations
were considered: A non-staged, shallow embedding (S), an @Staged-annotated

109

4. ALMOST FIRST-CLASS EMBEDDING

version (see Listing 4.3) with both the trivial compiler (AN) of Listing 4.6 as well an
optimizing one (AO) (cf. Section 4.3.1). Also, both a non-optimizing (DN) as well as
an optimizing (DO) (manually) deeply embedded version were implemented. The
non-optimizing AN and DN simply delay evaluation.

The code was called with example(i % 20, a, b, c), where i incremen-
tally ranges from 0 to 99,999. The variables a, b, and c contain randomly initialized
vectors of sizes 100, 1,000, or 10,000. For each implementation the execution time
was measured ten times per vector size in the same hardware and software environ-
ment as the other experiments in this chapter, after a single warm-up run on the
largest vector size.

FIGURE 4.9: Benchmark results (linear and logarithmic scale)

Figure 4.9 shows the averaged results of the benchmarks for the different vector
sizes. In terms of performance, using the @Stage-based implementations (AN , AO)
became only worthwhile for vectors with more than 1,000 elements. Below that,
the performance is subpar: DO was about 78.8% faster than AO. Even above, the
handcrafted deep embedding (DN , DO) yielded slightly better results: DO was
36.1% faster than AO for vectors of size 1,000 and still 7.2% faster for vectors with
10,000 elements.

It comes as no surprise that there is a cost associated with this novel linguistic-
abstraction mechanism for language embedding. However, it also comes with a
potential for future improvement unavailable otherwise: Without changing the
interface it is possible to change and optimize the back end.

110

4.4. Evaluation

4.4.3 Usability

Tame staging excels on the usability front. Dynamic-staging concerns can be hid-
den from EDSL users and no restrictions are imposed on where EDSL-program
fragments may be composed. Together with the behind-the-scenes load-time trans-
formation on the fly, a high degree of seamlessness is achieved. At the same time,
thanks to using Java’s annotations and their sort of self-documentation, it is very
easy for EDSL users to figure out where staging occurs and to which language a
token belongs. This could be further improved by tool support, for instance by
an IDE plugin that highlights staging constructs and materialization points using
EDSL-dependent color coding.

Debugging is helped in several ways. For one, the static context of a token can
be used to create debug messages as illustrated in Section 4.1.9. Furthermore, the
uniformness of staging leads to predictability, also desirable for debugging. Finally,
The weaving step maintains debug symbols as much as possible, which makes it
possible to use existing tools for debugging. For instance, EDSL user can exploit this
to inspect staged terms and to track down issues with conditional EDSL-program
composition.

Finally, the maintenance and evolution of EDSLs and EDSL-reliant user code
benefits from the load-time nature of the system. However, it is important to
point out one flaw of exclusively relying on load-time metaprogramming: Some
errors will be detected somewhat late. For instance, in the current implementation,
visibility restrictions (of @Configure) are only checked at load time and then
lead to a message warning of the ineffectiveness of an annotation. An IDE plugin
could be provided to allow users to detect such issues early on. Alternatively, an
annotation preprocessor or checker [15] could do the trick.

4.4.4 Comparison with Related Work

The idea of providing language support for integrating DSLs into host languages
has been investigated before. First and foremost, there is the dynamically typed
Python-inspired Converge [109]. In this language, DSLs or sublanguages can be
defined both in terms of syntax and semantics and are used in explicitly language-
delimited blocks (and expressions).

Examples of statically typed languages with a sole focus on custom syntax
are Wyvern [83] and ProteaJ [63]. Both use type-associated syntax or operators
to integrate sublanguages into their respective host languages. However, these
sublanguages as a whole are still implicit.

All these approaches deliberately argue for a departure from the host language’s
look-and-feel and attempt to solve nontrivial parsing issues. Hence, I claim that
none of these approaches really fit into the DSL-embedding style put forward by
Hudak [59]. Moreover, for these approaches custom processing or optimization is a
secondary concern and currently only addressed by Converge. For better or worse,
dynamic composition of DSL fragments or its pitfalls is not specifically addressed.

Table 4.1 augments the comparison table of Chapter 3. Besides the related work
presented in Chapter 2 and 3, there is to my knowledge only one (major) other

111

4. ALMOST FIRST-CLASS EMBEDDING

work that explores extending the host-language to accommodate Hudak-style DSL
embedding: Scala-Virtualized [89]. It will be briefly discussed in the following.

TABLE 4.1: Comparison of implementation approaches

G Global

Yi
n-

Ya
ng

JI
T

M
ac

ro
s

(P
ro

je
ct

La
nc

et
)

LM
S

w
it

h
Sc

al
a-

V
ir

tu
al

iz
ed

Im
pl

ic
it

-S
ta

gi
ng

Pr
ot

ot
yp

e

Ta
m

e
St

ag
in

g
(@
S
t
a
g
e

)L Local
E Expression

A Annotation
D Declaration
I EDSL Interface
T Typing

`/N High/Good
�/� Fair
a/H Low/Bad

STAGED-EDSL DESIGN

Scope L G L E G
Delimitation I T T D A
Staticity ` ` � ` `
Dynamicity � ` ` � `
Transparency ` � � ` `

EVALUATIVE COMPARISON

Reliability ♦ O ♦ ♦ M
Safeness � H � � N
Uniformness � � � � N

Performance M M M M M
Overhead � N H N �
Optimization N N N N N
Adaptiveness � N N � N

Usability M O M M M
Seamlessness N � N N N
Maintenance � � � N N
Debugging N H N � N
Documentation � H � H N

4.4.5 Scala-Virtualized

Scala-Virtualized [89] is a custom branch of the Scala compiler. It explores various
general-purpose tweaks for improving Scala as a meta language for EDSL hosting.
The main idea is to allow extensive customization of host-language behavior, or
language virtualization, way beyond simple operator overloading.

112

4.5. Discussion and Summary

It is possible to redefine the meaning of inbuilt control structures and even vari-
able assignment by defining special methods (and singleton objects). For instance,
the Scala expression

if (condition) trueBranch else falseBranch

is desugared into the following method invocation:

__ifThenElse(condition, trueBranch, falseBranch)

It is possible to define various versions (with different type signatures) so that
depending on the involved types (e.g. of the condition) a specific implementation is
called that is different from the default one.

This can be combined with LMS [87] to the effect that EDSL code looks like
regular Scala code with staged semantics. Without Scala-Virtualized, the illusion is
not entirely perfect, e.g. conditionals in pure LMS have to be expressed as standard
method calls.

Additionally, yet another form of desugaring is proposed to address the issue
that “[e]xtending traits and creating objects in a certain way just to define a little DSL
program may be asking too much.” [87], i.e. to remove the boilerplate associated
with LMS-style embedding: So-called DSL scopes, which essentially are DSL-named
blocks that expand to boilerplate, LMS-style EDSL-program definitions.

Scala-Virtualized also adds SourceContext, an implicit parameter that allows
for better error reporting, thus addressing an important aspect of debugging EDSLs.
However, static context is not used much further, e.g. for constant detection, caching,
or preprocessing.

Thanks to these additions, the ratings for LMS-usability increase slightly. How-
ever, while maintenance of existing EDSLs is not curtailed, the overall maintenance
is negatively affected by the fact that now a custom compiler (branch) is required.

Why is Scala-Virtualized related and relevant for comparison with the tame-
staging framework? After all it does not explicate embedded languages or treat
its programs on a (meta or) higher level. This is precisely why it is so related: It
showcases a different school of thought. One in which a new language feature
should be as general as possible. It is true that generality is commonly a good
direction to take. However, I believe that when a host language is extended for the
specific purpose of language embedding, yet without actually giving embedded
languages special treatment, improvement opportunities (on various fronts) are
missed (while still adding potentially complex features).

4.5 Discussion and Summary

The tame-staging framework presented in this chapter provides a high-level, dedi-
cated abstraction mechanism for embedded languages. However, providing this
feature is not without its own shortcomings and challenges. Not only is it associated
with overhead, it also requires careful consideration of how it fits into the host
language as a whole.

For the time being, solely relying on the load-time bytecode transformation
functionality of the JVM makes the approach a pragmatic host-language extension

113

4. ALMOST FIRST-CLASS EMBEDDING

to Java. Hence, with such an extension language embedding becomes (only) “almost”
a first-class feature. This serves well for experimentation and smoothing out the
rough edges (e.g. @Stage inheritance, inlining-behavior configuration, handling
of large-program staging, etc.). It can be easily adopted by users and may aid in
testing the waters to garner acceptance for first-class, native support.

I do believe that it is worthwhile to eventually consider tightly integrating
the presented ideas into the design of future languages and virtual machines (or
updated versions thereof). The annotations could be replaced by keywords and
(explicit) language classes could receive special treatment. Additional virtual-
machine support sounds promising in particular to tackle the cost of abstraction
and to improve general performance, for instance by integrating the feature into JIT
compilation. After all, in the case of the JVM, a lower-level, internal implementation
of staging and caching can be expected to perform much better than the additional
indirection on top of existing bytecode.

Yet another issue is the crude way of exposing and traversing the staged IR
as a generic data structure. An approach like that of Yin-Yang [68], in which the
static type system limits the actual types of IR nodes, looks appealing, yet comes
with the additional step of generation and macro-directed translation. However,
in a system that integrates first-class language embedding natively, a @Staged (or
maybe staged) token could be exposed as a special data type, for instance

token class Vec::times { ⋯ }

with (constant) instance fields, e.g. Vec::times.v and Vec::times.s, for access
to encapsulated data that is statically known to be stored on a token representation.

Alas, this and other native support is still far off and to be considered for
future work. Finally, let us recapitulate the central achievements of the developed
pragmatic-extension tame-staging framework:

• As in implicit staging, tame staging explicates EDSLs for detecting domain-
specific code and guiding EDSL-program handling. These explicit EDSLs may
be considered akin to a parallel (language-) type system.

• Dynamic staging is accomplished through a combination of static and dy-
namic techniques, which essentially provide selective, i.e. EDSL-specific, lazy-
evaluation with custom EDSL-program processing.

• The (definition-site) @Stage annotation serves as a unique (i.e. only one
language per token) and visible (i.e. self-documented) language-association
mechanism for EDSL tokens and houses token-specific settings.

114

4.6. Acknowledgments

4.6 Acknowledgments

The contents of this chapter are, in large part, based on and reproducing the research
to be published in co-authorship with Prof. Chiba at the 2015 International Confer-
ence on Generative Programming: Concepts and Experiences (GPCE 2015) under
the title “Almost First-Class Language Embedding: Taming Staged Embedded
DSLs” [92]. I was the first author of this paper.

115

CHAPTER 5
Conclusions

This thesis introduced a progression from the low-level, manual embedding of
(staged) domain-specific languages to a novel framework that is grounded in turn-
ing embedded languages from implicit to explicit entities, which in turn serves
as the basis for an almost first-class, self-documented, linguistic abstraction for
dynamic EDSL-program composition. Its novelty lies not with the idea of providing
meta-level transformations. For that, existing approaches like syntactic macros
or rewrite-rule-based preprocessing arguably suffice. Instead, the novelty lies in
making (seemingly) meta-level features in the context of DSL embedding palatable
by EDSL users and still sufficiently customizable by EDSL authors.

Palatability is also a concern when it comes to the creation and deployment of
novel functionality. By relying on the JVM’s Java-agent feature and performing lan-
guage extension at load time, the proposed features can be deployed in a pragmatic
fashion. Not only that, but also the so-realized EDSLs themselves can be deployed,
bug-fixed, and evolved without diminishing the advantages of separate compilation
and dynamic linking. Implementing language extensions in this fashion has been
explored before, e.g. in the context of implementing AspectJ [56, 70], but, to the best
of my knowledge, not in the context of simultaneously improving the reliability,
performance, and usability of EDSLs through a dedicated linguistic abstraction.

One could argue that attempting to integrate1 DSLs as an inbuilt feature should
naturally be taken further to a level where sublanguages (syntactically) coexist
with the host-language (as for instance in the case of LINQ [108]) some times even
on equal terms [34, 109]. However, while this is yet another related and interest-
ing direction of research, the notion of full-on syntactic and semantic language
composition eschews the advantages of language embedding such as the reuse of
infrastructure, familiarity with the host language, type safety, and dynamic program
construction.

The ideas put forward by this thesis are surprisingly simple. In fact, in the
tame-staging framework of Chapter 4, global carrying is on its surface virtually
indistinguishable from traditional deep embedding, i.e. method calls generating

1I am avoiding the term “embed” for this because of its (Hudak-style embedding) connotations.

117

5. CONCLUSIONS

terms, yet with guarantees for compositional staging, caching, language-boundary
enforcement, and other advantages afforded by the nature of a dedicated linguistic
abstraction. The (mental) switch to the more transparent local-carrying style merely
requires a passing knowledge and understanding of the method-local staging
behavior and lazy-evaluation-like materialization triggering.

While the gains are not immediately obvious, the language-embedding pitfalls
of Section 2.3.3 in Chapter 2 are addressed as best as possible in the scope of my
research. Let us once more quickly and collectively consider the achievements of
this thesis in order:

(i) The advantages of traditional EDSL implementation approaches were identi-
fied but so was the fact that these are counterweighted by their ad-hoc nature.

(ii) Implicit staging was proposed to illustrate the benefit of considering EDSLs
on a higher level, and serves as a general framework for assisting the imple-
mentation of reliable, statically staged EDSLs.

(iii) A concrete investigation was conducted by way of a proof-of-concept imple-
mentation of a load-time (metaprogramming) implicit-staging framework for
expression-level (static) staging.

(iv) Its strengths are in reducing the overhead of dynamic staging as well as
retaining simple EDSL interfaces that hide their staged nature.

(v) Its shortcomings were identified to lie in the crude way of specifying language
membership and its problematic implications on reliability and documentation
aspects.

(vi) Tame staging was proposed as a concrete refinement of the ideas of implicit
staging (and its prototype), enabling dynamic staging and introducing clarity
to the API by means of a language-membership annotation (@Stage).

(vii) Out of the box, tame staging offers support for mixing the usage of several
EDSLs. Safeness and uniformness are established by enforcing language
boundaries with predictable behavior where they occur.

(viii) Both indirection of processing (i.e. closure caching) and static-staging aspects
(i.e. stage-graph analyses, constants, and static-context retention) are used to
address the concerns of redundant processing as well as debugging in the
latter case.

(ix) Both implicit-staging as well as tame-staging implementations were designed
and built as pragmatic extensions to Java, by leaving the user-code compilation
process untouched and deferring to load-time adaptations.

I believe that there is merit in considering embedded (domain-specific) lan-
guages as first-class citizens from the beginning in future languages. The presented
pragmatic extensions illustrate this and can serve as a testbed to thoroughly explore
and promote this proposition.

118

5.1. Limitations

5.1 Limitations

The previous discussions and the comparison of tame staging, as the final result
of the present investigation, with traditional and recently emerged approaches
indicate that it is a very user-friendly solution for providing EDSLs in the role of
rich high-level library interfaces. Figure 5.1 shows a three-dimensional placement
of the approaches introduced and compared in the previous chapters.

FIGURE 5.1: Three-dimensional placement of embedding approaches

By now, the reader should be aware that the focus of this thesis lies on the
overall experience for EDSL users, i.e. programmers employing an EDSL as part
of their software-development process, in terms of the three criteria or dimensions
of reliability, performance, and (direct) usability as discussed in Chapter 2. The
comparison of approaches is to be understood in light of this.

As part of this focus some concerns were left behind or were not sufficiently
addressed in my research. For instance, composing several embedded languages
in terms of both syntax and semantics to form a new one was only marginally
considered during the design of the presented pragmatic extensions. Lightweight
Modular Staging (LMS) and tagless-final embedding in general are much better
suited for that. Properly designed, both EDSL interfaces (i.e. syntax) as well as
tagless interpreters (i.e. semantics) can be combined, reused, and extended. This
form of modularity is a desirable property for EDSL authors as it helps reduce
implementation effort.

119

5. CONCLUSIONS

Of course, this may be considered a back-end problem that could be addressed
in tame staging by an additional mechanism or methodology for implementing
EDSL-program processors, i.e. compilers. On the front end, @Stage and @Accept
annotations could be used to provide and reuse EDSL tokens. However, there is not
yet a general plan or concept to consolidate and refine these ideas.

EDSL authors do still profit from using tame staging over manual deep embed-
ding since the automation of staging and caching take off some of the burden usually
encountered, especially in a verbose host language such as Java. However, this is not
entirely without drawbacks. The expression-DAG data structure may be considered
by some to be overly generic. For instance, in some cases expression traversal can
be more cumbersome than in a manual, specific deep-embedding implementation,
not to forget that the requirement to implement input-value-independent compil-
ers could be seen by authors as an unnecessary complication (despite its argued
necessity for reducing redundant processing). This is exacerbated by the potential
run-time overhead experienced in some use cases (with the current framework
implementation).

One major contribution of this thesis is the provision of staged-EDSL support
through pragmatic extensions that rely on load-time metaprogramming. Load-time
metaprogramming depends on the features of the host-language runtime (e.g. JVM).
This is better than relying on compiler extensions not only in the interest of software-
evolution concerns. After all, the bytecode format is commonly not undergoing
changes as frequently as the language front end.

However, the presented pragmatic extensions demand a close relationship be-
tween the compiler and the language runtime. For instance, while in principle
the tame-staging framework also works (as is) in Scala, using it effectively may
sometimes necessitate the understanding and consideration of Scala’s compilation
strategies (e.g. seemingly local variables may become heap references when escap-
ing to anonymous-function bodies in the same scope) especially in the presence of
advanced features such as user-defined implicit conversions.

The mentioned limitations might call into question the adoption prospective of
an approach like tame staging in its present form. However, I am hopeful that the
advantages and future potential of a linguistic abstraction far outweigh the current
shortcomings and issues found in the prototypical nature of my exploration.

5.2 Future Work

There is certainly room for further improvement. For one, abstraction overhead
deserves strong attention. In the short term, efforts should be concentrated on
this in order to highlight more clearly the advantages of being able to exploit the
meta-level ability to detect and handle domain-specific code. The present tame-
staging framework implementation does not yet make full use of this. For instance,
although in cases where an EDSL program’s shape is statically known permanent
caching reduces some of the redundant processing, staging still occurs dynamically
as usual and the input-value environment is also not specialized. These are two
main contributors to run-time overhead that could be tackled by a more elaborate
back-end implementation. The implicit-staging prototype of Chapter 3 trivially

120

5.2. Future Work

addresses this concern (by design). However bringing this functionality to the
dynamic-staging realm of tame staging is somewhat involved.

It is also worthwhile to identify supplementary features and refinements to
the interface of the tame-staging framework. For instance, it would be interesting
to investigate what kind of options for the inlining of staged terms or (instead)
the reuse of already materialized values (if present) could be provided. This may
prove to be a useful tool to improve performance when locally carrying, e.g. the
ImmutableList-processing EDSL of Chapter 1 and Section 4.3.3 in Chapter 4.

There may also be cases where staging could reuse term-representation nodes for
common-subexpression elimination. Likewise, an author may want to decide that
materialization ought to be automatically triggered due to external circumstances
(i.e. ones not relating to value consumption) such as the exceeding of a threshold
for expression-DAG size. These and likely many more such options could be
considered in the future. However, at the same time it is crucial not to unnecessarily
impair the ease of understanding and predicting behaviors. An excess amount of
options may turn into a burden on the mental load of EDSL users and authors alike.
Controlled user studies as well as observing the potential adoption and usage of
the tame-staging framework in production may give further hints on how useful
the linguistic abstraction is and what use cases could warrant further extension.

As elaborated at the end of Chapter 4, the next big leap outside the scope of
this thesis would be to go beyond pragmatic extensions, in other words, to turn
the current almost first-class feature into an actual, native first-class feature in future
versions of general-purpose host languages. After all, dedicated support for staged
EDSLs with appropriate usage guarantees and inbuilt checks and warnings could
be a good alternative to more unrestricted meta-programming approaches like
syntactic macros, which language designers may shy away from due to reliability
concerns.

121

APPENDIX A
Matrix EDSL Experiment

Expressions

Matrix values are contained in variables starting with m and double values are
contained in variables starting with d. The dim variable contains the dimension
value 8. Duplicates were not excluded from the benchmark (nor from the lists here).

LISTING A.1: Matrix EDSL benchmark loops

1 Matrix res = null;
2 long start;
3 long end;
4 ⋯
5 for (int i = 0; i < WARMUP_REPS; i++) {
6 res = edi ;
7 }
8 System.gc();
9 try { Thread.sleep(2000); } catch (⋯ e) { e.printStackTrace(); }

10

11 start = System.nanoTime();
12 for (int i = 0; i < BENCHMARK_REPS; i++) {
13 res = edi ;
14 }
15 end = System.nanoTime();
16

17 resultArray[⋯][⋯] = res;
18 timeArray[⋯][⋯] = end - start;
19 expArray[⋯][⋯] = "edi ";
20 ⋯

Note that the expressions are merely listed but not shown within their respective
warm-up and measurement loops here. The template for such loops is shown in
Listing A.1 with edi denoting the i-th expression of depth d.

123

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

A.1 Randomly Generated Expression

A.1.1 Shallow Embedding and Implicit Staging

A.1.1.1 Depth 1 (Random, Shallow)

1 add(m1, sca(dim, d1))
2 mul(sca(dim, d1), m1)
3 mul(sca(dim, d1), m0)
4 add(m0, m1)
5 mul(m0, m1)
6 add(m1, m0)
7 add(m1, m0)
8 mul(m0, sca(dim, d0))
9 mul(sca(dim, d0), m1)

10 add(sca(dim, d1), m1)
11 add(m1, sca(dim, d1))
12 mul(sca(dim, d0), m0)
13 add(sca(dim, d0), sca(dim, d1))
14 add(sca(dim, d1), m0)
15 add(sca(dim, d1), sca(dim, d1))
16 add(sca(dim, d0), sca(dim, d0))
17 mul(m0, sca(dim, d1))
18 add(sca(dim, d1), sca(dim, d0))
19 add(m0, sca(dim, d0))
20 add(m0, m1)
21 add(sca(dim, d1), m1)
22 add(m1, m1)
23 mul(m1, m1)
24 add(sca(dim, d1), m1)
25 add(sca(dim, d1), sca(dim, d0))
26 add(sca(dim, d0), sca(dim, d0))
27 add(sca(dim, d1), sca(dim, d0))
28 mul(m0, sca(dim, d1))
29 add(sca(dim, d1), sca(dim, d1))
30 add(m0, sca(dim, d0))

A.1.1.2 Depth 2 (Random, Shallow)

1 add(add(sca(dim, d3), sca(dim, d4)), mul(m2, sca(dim, d3)))
2 add(add(sca(dim, d2), m2), mul(m3, sca(dim, d4)))
3 mul(add(m4, m1), m0)
4 add(mul(sca(dim, d2), sca(dim, d4)), mul(m3, m0))
5 add(mul(m1, sca(dim, d4)), m3)
6 add(add(sca(dim, d1), sca(dim, d1)), add(sca(dim, d1), sca(dim, d4)))
7 mul(mul(sca(dim, d4), m4), add(m3, m1))
8 mul(mul(sca(dim, d2), m4), sca(dim, d1))
9 add(mul(m2, sca(dim, d0)), add(sca(dim, d3), sca(dim, d1)))

10 mul(mul(sca(dim, d2), m0), sca(dim, d2))
11 mul(mul(sca(dim, d2), m3), mul(m0, m0))
12 mul(mul(sca(dim, d3), m0), mul(sca(dim, d1), sca(dim, d4)))
13 add(add(m1, sca(dim, d0)), sca(dim, d0))
14 mul(add(sca(dim, d2), m4), sca(dim, d0))
15 mul(mul(sca(dim, d2), sca(dim, d1)), add(sca(dim, d4), sca(dim, d0)))
16 add(add(sca(dim, d2), m0), mul(m1, sca(dim, d0)))
17 mul(add(m1, m1), mul(m2, sca(dim, d0)))
18 mul(add(m4, m3), m3)

124

A.1. Randomly Generated Expression

19 mul(mul(sca(dim, d1), sca(dim, d3)), m4)
20 mul(mul(m3, m4), mul(m1, sca(dim, d4)))
21 mul(mul(m2, sca(dim, d0)), add(m2, sca(dim, d0)))
22 add(mul(sca(dim, d2), m1), sca(dim, d3))
23 mul(add(m3, m1), mul(m1, m4))
24 mul(mul(sca(dim, d1), sca(dim, d0)), add(m2, sca(dim, d0)))
25 mul(mul(sca(dim, d3), sca(dim, d4)), add(m4, sca(dim, d2)))
26 mul(mul(sca(dim, d1), sca(dim, d0)), sca(dim, d4))
27 add(mul(m4, m2), add(m1, m1))
28 mul(add(sca(dim, d0), m2), m2)
29 add(mul(sca(dim, d2), sca(dim, d1)), m2)
30 mul(add(m0, m3), m3)

A.1.1.3 Depth 3 (Random, Shallow)

1 add(mul(mul(sca(dim, d2), m7), m8), sca(dim, d4))
2 mul(add(mul(m2, m8), mul(sca(dim, d5), m2)), sca(dim, d7))
3 add(add(mul(m5, m4), m4), add(m0, add(m8, sca(dim, d1))))
4 add(mul(add(sca(dim, d1), m5), mul(m9, m5)), add(add(sca(dim, d7),

↪→ sca(dim, d3)), m5))
5 add(mul(mul(m6, m6), m8), mul(mul(sca(dim, d5), sca(dim, d6)),

↪→ mul(sca(dim, d3), sca(dim, d1))))
6 mul(mul(add(sca(dim, d2), sca(dim, d0)), m7), sca(dim, d3))
7 mul(mul(mul(m4, m0), add(m5, sca(dim, d2))), m2)
8 add(add(mul(m2, sca(dim, d9)), sca(dim, d1)), sca(dim, d8))
9 add(mul(mul(m4, sca(dim, d0)), mul(m7, sca(dim, d7))), add(sca(dim, d5),

↪→ m3))
10 mul(mul(mul(m4, sca(dim, d0)), mul(sca(dim, d7), sca(dim, d2))), m5)
11 add(mul(mul(sca(dim, d2), m7), add(sca(dim, d6), m8)), mul(sca(dim, d9),

↪→ mul(sca(dim, d1), m0)))
12 add(mul(add(m4, sca(dim, d2)), mul(m2, m7)), add(mul(m1, m3), m0))
13 mul(add(add(sca(dim, d7), m9), m3), m7)
14 add(add(mul(m9, sca(dim, d2)), mul(sca(dim, d1), m1)), m5)
15 mul(mul(add(sca(dim, d9), m2), add(sca(dim, d0), m7)), sca(dim, d6))
16 mul(add(add(m2, m7), sca(dim, d7)), sca(dim, d4))
17 mul(mul(add(sca(dim, d8), sca(dim, d4)), add(m1, m3)), m5)
18 mul(add(add(m0, m2), sca(dim, d3)), sca(dim, d2))
19 add(mul(add(sca(dim, d1), sca(dim, d2)), mul(m4, sca(dim, d8))), m2)
20 mul(add(mul(sca(dim, d8), sca(dim, d9)), m6), m3)
21 add(add(add(sca(dim, d7), sca(dim, d1)), add(m3, m0)), add(add(m0, m5),

↪→ mul(m5, m1)))
22 mul(mul(add(sca(dim, d5), sca(dim, d7)), sca(dim, d7)), sca(dim, d0))
23 mul(add(add(sca(dim, d5), sca(dim, d4)), m6), sca(dim, d1))
24 add(mul(add(sca(dim, d7), sca(dim, d9)), add(m0, m0)), add(sca(dim, d4),

↪→ sca(dim, d9)))
25 add(add(mul(sca(dim, d7), sca(dim, d4)), add(m3, sca(dim, d7))),

↪→ mul(mul(sca(dim, d9), m4), m2))
26 add(mul(mul(sca(dim, d7), sca(dim, d1)), sca(dim, d5)), mul(mul(m6, m0),

↪→ sca(dim, d7)))
27 add(add(add(sca(dim, d9), sca(dim, d5)), sca(dim, d9)), sca(dim, d0))
28 add(add(add(sca(dim, d5), m1), add(sca(dim, d6), m8)), m4)
29 mul(add(add(sca(dim, d6), sca(dim, d1)), add(sca(dim, d7), m0)),

↪→ sca(dim, d9))
30 add(add(add(m7, sca(dim, d3)), add(sca(dim, d6), sca(dim, d2))),

↪→ mul(mul(sca(dim, d4), sca(dim, d2)), m3))

125

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

A.1.1.4 Depth 4 (Random, Shallow)

1 mul(add(add(mul(m12, m8), m4), m7), add(add(m15, add(m2, sca(dim, d3))),
↪→ m5))

2 add(mul(mul(add(m0, m10), add(m9, sca(dim, d0))), add(sca(dim, d0),
↪→ sca(dim, d10))), add(sca(dim, d14), sca(dim, d11)))

3 add(add(mul(add(m15, sca(dim, d9)), mul(sca(dim, d9), sca(dim, d12))),
↪→ m4), mul(mul(add(m15, sca(dim, d1)), mul(sca(dim, d8), m1)), m3))

4 add(mul(mul(add(sca(dim, d10), m8), add(sca(dim, d2), sca(dim, d1))),
↪→ add(add(sca(dim, d16), m5), sca(dim, d13))), add(add(sca(dim,
↪→ d0), add(m5, sca(dim, d15))), add(sca(dim, d3), mul(m0, sca(dim,
↪→ d7)))))

5 add(add(mul(add(m13, sca(dim, d0)), mul(m12, m11)), add(m10, sca(dim,
↪→ d14))), add(sca(dim, d0), m11))

6 add(add(add(mul(sca(dim, d13), sca(dim, d1)), mul(m2, sca(dim, d6))),
↪→ add(add(m15, sca(dim, d12)), mul(sca(dim, d10), m6))),
↪→ mul(mul(sca(dim, d11), sca(dim, d10)), m1))

7 mul(add(add(add(sca(dim, d11), m12), mul(sca(dim, d15), sca(dim, d5))),
↪→ m14), m7)

8 add(mul(add(add(m5, sca(dim, d11)), mul(m0, sca(dim, d12))), m10),
↪→ mul(mul(mul(sca(dim, d4), sca(dim, d9)), mul(sca(dim, d5), m9)),
↪→ m7))

9 mul(mul(mul(mul(m0, sca(dim, d10)), sca(dim, d5)), add(mul(m0, m5),
↪→ add(sca(dim, d3), m10))), add(sca(dim, d16), mul(add(m6, sca(dim,
↪→ d14)), m5)))

10 mul(mul(mul(add(m2, m9), mul(m3, sca(dim, d0))), sca(dim, d11)), add(m5,
↪→ m13))

11 add(mul(mul(add(m5, m14), add(sca(dim, d10), sca(dim, d7))), m6), m3)
12 mul(add(add(mul(sca(dim, d12), sca(dim, d5)), add(m0, m6)),

↪→ mul(mul(sca(dim, d10), m7), add(sca(dim, d9), m3))), add(m5, m8))
13 add(add(add(add(sca(dim, d6), m5), mul(sca(dim, d5), sca(dim, d4))),

↪→ m7), add(m2, mul(add(sca(dim, d12), m11), add(m10, sca(dim,
↪→ d5)))))

14 add(add(mul(mul(m0, sca(dim, d8)), sca(dim, d1)), mul(mul(sca(dim, d2),
↪→ m13), sca(dim, d16))), add(sca(dim, d11), sca(dim, d10)))

15 add(mul(add(mul(sca(dim, d0), m12), sca(dim, d13)), m4), add(sca(dim,
↪→ d1), mul(m6, mul(m9, sca(dim, d12)))))

16 add(add(add(mul(m3, m10), mul(sca(dim, d2), m2)), sca(dim, d10)),
↪→ add(mul(mul(sca(dim, d8), m0), mul(sca(dim, d1), sca(dim, d9))),
↪→ mul(mul(m3, m0), mul(sca(dim, d15), m5))))

17 mul(add(add(mul(sca(dim, d14), sca(dim, d12)), mul(sca(dim, d6), m12)),
↪→ mul(mul(m15, m5), m9)), mul(mul(sca(dim, d8), add(sca(dim, d12),
↪→ sca(dim, d13))), sca(dim, d7)))

18 add(mul(add(mul(m8, sca(dim, d3)), add(sca(dim, d10), m14)),
↪→ mul(add(m12, sca(dim, d5)), mul(m9, m7))), add(mul(add(sca(dim,
↪→ d11), m16), sca(dim, d13)), add(sca(dim, d8), sca(dim, d5))))

19 add(mul(mul(add(sca(dim, d11), sca(dim, d6)), add(m3, sca(dim, d5))),
↪→ add(m7, sca(dim, d3))), m7)

20 add(add(mul(mul(sca(dim, d4), m2), sca(dim, d11)), add(m16, mul(sca(dim,
↪→ d9), sca(dim, d7)))), sca(dim, d14))

21 mul(add(mul(mul(sca(dim, d1), sca(dim, d7)), sca(dim, d1)), sca(dim,
↪→ d10)), mul(add(m2, sca(dim, d6)), mul(add(m16, m9), add(m15,
↪→ m12))))

22 mul(mul(mul(mul(m4, sca(dim, d9)), m16), mul(add(sca(dim, d0), m4),
↪→ mul(sca(dim, d15), sca(dim, d1)))), mul(mul(add(sca(dim, d11),
↪→ m6), mul(sca(dim, d1), sca(dim, d13))), m15))

23 add(add(mul(mul(m8, sca(dim, d9)), sca(dim, d2)), sca(dim, d4)),
↪→ add(add(sca(dim, d15), m2), mul(sca(dim, d10), sca(dim, d0))))

126

A.1. Randomly Generated Expression

24 mul(mul(add(mul(sca(dim, d12), sca(dim, d6)), mul(m14, m8)), m11), m2)
25 mul(add(add(add(m9, sca(dim, d16)), add(m10, sca(dim, d7))), m15),

↪→ sca(dim, d7))
26 mul(mul(add(add(m3, sca(dim, d5)), mul(m5, sca(dim, d14))), sca(dim,

↪→ d7)), add(mul(mul(sca(dim, d9), m2), sca(dim, d11)), add(m16,
↪→ add(sca(dim, d3), sca(dim, d9)))))

27 add(mul(mul(add(m4, m3), add(sca(dim, d12), sca(dim, d16))),
↪→ mul(sca(dim, d8), sca(dim, d3))), add(add(add(m6, m7), mul(m4,
↪→ sca(dim, d5))), add(sca(dim, d16), mul(m4, sca(dim, d13)))))

28 add(mul(add(add(sca(dim, d5), sca(dim, d13)), sca(dim, d10)),
↪→ add(add(m11, sca(dim, d0)), sca(dim, d12))), add(m11, sca(dim,
↪→ d3)))

29 add(mul(mul(mul(m12, m4), add(m11, m12)), mul(add(sca(dim, d15), m6),
↪→ add(m5, sca(dim, d4)))), sca(dim, d16))

30 mul(mul(add(mul(m4, m6), sca(dim, d6)), add(add(m9, m13), sca(dim,
↪→ d16))), add(mul(add(m2, m6), sca(dim, d13)), mul(mul(sca(dim,
↪→ d8), sca(dim, d7)), add(sca(dim, d7), m4))))

A.1.1.5 Depth 5 (Random, Shallow)

1 mul(add(mul(add(add(m18, m0), m21), m9), sca(dim, d0)), add(m11,
↪→ sca(dim, d17)))

2 mul(add(add(add(add(m4, sca(dim, d14)), m8), add(add(m5, m19), sca(dim,
↪→ d2))), add(m22, mul(add(m0, sca(dim, d16)), sca(dim, d13)))),
↪→ mul(m10, sca(dim, d5)))

3 mul(mul(mul(mul(add(m24, sca(dim, d22)), add(m16, sca(dim, d3))), m17),
↪→ sca(dim, d24)), m14)

4 add(mul(mul(add(add(sca(dim, d12), sca(dim, d14)), mul(m0, sca(dim,
↪→ d1))), mul(mul(sca(dim, d13), sca(dim, d22)), sca(dim, d22))),
↪→ sca(dim, d19)), sca(dim, d24))

5 add(mul(add(mul(mul(m17, sca(dim, d5)), sca(dim, d25)), sca(dim, d1)),
↪→ add(sca(dim, d10), m23)), mul(sca(dim, d1), add(sca(dim, d6),
↪→ m9)))

6 add(add(mul(add(add(m21, sca(dim, d14)), m17), mul(mul(sca(dim, d20),
↪→ m4), sca(dim, d21))), mul(m4, sca(dim, d6))), mul(sca(dim, d19),
↪→ m16))

7 add(add(add(add(add(m14, sca(dim, d1)), add(sca(dim, d14), m23)),
↪→ add(add(m12, m13), mul(sca(dim, d6), m25))), sca(dim, d1)),
↪→ add(add(sca(dim, d12), mul(add(sca(dim, d19), m2), mul(m22,
↪→ m7))), m14))

8 add(mul(mul(mul(mul(m1, m22), m3), m11), sca(dim, d22)), mul(sca(dim,
↪→ d3), mul(add(sca(dim, d23), m2), sca(dim, d2))))

9 mul(add(mul(mul(mul(sca(dim, d5), sca(dim, d23)), mul(sca(dim, d15),
↪→ m5)), m15), add(sca(dim, d17), sca(dim, d14))), sca(dim, d20))

10 add(mul(add(mul(mul(sca(dim, d23), sca(dim, d25)), mul(m11, sca(dim,
↪→ d1))), sca(dim, d22)), mul(m8, add(mul(m5, m7), sca(dim, d15)))),
↪→ sca(dim, d7))

11 mul(mul(mul(mul(mul(m0, sca(dim, d19)), add(m25, sca(dim, d7))),
↪→ mul(m17, sca(dim, d23))), m12), sca(dim, d2))

12 add(mul(mul(mul(mul(m16, m6), add(sca(dim, d14), sca(dim, d23))),
↪→ sca(dim, d23)), add(add(mul(sca(dim, d16), m21), m18), sca(dim,
↪→ d12))), mul(add(sca(dim, d7), m25), sca(dim, d13)))

13 add(add(mul(mul(mul(m21, m1), add(sca(dim, d25), sca(dim, d19))),
↪→ add(m17, sca(dim, d11))), sca(dim, d8)), sca(dim, d25))

14 add(mul(add(add(mul(m23, sca(dim, d22)), mul(m25, m3)), mul(m9, sca(dim,
↪→ d12))), sca(dim, d20)), m11)

127

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

15 add(add(add(mul(mul(m14, m22), sca(dim, d21)), mul(sca(dim, d13),
↪→ add(sca(dim, d19), m1))), mul(add(sca(dim, d3), mul(sca(dim,
↪→ d25), m17)), mul(add(sca(dim, d8), sca(dim, d7)), add(sca(dim,
↪→ d13), sca(dim, d0))))), mul(sca(dim, d22), add(mul(sca(dim, d25),
↪→ m12), sca(dim, d9))))

16 mul(add(mul(mul(add(sca(dim, d23), m5), sca(dim, d9)), add(mul(sca(dim,
↪→ d7), sca(dim, d16)), sca(dim, d2))), m4), add(mul(sca(dim, d1),
↪→ sca(dim, d4)), add(mul(mul(sca(dim, d2), m10), add(m15, sca(dim,
↪→ d0))), sca(dim, d17))))

17 add(mul(add(add(mul(sca(dim, d24), sca(dim, d4)), sca(dim, d8)),
↪→ add(mul(m24, sca(dim, d2)), sca(dim, d4))), sca(dim, d14)),
↪→ add(sca(dim, d25), mul(add(add(sca(dim, d17), m10), add(sca(dim,
↪→ d5), m5)), mul(mul(m18, sca(dim, d25)), mul(sca(dim, d5),
↪→ sca(dim, d15))))))

18 add(mul(mul(mul(mul(m14, m20), mul(m10, sca(dim, d24))), m13), mul(m2,
↪→ mul(mul(m18, sca(dim, d9)), add(sca(dim, d0), m4)))), m15)

19 mul(mul(mul(mul(add(m13, m0), add(m2, m6)), sca(dim, d19)), add(mul(m11,
↪→ m0), add(m0, add(m3, m1)))), mul(m11, mul(sca(dim, d23), mul(m19,
↪→ add(m12, sca(dim, d6))))))

20 mul(mul(mul(add(mul(m3, m0), m16), m4), add(sca(dim, d21), m6)),
↪→ mul(mul(mul(mul(sca(dim, d25), m14), m18), sca(dim, d5)),
↪→ mul(sca(dim, d0), add(sca(dim, d18), add(sca(dim, d19), sca(dim,
↪→ d9))))))

21 add(add(add(add(mul(m11, sca(dim, d4)), mul(m25, sca(dim, d24))),
↪→ sca(dim, d12)), sca(dim, d6)), mul(m1, sca(dim, d20)))

22 mul(mul(add(add(add(m23, m4), sca(dim, d0)), mul(sca(dim, d3),
↪→ mul(sca(dim, d14), m15))), sca(dim, d1)), sca(dim, d23))

23 mul(add(mul(mul(add(sca(dim, d17), sca(dim, d24)), add(m15, m13)),
↪→ mul(sca(dim, d20), m21)), m9), sca(dim, d1))

24 add(mul(mul(mul(mul(sca(dim, d25), m7), add(sca(dim, d0), m25)),
↪→ add(add(m21, m21), mul(sca(dim, d6), sca(dim, d20)))),
↪→ mul(mul(mul(m18, m7), m7), m0)), mul(sca(dim, d1), mul(sca(dim,
↪→ d4), m20)))

25 mul(add(add(mul(add(m7, m7), m10), sca(dim, d7)), sca(dim, d19)),
↪→ sca(dim, d2))

26 add(mul(mul(add(mul(m23, m12), add(sca(dim, d4), sca(dim, d1))), add(m3,
↪→ mul(m5, sca(dim, d25)))), mul(add(add(sca(dim, d21), m13),
↪→ mul(sca(dim, d5), m17)), m23)), sca(dim, d21))

27 mul(add(mul(add(add(sca(dim, d0), sca(dim, d16)), add(sca(dim, d3),
↪→ m17)), mul(mul(sca(dim, d10), sca(dim, d5)), m1)), mul(sca(dim,
↪→ d9), m23)), sca(dim, d5))

28 mul(mul(mul(add(mul(m23, m3), sca(dim, d14)), mul(add(sca(dim, d7), m4),
↪→ m24)), mul(add(mul(sca(dim, d4), m20), sca(dim, d8)), sca(dim,
↪→ d23))), sca(dim, d21))

29 mul(mul(add(add(add(sca(dim, d8), sca(dim, d1)), sca(dim, d1)), m1),
↪→ add(sca(dim, d7), sca(dim, d9))), m11)

30 mul(mul(mul(mul(add(m9, m14), add(sca(dim, d0), m15)), add(sca(dim,
↪→ d17), sca(dim, d3))), add(mul(sca(dim, d19), m1), sca(dim, d0))),
↪→ sca(dim, d17))

A.1.2 Deep Embedding

A.1.2.1 Depth 1 (Random, Deep)

1 add(lit(m1), sca(dim, d1)).eval()
2 mul(sca(dim, d1), lit(m1)).eval()
3 mul(sca(dim, d1), lit(m0)).eval()

128

A.1. Randomly Generated Expression

4 add(lit(m0), lit(m1)).eval()
5 mul(lit(m0), lit(m1)).eval()
6 add(lit(m1), lit(m0)).eval()
7 add(lit(m1), lit(m0)).eval()
8 mul(lit(m0), sca(dim, d0)).eval()
9 mul(sca(dim, d0), lit(m1)).eval()

10 add(sca(dim, d1), lit(m1)).eval()
11 add(lit(m1), sca(dim, d1)).eval()
12 mul(sca(dim, d0), lit(m0)).eval()
13 add(sca(dim, d0), sca(dim, d1)).eval()
14 add(sca(dim, d1), lit(m0)).eval()
15 add(sca(dim, d1), sca(dim, d1)).eval()
16 add(sca(dim, d0), sca(dim, d0)).eval()
17 mul(lit(m0), sca(dim, d1)).eval()
18 add(sca(dim, d1), sca(dim, d0)).eval()
19 add(lit(m0), sca(dim, d0)).eval()
20 add(lit(m0), lit(m1)).eval()
21 add(sca(dim, d1), lit(m1)).eval()
22 add(lit(m1), lit(m1)).eval()
23 mul(lit(m1), lit(m1)).eval()
24 add(sca(dim, d1), lit(m1)).eval()
25 add(sca(dim, d1), sca(dim, d0)).eval()
26 add(sca(dim, d0), sca(dim, d0)).eval()
27 add(sca(dim, d1), sca(dim, d0)).eval()
28 mul(lit(m0), sca(dim, d1)).eval()
29 add(sca(dim, d1), sca(dim, d1)).eval()
30 add(lit(m0), sca(dim, d0)).eval()

A.1.2.2 Depth 2 (Random, Deep)

1 add(add(sca(dim, d3), sca(dim, d4)), mul(lit(m2), sca(dim, d3))).eval()
2 add(add(sca(dim, d2), lit(m2)), mul(lit(m3), sca(dim, d4))).eval()
3 mul(add(lit(m4), lit(m1)), lit(m0)).eval()
4 add(mul(sca(dim, d2), sca(dim, d4)), mul(lit(m3), lit(m0))).eval()
5 add(mul(lit(m1), sca(dim, d4)), lit(m3)).eval()
6 add(add(sca(dim, d1), sca(dim, d1)), add(sca(dim, d1), sca(dim,

↪→ d4))).eval()
7 mul(mul(sca(dim, d4), lit(m4)), add(lit(m3), lit(m1))).eval()
8 mul(mul(sca(dim, d2), lit(m4)), sca(dim, d1)).eval()
9 add(mul(lit(m2), sca(dim, d0)), add(sca(dim, d3), sca(dim, d1))).eval()

10 mul(mul(sca(dim, d2), lit(m0)), sca(dim, d2)).eval()
11 mul(mul(sca(dim, d2), lit(m3)), mul(lit(m0), lit(m0))).eval()
12 mul(mul(sca(dim, d3), lit(m0)), mul(sca(dim, d1), sca(dim, d4))).eval()
13 add(add(lit(m1), sca(dim, d0)), sca(dim, d0)).eval()
14 mul(add(sca(dim, d2), lit(m4)), sca(dim, d0)).eval()
15 mul(mul(sca(dim, d2), sca(dim, d1)), add(sca(dim, d4), sca(dim,

↪→ d0))).eval()
16 add(add(sca(dim, d2), lit(m0)), mul(lit(m1), sca(dim, d0))).eval()
17 mul(add(lit(m1), lit(m1)), mul(lit(m2), sca(dim, d0))).eval()
18 mul(add(lit(m4), lit(m3)), lit(m3)).eval()
19 mul(mul(sca(dim, d1), sca(dim, d3)), lit(m4)).eval()
20 mul(mul(lit(m3), lit(m4)), mul(lit(m1), sca(dim, d4))).eval()
21 mul(mul(lit(m2), sca(dim, d0)), add(lit(m2), sca(dim, d0))).eval()
22 add(mul(sca(dim, d2), lit(m1)), sca(dim, d3)).eval()
23 mul(add(lit(m3), lit(m1)), mul(lit(m1), lit(m4))).eval()
24 mul(mul(sca(dim, d1), sca(dim, d0)), add(lit(m2), sca(dim, d0))).eval()
25 mul(mul(sca(dim, d3), sca(dim, d4)), add(lit(m4), sca(dim, d2))).eval()

129

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

26 mul(mul(sca(dim, d1), sca(dim, d0)), sca(dim, d4)).eval()
27 add(mul(lit(m4), lit(m2)), add(lit(m1), lit(m1))).eval()
28 mul(add(sca(dim, d0), lit(m2)), lit(m2)).eval()
29 add(mul(sca(dim, d2), sca(dim, d1)), lit(m2)).eval()
30 mul(add(lit(m0), lit(m3)), lit(m3)).eval()

A.1.2.3 Depth 3 (Random, Deep)

1 add(mul(mul(sca(dim, d2), lit(m7)), lit(m8)), sca(dim, d4)).eval()
2 mul(add(mul(lit(m2), lit(m8)), mul(sca(dim, d5), lit(m2))), sca(dim,

↪→ d7)).eval()
3 add(add(mul(lit(m5), lit(m4)), lit(m4)), add(lit(m0), add(lit(m8),

↪→ sca(dim, d1)))).eval()
4 add(mul(add(sca(dim, d1), lit(m5)), mul(lit(m9), lit(m5))),

↪→ add(add(sca(dim, d7), sca(dim, d3)), lit(m5))).eval()
5 add(mul(mul(lit(m6), lit(m6)), lit(m8)), mul(mul(sca(dim, d5), sca(dim,

↪→ d6)), mul(sca(dim, d3), sca(dim, d1)))).eval()
6 mul(mul(add(sca(dim, d2), sca(dim, d0)), lit(m7)), sca(dim, d3)).eval()
7 mul(mul(mul(lit(m4), lit(m0)), add(lit(m5), sca(dim, d2))),

↪→ lit(m2)).eval()
8 add(add(mul(lit(m2), sca(dim, d9)), sca(dim, d1)), sca(dim, d8)).eval()
9 add(mul(mul(lit(m4), sca(dim, d0)), mul(lit(m7), sca(dim, d7))),

↪→ add(sca(dim, d5), lit(m3))).eval()
10 mul(mul(mul(lit(m4), sca(dim, d0)), mul(sca(dim, d7), sca(dim, d2))),

↪→ lit(m5)).eval()
11 add(mul(mul(sca(dim, d2), lit(m7)), add(sca(dim, d6), lit(m8))),

↪→ mul(sca(dim, d9), mul(sca(dim, d1), lit(m0)))).eval()
12 add(mul(add(lit(m4), sca(dim, d2)), mul(lit(m2), lit(m7))),

↪→ add(mul(lit(m1), lit(m3)), lit(m0))).eval()
13 mul(add(add(sca(dim, d7), lit(m9)), lit(m3)), lit(m7)).eval()
14 add(add(mul(lit(m9), sca(dim, d2)), mul(sca(dim, d1), lit(m1))),

↪→ lit(m5)).eval()
15 mul(mul(add(sca(dim, d9), lit(m2)), add(sca(dim, d0), lit(m7))),

↪→ sca(dim, d6)).eval()
16 mul(add(add(lit(m2), lit(m7)), sca(dim, d7)), sca(dim, d4)).eval()
17 mul(mul(add(sca(dim, d8), sca(dim, d4)), add(lit(m1), lit(m3))),

↪→ lit(m5)).eval()
18 mul(add(add(lit(m0), lit(m2)), sca(dim, d3)), sca(dim, d2)).eval()
19 add(mul(add(sca(dim, d1), sca(dim, d2)), mul(lit(m4), sca(dim, d8))),

↪→ lit(m2)).eval()
20 mul(add(mul(sca(dim, d8), sca(dim, d9)), lit(m6)), lit(m3)).eval()
21 add(add(add(sca(dim, d7), sca(dim, d1)), add(lit(m3), lit(m0))),

↪→ add(add(lit(m0), lit(m5)), mul(lit(m5), lit(m1)))).eval()
22 mul(mul(add(sca(dim, d5), sca(dim, d7)), sca(dim, d7)), sca(dim,

↪→ d0)).eval()
23 mul(add(add(sca(dim, d5), sca(dim, d4)), lit(m6)), sca(dim, d1)).eval()
24 add(mul(add(sca(dim, d7), sca(dim, d9)), add(lit(m0), lit(m0))),

↪→ add(sca(dim, d4), sca(dim, d9))).eval()
25 add(add(mul(sca(dim, d7), sca(dim, d4)), add(lit(m3), sca(dim, d7))),

↪→ mul(mul(sca(dim, d9), lit(m4)), lit(m2))).eval()
26 add(mul(mul(sca(dim, d7), sca(dim, d1)), sca(dim, d5)), mul(mul(lit(m6),

↪→ lit(m0)), sca(dim, d7))).eval()
27 add(add(add(sca(dim, d9), sca(dim, d5)), sca(dim, d9)), sca(dim,

↪→ d0)).eval()
28 add(add(add(sca(dim, d5), lit(m1)), add(sca(dim, d6), lit(m8))),

↪→ lit(m4)).eval()

130

A.1. Randomly Generated Expression

29 mul(add(add(sca(dim, d6), sca(dim, d1)), add(sca(dim, d7), lit(m0))),
↪→ sca(dim, d9)).eval()

30 add(add(add(lit(m7), sca(dim, d3)), add(sca(dim, d6), sca(dim, d2))),
↪→ mul(mul(sca(dim, d4), sca(dim, d2)), lit(m3))).eval()

A.1.2.4 Depth 4 (Random, Deep)

1 mul(add(add(mul(lit(m12), lit(m8)), lit(m4)), lit(m7)),
↪→ add(add(lit(m15), add(lit(m2), sca(dim, d3))), lit(m5))).eval()

2 add(mul(mul(add(lit(m0), lit(m10)), add(lit(m9), sca(dim, d0))),
↪→ add(sca(dim, d0), sca(dim, d10))), add(sca(dim, d14), sca(dim,
↪→ d11))).eval()

3 add(add(mul(add(lit(m15), sca(dim, d9)), mul(sca(dim, d9), sca(dim,
↪→ d12))), lit(m4)), mul(mul(add(lit(m15), sca(dim, d1)),
↪→ mul(sca(dim, d8), lit(m1))), lit(m3))).eval()

4 add(mul(mul(add(sca(dim, d10), lit(m8)), add(sca(dim, d2), sca(dim,
↪→ d1))), add(add(sca(dim, d16), lit(m5)), sca(dim, d13))),
↪→ add(add(sca(dim, d0), add(lit(m5), sca(dim, d15))), add(sca(dim,
↪→ d3), mul(lit(m0), sca(dim, d7))))).eval()

5 add(add(mul(add(lit(m13), sca(dim, d0)), mul(lit(m12), lit(m11))),
↪→ add(lit(m10), sca(dim, d14))), add(sca(dim, d0), lit(m11))).eval()

6 add(add(add(mul(sca(dim, d13), sca(dim, d1)), mul(lit(m2), sca(dim,
↪→ d6))), add(add(lit(m15), sca(dim, d12)), mul(sca(dim, d10),
↪→ lit(m6)))), mul(mul(sca(dim, d11), sca(dim, d10)),
↪→ lit(m1))).eval()

7 mul(add(add(add(sca(dim, d11), lit(m12)), mul(sca(dim, d15), sca(dim,
↪→ d5))), lit(m14)), lit(m7)).eval()

8 add(mul(add(add(lit(m5), sca(dim, d11)), mul(lit(m0), sca(dim, d12))),
↪→ lit(m10)), mul(mul(mul(sca(dim, d4), sca(dim, d9)), mul(sca(dim,
↪→ d5), lit(m9))), lit(m7))).eval()

9 mul(mul(mul(mul(lit(m0), sca(dim, d10)), sca(dim, d5)), add(mul(lit(m0),
↪→ lit(m5)), add(sca(dim, d3), lit(m10)))), add(sca(dim, d16),
↪→ mul(add(lit(m6), sca(dim, d14)), lit(m5)))).eval()

10 mul(mul(mul(add(lit(m2), lit(m9)), mul(lit(m3), sca(dim, d0))), sca(dim,
↪→ d11)), add(lit(m5), lit(m13))).eval()

11 add(mul(mul(add(lit(m5), lit(m14)), add(sca(dim, d10), sca(dim, d7))),
↪→ lit(m6)), lit(m3)).eval()

12 mul(add(add(mul(sca(dim, d12), sca(dim, d5)), add(lit(m0), lit(m6))),
↪→ mul(mul(sca(dim, d10), lit(m7)), add(sca(dim, d9), lit(m3)))),
↪→ add(lit(m5), lit(m8))).eval()

13 add(add(add(add(sca(dim, d6), lit(m5)), mul(sca(dim, d5), sca(dim,
↪→ d4))), lit(m7)), add(lit(m2), mul(add(sca(dim, d12), lit(m11)),
↪→ add(lit(m10), sca(dim, d5))))).eval()

14 add(add(mul(mul(lit(m0), sca(dim, d8)), sca(dim, d1)), mul(mul(sca(dim,
↪→ d2), lit(m13)), sca(dim, d16))), add(sca(dim, d11), sca(dim,
↪→ d10))).eval()

15 add(mul(add(mul(sca(dim, d0), lit(m12)), sca(dim, d13)), lit(m4)),
↪→ add(sca(dim, d1), mul(lit(m6), mul(lit(m9), sca(dim,
↪→ d12))))).eval()

16 add(add(add(mul(lit(m3), lit(m10)), mul(sca(dim, d2), lit(m2))),
↪→ sca(dim, d10)), add(mul(mul(sca(dim, d8), lit(m0)), mul(sca(dim,
↪→ d1), sca(dim, d9))), mul(mul(lit(m3), lit(m0)), mul(sca(dim,
↪→ d15), lit(m5))))).eval()

17 mul(add(add(mul(sca(dim, d14), sca(dim, d12)), mul(sca(dim, d6),
↪→ lit(m12))), mul(mul(lit(m15), lit(m5)), lit(m9))),
↪→ mul(mul(sca(dim, d8), add(sca(dim, d12), sca(dim, d13))),
↪→ sca(dim, d7))).eval()

131

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

18 add(mul(add(mul(lit(m8), sca(dim, d3)), add(sca(dim, d10), lit(m14))),
↪→ mul(add(lit(m12), sca(dim, d5)), mul(lit(m9), lit(m7)))),
↪→ add(mul(add(sca(dim, d11), lit(m16)), sca(dim, d13)),
↪→ add(sca(dim, d8), sca(dim, d5)))).eval()

19 add(mul(mul(add(sca(dim, d11), sca(dim, d6)), add(lit(m3), sca(dim,
↪→ d5))), add(lit(m7), sca(dim, d3))), lit(m7)).eval()

20 add(add(mul(mul(sca(dim, d4), lit(m2)), sca(dim, d11)), add(lit(m16),
↪→ mul(sca(dim, d9), sca(dim, d7)))), sca(dim, d14)).eval()

21 mul(add(mul(mul(sca(dim, d1), sca(dim, d7)), sca(dim, d1)), sca(dim,
↪→ d10)), mul(add(lit(m2), sca(dim, d6)), mul(add(lit(m16),
↪→ lit(m9)), add(lit(m15), lit(m12))))).eval()

22 mul(mul(mul(mul(lit(m4), sca(dim, d9)), lit(m16)), mul(add(sca(dim, d0),
↪→ lit(m4)), mul(sca(dim, d15), sca(dim, d1)))),
↪→ mul(mul(add(sca(dim, d11), lit(m6)), mul(sca(dim, d1), sca(dim,
↪→ d13))), lit(m15))).eval()

23 add(add(mul(mul(lit(m8), sca(dim, d9)), sca(dim, d2)), sca(dim, d4)),
↪→ add(add(sca(dim, d15), lit(m2)), mul(sca(dim, d10), sca(dim,
↪→ d0)))).eval()

24 mul(mul(add(mul(sca(dim, d12), sca(dim, d6)), mul(lit(m14), lit(m8))),
↪→ lit(m11)), lit(m2)).eval()

25 mul(add(add(add(lit(m9), sca(dim, d16)), add(lit(m10), sca(dim, d7))),
↪→ lit(m15)), sca(dim, d7)).eval()

26 mul(mul(add(add(lit(m3), sca(dim, d5)), mul(lit(m5), sca(dim, d14))),
↪→ sca(dim, d7)), add(mul(mul(sca(dim, d9), lit(m2)), sca(dim,
↪→ d11)), add(lit(m16), add(sca(dim, d3), sca(dim, d9))))).eval()

27 add(mul(mul(add(lit(m4), lit(m3)), add(sca(dim, d12), sca(dim, d16))),
↪→ mul(sca(dim, d8), sca(dim, d3))), add(add(add(lit(m6), lit(m7)),
↪→ mul(lit(m4), sca(dim, d5))), add(sca(dim, d16), mul(lit(m4),
↪→ sca(dim, d13))))).eval()

28 add(mul(add(add(sca(dim, d5), sca(dim, d13)), sca(dim, d10)),
↪→ add(add(lit(m11), sca(dim, d0)), sca(dim, d12))), add(lit(m11),
↪→ sca(dim, d3))).eval()

29 add(mul(mul(mul(lit(m12), lit(m4)), add(lit(m11), lit(m12))),
↪→ mul(add(sca(dim, d15), lit(m6)), add(lit(m5), sca(dim, d4)))),
↪→ sca(dim, d16)).eval()

30 mul(mul(add(mul(lit(m4), lit(m6)), sca(dim, d6)), add(add(lit(m9),
↪→ lit(m13)), sca(dim, d16))), add(mul(add(lit(m2), lit(m6)),
↪→ sca(dim, d13)), mul(mul(sca(dim, d8), sca(dim, d7)), add(sca(dim,
↪→ d7), lit(m4))))).eval()

A.1.2.5 Depth 5 (Random, Deep)

1 mul(add(mul(add(add(lit(m18), lit(m0)), lit(m21)), lit(m9)), sca(dim,
↪→ d0)), add(lit(m11), sca(dim, d17))).eval()

2 mul(add(add(add(add(lit(m4), sca(dim, d14)), lit(m8)), add(add(lit(m5),
↪→ lit(m19)), sca(dim, d2))), add(lit(m22), mul(add(lit(m0),
↪→ sca(dim, d16)), sca(dim, d13)))), mul(lit(m10), sca(dim,
↪→ d5))).eval()

3 mul(mul(mul(mul(add(lit(m24), sca(dim, d22)), add(lit(m16), sca(dim,
↪→ d3))), lit(m17)), sca(dim, d24)), lit(m14)).eval()

4 add(mul(mul(add(add(sca(dim, d12), sca(dim, d14)), mul(lit(m0), sca(dim,
↪→ d1))), mul(mul(sca(dim, d13), sca(dim, d22)), sca(dim, d22))),
↪→ sca(dim, d19)), sca(dim, d24)).eval()

5 add(mul(add(mul(mul(lit(m17), sca(dim, d5)), sca(dim, d25)), sca(dim,
↪→ d1)), add(sca(dim, d10), lit(m23))), mul(sca(dim, d1),
↪→ add(sca(dim, d6), lit(m9)))).eval()

132

A.1. Randomly Generated Expression

6 add(add(mul(add(add(lit(m21), sca(dim, d14)), lit(m17)),
↪→ mul(mul(sca(dim, d20), lit(m4)), sca(dim, d21))), mul(lit(m4),
↪→ sca(dim, d6))), mul(sca(dim, d19), lit(m16))).eval()

7 add(add(add(add(add(lit(m14), sca(dim, d1)), add(sca(dim, d14),
↪→ lit(m23))), add(add(lit(m12), lit(m13)), mul(sca(dim, d6),
↪→ lit(m25)))), sca(dim, d1)), add(add(sca(dim, d12),
↪→ mul(add(sca(dim, d19), lit(m2)), mul(lit(m22), lit(m7)))),
↪→ lit(m14))).eval()

8 add(mul(mul(mul(mul(lit(m1), lit(m22)), lit(m3)), lit(m11)), sca(dim,
↪→ d22)), mul(sca(dim, d3), mul(add(sca(dim, d23), lit(m2)),
↪→ sca(dim, d2)))).eval()

9 mul(add(mul(mul(mul(sca(dim, d5), sca(dim, d23)), mul(sca(dim, d15),
↪→ lit(m5))), lit(m15)), add(sca(dim, d17), sca(dim, d14))),
↪→ sca(dim, d20)).eval()

10 add(mul(add(mul(mul(sca(dim, d23), sca(dim, d25)), mul(lit(m11),
↪→ sca(dim, d1))), sca(dim, d22)), mul(lit(m8), add(mul(lit(m5),
↪→ lit(m7)), sca(dim, d15)))), sca(dim, d7)).eval()

11 mul(mul(mul(mul(mul(lit(m0), sca(dim, d19)), add(lit(m25), sca(dim,
↪→ d7))), mul(lit(m17), sca(dim, d23))), lit(m12)), sca(dim,
↪→ d2)).eval()

12 add(mul(mul(mul(mul(lit(m16), lit(m6)), add(sca(dim, d14), sca(dim,
↪→ d23))), sca(dim, d23)), add(add(mul(sca(dim, d16), lit(m21)),
↪→ lit(m18)), sca(dim, d12))), mul(add(sca(dim, d7), lit(m25)),
↪→ sca(dim, d13))).eval()

13 add(add(mul(mul(mul(lit(m21), lit(m1)), add(sca(dim, d25), sca(dim,
↪→ d19))), add(lit(m17), sca(dim, d11))), sca(dim, d8)), sca(dim,
↪→ d25)).eval()

14 add(mul(add(add(mul(lit(m23), sca(dim, d22)), mul(lit(m25), lit(m3))),
↪→ mul(lit(m9), sca(dim, d12))), sca(dim, d20)), lit(m11)).eval()

15 add(add(add(mul(mul(lit(m14), lit(m22)), sca(dim, d21)), mul(sca(dim,
↪→ d13), add(sca(dim, d19), lit(m1)))), mul(add(sca(dim, d3),
↪→ mul(sca(dim, d25), lit(m17))), mul(add(sca(dim, d8), sca(dim,
↪→ d7)), add(sca(dim, d13), sca(dim, d0))))), mul(sca(dim, d22),
↪→ add(mul(sca(dim, d25), lit(m12)), sca(dim, d9)))).eval()

16 mul(add(mul(mul(add(sca(dim, d23), lit(m5)), sca(dim, d9)),
↪→ add(mul(sca(dim, d7), sca(dim, d16)), sca(dim, d2))), lit(m4)),
↪→ add(mul(sca(dim, d1), sca(dim, d4)), add(mul(mul(sca(dim, d2),
↪→ lit(m10)), add(lit(m15), sca(dim, d0))), sca(dim, d17)))).eval()

17 add(mul(add(add(mul(sca(dim, d24), sca(dim, d4)), sca(dim, d8)),
↪→ add(mul(lit(m24), sca(dim, d2)), sca(dim, d4))), sca(dim, d14)),
↪→ add(sca(dim, d25), mul(add(add(sca(dim, d17), lit(m10)),
↪→ add(sca(dim, d5), lit(m5))), mul(mul(lit(m18), sca(dim, d25)),
↪→ mul(sca(dim, d5), sca(dim, d15)))))).eval()

18 add(mul(mul(mul(mul(lit(m14), lit(m20)), mul(lit(m10), sca(dim, d24))),
↪→ lit(m13)), mul(lit(m2), mul(mul(lit(m18), sca(dim, d9)),
↪→ add(sca(dim, d0), lit(m4))))), lit(m15)).eval()

19 mul(mul(mul(mul(add(lit(m13), lit(m0)), add(lit(m2), lit(m6))), sca(dim,
↪→ d19)), add(mul(lit(m11), lit(m0)), add(lit(m0), add(lit(m3),
↪→ lit(m1))))), mul(lit(m11), mul(sca(dim, d23), mul(lit(m19),
↪→ add(lit(m12), sca(dim, d6)))))).eval()

20 mul(mul(mul(add(mul(lit(m3), lit(m0)), lit(m16)), lit(m4)), add(sca(dim,
↪→ d21), lit(m6))), mul(mul(mul(mul(sca(dim, d25), lit(m14)),
↪→ lit(m18)), sca(dim, d5)), mul(sca(dim, d0), add(sca(dim, d18),
↪→ add(sca(dim, d19), sca(dim, d9)))))).eval()

21 add(add(add(add(mul(lit(m11), sca(dim, d4)), mul(lit(m25), sca(dim,
↪→ d24))), sca(dim, d12)), sca(dim, d6)), mul(lit(m1), sca(dim,
↪→ d20))).eval()

133

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

22 mul(mul(add(add(add(lit(m23), lit(m4)), sca(dim, d0)), mul(sca(dim, d3),
↪→ mul(sca(dim, d14), lit(m15)))), sca(dim, d1)), sca(dim,
↪→ d23)).eval()

23 mul(add(mul(mul(add(sca(dim, d17), sca(dim, d24)), add(lit(m15),
↪→ lit(m13))), mul(sca(dim, d20), lit(m21))), lit(m9)), sca(dim,
↪→ d1)).eval()

24 add(mul(mul(mul(mul(sca(dim, d25), lit(m7)), add(sca(dim, d0),
↪→ lit(m25))), add(add(lit(m21), lit(m21)), mul(sca(dim, d6),
↪→ sca(dim, d20)))), mul(mul(mul(lit(m18), lit(m7)), lit(m7)),
↪→ lit(m0))), mul(sca(dim, d1), mul(sca(dim, d4), lit(m20)))).eval()

25 mul(add(add(mul(add(lit(m7), lit(m7)), lit(m10)), sca(dim, d7)),
↪→ sca(dim, d19)), sca(dim, d2)).eval()

26 add(mul(mul(add(mul(lit(m23), lit(m12)), add(sca(dim, d4), sca(dim,
↪→ d1))), add(lit(m3), mul(lit(m5), sca(dim, d25)))),
↪→ mul(add(add(sca(dim, d21), lit(m13)), mul(sca(dim, d5),
↪→ lit(m17))), lit(m23))), sca(dim, d21)).eval()

27 mul(add(mul(add(add(sca(dim, d0), sca(dim, d16)), add(sca(dim, d3),
↪→ lit(m17))), mul(mul(sca(dim, d10), sca(dim, d5)), lit(m1))),
↪→ mul(sca(dim, d9), lit(m23))), sca(dim, d5)).eval()

28 mul(mul(mul(add(mul(lit(m23), lit(m3)), sca(dim, d14)), mul(add(sca(dim,
↪→ d7), lit(m4)), lit(m24))), mul(add(mul(sca(dim, d4), lit(m20)),
↪→ sca(dim, d8)), sca(dim, d23))), sca(dim, d21)).eval()

29 mul(mul(add(add(add(sca(dim, d8), sca(dim, d1)), sca(dim, d1)),
↪→ lit(m1)), add(sca(dim, d7), sca(dim, d9))), lit(m11)).eval()

30 mul(mul(mul(mul(add(lit(m9), lit(m14)), add(sca(dim, d0), lit(m15))),
↪→ add(sca(dim, d17), sca(dim, d3))), add(mul(sca(dim, d19),
↪→ lit(m1)), sca(dim, d0))), sca(dim, d17)).eval()

A.2 Biased-Randomly Generated Expression

A.2.1 Shallow Embedding and Implicit Staging

A.2.1.1 Depth 1 (Biased, Shallow)

1 add(m1, m1)
2 mul(sca(dim, d1), m0)
3 mul(sca(dim, d0), m0)
4 add(m0, m1)
5 add(m1, m1)
6 add(m0, m1)
7 add(m0, m1)
8 add(m0, m0)
9 mul(sca(dim, d1), m0)

10 add(m0, m1)
11 add(m0, m1)
12 mul(sca(dim, d1), m1)
13 add(m0, m1)
14 add(m1, m1)
15 mul(sca(dim, d0), m1)
16 mul(sca(dim, d1), m0)
17 mul(sca(dim, d0), m0)
18 mul(sca(dim, d0), m1)
19 mul(sca(dim, d0), m1)
20 mul(sca(dim, d0), m0)
21 add(m0, m0)
22 mul(sca(dim, d1), m1)

134

A.2. Biased-Randomly Generated Expression

23 mul(sca(dim, d0), m1)
24 add(m0, m1)
25 add(m0, m1)
26 mul(sca(dim, d1), m0)
27 add(m0, m0)
28 mul(sca(dim, d0), m0)
29 add(m1, m0)
30 mul(sca(dim, d0), m1)

A.2.1.2 Depth 2 (Biased, Shallow)

1 add(add(m0, m0), add(m0, m3))
2 add(add(m4, m3), add(m3, m0))
3 add(add(m2, m4), add(m4, m4))
4 add(add(m2, m2), m3)
5 mul(sca(dim, d4), add(m2, m1))
6 mul(sca(dim, d1), add(m2, m1))
7 mul(sca(dim, d2), mul(sca(dim, d4), m3))
8 add(add(m2, m1), add(m4, m3))
9 mul(sca(dim, d0), mul(sca(dim, d2), m3))

10 add(add(m1, m0), m2)
11 mul(sca(dim, d1), mul(sca(dim, d1), m3))
12 add(add(m3, m1), add(m4, m0))
13 add(add(m4, m4), m0)
14 mul(sca(dim, d4), add(m2, m1))
15 mul(sca(dim, d2), mul(sca(dim, d0), m2))
16 mul(sca(dim, d4), mul(sca(dim, d1), m0))
17 add(add(m2, m3), m3)
18 mul(sca(dim, d0), add(m3, m3))
19 mul(sca(dim, d2), add(m0, m0))
20 mul(sca(dim, d2), add(m2, m0))
21 mul(sca(dim, d3), add(m0, m2))
22 mul(sca(dim, d1), add(m3, m2))
23 add(add(m0, m4), add(m1, m4))
24 mul(sca(dim, d2), mul(sca(dim, d3), m4))
25 mul(sca(dim, d4), add(m1, m2))
26 mul(sca(dim, d1), mul(sca(dim, d4), m4))
27 add(add(m3, m2), m4)
28 add(add(m3, m1), m4)
29 mul(sca(dim, d1), add(m1, m3))
30 mul(sca(dim, d0), add(m4, m1))

A.2.1.3 Depth 3 (Biased, Shallow)

1 mul(sca(dim, d9), add(add(m9, m2), m8))
2 add(add(add(m4, m8), add(m2, m9)), m4)
3 mul(sca(dim, d4), add(add(m2, m2), add(m8, m7)))
4 add(add(add(m4, m2), add(m0, m0)), add(m7, m3))
5 add(add(add(m7, m6), add(m6, m1)), add(m2, add(m2, m4)))
6 add(add(add(m6, m5), m4), add(m0, m5))
7 add(add(add(m4, m1), m7), m4)
8 mul(sca(dim, d8), add(add(m3, m3), m9))
9 mul(sca(dim, d1), mul(sca(dim, d5), add(m2, m0)))

10 mul(sca(dim, d3), mul(sca(dim, d6), add(m0, m3)))
11 mul(sca(dim, d3), mul(sca(dim, d5), mul(sca(dim, d5), m6)))
12 mul(sca(dim, d2), add(add(m1, m0), m2))

135

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

13 mul(sca(dim, d0), add(add(m9, m1), add(m5, m9)))
14 add(add(add(m1, m0), add(m3, m3)), add(m1, m8))
15 add(add(add(m4, m0), add(m7, m7)), add(m5, m3))
16 mul(sca(dim, d5), mul(sca(dim, d3), add(m8, m7)))
17 mul(sca(dim, d5), add(add(m6, m1), add(m7, m1)))
18 mul(sca(dim, d3), mul(sca(dim, d7), mul(sca(dim, d8), m8)))
19 add(add(add(m1, m2), m9), m8)
20 mul(sca(dim, d2), add(add(m5, m1), add(m2, m8)))
21 add(add(add(m2, m3), m4), add(m3, add(m7, m8)))
22 mul(sca(dim, d8), add(add(m5, m5), m6))
23 mul(sca(dim, d8), add(add(m0, m7), m6))
24 mul(sca(dim, d3), add(add(m0, m9), add(m5, m6)))
25 add(add(add(m6, m0), m1), m2)
26 mul(sca(dim, d0), add(add(m3, m3), add(m2, m6)))
27 add(add(add(m2, m3), m6), add(m2, add(m6, m8)))
28 mul(sca(dim, d9), add(add(m3, m0), m7))
29 mul(sca(dim, d9), mul(sca(dim, d3), add(m0, m6)))
30 add(add(add(m5, m0), add(m5, m8)), m8)

A.2.1.4 Depth 4 (Biased, Shallow)

1 mul(add(add(mul(m12, m8), m4), m7), add(add(m15, add(m2, sca(dim, d3))),
↪→ m5))

2 mul(sca(dim, d16), mul(sca(dim, d0), add(add(m8, m11), m5)))
3 add(add(add(add(m6, m1), m3), m9), m3)
4 add(add(add(add(m2, m11), m15), add(m12, m1)), add(add(m14, m7), m5))
5 mul(sca(dim, d2), mul(sca(dim, d0), add(add(m0, m5), m12)))
6 mul(sca(dim, d11), mul(sca(dim, d11), add(add(m10, m4), add(m13, m9))))
7 add(add(add(add(m14, m5), m7), m3), m0)
8 add(add(add(add(m5, m5), m12), m2), add(add(m10, m11), add(m10, add(m11,

↪→ m6))))
9 add(add(add(add(m0, m8), add(m5, m1)), m3), add(m14, m0))

10 add(add(add(add(m2, m14), m6), m12), m7)
11 add(add(add(add(m4, m5), add(m0, m10)), m0), m0)
12 add(add(add(add(m9, m8), m9), add(m15, m9)), add(add(add(m3, m9),

↪→ add(m2, m15)), m1))
13 mul(sca(dim, d1), add(add(add(m8, m4), add(m10, m5)), add(m15, m9)))
14 add(add(add(add(m2, m16), add(m8, m0)), add(add(m8, m2), m3)), add(m0,

↪→ add(m1, m13)))
15 add(add(add(add(m9, m12), m11), add(m10, m14)), add(m0, m11))
16 add(add(add(add(m13, m1), add(m2, m6)), add(add(m15, m12), add(m10,

↪→ m6))), add(add(m11, m10), m1))
17 mul(sca(dim, d1), add(add(add(m5, m11), m15), add(m4, add(m7, m7))))
18 add(add(add(add(m10, m3), m12), add(m16, add(m11, m4))), m9)
19 mul(sca(dim, d6), add(add(add(m9, m11), add(m4, m12)), add(add(m11, m5),

↪→ m5)))
20 add(add(add(add(m11, m11), add(m7, m6)), add(add(m14, m2), add(m2,

↪→ m7))), add(add(m3, add(m11, m4)), m6))
21 add(add(add(add(m2, m1), m8), m11), add(add(m6, m3), add(m1, m12)))
22 mul(sca(dim, d12), add(add(add(m4, m9), add(m10, m7)), add(add(m1, m5),

↪→ m5)))
23 add(add(add(add(m7, m6), m5), add(m5, m4)), m7)
24 mul(sca(dim, d5), add(add(add(m12, m11), add(m10, m5)), m2))
25 add(add(add(add(m8, m1), add(m10, m12)), m1), add(add(m11, m10), m13))
26 add(add(add(add(m12, m13), m4), add(m1, add(m6, m2))), m11)
27 mul(sca(dim, d5), add(add(add(m3, m10), add(m2, m2)), m10))
28 mul(sca(dim, d9), mul(sca(dim, d8), add(add(m12, m1), add(m8, m11))))

136

A.2. Biased-Randomly Generated Expression

29 add(add(add(add(m15, m5), add(m4, m2)), add(m12, add(m6, m12))),
↪→ add(add(add(m7, m3), add(m12, m8)), add(m12, m13)))

30 add(add(add(add(m15, m8), add(m7, m10)), add(add(m8, m12), add(m13,
↪→ m9))), m7)

31 mul(sca(dim, d12), mul(sca(dim, d11), mul(sca(dim, d7), add(m14, m10))))

A.2.1.5 Depth 5 (Biased, Shallow)

1 add(add(add(add(add(m4, m8), m13), m14), add(m0, add(add(m15, m20),
↪→ add(m3, m23)))), m3)

2 add(add(add(add(add(m3, m10), add(m2, m22)), m12), m15), m11)
3 add(add(add(add(add(m14, m14), m23), m4), add(m21, m4)), m2)
4 mul(sca(dim, d25), mul(sca(dim, d22), mul(sca(dim, d12), mul(sca(dim,

↪→ d24), mul(sca(dim, d3), m11)))))
5 mul(sca(dim, d0), add(add(add(add(m13, m9), add(m2, m12)), add(m12,

↪→ m2)), m1))
6 add(add(add(add(add(m21, m5), m13), add(add(m18, m6), m22)), add(m23,

↪→ add(m24, m12))), add(m12, add(m6, add(add(m19, m6), add(m1,
↪→ m17)))))

7 add(add(add(add(add(m25, m6), m16), m22), add(m22, m9)), add(m0, m10))
8 mul(sca(dim, d18), add(add(add(add(m5, m23), m12), add(m18, add(m6,

↪→ m4))), m13))
9 add(add(add(add(add(m15, m10), m1), m0), add(add(add(m12, m16), add(m5,

↪→ m6)), m11)), m22)
10 mul(sca(dim, d16), add(add(add(add(m6, m17), add(m17, m23)), add(m12,

↪→ m17)), add(add(m20, m16), add(add(m7, m6), add(m5, m18)))))
11 mul(sca(dim, d11), mul(sca(dim, d7), add(add(add(m8, m16), m4), m18)))
12 mul(sca(dim, d10), mul(sca(dim, d19), mul(sca(dim, d18), add(add(m3,

↪→ m5), m11))))
13 mul(sca(dim, d5), add(add(add(add(m15, m16), add(m12, m13)), add(add(m3,

↪→ m3), add(m16, m18))), m13))
14 mul(sca(dim, d16), mul(sca(dim, d19), mul(sca(dim, d3), mul(sca(dim,

↪→ d6), add(m12, m5)))))
15 mul(sca(dim, d23), add(add(add(add(m11, m3), add(m4, m14)), m8),

↪→ add(add(m5, m19), m2)))
16 mul(sca(dim, d10), mul(sca(dim, d21), add(add(add(m11, m22), add(m2,

↪→ m23)), m11)))
17 mul(sca(dim, d22), add(add(add(add(m7, m19), add(m17, m24)), m14), m15))
18 mul(sca(dim, d7), mul(sca(dim, d23), add(add(add(m6, m24), m24),

↪→ add(m13, add(m17, m25)))))
19 mul(sca(dim, d19), add(add(add(add(m8, m0), add(m25, m1)), add(m10,

↪→ m23)), add(m1, add(m6, m9))))
20 add(add(add(add(add(m21, m14), m17), add(add(m20, m4), m21)), add(m4,

↪→ m6)), add(m19, m16))
21 add(add(add(add(add(m14, m1), add(m14, m23)), add(add(m12, m13), add(m6,

↪→ m25))), m1), add(add(m12, add(add(m19, m2), add(m22, m7))), m14))
22 add(add(add(add(add(m1, m22), m3), m11), m22), add(m3, add(add(m23, m2),

↪→ m2)))
23 mul(sca(dim, d5), mul(sca(dim, d22), mul(sca(dim, d17), add(add(m8,

↪→ m25), m11))))
24 add(add(add(add(add(m17, m12), add(m20, m6)), add(m25, add(m11, m1))),

↪→ m22), add(m8, add(add(add(m3, m14), add(m13, m8)), add(add(m3,
↪→ m20), add(m5, m19)))))

25 add(add(add(add(add(m12, m2), m20), add(add(m25, m5), m18)), m20),
↪→ add(add(m23, add(add(m10, m14), m10)), m2))

26 mul(sca(dim, d25), mul(sca(dim, d0), add(add(add(m3, m3), add(m24,
↪→ m21)), m1)))

137

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

27 mul(sca(dim, d5), mul(sca(dim, d13), mul(sca(dim, d1), mul(sca(dim,
↪→ d19), add(m3, m6)))))

28 add(add(add(add(add(m4, m16), add(m14, m15)), add(m7, add(m20, m11))),
↪→ m1), add(m14, add(m25, m6)))

29 mul(sca(dim, d15), add(add(add(add(m10, m23), add(m3, m8)), add(add(m14,
↪→ m20), add(m7, m18))), add(m0, add(m22, add(m12, m2)))))

30 add(add(add(add(add(m25, m5), add(m5, m9)), add(add(m7, m16), m2)), m4),
↪→ add(add(m1, m4), add(add(add(m2, m10), add(m15, m0)), m17)))

A.2.2 Deep Embedding

A.2.2.1 Depth 1 (Biased, Deep)

1 add(lit(m1), lit(m1)).eval()
2 mul(sca(dim, d1), lit(m0)).eval()
3 mul(sca(dim, d0), lit(m0)).eval()
4 add(lit(m0), lit(m1)).eval()
5 add(lit(m1), lit(m1)).eval()
6 add(lit(m0), lit(m1)).eval()
7 add(lit(m0), lit(m1)).eval()
8 add(lit(m0), lit(m0)).eval()
9 mul(sca(dim, d1), lit(m0)).eval()

10 add(lit(m0), lit(m1)).eval()
11 add(lit(m0), lit(m1)).eval()
12 mul(sca(dim, d1), lit(m1)).eval()
13 add(lit(m0), lit(m1)).eval()
14 add(lit(m1), lit(m1)).eval()
15 mul(sca(dim, d0), lit(m1)).eval()
16 mul(sca(dim, d1), lit(m0)).eval()
17 mul(sca(dim, d0), lit(m0)).eval()
18 mul(sca(dim, d0), lit(m1)).eval()
19 mul(sca(dim, d0), lit(m1)).eval()
20 mul(sca(dim, d0), lit(m0)).eval()
21 add(lit(m0), lit(m0)).eval()
22 mul(sca(dim, d1), lit(m1)).eval()
23 mul(sca(dim, d0), lit(m1)).eval()
24 add(lit(m0), lit(m1)).eval()
25 add(lit(m0), lit(m1)).eval()
26 mul(sca(dim, d1), lit(m0)).eval()
27 add(lit(m0), lit(m0)).eval()
28 mul(sca(dim, d0), lit(m0)).eval()
29 add(lit(m1), lit(m0)).eval()
30 mul(sca(dim, d0), lit(m1)).eval()

A.2.2.2 Depth 2 (Biased, Deep)

1 add(add(lit(m0), lit(m0)), add(lit(m0), lit(m3))).eval()
2 add(add(lit(m4), lit(m3)), add(lit(m3), lit(m0))).eval()
3 add(add(lit(m2), lit(m4)), add(lit(m4), lit(m4))).eval()
4 add(add(lit(m2), lit(m2)), lit(m3)).eval()
5 mul(sca(dim, d4), add(lit(m2), lit(m1))).eval()
6 mul(sca(dim, d1), add(lit(m2), lit(m1))).eval()
7 mul(sca(dim, d2), mul(sca(dim, d4), lit(m3))).eval()
8 add(add(lit(m2), lit(m1)), add(lit(m4), lit(m3))).eval()
9 mul(sca(dim, d0), mul(sca(dim, d2), lit(m3))).eval()

10 add(add(lit(m1), lit(m0)), lit(m2)).eval()

138

A.2. Biased-Randomly Generated Expression

11 mul(sca(dim, d1), mul(sca(dim, d1), lit(m3))).eval()
12 add(add(lit(m3), lit(m1)), add(lit(m4), lit(m0))).eval()
13 add(add(lit(m4), lit(m4)), lit(m0)).eval()
14 mul(sca(dim, d4), add(lit(m2), lit(m1))).eval()
15 mul(sca(dim, d2), mul(sca(dim, d0), lit(m2))).eval()
16 mul(sca(dim, d4), mul(sca(dim, d1), lit(m0))).eval()
17 add(add(lit(m2), lit(m3)), lit(m3)).eval()
18 mul(sca(dim, d0), add(lit(m3), lit(m3))).eval()
19 mul(sca(dim, d2), add(lit(m0), lit(m0))).eval()
20 mul(sca(dim, d2), add(lit(m2), lit(m0))).eval()
21 mul(sca(dim, d3), add(lit(m0), lit(m2))).eval()
22 mul(sca(dim, d1), add(lit(m3), lit(m2))).eval()
23 add(add(lit(m0), lit(m4)), add(lit(m1), lit(m4))).eval()
24 mul(sca(dim, d2), mul(sca(dim, d3), lit(m4))).eval()
25 mul(sca(dim, d4), add(lit(m1), lit(m2))).eval()
26 mul(sca(dim, d1), mul(sca(dim, d4), lit(m4))).eval()
27 add(add(lit(m3), lit(m2)), lit(m4)).eval()
28 add(add(lit(m3), lit(m1)), lit(m4)).eval()
29 mul(sca(dim, d1), add(lit(m1), lit(m3))).eval()
30 mul(sca(dim, d0), add(lit(m4), lit(m1))).eval()

A.2.2.3 Depth 3 (Biased, Deep)

1 mul(sca(dim, d9), add(add(lit(m9), lit(m2)), lit(m8))).eval()
2 add(add(add(lit(m4), lit(m8)), add(lit(m2), lit(m9))), lit(m4)).eval()
3 mul(sca(dim, d4), add(add(lit(m2), lit(m2)), add(lit(m8),

↪→ lit(m7)))).eval()
4 add(add(add(lit(m4), lit(m2)), add(lit(m0), lit(m0))), add(lit(m7),

↪→ lit(m3))).eval()
5 add(add(add(lit(m7), lit(m6)), add(lit(m6), lit(m1))), add(lit(m2),

↪→ add(lit(m2), lit(m4)))).eval()
6 add(add(add(lit(m6), lit(m5)), lit(m4)), add(lit(m0), lit(m5))).eval()
7 add(add(add(lit(m4), lit(m1)), lit(m7)), lit(m4)).eval()
8 mul(sca(dim, d8), add(add(lit(m3), lit(m3)), lit(m9))).eval()
9 mul(sca(dim, d1), mul(sca(dim, d5), add(lit(m2), lit(m0)))).eval()

10 mul(sca(dim, d3), mul(sca(dim, d6), add(lit(m0), lit(m3)))).eval()
11 mul(sca(dim, d3), mul(sca(dim, d5), mul(sca(dim, d5), lit(m6)))).eval()
12 mul(sca(dim, d2), add(add(lit(m1), lit(m0)), lit(m2))).eval()
13 mul(sca(dim, d0), add(add(lit(m9), lit(m1)), add(lit(m5),

↪→ lit(m9)))).eval()
14 add(add(add(lit(m1), lit(m0)), add(lit(m3), lit(m3))), add(lit(m1),

↪→ lit(m8))).eval()
15 add(add(add(lit(m4), lit(m0)), add(lit(m7), lit(m7))), add(lit(m5),

↪→ lit(m3))).eval()
16 mul(sca(dim, d5), mul(sca(dim, d3), add(lit(m8), lit(m7)))).eval()
17 mul(sca(dim, d5), add(add(lit(m6), lit(m1)), add(lit(m7),

↪→ lit(m1)))).eval()
18 mul(sca(dim, d3), mul(sca(dim, d7), mul(sca(dim, d8), lit(m8)))).eval()
19 add(add(add(lit(m1), lit(m2)), lit(m9)), lit(m8)).eval()
20 mul(sca(dim, d2), add(add(lit(m5), lit(m1)), add(lit(m2),

↪→ lit(m8)))).eval()
21 add(add(add(lit(m2), lit(m3)), lit(m4)), add(lit(m3), add(lit(m7),

↪→ lit(m8)))).eval()
22 mul(sca(dim, d8), add(add(lit(m5), lit(m5)), lit(m6))).eval()
23 mul(sca(dim, d8), add(add(lit(m0), lit(m7)), lit(m6))).eval()
24 mul(sca(dim, d3), add(add(lit(m0), lit(m9)), add(lit(m5),

↪→ lit(m6)))).eval()

139

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

25 add(add(add(lit(m6), lit(m0)), lit(m1)), lit(m2)).eval()
26 mul(sca(dim, d0), add(add(lit(m3), lit(m3)), add(lit(m2),

↪→ lit(m6)))).eval()
27 add(add(add(lit(m2), lit(m3)), lit(m6)), add(lit(m2), add(lit(m6),

↪→ lit(m8)))).eval()
28 mul(sca(dim, d9), add(add(lit(m3), lit(m0)), lit(m7))).eval()
29 mul(sca(dim, d9), mul(sca(dim, d3), add(lit(m0), lit(m6)))).eval()
30 add(add(add(lit(m5), lit(m0)), add(lit(m5), lit(m8))), lit(m8)).eval()

A.2.2.4 Depth 4 (Biased, Deep)

1 mul(sca(dim, d16), mul(sca(dim, d0), add(add(lit(m8), lit(m11)),
↪→ lit(m5)))).eval()

2 add(add(add(add(lit(m6), lit(m1)), lit(m3)), lit(m9)), lit(m3)).eval()
3 add(add(add(add(lit(m2), lit(m11)), lit(m15)), add(lit(m12), lit(m1))),

↪→ add(add(lit(m14), lit(m7)), lit(m5))).eval()
4 mul(sca(dim, d2), mul(sca(dim, d0), add(add(lit(m0), lit(m5)),

↪→ lit(m12)))).eval()
5 mul(sca(dim, d11), mul(sca(dim, d11), add(add(lit(m10), lit(m4)),

↪→ add(lit(m13), lit(m9))))).eval()
6 add(add(add(add(lit(m14), lit(m5)), lit(m7)), lit(m3)), lit(m0)).eval()
7 add(add(add(add(lit(m5), lit(m5)), lit(m12)), lit(m2)),

↪→ add(add(lit(m10), lit(m11)), add(lit(m10), add(lit(m11),
↪→ lit(m6))))).eval()

8 add(add(add(add(lit(m0), lit(m8)), add(lit(m5), lit(m1))), lit(m3)),
↪→ add(lit(m14), lit(m0))).eval()

9 add(add(add(add(lit(m2), lit(m14)), lit(m6)), lit(m12)), lit(m7)).eval()
10 add(add(add(add(lit(m4), lit(m5)), add(lit(m0), lit(m10))), lit(m0)),

↪→ lit(m0)).eval()
11 add(add(add(add(lit(m9), lit(m8)), lit(m9)), add(lit(m15), lit(m9))),

↪→ add(add(add(lit(m3), lit(m9)), add(lit(m2), lit(m15))),
↪→ lit(m1))).eval()

12 mul(sca(dim, d1), add(add(add(lit(m8), lit(m4)), add(lit(m10),
↪→ lit(m5))), add(lit(m15), lit(m9)))).eval()

13 add(add(add(add(lit(m2), lit(m16)), add(lit(m8), lit(m0))),
↪→ add(add(lit(m8), lit(m2)), lit(m3))), add(lit(m0), add(lit(m1),
↪→ lit(m13)))).eval()

14 add(add(add(add(lit(m9), lit(m12)), lit(m11)), add(lit(m10), lit(m14))),
↪→ add(lit(m0), lit(m11))).eval()

15 add(add(add(add(lit(m13), lit(m1)), add(lit(m2), lit(m6))),
↪→ add(add(lit(m15), lit(m12)), add(lit(m10), lit(m6)))),
↪→ add(add(lit(m11), lit(m10)), lit(m1))).eval()

16 mul(sca(dim, d1), add(add(add(lit(m5), lit(m11)), lit(m15)),
↪→ add(lit(m4), add(lit(m7), lit(m7))))).eval()

17 add(add(add(add(lit(m10), lit(m3)), lit(m12)), add(lit(m16),
↪→ add(lit(m11), lit(m4)))), lit(m9)).eval()

18 mul(sca(dim, d6), add(add(add(lit(m9), lit(m11)), add(lit(m4),
↪→ lit(m12))), add(add(lit(m11), lit(m5)), lit(m5)))).eval()

19 add(add(add(add(lit(m11), lit(m11)), add(lit(m7), lit(m6))),
↪→ add(add(lit(m14), lit(m2)), add(lit(m2), lit(m7)))),
↪→ add(add(lit(m3), add(lit(m11), lit(m4))), lit(m6))).eval()

20 add(add(add(add(lit(m2), lit(m1)), lit(m8)), lit(m11)), add(add(lit(m6),
↪→ lit(m3)), add(lit(m1), lit(m12)))).eval()

21 mul(sca(dim, d12), add(add(add(lit(m4), lit(m9)), add(lit(m10),
↪→ lit(m7))), add(add(lit(m1), lit(m5)), lit(m5)))).eval()

22 add(add(add(add(lit(m7), lit(m6)), lit(m5)), add(lit(m5), lit(m4))),
↪→ lit(m7)).eval()

140

A.2. Biased-Randomly Generated Expression

23 mul(sca(dim, d5), add(add(add(lit(m12), lit(m11)), add(lit(m10),
↪→ lit(m5))), lit(m2))).eval()

24 add(add(add(add(lit(m8), lit(m1)), add(lit(m10), lit(m12))), lit(m1)),
↪→ add(add(lit(m11), lit(m10)), lit(m13))).eval()

25 add(add(add(add(lit(m12), lit(m13)), lit(m4)), add(lit(m1), add(lit(m6),
↪→ lit(m2)))), lit(m11)).eval()

26 mul(sca(dim, d5), add(add(add(lit(m3), lit(m10)), add(lit(m2),
↪→ lit(m2))), lit(m10))).eval()

27 mul(sca(dim, d9), mul(sca(dim, d8), add(add(lit(m12), lit(m1)),
↪→ add(lit(m8), lit(m11))))).eval()

28 add(add(add(add(lit(m15), lit(m5)), add(lit(m4), lit(m2))),
↪→ add(lit(m12), add(lit(m6), lit(m12)))), add(add(add(lit(m7),
↪→ lit(m3)), add(lit(m12), lit(m8))), add(lit(m12),
↪→ lit(m13)))).eval()

29 add(add(add(add(lit(m15), lit(m8)), add(lit(m7), lit(m10))),
↪→ add(add(lit(m8), lit(m12)), add(lit(m13), lit(m9)))),
↪→ lit(m7)).eval()

30 mul(sca(dim, d12), mul(sca(dim, d11), mul(sca(dim, d7), add(lit(m14),
↪→ lit(m10))))).eval()

A.2.2.5 Depth 5 (Biased, Deep)

1 add(add(add(add(add(lit(m4), lit(m8)), lit(m13)), lit(m14)),
↪→ add(lit(m0), add(add(lit(m15), lit(m20)), add(lit(m3),
↪→ lit(m23))))), lit(m3)).eval()

2 add(add(add(add(add(lit(m3), lit(m10)), add(lit(m2), lit(m22))),
↪→ lit(m12)), lit(m15)), lit(m11)).eval()

3 add(add(add(add(add(lit(m14), lit(m14)), lit(m23)), lit(m4)),
↪→ add(lit(m21), lit(m4))), lit(m2)).eval()

4 mul(sca(dim, d25), mul(sca(dim, d22), mul(sca(dim, d12), mul(sca(dim,
↪→ d24), mul(sca(dim, d3), lit(m11)))))).eval()

5 mul(sca(dim, d0), add(add(add(add(lit(m13), lit(m9)), add(lit(m2),
↪→ lit(m12))), add(lit(m12), lit(m2))), lit(m1))).eval()

6 add(add(add(add(add(lit(m21), lit(m5)), lit(m13)), add(add(lit(m18),
↪→ lit(m6)), lit(m22))), add(lit(m23), add(lit(m24), lit(m12)))),
↪→ add(lit(m12), add(lit(m6), add(add(lit(m19), lit(m6)),
↪→ add(lit(m1), lit(m17)))))).eval()

7 add(add(add(add(add(lit(m25), lit(m6)), lit(m16)), lit(m22)),
↪→ add(lit(m22), lit(m9))), add(lit(m0), lit(m10))).eval()

8 mul(sca(dim, d18), add(add(add(add(lit(m5), lit(m23)), lit(m12)),
↪→ add(lit(m18), add(lit(m6), lit(m4)))), lit(m13))).eval()

9 add(add(add(add(add(lit(m15), lit(m10)), lit(m1)), lit(m0)),
↪→ add(add(add(lit(m12), lit(m16)), add(lit(m5), lit(m6))),
↪→ lit(m11))), lit(m22)).eval()

10 mul(sca(dim, d16), add(add(add(add(lit(m6), lit(m17)), add(lit(m17),
↪→ lit(m23))), add(lit(m12), lit(m17))), add(add(lit(m20),
↪→ lit(m16)), add(add(lit(m7), lit(m6)), add(lit(m5),
↪→ lit(m18)))))).eval()

11 mul(sca(dim, d11), mul(sca(dim, d7), add(add(add(lit(m8), lit(m16)),
↪→ lit(m4)), lit(m18)))).eval()

12 mul(sca(dim, d10), mul(sca(dim, d19), mul(sca(dim, d18),
↪→ add(add(lit(m3), lit(m5)), lit(m11))))).eval()

13 mul(sca(dim, d5), add(add(add(add(lit(m15), lit(m16)), add(lit(m12),
↪→ lit(m13))), add(add(lit(m3), lit(m3)), add(lit(m16), lit(m18)))),
↪→ lit(m13))).eval()

14 mul(sca(dim, d16), mul(sca(dim, d19), mul(sca(dim, d3), mul(sca(dim,
↪→ d6), add(lit(m12), lit(m5)))))).eval()

141

A. MATRIX EDSL EXPERIMENT EXPRESSIONS

15 mul(sca(dim, d23), add(add(add(add(lit(m11), lit(m3)), add(lit(m4),
↪→ lit(m14))), lit(m8)), add(add(lit(m5), lit(m19)),
↪→ lit(m2)))).eval()

16 mul(sca(dim, d10), mul(sca(dim, d21), add(add(add(lit(m11), lit(m22)),
↪→ add(lit(m2), lit(m23))), lit(m11)))).eval()

17 mul(sca(dim, d22), add(add(add(add(lit(m7), lit(m19)), add(lit(m17),
↪→ lit(m24))), lit(m14)), lit(m15))).eval()

18 mul(sca(dim, d7), mul(sca(dim, d23), add(add(add(lit(m6), lit(m24)),
↪→ lit(m24)), add(lit(m13), add(lit(m17), lit(m25)))))).eval()

19 mul(sca(dim, d19), add(add(add(add(lit(m8), lit(m0)), add(lit(m25),
↪→ lit(m1))), add(lit(m10), lit(m23))), add(lit(m1), add(lit(m6),
↪→ lit(m9))))).eval()

20 add(add(add(add(add(lit(m21), lit(m14)), lit(m17)), add(add(lit(m20),
↪→ lit(m4)), lit(m21))), add(lit(m4), lit(m6))), add(lit(m19),
↪→ lit(m16))).eval()

21 add(add(add(add(add(lit(m14), lit(m1)), add(lit(m14), lit(m23))),
↪→ add(add(lit(m12), lit(m13)), add(lit(m6), lit(m25)))), lit(m1)),
↪→ add(add(lit(m12), add(add(lit(m19), lit(m2)), add(lit(m22),
↪→ lit(m7)))), lit(m14))).eval()

22 add(add(add(add(add(lit(m1), lit(m22)), lit(m3)), lit(m11)), lit(m22)),
↪→ add(lit(m3), add(add(lit(m23), lit(m2)), lit(m2)))).eval()

23 mul(sca(dim, d5), mul(sca(dim, d22), mul(sca(dim, d17), add(add(lit(m8),
↪→ lit(m25)), lit(m11))))).eval()

24 add(add(add(add(add(lit(m17), lit(m12)), add(lit(m20), lit(m6))),
↪→ add(lit(m25), add(lit(m11), lit(m1)))), lit(m22)), add(lit(m8),
↪→ add(add(add(lit(m3), lit(m14)), add(lit(m13), lit(m8))),
↪→ add(add(lit(m3), lit(m20)), add(lit(m5), lit(m19)))))).eval()

25 add(add(add(add(add(lit(m12), lit(m2)), lit(m20)), add(add(lit(m25),
↪→ lit(m5)), lit(m18))), lit(m20)), add(add(lit(m23),
↪→ add(add(lit(m10), lit(m14)), lit(m10))), lit(m2))).eval()

26 mul(sca(dim, d25), mul(sca(dim, d0), add(add(add(lit(m3), lit(m3)),
↪→ add(lit(m24), lit(m21))), lit(m1)))).eval()

27 mul(sca(dim, d5), mul(sca(dim, d13), mul(sca(dim, d1), mul(sca(dim,
↪→ d19), add(lit(m3), lit(m6)))))).eval()

28 add(add(add(add(add(lit(m4), lit(m16)), add(lit(m14), lit(m15))),
↪→ add(lit(m7), add(lit(m20), lit(m11)))), lit(m1)), add(lit(m14),
↪→ add(lit(m25), lit(m6)))).eval()

29 mul(sca(dim, d15), add(add(add(add(lit(m10), lit(m23)), add(lit(m3),
↪→ lit(m8))), add(add(lit(m14), lit(m20)), add(lit(m7), lit(m18)))),
↪→ add(lit(m0), add(lit(m22), add(lit(m12), lit(m2)))))).eval()

30 add(add(add(add(add(lit(m25), lit(m5)), add(lit(m5), lit(m9))),
↪→ add(add(lit(m7), lit(m16)), lit(m2))), lit(m4)), add(add(lit(m1),
↪→ lit(m4)), add(add(add(lit(m2), lit(m10)), add(lit(m15),
↪→ lit(m0))), lit(m17)))).eval()

142

APPENDIX B
Tame-Staging Experiments

B.1 Centroid-Calculation Experiment

Listing B.1 shows the generation of weighted-vector arrays and the benchmark
loops. TickTock.tick(), TickTock.tock(), and TickTock.tockPrint()
are utility methods for measuring time differences in milliseconds.

LISTING B.1: Centroid-calculation benchmark

1 Random r = new Random(42);
2 WeightedVec[][] weightedVecs = new WeightedVec[20][];
3 for (int i = 0; i < 20; i++) {
4 weightedVecs[i] = new WeightedVec[Math.abs(r.nextInt(50)) + 50];
5 for (int j = 0; j < weightedVecs[i].length; j++) {
6 Vec v = Vec.create(r.doubles(100000).toArray());
7 int t = r.nextInt(20);
8 double w = t > 15 ? 0.0 : t > 10 ? 1.0 : (double) t / 20.0;
9 weightedVecs[i][j] = new WeightedVec(v, w);

10 }
11 }
12

13 Vec res = null;
14 // Warm-up
15 for (int i = 0; i < 1000; i++) {
16 res = centroid(weightedVecs[i % 20]);
17 }
18 System.gc();
19 try { Thread.sleep(2000); } catch (⋯ e) { e.printStackTrace(); }
20 // Measurement
21 TickTock.tick();
22 for (int i = 0; i < 1000; i++) {
23 res = centroid(weightedVecs[i % 20]);
24 }
25 // Print time difference in ms
26 TickTock.tockPrint();
27 ⋯

143

B. TAME-STAGING EXPERIMENTS

B.2 Radar Experiment

Listing B.2 shows the generation of tracked objects and the benchmark loops.

LISTING B.2: Radar benchmark

1 ArrayList<NamedRegion> regions = new ArrayList<>();
2 regions.add(r1);
3 ⋯
4 regions.add(r14);
5 Random r = new Random(24);
6 int width = 1000;
7 int height = 1000;
8 List<TrackedObject> objs = new ArrayList<>();
9 for (int i = 0; i < 100000; i++) {

10 objs.add(new TrackedObject(
11 r.nextInt(width) - width / 2, r.nextInt(height) - height / 2)
12);
13 }
14

15 Radar radar = new Radar(regions, objs);
16 radar.track(1000, width, height);
17 System.gc();
18 try { Thread.sleep(2000); } catch (⋯ e) { e.printStackTrace(); }
19

20 TickTock.tick();
21 List<TrackingData> res = radar.track(1000, width, height);
22 TickTock.tockPrint();
23 ⋯

B.3 Connections Experiment

Listings B.3 and B.4 show the generation of list entries and the benchmark loops.

LISTING B.3: Connections benchmark

1 Database db = Database.createRandom(2000000);
2 ImmutableList<String> l = null;
3 for (int i = 0; i < 100; i++) {
4 l = db.query("Tokyo", "Frankfurt", 2500.0, Vessel.Type.PLANE);
5 }
6 System.gc();
7 try { Thread.sleep(2000); } catch (⋯ e) { e.printStackTrace(); }
8

9 TickTock.tick();
10 for (int i = 0; i < 100; i++) {
11 l = db.query("Tokyo", "Frankfurt", 2500.0, Vessel.Type.PLANE);
12 }
13 TickTock.tockPrint();
14 ⋯

144

B.3. Connections Experiment

LISTING B.4: Random entries factory

1 public static Database createRandom(int size) {
2 Random r = new Random(42);
3

4 ImmutableList.Builder<Vessel> vesselsBuilder = ImmutableList.builder();
5 for (int i = 0; i < 100; i++) {
6 Vessel v = new Vessel(
7 r.nextInt(200),
8 Vessel.Type.values()[r.nextInt(Vessel.Type.values().length)]
9);

10 vesselsBuilder.add(v);
11 }
12 ImmutableList<Vessel> vessels = vesselsBuilder.build();
13

14 String[] locations = { "Tokyo", "Frankfurt", "London", "New York" };
15

16 ImmutableList.Builder<Connection> connectionsBuilder =
17 ImmutableList.builder();
18 for (int i = 0; i < size; i++) {
19 Vessel v = vessels.get(r.nextInt(vessels.size()));
20 Connection c = new Connection(
21 locations[r.nextInt(locations.length)],
22 locations[r.nextInt(locations.length)],
23 r.nextInt(v.getCapacity() + 20),
24 v,
25 r.nextInt(2000)
26);
27 connectionsBuilder.add(c);
28 }
29

30 return new Database(connectionsBuilder.build());
31 }

B.3.1 Compiler Implementation

1 class ImmListLCompiler implements Expression.Visitor {
2 private abstract static class Op { ObjectClosure<?> closure; }
3 private static class TransformOp extends Op {
4 private TransformOp(
5 ObjectClosure<Function<Object, ?>> functionClosure) {
6 this.closure = functionClosure;
7 }
8 }
9 private static class FilterOp extends Op {

10 private FilterOp(
11 ObjectClosure<Predicate<Object>> predicateClosure) {
12 this.closure = predicateClosure;
13 }
14 }
15

16 private final Environment.Binder binder;
17 private ObjectClosure<?> closure;
18

19 private ObjectClosure<?> input;
20 private CtClass returnType;

145

B. TAME-STAGING EXPERIMENTS

21 private List<Op> ops = null;
22

23 ImmListLCompiler(Environment.Binder binder) { this.binder = binder; }
24

25 public ObjectClosure getClosure() {
26 if (ops == null) { return input; }
27

28 ClassPool cp = ClassPool.getDefault();
29 try {
30 CtClass cloClazz = cp.makeClass(
31 ImmListLCompiler.class.getName()+ "$FusedOps"
32);
33 cloClazz.setModifiers(Modifier.PUBLIC | Modifier.FINAL);
34 cloClazz.setInterfaces(
35 new CtClass[]{ cp.get(ObjectClosure.class.getName()) }
36);
37

38 CtField field = CtField.make(
39 "public static " + ObjectClosure.class.getName() + " c0;",
40 cloClazz
41);
42 cloClazz.addField(field);
43 for (int i = 0; i < ops.size(); i++) {
44 field = CtField.make(
45 "public static "
46 + ObjectClosure.class.getName()
47 + " c" + (i + 1) + ";",
48 cloClazz
49);
50 cloClazz.addField(field);
51 }
52

53 StringBuilder cloSource = new StringBuilder();
54 cloSource.append(
55 "public Object evaluate("
56 + Environment.class.getName()
57 + " env) {\n"
58);
59 for (int i = 0; i < ops.size(); i++) {
60 if (ops.get(i) instanceof TransformOp) {
61 cloSource.append(
62 " " + Function.class.getName()
63 + " f" + (i + 1) + " = ("
64 + Function.class.getName() + ") c"
65 + (i + 1) + ".evaluate(env);\n"
66);
67 } else if (ops.get(i) instanceof FilterOp) {
68 cloSource.append(
69 " " + Predicate.class.getName()
70 + " p" + (i + 1) + " = ("
71 + Predicate.class.getName() + ") c"
72 + (i + 1) + ".evaluate(env);\n");
73 }
74 }
75 cloSource.append(
76 " " + returnType.getName()
77 + "$Builder builder = " + returnType.getName()

146

B.3. Connections Experiment

78 + ".builder();\n"
79);
80 cloSource.append(
81 " " + Iterator.class.getName()
82 + " iterator = ((" + Iterable.class.getName()
83 + ") c0.evaluate(env)).iterator();\n"
84);
85 cloSource.append(
86 " while (iterator.hasNext()) {\n"
87 + " Object o = iterator.next();\n"
88);
89 for (int i = 0; i < ops.size(); i++) {
90 if (ops.get(i) instanceof TransformOp) {
91 cloSource.append(
92 " o = f" + (i + 1)
93 + ".apply(o);\n"
94);
95 } else if (ops.get(i) instanceof FilterOp) {
96 cloSource.append(
97 " if (!p" + (i + 1)
98 + ".apply(o)) { continue; }\n"
99);

100 }
101 }
102 cloSource.append(
103 " builder.add(o);\n"
104 + " }\n"
105 + " return builder.build();\n"
106 + "}");
107 CtMethod cloMethod = CtNewMethod.make(
108 cloSource.toString(),
109 cloClazz
110);
111 cloClazz.addMethod(cloMethod);
112

113 CtClassLoader loader = new CtClassLoader();
114 Class<?> cloC = loader.load(cloClazz);
115 cloClazz.detach();
116

117 Field f = cloC.getDeclaredField("c0");
118 f.set(null, input);
119 for (int i = 0; i < ops.size(); i++) {
120 f = cloC.getDeclaredField("c" + (i + 1));
121 f.set(null, ops.get(i).closure);
122 }
123

124 return (ObjectClosure) cloC.newInstance();
125 } catch (
126 NotFoundException |
127 CannotCompileException |
128 InstantiationException |
129 IllegalAccessException |
130 NoSuchFieldException |
131 IOException e) {
132 throw new RuntimeException(e);
133 }
134 }

147

B. TAME-STAGING EXPERIMENTS

135

136 public void visit(Expression.FieldRead staged) { }
137 public void visit(Expression.FieldAssignment staged) { }
138 public void visit(Expression.MethodInvocation staged) {
139 CtMethod method = staged.getMember();
140 if (returnType == null) {
141 try {
142 returnType = method.getReturnType();
143 } catch (NotFoundException e) {
144 throw new RuntimeException(e);
145 }
146 }
147

148 staged.getArgument(0).accept(this);
149 ObjectClosure<?> arg0 = closure;
150 if (input == null) {
151 input = arg0;
152 }
153

154 if (staged.getArgumentCount() > 1) {
155 if (ops == null) {
156 ops = new LinkedList<>();
157 }
158

159 staged.getArgument(1).accept(this);
160 ObjectClosure<?> arg1 = closure;
161

162 switch (method.getName()) {
163 case "map": {
164 ops.add(
165 new TransformOp((ObjectClosure<Function<Object, ?>>) arg1)
166);
167 break;
168 }
169 case "filter": {
170 ops.add(
171 new FilterOp((ObjectClosure<Predicate<Object>>) arg1)
172);
173 break;
174 }
175 }
176 }
177 }
178

179 public void visit(Expression.ObjectValue value) {
180 closure = value.bind(binder);
181 }
182 public void visit(Expression.BooleanValue value) { }
183 public void visit(Expression.IntegerValue value) { }
184 public void visit(Expression.LongValue value) { }
185 public void visit(Expression.FloatValue value) { }
186 public void visit(Expression.DoubleValue value) { }
187 public void visit(Expression.ByteValue value) { }
188 public void visit(Expression.CharacterValue value) { }
189 public void visit(Expression.ShortValue value) { }
190 }

148

B.4. Vector EDSL Overhead Experiment

B.4 Vector EDSL Overhead Experiment

Listings B.5 and B.5 show the generation of vectors and the benchmark loops.

LISTING B.5: Overhead (Vec) benchmark (run)

1 public static long run(int size) {
2 Random r = new Random(4);
3 Vec a = Vec.create(r.doubles(size).toArray());
4 Vec b = Vec.create(r.doubles(size).toArray());
5 Vec c = Vec.create(r.doubles(size).toArray());
6

7 Vec res = null;
8

9 TickTock.tick();
10 for (int i = 0; i < 100000; i++) {
11 res = example(i % 20, a, b, c);
12 }
13 long t = TickTock.tock();
14 ⋯
15 return t;
16 }

LISTING B.6: Overhead (Vec) benchmark

1 // Warm-up
2 run(10000);
3

4 // Measurement
5 for (int i = 0; i < 5; i++) {
6 int size = (int) Math.pow(10, i);
7 System.out.println(size);
8

9 long[] times = new long[10];
10 for (int j = 0; j < 10; j++) {
11 times[j] = run(size);
12 }
13

14 out.println(Arrays.toString(times));
15 }

149

APPENDIX C
Tame-Staging Reference

Chapter 4 introduces the overview of the-tame staging framework for language
embedding as an almost first-class feature. By itself that should serve as a good
introduction on its effects on EDSL users and the framework’s usage by EDSL
authors. In order to supplement that overview, this appendix provides a minimal
reference (documentation) for the public interfaces of the framework.

C.1 Language Classes

The Language interface has to be assigned to language-representing classes and is
used by the majority of the framework’s annotations. It is a simple marker interface
defined as follows:

public interface Language<T extends Language<T>> { }

This interface does (and could) not impose any implementations constraints
(e.g. signatures) on the classes defined by EDSL authors. Language classes have to
implement certain (i.e. expected-signature) static methods, which (currently) cannot
be governed by Java (instance) interfaces. The same concept can be found in Java’s
APIs, most famously in the main method as an application’s entry point as well as
for instance the premain method of Java agents.

The methods to be defined depend on the set of (return) types of @Stage-
annotated EDSL tokens. If a language has no EDSL tokens, no static method has to
be implemented, but commonly such an EDSL would of course not be very useful.
The opposite, maximum case is found in an EDSL that has tokens of all nine (or
eight) primitive Java types (void, boolean, int, long, float, double, byte,
char, short) and any number of reference types (i.e. subtypes of Object). In this
case the methods are:

• VoidClosure makeVoidClosure(⋯)
• BooleanClosure makeBooleanClosure(⋯)

151

C. TAME-STAGING REFERENCE

• IntegerClosure makeIntegerClosure(⋯)

• LongClosure makeLongClosure(⋯)

• FloatClosure makeFloatClosure(⋯)

• DoubleClosure makeDoubleClosure(⋯)

• ByteClosure makeByteClosure(⋯)

• CharacterClosure makeCharacterClosure(⋯)

• ShortClosure makeShortClosure(⋯)

• ObjectClosure makeObjectClosure(⋯)

Their three respective parameters are (in order):

• Expression.Staged staged: The root node of the expression DAG for
which processing has been triggered (via the indirection of materialization).

• Environment.Binder binder: The binder instance to be used for creating
value-access closures for use in the returned computation.

• boolean permCached: Indicates whether the returned closure will be per-
manently associated with a static EDSL-program materialization situation
instead of being only temporarily cached.

More documentation on processing and the closures to be returned are described
in a later section.

C.2 Annotations

C.2.1 @Stage

The @Stage annotation is to be placed on methods or fields to be designated as
tokens of an EDSL. Its parameters are:

• Class<? extends Language<?>> language: The associated EDSL class.

• boolean isStrict: Indicates whether using the token causes immediate
materialization (with the token’s representation as the root of the expression
DAG to be processed). The default value is false.

• StaticInfo.Element[] staticInfoElements: The kinds of static-context
information to be retained. The default value is {} (empty array).

152

C.2. Annotations

C.2.1.1 Definition

1 @Documented
2 @Retention(RetentionPolicy.RUNTIME)
3 @Target({ ElementType.METHOD, ElementType.FIELD })
4 public @interface Stage {
5 Class<? extends Language<?>> language();
6 boolean isStrict() default false;
7 StaticInfo.Element[] staticInfoElements() default {};
8 }

C.2.2 @Accept and @Accept.This

The @Accept annotation is to be placed on the parameters of EDSL-token methods
or fields to indicate cross-language acceptance of staged terms. It is only effective in
combination with @Stage and ignored otherwise. Its parameter is:

• Class<? extends Language<?>>[] languages: The set (i.e. duplicates
are ignored) of EDSL classes whose terms are accepted.

The inner @Accept.This annotation serves the same purpose for the implicit
this parameter of instance-method calls and instance-field accesses. On static
methods it has no effect.

C.2.2.1 Definitions

1 @Documented
2 @Retention(RetentionPolicy.RUNTIME)
3 @Target({ ElementType.FIELD, ElementType.PARAMETER })
4 public @interface Accept {
5 Class<? extends Language<?>>[] languages();
6

7 @Documented
8 @Retention(RetentionPolicy.CLASS)
9 @Target({ ElementType.FIELD, ElementType.METHOD })

10 @interface This {
11 Class<? extends Language<?>>[] languages();
12 }
13 }

C.2.3 @Suppress

The @Suppress annotation is to be placed on methods, constructors, and types
(e.g. classes) within whose scope the effects of certain @Stage annotations are to be
ignored. Its parameter is:

• Class<? extends Language<?>>[] languages: The set (i.e. duplicates
are ignored) of EDSL classes whose tokens are to be ineffective. The original
token-construct definitions (e.g. method bodies) and behaviors apply.

153

C. TAME-STAGING REFERENCE

C.2.3.1 Definition

1 @Documented
2 @Retention(RetentionPolicy.RUNTIME)
3 @Target({ ElementType.METHOD, ElementType.CONSTRUCTOR, ElementType.TYPE })
4 public @interface Suppress {
5 Class<? extends Language<?>>[] languages();
6 }

C.2.4 @Configure

The @Configure annotation is to be placed on EDSL classes for which a (partial) re-
striction of public annotation accessibility (or visibility) is to take effect. Accessibility
from within the EDSL class’s package is not affected. Its parameters are:

• hasRestrictedAcceptAccessibility: Restricts the language’s accessi-
bility from @Accept annotations. The default value is false.

• hasRestrictedStageAccessibility: Restricts the language’s accessi-
bility from @Stage annotations. The default value is false.

• hasRestrictedSuppressAccessibility: Restricts the language’s acces-
sibility from @Suppress annotations. The default value is false.

The name (i.e. “configure”) of this annotation was chosen in anticipation of
further language-global options in the future.

C.2.4.1 Definition

1 @Documented
2 @Retention(RetentionPolicy.RUNTIME)
3 @Target({ ElementType.TYPE })
4 public @interface Configure {
5 boolean hasRestrictedAcceptAccessibility() default false;
6 boolean hasRestrictedStageAccessibility() default false;
7 boolean hasRestrictedSuppressAccessibility() default false;
8 }

C.3 Expressions

Expression-DAG nodes are of type Expression, an abstract class with no pub-
lic abstract methods. Token-representatives are subtypes of the abstract class
Expression.Staged, placed into one of yet another three subcategories (as ab-
stract classes):

• Expression.FieldRead

• Expression.FieldAssignment

• Expression.MethodInvocation

Concrete token-representations (unknown at Java-source compile time) implement
the following data-access methods:

154

C.3. Expressions

• CtMember getMember(): Returns the Javassist representation of the an-
notated construct. The subcategories make use of covariant return types to
return CtMethod or CtField.

• Optional<StaticInfo> getStaticInfo(): Returns static-context in-
formation, if collected.

• int getArgumentCount(): Returns the number of (sub-) argument ex-
pressions of the staged term.1

• Expression getArgument(int index): Returns the (sub-) argument
expression at the given index.

Input-value nodes, i.e. EDSL-external values, are represented by the abstract
class Expression.Value, which is the common supertype of the following con-
crete classes corresponding to the various kinds of Java types (excluding void):

• Expression.BooleanValue

• Expression.IntegerValue

• Expression.LongValue

• Expression.FloatValue

• Expression.DoubleValue

• Expression.ByteValue

• Expression.CharacterValue

• Expression.ShortValue

• Expression.ObjectValue

Their data-access methods are:

• C bind(Environment.Binder binder): Returns an indirect-access clo-
sure, which is of the closure type C corresponding to the kind of Java type in-
hibited by the represented value (e.g. IntegerClosure for IntegerValue).

• V inspect(Environment.Binder binder): Returns the represented
value, which is of the type V corresponding to the kind of Java type inhibited
by the represented value (e.g. int for IntegerValue). This will disable
caching of the expression DAG’s processing result unless the inspected value
representation is a constant.

• boolean isConstant(): Indicates whether a represented value derived
from a constant or not.

1Note that variable argument lists (so-called varargs) on token methods are currently unsupported.

155

C. TAME-STAGING REFERENCE

In addition to the described data-access mechanisms, specific accept methods
for visitors are provided so that EDSL authors can easily traverse the expression
DAG for processing. The visitor interfaces are as follows:

• Expression.Staged.Visitor specifies three methods:

– void visit(FieldRead staged)

– void visit(FieldAssignment staged)

– void visit(MethodInvocation staged)

• Expression.Value.Visitor specifies nine methods:

– void visit(BooleanValue value)

– void visit(IntegerValue value)

– void visit(LongValue value)

– void visit(FloatValue value)

– void visit(DoubleValue value)

– void visit(ByteValue value)

– void visit(CharacterValue value)

– void visit(ShortValue value)

– void visit(ObjectValue value)

• Expression.Visitor combines (i.e. extends) both of the above.

C.4 Static Information

There are two kinds of static information that can be chosen for collection on
@Stage-annotated tokens, exposed by the StaticInfo.Element enum type:

• ORIGIN

• INFERRED_TYPES

The former will cause an instance of StaticInfo.Origin to be available on
Expression.Staged nodes for inspection, the latter corresponds to instances of
StaticInfo.InferredTypes. They are not exclusive.

The StaticInfo class provides two methods providing this data (if available):

• Optional<StaticInfo.Origin> getOrigin()

• Optional<StaticInfo.InferredTypes> getInferredTypes()

Note that there is no inheritance relationship with StaticInfo.

156

C.5. Closures

C.4.0.2 StaticInfo.Origin

The StaticInfo.Origin class provides three data-access methods:

• CtBehavior getBehavior(): Returns the Javassist behavior (i.e. method,
constructor, or initializer) representation in which the associated term was
constructed.

• int getPosition(): Returns the bytecode position (within the behavior)
of the term construction.

• OptionalInt getLineNumber(): Returns the source-code position of
the term construction. This information might not be available, hence the
OptionalInt return type.

C.4.0.3 StaticInfo.InferredTypes

The StaticInfo.InferredTypes class provides two data-access methods:

• Type getArgumentType(int index): Returns the inferred type of the
argument at the given index. It is calculated by finding the most general type
from all (static) sources of the associated argument.

• Type getType(int index): Returns the inferred (return) type. It is cal-
culated by finding the most specific (return) type from all (static) uses (or
consumptions) of the associated method or field.

For calculating the latter, the use-site types are determined by the respective
expected types there, except for checked casts for which the output type is used.
This means that the most specific (return) type reflects the type that is necessary to
(pessimistically) fulfill all the constraints of subsequent casting (as well as non-cast
uses). In the worst case only null values might achieve that. The Type type is
borrowed from Javassist’s javassist.bytecode.analysis package.

C.5 Closures

The return values of the static expression-DAG processing methods on an EDSL
class (as well as the bind methods on value nodes) are closure objects. Although
there is a common Closure supertype interface (with a concrete default method
evaluateToObject), only the following interfaces are actually used:

• VoidClosure

• BooleanClosure

• IntegerClosure

• LongClosure

• FloatClosure

• DoubleClosure

157

C. TAME-STAGING REFERENCE

• ByteClosure

• CharacterClosure

• ShortClosure

• ObjectClosure

Their abstract evaluate methods adhere to the following pattern:

• V evaluate(Environment environment): Returns the computation’s
(materialization) result, which is of the type V corresponding to the closure
type (e.g. int for IntegerClosure).

158

Bibliography

[1] http://www.graphviz.org/ (2015-05-06).

[2] http://www.povray.org/ (2015-05-06).

[3] https://www.python.org/ (2015-05-06).

[4] http://www.scipy.org/ (2015-05-06).

[5] https://github.com/google/guava (2015-06-09).

[6] http://ocaml.org/ (2015-05-07).

[7] http://stanford- ppl.github.io/Delite/opticvx/index.
html (2015-03-19).

[8] http://www.jooq.org/ (2015-06-06).

[9] https://www.ruby-lang.org/ (2015-05-15).

[10] https://downloads.haskell.org/~ghc/7.0.1/docs/html/
users_guide/rewrite-rules.html (2015-05-14).

[11] http://racket-lang.org/ (2015-05-16).

[12] http://openjdk.java.net/projects/graal/ (2015-06-16).

[13] http://www.nvidia.com/object/cuda_home_new.html (2015-06-
20).

[14] http://javassist.org/ (2015-06-09).

[15] http://checkerframework.org/ (2015-03-19).

[16] David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond (C++ in Depth Series).
Addison-Wesley Professional, 2004.

[17] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[18] John Aycock. “A Brief History of Just-in-time”. In: ACM Comput. Surv. 35.2
(June 2003), pp. 97–113.

[19] Otto Skrove Bagge, Karl Trygve Kalleberg, Magne Haveraaen, and Eelco
Visser. “Design of the CodeBoost Transformation System for Domain-Specific
Optimisation of C++ Programs”. In: Third International Workshop on Source
Code Analysis and Manipulation (SCAM 2003). Ed. by Dave Binkley and Paolo
Tonella. Amsterdam, The Netherlands: IEEE Computer Society Press, Sept.
2003, pp. 65–75.

159

http://www.graphviz.org/
http://www.povray.org/
https://www.python.org/
http://www.scipy.org/
https://github.com/google/guava
http://ocaml.org/
http://stanford-ppl.github.io/Delite/opticvx/index.html
http://stanford-ppl.github.io/Delite/opticvx/index.html
http://www.jooq.org/
https://www.ruby-lang.org/
https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/rewrite-rules.html
https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/rewrite-rules.html
http://racket-lang.org/
http://openjdk.java.net/projects/graal/
http://www.nvidia.com/object/cuda_home_new.html
http://javassist.org/
http://checkerframework.org/

BIBLIOGRAPHY

[20] Jon Bentley. “Programming Pearls: Little Languages”. In: Commun. ACM
29.8 (Aug. 1986), pp. 711–721.

[21] Joshua Bloch. Effective Java (Java Series). 2nd ed. Boston, MA, USA: Pearson
Education, Inc., 2008.

[22] Gilad Bracha and William Cook. “Mixin-based Inheritance”. In: Proceedings
of the European Conference on Object-oriented Programming on Object-oriented
Programming Systems, Languages, and Applications. OOPSLA/ECOOP ’90.
Ottawa, Canada: ACM, 1990, pp. 303–311.

[23] Edwin C. Brady. “Idris: General Purpose Programming with Dependent
Types”. In: Proceedings of the 7th Workshop on Programming Languages Meets
Program Verification. PLPV ’13. Rome, Italy: ACM, 2013, pp. 1–2.

[24] Edwin C. Brady and Kevin Hammond. “Scrapping Your Inefficient Engine:
Using Partial Evaluation to Improve Domain-specific Language Implemen-
tation”. In: Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming. ICFP ’10. Baltimore, Maryland, USA: ACM, 2010,
pp. 297–308.

[25] Eugene Burmako. “Scala Macros: Let Our Powers Combine!: On How Rich
Syntax and Static Types Work with Metaprogramming”. In: Proceedings of the
4th Workshop on Scala. SCALA ’13. Montpellier, France: ACM, 2013, 3:1–3:10.

[26] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. “Finally Tagless, Par-
tially Evaluated”. In: Programming Languages and Systems. Ed. by Zhong Shao.
Vol. 4807. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2007, pp. 222–238.

[27] William E. Carlson, Paul Hudak, and Mark P. Jones. An Experiment Using
Haskell to Prototype “Geometric Region Servers” for Navy Command And Control.
Tech. rep. Research Report YALEU/DCS/RR-1031. Yale University, 1993.

[28] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured
English Query Language”. In: Proceedings of the 1974 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control. SIGFIDET ’74.
Ann Arbor, Michigan: ACM, 1974, pp. 249–264.

[29] James Cheney and Ralf Hinze. First-Class Phantom Types. Tech. rep. Cornell
University, 2003.

[30] Shigeru Chiba. “Load-Time Structural Reflection in Java”. English. In: ECOOP
2000 — Object-Oriented Programming. Ed. by Elisa Bertino. Vol. 1850. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 313–336.

[31] Wontae Choi, Baris Aktemur, Kwangkeun Yi, and Makoto Tatsuta. “Static
Analysis of Multi-staged Programs via Unstaging Translation”. In: Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’11. Austin, Texas, USA: ACM, 2011, pp. 81–
92.

160

Bibliography

[32] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid Taha.
“DSL Implementation in MetaOCaml”. In: Domain-Specific Program Generation.
Ed. by Christian Lengauer, Don Batory, Charles Consel, and Martin Odersky.
Vol. 3016. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2004, pp. 51–72.

[33] L. Peter Deutsch and Allan M. Schiffman. “Efficient Implementation of the
Smalltalk-80 System”. In: Proceedings of the 11th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. POPL ’84. Salt Lake City,
Utah, USA: ACM, 1984, pp. 297–302.

[34] Lukas Diekmann and Laurence Tratt. “Eco: A language composition editor”.
In: Software Language Engineering (SLE). Springer, Sept. 2014, pp. 82–101.

[35] Conal Elliott. “Functional Images”. In: The Fun of Programming. Cornerstones
of computing. Palgrave Macmillan, Mar. 2003.

[36] Conal Elliott, Sigbjørn Finne, and Oege De Moor. “Compiling Embedded
Languages”. In: J. Funct. Program. 13.3 (May 2003), pp. 455–481.

[37] Conal Elliott and Paul Hudak. “Functional Reactive Animation”. In: Pro-
ceedings of the Second ACM SIGPLAN International Conference on Functional
Programming. ICFP ’97. Amsterdam, The Netherlands: ACM, 1997, pp. 263–
273.

[38] Martin Fowler. Domain Specific Languages. 1st ed. Addison-Wesley Profes-
sional, 2010.

[39] Steve Freeman and Nat Pryce. “Evolving an Embedded Domain-specific
Language in Java”. In: Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications. OOPSLA
’06. Portland, Oregon, USA: ACM, 2006, pp. 855–865.

[40] Yoshihiko Futamura. “Partial Evaluation of Computation Process – An ap-
proach to a Compiler-Compiler”. In: Transactions of the Institute of Electronics
and Communication Engineers of Japan Vol.54-C.8 (Aug. 1971), pp. 721–728.

[41] Yoshihiko Futamura. “Partial Evaluation of Computation Process–An Ap-
proach to a Compiler-Compiler”. In: Higher-Order and Symbolic Computation
12.4 (1999), pp. 381–391.

[42] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. 1st ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[43] Steven E. Ganz, Amr Sabry, and Walid Taha. “Macros As Multi-stage Compu-
tations: Type-safe, Generative, Binding Macros in MacroML”. In: Proceedings
of the Sixth ACM SIGPLAN International Conference on Functional Programming.
ICFP ’01. Florence, Italy: ACM, 2001, pp. 74–85.

[44] Debasish Ghosh. DSLs in Action. 1st ed. Greenwich, CT, USA: Manning
Publications Co., 2010.

161

BIBLIOGRAPHY

[45] Paolo G. Giarrusso, Klaus Ostermann, Michael Eichberg, Ralf Mitschke,
Tillmann Rendel, and Christian Kästner. “Reify Your Collection Queries
for Modularity and Speed!” In: Proceedings of the 12th Annual International
Conference on Aspect-oriented Software Development. AOSD ’13. Fukuoka, Japan:
ACM, 2013, pp. 1–12.

[46] Jeremy Gibbons and Nicolas Wu. “Folding Domain-specific Languages:
Deep and Shallow Embeddings”. In: Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming. ICFP ’14. Gothenburg,
Sweden: ACM, 2014, pp. 339–347.

[47] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Im-
plementation. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1983.

[48] James Gosling. “Java Intermediate Bytecodes: ACM SIGPLAN Workshop
on Intermediate Representations (IR’95)”. In: Papers from the 1995 ACM
SIGPLAN Workshop on Intermediate Representations. IR ’95. San Francisco,
California, USA: ACM, 1995, pp. 111–118.

[49] James Gosling, Bill Joy, and Guy L. Steele. The Java Language Specification.
1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1996.

[50] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification, Java SE 8 Edition. 1st ed. Addison-Wesley
Professional, 2014.

[51] Maria Gouseti, Chiel Peters, and Tijs van der Storm. “Extensible Language
Implementation with Object Algebras (Short Paper)”. In: Proceedings of the
2014 International Conference on Generative Programming: Concepts and Experi-
ences. GPCE 2014. Västerås, Sweden: ACM, 2014, pp. 25–28.

[52] Paul Graham. On Lisp: Advanced Techniques for Common Lisp. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1993.

[53] Samuel Z. Guyer and Calvin Lin. “Broadway: A Compiler for Exploiting the
Domain-Specific Semantics of Software Libraries”. In: Proceedings of the IEEE
93.2 (Feb. 2005), pp. 342–357.

[54] Cordelia V. Hall, Kevin Hammond, Will Partain, Simon L. Peyton Jones,
and Philip Wadler. “The Glasgow Haskell Compiler: A Retrospective”. In:
Proceedings of the 1992 Glasgow Workshop on Functional Programming. London,
UK: Springer-Verlag, 1993, pp. 62–71.

[55] Ben Hardekopf and Calvin Lin. “Flow-sensitive Pointer Analysis for Millions
of Lines of Code”. In: Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. CGO ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 289–298.

[56] Erik Hilsdale and Jim Hugunin. “Advice Weaving in AspectJ”. In: Proceedings
of the 3rd International Conference on Aspect-oriented Software Development.
AOSD ’04. Lancaster, UK: ACM, 2004, pp. 26–35.

162

Bibliography

[57] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors.
“Polymorphic Embedding of DSLs”. In: Proceedings of the 7th International
Conference on Generative Programming and Component Engineering. GPCE ’08.
Nashville, TN, USA: ACM, 2008, pp. 137–148.

[58] Urs Hölzle, Craig Chambers, and David Ungar. “Optimizing Dynamically-
Typed Object-Oriented Languages With Polymorphic Inline Caches”. In:
Proceedings of the European Conference on Object-Oriented Programming. ECOOP
’91. London, UK, UK: Springer-Verlag, 1991, pp. 21–38.

[59] Paul Hudak. “Modular Domain Specific Languages and Tools”. In: Proceed-
ings of the 5th International Conference on Software Reuse. ICSR ’98. Washington,
DC, USA: IEEE Computer Society, 1998, pp. 134–142.

[60] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. “A
History of Haskell: Being Lazy with Class”. In: Proceedings of the Third ACM
SIGPLAN Conference on History of Programming Languages. HOPL III. San
Diego, California: ACM, 2007, pp. 1–55.

[61] John Hughes. “The Design of a Pretty-printing Library”. In: Advanced Func-
tional Programming, First International Spring School on Advanced Functional
Programming Techniques-Tutorial Text. London, UK, UK: Springer-Verlag, 1995,
pp. 53–96.

[62] Graham Hutton. Programming in Haskell. 1st ed. Cambridge University Press,
Jan. 2007.

[63] Kazuhiro Ichikawa and Shigeru Chiba. “Composable User-defined Oper-
ators That Can Express User-defined Literals”. In: Proceedings of the 13th
International Conference on Modularity. MODULARITY ’14. Lugano, Switzer-
land: ACM, 2014, pp. 13–24.

[64] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu,
and Toshio Nakatani. “A Study of Devirtualization Techniques for a Java
Just-In-Time Compiler”. In: Proceedings of the 15th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications. OOPSLA
’00. Minneapolis, Minnesota, USA: ACM, 2000, pp. 294–310.

[65] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. 1st ed. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1993.

[66] Simon Peyton Jones, ed. Haskell 98 Language and Libraries – The Revised Report.
Cambridge, England: Cambridge University Press, 2003.

[67] Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and
Martin Odersky. “Staged Parser Combinators for Efficient Data Processing”.
In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’14. Portland,
Oregon, USA: ACM, 2014, pp. 637–653.

163

BIBLIOGRAPHY

[68] Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev, Christoph
Koch, and Martin Odersky. “Yin-Yang: Concealing the Deep Embedding
of DSLs”. In: Proceedings of the 2014 International Conference on Generative
Programming: Concepts and Experiences. GPCE 2014. Västerås, Sweden: ACM,
2014, pp. 73–82.

[69] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
2nd ed. Prentice Hall Professional Technical Reference, 1988.

[70] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. “An Overview of AspectJ”. In: Proceedings of the 15th
European Conference on Object-Oriented Programming. ECOOP ’01. London,
UK, UK: Springer-Verlag, 2001, pp. 327–353.

[71] Gary A. Kildall. “A Unified Approach to Global Program Optimization”. In:
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. POPL ’73. Boston, Massachusetts: ACM, 1973,
pp. 194–206.

[72] Eugene E. Kohlbecker. “Syntactic Extensions in the Programming Language
LISP”. UMI Order No. GAX86-27998. PhD thesis. Bloomington, IN, USA,
1986.

[73] Grzegorz Kossakowski, Nada Amin, Tiark Rompf, and Martin Odersky.
“JavaScript as an Embedded DSL”. In: ECOOP 2012 - Object-Oriented Program-
ming - 26th European Conference, Beijing, China, June 11-16, 2012. Proceedings.
2012, pp. 409–434.

[74] Daan Leijen and Erik Meijer. Parsec: Direct Style Monadic Parser Combinators
For The Real World. Tech. rep. UU-CS-2001-35. Department of Information
and Computing Sciences, Utrecht University, 2001. URL: http://www.cs.
uu.nl/research/techreps/repo/CS-2001/2001-35.pdf.

[75] John McCarthy, R. Brayton, Daniel J. Edwards, P. Fox, L. Hodes, D. Luckham,
K. Maling, D. Park, and S. Russell. LISP I Programmer’s Manual. Tech. rep.
Cambridge, Massachusetts: Massachusetts Institute of Technology – Compu-
tation Center and Research Laboratory, Mar. 1960. URL: http://history.
siam.org/sup/Fox_1960_LISP.pdf.

[76] Adriaan Moors, Frank Piessens, and Martin Odersky. “Generics of a Higher
Kind”. In: Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications. OOPSLA ’08. Nashville, TN,
USA: ACM, 2008, pp. 423–438.

[77] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. “Evaluating the
Design of the R Language: Objects and Functions for Data Analysis”. In:
Proceedings of the 26th European Conference on Object-Oriented Programming.
ECOOP’12. Beijing, China: Springer-Verlag, 2012, pp. 104–131.

[78] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications:
An Appetizer (Undergraduate Topics in Computer Science). Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

164

http://www.cs.uu.nl/research/techreps/repo/CS-2001/2001-35.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2001/2001-35.pdf
http://history.siam.org/sup/Fox_1960_LISP.pdf
http://history.siam.org/sup/Fox_1960_LISP.pdf

Bibliography

[79] Ulf Norell. “Dependently Typed Programming in Agda”. In: Proceedings of
the 6th International Conference on Advanced Functional Programming. AFP’08.
Heijen, The Netherlands: Springer-Verlag, 2009, pp. 230–266.

[80] Martin Odersky and Tiark Rompf. “Unifying Functional and Object-oriented
Programming with Scala”. In: Commun. ACM 57.4 (Apr. 2014), pp. 76–86.

[81] Martin Odersky and Matthias Zenger. “Scalable Component Abstractions”.
In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications. OOPSLA ’05. San Diego,
CA, USA: ACM, 2005, pp. 41–57.

[82] Bruno C. d. S. Oliveira and William R. Cook. “Extensibility for the Masses:
Practical Extensibility with Object Algebras”. In: Proceedings of the 26th Euro-
pean Conference on Object-Oriented Programming. ECOOP’12. Beijing, China:
Springer-Verlag, 2012, pp. 2–27.

[83] Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin,
and Jonathan Aldrich. “Safely Composable Type-Specific Languages”. En-
glish. In: ECOOP 2014 - Object-Oriented Programming. Ed. by Richard Jones.
Vol. 8586. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2014, pp. 105–130.

[84] Terence J. Parr and Russel W. Quong. “ANTLR: A predicated-LL(K) Parser
Generator”. In: Softw. Pract. Exper. 25.7 (July 1995), pp. 789–810.

[85] Frank Pfenning and Conal Elliot. “Higher-Order Abstract Syntax”. In: SIG-
PLAN Not. 23.7 (June 1988), pp. 199–208.

[86] John C. Reynolds. “Definitional Interpreters for Higher-order Programming
Languages”. In: Proceedings of the ACM Annual Conference - Volume 2. ACM
’72. Boston, Massachusetts, USA: ACM, 1972, pp. 717–740.

[87] Tiark Rompf and Martin Odersky. “Lightweight Modular Staging: A Prag-
matic Approach to Runtime Code Generation and Compiled DSLs”. In:
Proceedings of the Ninth International Conference on Generative Programming and
Component Engineering. GPCE ’10. Eindhoven, The Netherlands: ACM, 2010,
pp. 127–136.

[88] Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. “Building-Blocks for Perfor-
mance Oriented DSLs”. In: Proceedings IFIP Working Conference on Domain-
Specific Languages, DSL 2011, Bordeaux, France, 6-8th September 2011. 2011,
pp. 93–117.

[89] Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin Oder-
sky. “Scala-Virtualized: Linguistic Reuse for Deep Embeddings”. In: Higher-
Order and Symbolic Computation 25.1 (2012), pp. 165–207.

[90] Tiark Rompf, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Hassan
Chafi, and Kunle Olukotun. “Surgical Precision JIT Compilers”. In: Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI ’14. Edinburgh, United Kingdom: ACM, 2014,
pp. 41–52.

165

BIBLIOGRAPHY

[91] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Global Value Numbers
and Redundant Computations”. In: Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’88. San
Diego, California, USA: ACM, 1988, pp. 12–27.

[92] Maximilian Scherr and Shigeru Chiba. “Almost First-Class Language Em-
bedding: Taming Staged Embedded DSLs”. In: Proceedings of the 2015 Interna-
tional Conference on Generative Programming: Concepts and Experiences. GPCE
2015. To appear. New York, NY, USA: ACM, 2015.

[93] Maximilian Scherr and Shigeru Chiba. “Implicit Staging of EDSL Expres-
sions: A Bridge between Shallow and Deep Embedding”. In: ECOOP 2014 –
Object-Oriented Programming. Ed. by Richard Jones. Vol. 8586. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2014, pp. 385–410.

[94] Jonathan L. Schilling. “The Simplest Heuristics May Be the Best in Java JIT
Compilers”. In: SIGPLAN Not. 38.2 (Feb. 2003), pp. 36–46.

[95] Sean Seefried, Manuel Chakravarty, and Gabriele Keller. “Optimising Em-
bedded DSLs Using Template Haskell”. In: Generative Programming and Com-
ponent Engineering. Ed. by Gabor Karsai and Eelco Visser. Vol. 3286. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2004, pp. 186–205.

[96] Tim Sheard and Simon Peyton Jones. “Template Meta-programming for
Haskell”. In: SIGPLAN Not. 37.12 (Dec. 2002), pp. 60–75.

[97] Guy L. Steele Jr. and Richard P. Gabriel. “The Evolution of Lisp”. In: SIG-
PLAN Not. 28.3 (Mar. 1993), pp. 231–270.

[98] Robert E. Strom and Shaula Yemini. “Typestate: A Programming Language
Concept for Enhancing Software Reliability”. In: IEEE Transactions on Software
Engineering SE-12.1 (Jan. 1986), pp. 157–171.

[99] Bjarne Stroustrup. “A C++ Tutorial”. In: Proceedings of the 1985 ACM An-
nual Conference on The Range of Computing : Mid-80’s Perspective: Mid-80’s
Perspective. ACM ’85. Denver, Colorado, USA: ACM, 1985, pp. 56–64.

[100] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. “Delite: A Compiler Architec-
ture for Performance-Oriented Embedded Domain-Specific Languages”. In:
ACM Trans. Embed. Comput. Syst. 13.4s (Apr. 2014), 134:1–134:25.

[101] Arvind K. Sujeeth, Hyoukjoong Lee, Kevin J. Brown, Hassan Chafi, Michael
Wu, Anand R. Atreya, Kunle Olukotun, Tiark Rompf, and Martin Odersky.
“OptiML: An Implicitly Parallel Domain-Specific Language for Machine
Learning”. In: Proceedings of the 28th International Conference on Machine
Learning. ICML 2011. 2011.

[102] Josef Svenningsson and Emil Axelsson. “Combining Deep and Shallow
Embedding for EDSL”. In: Trends in Functional Programming. Ed. by Hans-
Wolfgang Loidl and Ricardo Peña. Vol. 7829. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 21–36.

166

Bibliography

[103] Walid Taha. “A Gentle Introduction to Multi-stage Programming”. In: Domain-
Specific Program Generation. Ed. by Christian Lengauer, Don Batory, Charles
Consel, and Martin Odersky. Vol. 3016. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004, pp. 30–50.

[104] Walid Taha and Tim Sheard. “MetaML and Multi-stage Programming with
Explicit Annotations”. In: Theor. Comput. Sci. 248.1-2 (Oct. 2000), pp. 211–242.

[105] Walid Mohamed Taha. “Multistage Programming: Its Theory and Applica-
tions”. AAI9949870. PhD thesis. 1999.

[106] Simon Thompson. Haskell: The Craft of Functional Programming. 3rd ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2011.

[107] Sam Tobin-Hochstadt and Matthias Felleisen. “The Design and Implemen-
tation of Typed Scheme”. In: Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’08. San
Francisco, California, USA: ACM, 2008, pp. 395–406.

[108] Mads Torgersen. “Language Integrated Query: Unified Querying Across
Data Sources and Programming Languages”. In: Companion to the 21st ACM
SIGPLAN Symposium on Object-oriented Programming Systems, Languages, and
Applications. OOPSLA ’06. Portland, Oregon, USA: ACM, 2006, pp. 736–737.

[109] Laurence Tratt. “Domain Specific Language Implementation via Compile-
Time Meta-Programming”. In: TOPLAS 30.6 (2008), pp. 1–40.

[110] Jeffrey D. Ullman. Elements of ML Programming (ML97 Ed.) Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1998.

[111] Todd Veldhuizen. “C++ Gems”. In: ed. by Stanley B. Lippman. New York,
NY, USA: SIGS Publications, Inc., 1996. Chap. Expression Templates, pp. 475–
487.

[112] Todd L. Veldhuizen and Dennis Gannon. “Active Libraries: Rethinking the
roles of compilers and libraries”. In: Proceedings of the SIAM Workshop on
Object Oriented Methods for Inter-operable Scientific and Engineering Computing
(OO’98). SIAM Press, 1998.

[113] Philip Wadler and Stephen Blott. “How to make ad-hoc polymorphism less
ad hoc”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’89. Austin, Texas, USA: ACM,
1989, pp. 60–76.

[114] David H. D. Warren, Luis M. Pereira, and Fernando Pereira. “Prolog - The
Language and Its Implementation Compared with Lisp”. In: SIGPLAN Not.
12.8 (Aug. 1977), pp. 109–115.

[115] Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer Abdelatif,
and Walid Taha. “Mint: Java Multi-stage Programming Using Weak Separa-
bility”. In: Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’10. Toronto, Ontario, Canada:
ACM, 2010, pp. 400–411.

167

BIBLIOGRAPHY

[116] Hongwei Xi, Chiyan Chen, and Gang Chen. “Guarded Recursive Datatype
Constructors”. In: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’03. New Orleans, Louisiana,
USA: ACM, 2003, pp. 224–235.

[117] Hao Xu. “EriLex: An Embedded Domain Specific Language Generator”. En-
glish. In: Objects, Models, Components, Patterns. Ed. by Jan Vitek. Vol. 6141. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 192–
212.

168

	List of Figures
	List of Code Listings
	List of Tables
	Introduction
	Motivating Problems
	Position and Contributions
	Organization

	Background
	The Essentials
	Motivations for Language Embedding
	The Role of the Host Language

	Implementation Techniques
	Source-Code Preprocessing
	Active Libraries
	Compiler Plugins
	Syntactic Macros
	Template Metaprogramming
	Shallow Embedding
	Deep Embedding
	Tagless-Final Embedding
	Hybrids

	Staged Embedded Languages
	Staging
	The Design Space
	Pitfalls of Manual Implementations

	Comparison

	Toward Higher-Level Support
	Explicating the Embedded Language
	Implicit Staging of EDSL Code
	Static Token Reinterpretation
	The Approach's Potential
	Design Aspects

	Load-Time Metaprogramming
	Proof-of-Concept Implementation
	Overview
	Staging: Expression Extraction
	Processing: Expression Translation
	Unstaging: Relinking Expression Sites

	Evaluation
	Reliability
	Performance
	Usability
	Comparison with Related Work

	Discussion and Summary
	Acknowledgments

	Almost First-Class Embedding
	Support for Dynamically Staged EDSLs
	The @Stage Annotation
	Materialization Triggers
	From Expression DAGs to Values
	Global Carrying
	Language-Boundary Customization
	Suppression of Staging Behavior
	Visibility Control
	Static @Stage Inheritance
	Static Information

	Behind the Scenes
	The Case for Load Time
	System Overview
	Constant Analysis
	The Stage Graph
	Token-Representation Generation
	Weave Analysis and Weaving
	Run-Time Support

	Examples
	Centroid Calculation (Vector EDSL)
	Radar (Region EDSL)
	Connections (ImmutableList-Processing EDSL)

	Evaluation
	Reliability
	Performance
	Usability
	Comparison with Related Work
	Scala-Virtualized

	Discussion and Summary
	Acknowledgments

	Conclusions
	Limitations
	Future Work

	Matrix EDSL Experiment Expressions
	Randomly Generated Expression
	Shallow Embedding and Implicit Staging
	Deep Embedding

	Biased-Randomly Generated Expression
	Shallow Embedding and Implicit Staging
	Deep Embedding

	Tame-Staging Experiments
	Centroid-Calculation Experiment
	Radar Experiment
	Connections Experiment
	Compiler Implementation

	Vector EDSL Overhead Experiment

	Tame-Staging Reference
	Language Classes
	Annotations
	@Stage
	@Accept and @Accept.This
	@Suppress
	@Configure

	Expressions
	Static Information
	Closures

	Bibliography

