
Almost First-Class Language Embedding
Taming Staged Embedded DSLs

Maximilian Scherr
The University of Tokyo, Japan
scherr@csg.ci.i.u-tokyo.ac.jp

Shigeru Chiba
The University of Tokyo, Japan

chiba@acm.org

Abstract
Embedded domain-specific languages (EDSLs), inheriting a gen-
eral-purpose language’s features as well as look-and-feel, have
traditionally been second-class or rather non-citizens in terms of
host-language design. This makes sense when one regards them to
be on the same level as traditional, non-EDSL library interfaces.
However, this equivalence only applies to the simplest of EDSLs.
In this paper we illustrate why this is detrimental when moving on
to EDSLs that employ staging, i.e. program reification, by example
of various issues that affect authors and users alike.

We believe that if EDSLs are to be considered a reliable,
language-like interface abstraction, they require exceptional atten-
tion and design scrutiny. Instead of unenforceable conventions, we
advocate the acceptance of EDSLs as proper, i.e. almost first-class,
citizens while retaining most advantages of pure embeddings. As
a small step towards this goal, we present a pragmatic framework
prototype for Java. It is based on annotations that explicate and
document membership to explicit EDSL entities. In a nutshell, our
framework identifies (annotated) method calls and field accesses as
EDSL terms and dynamically constructs an abstract-syntax repre-
sentation, which is eventually passed to a semantics-defining back
end implemented by the EDSL author.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs & Features

Keywords Java, implementation, embedded DSLs, metaprogram-
ming, program transformation, staging, programming languages,
design

1. Introduction
The embedding of domain-specific languages (DSLs) within the
confines of a general-purpose host language is an active area of
research [16, 22, 25, 30]. By inheriting large parts of the host-
language infrastructure [19] these embedded DSLs (EDSLs) man-
age to reduce the effort of creating a dedicated parser, compiler,
or interpreter tool chain as well as enable easy usage alongside
general-purpose code [13, 19].

While the idea of using a general-purpose language primarily as
a sort of scaffolding [11, 25, 29] is an interesting take on modular

(domain-specific) language prototyping and development, arguably
EDSLs have found their way into the mainstream by way of pro-
viding rich interfaces to programming libraries, taking the place
of traditional idioms and state-based interactions with libraries
[1, 2, 13, 15]. Even the official Java API has started to embrace
EDSLs: Now many forms of manual iterations can be replaced with
more readable combinations of map, filter, and other methods.
These ideas have long been in use and found recognition as EDSLs
in the functional programming language community [20].

At the time EDSLs (then named DSELs) were described by
Paul Hudak [19] the concept stood in contrast to manual prepro-
cessing or compile-time metaprogramming approaches. In combi-
nation with the right host language, so-called pure embedding was
seen as sufficient. Indeed, embedding DSLs in terms of run-time
behavior is widely available, lightweight, and reliable, while at the
same time compile-time properties can be exploited to reinforce
language characteristics, e.g. EDSL syntax via static typing [37].

Recently, a trend to further augment these pure embedding
approaches with additional pre-run-time support has emerged
[5, 18, 22, 25, 30]. This trend indicates that EDSLs are begin-
ning to be considered worthy of special treatment. We believe
the time has come for accepting language embedding as a sta-
ple for the development of rich library interfaces, deserving its own
linguistic-abstraction mechanism to achieve improved reliability,
performance, and usability. We contribute to the state of the art as
follows:

• A badly designed, manually implemented EDSL may easily de-
volve into a convoluted, inconvenient, and unreliable program-
ming interface merely upholding the illusion of a language. To
illustrate this we present a collection of pitfalls potentially en-
countered due to the process of staging, here referring to EDSL-
program reification.

• We propose that a meta-level or semi-linguistic abstraction can
ensure safe and predictable EDSL usage. At the same time it
ought to reduce development effort and enable features hard
to accomplish with only general-purpose mechanisms. This
abstraction would raise language embedding close to a first-
class language feature.

• Our concrete solution is a pragmatic framework for Java based
on load-time metaprogramming. It makes use of annotations
that, together with controlling the atomic staging operations,
help communicate an EDSL’s behavior to its users. It further
helps simplify EDSL implementation and allows for a mixing
of explicit and hidden dynamic staging styles.

2. Pitfalls of Manual Language Embedding
The most straightforward approach to implement an EDSL is to use
a direct mapping from its syntax to its semantics in the host lan-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

GPCE’15, October 26–27, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3687-1/15/10...
http://dx.doi.org/10.1145/2814204.2814217

21

guage. Especially when we only deal with values that do not repre-
sent computation themselves it is hard to distinguish an EDSL from
a traditional library interface. It is merely a question of perspective.

1 public final class Vec { ¨ ¨ ¨
2 public Vec plus(Vec v) { ¨ ¨ ¨ /* el.-wise addit. */ }
3 public Vec times(double s) { ¨ ¨ ¨ /* scalar mult. */ }
4 }

Figure 1. Non-staged vector EDSL

Without dwelling on a discussion on what exactly constitutes an
EDSL, let us consider the skeleton shown in Figure 1, representing
the definition of a type and an EDSL for vector operations. It is
easy to implement and use since the individual EDSL constructs or
tokens are implemented directly using procedural abstraction.

Not only are result values immediately available when needed,
users of this EDSL can also rely on the general properties of the em-
ployed abstraction mechanism such as argument evaluation strat-
egy and error handling. Take for instance the following expression:

a.plus(b.times(2.0)).plus(c)

The order of evaluation is clearly defined by the host language.
Furthermore, if for instance value a is a vector of different dimen-
sion than b, a run-time exception can be thrown to clearly indicate
where the issue has occurred.

Despite its ease of use, such a so-called shallow embedding is
severely limiting since an EDSL program, or rather its abstract syn-
tax, only ever exists implicitly [30]. This precludes structural opti-
mizations as well as alternative interpretations such as the printing
of an expression [16, 32].

Making the abstract syntax of EDSL programs explicit can
be achieved by defining the EDSL constructs to build (and com-
pose) elements of an intermediate representation (IR). When this
is performed at run time we are dealing with a so-called deep em-
bedding [16, 32], a relative of the interpreter pattern [14]. Al-
ternatively, explicating the abstract syntax can be achieved using
metaprogramming techniques such as syntactic macros or other
forms of preprocessing that occurs before a user program is exe-
cuted [5, 10, 22, 30].

The unifying property of such EDSL implementations is the fact
that the handling of an EDSL program is delayed (as opposed to
immediate) for the purpose of enabling beneficial processing. We
refer to this property as staging1 and EDSLs that use it as staged
EDSLs. Conceptually, the workflow of using a staged EDSL can be
divided into phases, which in practice sometimes overlap:

1. Staging, i.e. IR construction and composition.

2. Processing, e.g. optimization, compilation, etc.

3. Materialization or Unstaging, i.e. evaluation to a result.

The term “materialization” refers to the notion that EDSL pro-
grams abstractly represent a yet immaterial value (or effect). In pre-
processing implementations this phase is commonly non-existent
or would turn into a sort of preparation for eventual evaluation.

1 public final class Vec { ¨ ¨ ¨ // base value
2 public VecE toVecE() { ¨ ¨ ¨ /* value lifting */ }
3 }
4 public class VecE { ¨ ¨ ¨ // abstract syntax / IR
5 public VecE plus(VecE vE) { ¨ ¨ ¨ /* staging */ }
6 public VecE times(double s) { ¨ ¨ ¨ /* staging */ }
7 public Vec toVec() { ¨ ¨ ¨ /* materialization */ }
8 }

Figure 2. Deeply embedded vector DSL

1 Taha sates that “in essence, staging is altering a program’s order of evalu-
ation in order to change the cost of its execution” [34, Chapter 2]. Arguably,
this applies both to run time as well as compile time [10].

Figure 2 shows a skeleton definition of a deeply embedded ver-
sion of the example vector DSL. Here the method Vec.toVecE
would perform trivial staging by lifting base values, VecE.plus
and VecE.times would stage and compose IR elements (or ex-
pressions, hence VecE), and VecE.toVec would perform mate-
rialization. Assuming aE, bE, cE, and dE are lifted values of type
VecE, the expression presented earlier would look as follows:

aE.plus(bE.times(2.0)).plus(cE).toVec()

Users may now (by contract or convention) expect delayed pro-
cessing. Unlike in our earlier example, conceptually the abstraction
of domain-specific computation does not happen on the individual
method-call level anymore but on the higher level of dynamically
constructed expressions belonging to a language.

However, in the case of manual deep embedding this is only em-
ulated by using lower-level procedural abstraction. Similar applies
to other forms of staged-EDSL implementations relying on man-
ual forms of metaprogramming. In the following we will look at
several pitfalls potentially encountered due to this gap between the
conceptual and real abstraction level.

2.1 Non-Compositional Staging
With manual deep embedding the abstractions in charge of IR con-
struction are free to realize staging in any possible way. Unfortu-
nately this also means that EDSL users must not make across-the-
board assumptions about the staging process. This includes the ex-
pectation of compositionality for EDSL-program construction.

1 static void example(Vec a, Vec b, Vec c) {
2 VecE aPlusB = a.toVecE().plus(b.toVecE());
3 out.println(aPlusB.toVec());
4 VecE aPlusBtimes5 = aPlusB.times(5.0);
5 out.println(aPlusB.toVec());
6 out.println(aPlusBtimes5.toVec());
7 }

Figure 3. Deeply embedded vector DSL usage example

Consider the example in Figure 3 and let us assume for the sake
of argument that Vec instances are immutable and toVec per-
forms a side-effect-free and sound execution of constructed EDSL
programs. We still cannot draw the conclusion that lines 3 and 5
yield the same output since the EDSL programs to be executed
might differ. As contrived as this may seem, a non-compositional-
staging implementation is easily sketched as shown in Figure 4.

1 public class VecE {
2 private final Vec base;
3 private final List<Consumer<double[]>> ops = new ¨ ¨ ¨;
4 VecE(Vec base) { this.base = base; }
5 public VecE plus(VecE vE) {
6 ops.add(ds -> { ¨ ¨ ¨ /* add vE[i] onto ds[i] */ });
7 return this;
8 }
9 public VecE times(double s) {

10 ops.add(ds -> {
11 for (int i = 0; i < ds.length; i++) {
12 ds[i] *= s;
13 }
14 });
15 return this;
16 }
17 public Vec toVec() {
18 double[] ds = Arrays.copyOf(base.elements, ¨ ¨ ¨);
19 for (Op op : ops) { op.accept(ds); }
20 return new Vec(ds);
21 }
22 }

Figure 4. Non-compositional staging

Note that it is common to implement so-called builders [7,
Chapter 2] in a similar fashion. With builders the general consen-
sus may lie on repeatedly mutating an intermediate data structure

22

from which to subsequently construct a final (often immutable)
one. However, with staged EDSLs it is arguably more reasonable
for the goal and consensus to lie on the safe construction and as-
sembly of EDSL-program fragments. It is quite surprising that non-
compositionality manifested in the form of self-mutation with a
return this statement seems to be the current norm or prin-
ciple for fluent-interface [12, Chapter 4] EDSL designs.

One easy way for EDSL authors to ensure compositionality is
to choose immutable, persistent data structures for the IR and avoid
side effects within the staging (EDSL-token) methods. However,
note that this is not a definitive necessity. It may very well make
sense to judiciously employ side effects, for instance in order to
achieve a form of common-subexpression elimination (CSE) [27],
as long as compositionality is not impaired.

2.2 Opaque Workflow
Closely related to (yet not interdependent with) non-compositional
staging is the issue of unpredictable existence, division, or overlap
between the phases of the staged-EDSL workflow. For instance,
naming conventions and type signatures may indicate the roles of
methods and their workflow phases, but their actual behavior has to
be inferred from documentation or source code (if present).

For instance, it is not even established that the methods in VecE
do in fact perform IR construction. They might just trivially wrap
Vec values and act as proxies to the shallow embedding. The same
applies to materialization. For instance, in our vector EDSL, ma-
terialization could be delayed further, e.g. until one of its elements
is accessed. Note that this can even affect seemingly shallowly em-
bedded DSLs. Ultimately, for users it is not immediately obvious
what kind of embedding they are dealing with.

1 public VecE plus(VecE vE) {
2 if (/* this is the 5th addition in a row */) {
3 return this.toVec().toVecE().plus(vE);
4 }
5 return /* default IR construction */;
6 }

Figure 5. Opaque workflow-phase overlapping example

To illustrate the issue with opaque overlapping of workflow
phases consider Figure 5. The plus method here performs condi-
tional materialization. In general, any time IR elements are handed
to an EDSL-token method (at staging time) it could potentially en-
tail an internal decision to (partially) materialize. This is an issue
for users since they cannot clearly anticipate and decide when a
potentially costly (or effectful) computation is initiated, impairing
program understanding and design.

Another form of overlap with similar consequences is encoun-
tered with on-the-fly processing. In practice, a common approach to
optimizations is to perform IR transformations by rewriting within
the staging methods [11], e.g. to remove multiplication with a con-
stant 1. While this is a clever idea, it may hinder the reusability
of EDSL snippets and complicate debugging. Furthermore, certain
optimization opportunities may be lost: Ones that rely on inspect-
ing the entire constructed EDSL program in its original form.

2.3 Fuzzy Language Boundaries
Conceptually, language boundaries appear when terms of an EDSL
are intermixed with those of different EDSLs or those of the
general-purpose parts of the host language. Of course, since with
manual implementations EDSLs are not explicit entities, neither
are language boundaries.

This may lead to issues of unclear delimitation, which become
further pronounced when staging itself occurs in a hidden fashion.
This hidden staging is sometimes desired for the sake of simplify-
ing EDSL usage [22, 32]. One generic host-language solution that

enables it is compile-time metaprogramming via syntactic macros
as found for instance in Lisp dialects. Note that this effectively
achieves static staging as opposed to the dynamic staging seen with
deep embedding. However, even in the case of traditional deep em-
bedding, it is possible to make the staged nature of an EDSL less
explicit by not fully exploiting static type checking, by design of
the host language or that of constituent EDSLs.

Despite potential advantages for EDSL usability, the described
concealment makes the communication (to users) as well as the
enforcement of language boundaries hard. After all, the secondary
general-purpose mechanisms that could emulate language bound-
aries are abandoned.

Consider the following expression, using an implementation of
the vector EDSL using Lisp-style syntactic macros:

(times (times ’(0 0) (e)) (+ (f) (* x y)))

One could provide a language labeling of the above where H stands
for the host language. Let us here consider arithmetic operations as
part of their own language:

s1
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

(L1 (L1 H(H H) (H)) (L2 (H) (L2 H H))
loooooooooooooooomoooooooooooooooon

s2

)

The implementation of times might decide that ’(0 0) is indif-
ferent to scalar multiplication and remove the multiplication. This
is a problem if (e) or (f) cause side effects that might affect the
rest of the program. Likewise, the implementation might fuse the
arithmetic operations of L2 or decide to interpret them differently,
e.g. with (or without) overflow checks, again affecting more than
L1 should. In general, an inner-scope expression (s2) cannot pre-
vent its tampering by an outer-scope macro (s1): Assuming L2 here
to be a macro-based EDSL implementation, it cannot force L1 to
leave its programs alone. Syntactic macros (even more limited va-
rieties than Lisp’s) bring about these and other issues due to their
inherent power [17, Chapter 10].

This pitfall can also be encountered with deep embedding when
type checking is not fully exploited. In that case IR elements can
be handled by any IR-processing function since language bound-
aries only exist to the extent of ignorance (i.e. one language not
knowing another’s IR). However, at least the effect cannot reach
into general-purpose code. Of course, one may readily blame indi-
vidual sloppy implementation when problems with fuzzy language-
boundaries occur. However, this only supports our claim that lower-
level abstractions are unreliable tools for language embedding.

2.4 Loss of Static Context
Dynamic staging makes it hard to associate an IR element with the
static context (e.g. source location) in which it was constructed.
One use case for this would be debugging: While at the time of
processing one can detect the source of an error within an EDSL
program, this alone is of little help to EDSL users who want to
investigate where and why a bug was introduced at staging time.

There may be ways to retrieve and conserve such knowledge
with support of the language runtime, e.g. by inspecting stack traces
in IR-constructing methods, but they may slow down staging and
ought to be considered crude workarounds. Here, using syntactic
macros may help, e.g. in the case of Scala where such context
information is retrievable. However, one could claim yet again that
using a macro system may introduce uncertainty as described in
section 2.3. Some approaches [25] propose the addition of language
features for this purpose.

For entirely statically staged EDSLs this pitfall is less of a
concern since the disconnect between the point of staging and
processing is not as drastic and context information may be readily
available.

23

2.5 Redundant Processing
It is reasonable to assume that EDSL-program processing involves
a non-negligible amount of computational effort. Some reified pro-
grams may undergo significant analysis and optimization or are
even compiled and offloaded. In general, this is worthwhile when
the computation during materialization would run a lot slower with-
out prior processing, e.g. when dealing with large data sets.

An advantage of dynamic staging is that these programs are
specialized based on EDSL-external, user-defined conditions. One
may look at dynamic staging as a form of configuration of a li-
brary’s implementation at run time.

1 static void example(boolean b, Vec v) {
2 VecE e = v.toVecE().plus(v.toVecE());
3 if (b) { e = e.plus(v.toVecE()); }
4 out.println(e.toVec());
5 }

Figure 6. Vector EDSL redundancy example

If handled naively this is bound to cause repeated processing
overhead. For instance, consider frequent calling of the method in
Figure 6. Only two different EDSL programs (with different v in-
puts) are ever generated here. A manual deep-embedding imple-
mentation cannot exploit this knowledge. At best, it could rely on
manual caching, e.g. in the toVec method. However, such a solu-
tion complicates the EDSL’s implementation and design despite its
being a common aspect of the higher-level EDSL abstraction itself.

It should be easy to see how ignoring this concern may either be
detrimental to the run-time performance or alternatively, unneces-
sarily limits the scope and usefulness of the EDSL as a rich library
interface (due to users needing to circumvent the issue).

For statically staged EDSLs this is mostly a non-issue, i.e. when
processing is limited to one time only.

3. Our Solution
To tackle the described pitfalls we propose to augment host lan-
guages with dedicated support for language embedding.

The first step towards this goal is to explicate the concept of
an embedded language itself. Doing so enables us to clarify lan-
guage boundaries and configurations. Secondly, clearly marking
the constructs of an EDSL allows us to hand over the responsibili-
ties for IR construction entirely to the dedicated EDSL-abstraction
mechanism. This makes staging and materialization follow uni-
form, predictable rules whether a hidden or more obvious staging
style is used. Finally, the processing of staged-EDSL programs is
abstracted away and cached by indirection to a common interface
implemented by the respective EDSL authors.

We have implemented this in the form of a prototype framework
for Java. However, there is little preventing the adoption of the
presented ideas in other host languages. In the following we will
first concentrate on the framework’s usage and meaning before
delving into a discussion on implementation concerns.

3.1 The @Stage Annotation
Our framework hinges on the ability to discern between staged and
non-staged parts of a program. By placing an @Stage annotation,
whose declaration is shown in Figure 7, on a field or method
declaration, EDSL authors can designate these to become tokens.

1 @Documented @Target({ METHOD, FIELD })
2 public @interface Stage {
3 Class<? extends Language<?>> language();
4 boolean isStrict() default false;
5 StaticInfo.Element[] staticInfoElements() default {};
6 }

Figure 7. @Stage annotation type declaration

Such a token is always associated with a language, represented
by a Java class marked with the Language interface. This asso-
ciation is used for language-boundary checks and indirection to
IR processing. The isStrict (immediate materialization) and
staticInfoElements (specifying additional static informa-
tion to be retained) options will be revisited in more detail later.

From a user’s operational perspective, when they invoke an
@Stage-annotated method (or likewise, access such a field) the
original Java behavior is ignored and instead an abstract represen-
tation (of type Expression.Staged, ES) is constructed. Our
framework accomplishes this by transforming user programs ac-
cordingly prior to execution.

Composing complex terms within the same language is trivially
understood. However, foreign terms undergo a prior conversion
step: Host-language ones are always externalized as input values
and lifted (to an Expression.Value, EV), and by default,
terms of a different embedded language are materialized as values
and subsequently lifted as well.

1 public final class Vec { ¨ ¨ ¨
2 @Stage(language = VecL.class)
3 public Vec plus(Vec v) { ¨ ¨ ¨ /* ignored */ }
4 @Stage(language = VecL.class)
5 public Vec times(double s) { ¨ ¨ ¨ /* ignored */ }
6 }

Figure 8. Annotated Vec

To illustrate the effect of using @Staged language constructs,
consider the annotated vector EDSL presented in Figure 8 together
with the example in Figure 9, which shows a simplified, conceptual
description of the IR construction that will occur at run time: The
ù symbol indicates the result (i.e. what actually happens at run
time) of having transformed the line above it (i.e. what the user
wrote). The double brackets (J¨ ¨ ¨K) indicate materialization.

Reading and writing of local variables transfers the staged-
EDSL terms as is. Hence, the resulting IR is a directed acyclic
graph (DAG) of Expression instances, whose structure follows
from the bindings in the user program.

1 static void sink(Vec v0, Vec v1, Vec v2) { ¨ ¨ ¨ }
2 static Vec example(int n, Vec a, Vec b, Vec c) {
3 a = a.plus(b);

ù E ta = ES pVecL, plus, rEV paq,EV pbqsq;
4 if (n > 10) {
5 a = a.plus(a);

ù ta = ES pVecL, plus, rta, tasq;
6 }
7 sink(a, b, a);

ù sink(JtaK, b, JtaK);
8

ù E tc = EV pcq;
9 for (int i = 0; i < n; i++) {

10 c = c.times(5 + i);
ù tc = ES pVecL, times, rtc,EV p5 + iqsq;

11 }
12 return c;

ù return JtcK;
13 }

Figure 9. Usage and transformation example

Staging is hidden and occurs dynamically at run time. Arguably,
especially in light of the existence of potential side effects in the
host program, this kind of staging would seem like a recipe for
disaster. The following two aspects make it not so:

• The @Stage annotation and its configuration provide sufficient
documentation so that even with only basic tool support (e.g.
Javadoc, quick jumps to definitions in an IDE, etc.) users can
understand which parts of their programs are subject to staging
as part of an EDSL.

24

• The scope of staging or rather of staged-IR transfer is limited
to the body of the method (for now). We say the staged terms
are locally carried, which means that they either remain (ex-
ternally) unused or get materialized when externally used (e.g.
by sink), i.e. upon attempting to “leave” the method’s local
scope. We will introduce globally carried terms in Section 3.4.

3.2 Materialization Triggers
For locally carried terms, materialization is triggered lazily when
encountering a language boundary. At the call sink(a, b, a)
in Figure 9 (l. 7), materialization of the first occurrence of a’s cor-
responding term ta is triggered before the second. Similar to thunks
in other on-demand evaluation schemes, in our framework EDSL-
term instances are materialized only once. Subsequent materializa-
tions yield cached result values.

By the nature of this scheme, materialization will by default
only happen when a term is actually needed (and not at all if
unused) EDSL-externally. This behavior can be changed with the
isStrict setting on an @Stage-annotation instance. Setting it
to true causes immediate materialization where the so-annotated
language construct occurs. Methods with void return type always
show this behavior.

Above we illustrated the frequent but special case of host-
language boundaries. Boundaries between two different staged ED-
SLs, or rather between their terms, need different handling. They
occur when a term of an embedded language L1 takes an argument
of an embedded language L2 that is not accepted (see Section 3.5)
at the given parameter position. By default a term accepts terms of
its own language. Trivially staged, lifted values (EV) are always
accepted and for them materialization merely means unlifting, i.e.
retrieving the contained, original value.

In general, the language of a staged-EDSL-term argument can-
not always be statically determined. Consequently, the decision on
boundary-based materialization triggering is made dynamically.

3.3 From Expression DAGs to Values
Materialization involves intermediate processing that turns staged
abstract syntax into meaningful computation. In short, EDSL au-
thors have to write a compiler similar to the one sketched in Figure
10. However, there is quite a bit of scaffolding whose understand-
ing is necessary for this code example to make sense.

The first waypoint to materialization is the creation of a clo-
sure object representing the EDSL program’s computation. Only its
eventual evaluation is to yield the result of materialization. This in-
direction allows us to cache (or preprocess) the closures associated
with EDSL programs that only differ in their lifted dynamic input
values (EV) but not their particular shape. The term “shape” here
refers to a specific composition of staged-EDSL constructs (ES).
Consider the following term (where L stands for VecL):

ES pL,times,
“

ES pL,plus, rEV pxq,EV pyqsq,EV pzq
‰

q

Its shape ranges over all possible value instantiations for x, y,
and z. When the materialization of a staged-EDSL program is
triggered we first probe a cache for an existing mapping between
an isomorphic expression DAG to a closure object: If present the
existing closure is reused, if absent the author-defined processing
mechanism is invoked. The latter causes dispatch to a static method
on the language (class) of the expression DAG’s root node. It
follows a naming convention and type signatures as follows:

• makeObjectClosure(Staged, Binder, boolean)
if the (return) type of the root-node construct is a reference.

• makeDoubleClosure(Staged, Binder, boolean)
if the (return) type of the root-node construct is double.

• Similarly for the other primitive Java types.

EDSL authors implement these methods as needed at their dis-
cretion while minding the fact that the results are cached: Process-
ing ought only to depend on a given expression DAG’s shape and
not some external state. The supplied boolean argument indi-
cates whether the resulting closure will be permanently cached (i.e.
memoized). This is the case when the shape is statically known.

1 class VecLCompiler implements Expression.Visitor {
2 private final Binder binder;
3 private ObjectClosure<Vec> closure;
4 ¨ ¨ ¨

5 public void visit(MethodInvocation staged) {
6 staged.getArgument(0).accept(this);
7 ObjectClosure<Vec> a0 = closure;
8 switch (staged.getMember().getName()) {
9 case "plus": {

10 staged.getArgument(1).accept(this);
11 ObjectClosure<Vec> a1 = closure;
12 closure = env -> {
13 Vec v0 = a0.evaluate(env);
14 Vec v1 = a1.evaluate(env);
15 double[] ds = new double[v0.elements.length];
16 for (int i = 0; i < ds.length; i++) {
17 ds[i] = v0.elements[i] + v1.elements[i];
18 }
19 return new Vec(ds);
20 }
21 break;
22 }
23 case "times": ¨ ¨ ¨
24 }
25 }
26 public void visit(ObjectValue value) {
27 closure = value.bind(binder);
28 }
29 }

Figure 10. Trivial compiler skeleton

To accomplish the separation of expression-DAG shape and
concrete instances, lifted-value nodes cannot be inspected for their
actual contents (without disabling caching) unless they are con-
stants. Instead, the supplied Binder instance is used to create
value-access closures from lifted-value nodes (see Figure 10, l. 27).

Caching and reusing closures requires injecting the actual input-
value instances as arguments at materialization time. The interface
methods (evaluate) of the closure interfaces take only a single
Environment-typed argument housing the input values found
in the expression DAG to be materialized. These environments are
isomorphic in the same way cached expression graphs are. For in-
stance, an environment could be backed by an array of values with
the binder-generated value-access closures being mere indices.2

Finally, the reader may revisit Figure 10, showing a part of a
trivial compiler for the vector EDSL of Figure 8 that does not im-
plement optimizations. Note that while this shows translation using
the visitor pattern [14], our framework is not concerned with how
traversal occurs in detail. For instance, we also created a support
package for implementations in Scala using pattern matching.

3.4 Global Carrying
Our description until now still only covers hidden staging limited to
the local scope of a method’s body, i.e. local carrying. Not having
to be confronted with concerns of explicit staging can be good
for usability. Yet, sometimes a more obvious and global style of
staging as traditionally seen with deep embedding is desirable. For
instance, this is arguably better suited for EDSLs that deal with
mutable input than a hidden style as materialization is explicitly
triggered. Furthermore, in some languages, not every fragment
bears meaning on its own. Local carrying is problematic for these

2 We found that making these access closures simply graph-walk to value
nodes turns out to be a faster solution.

25

cases since every single (locally carried) term may hit a language
boundary and cause its materialization.

In the following we will describe how a small extension to the
framework described so far enables obvious deep embedding by
permitting terms to be globally carried. Figure 11 shows global
carrying in action. The term in rE is carried over to times2,
which acts as a sort of macro expansion at run time. Leaving
example’s scope does not cause automatic materialization.

1 static VecE times2(VecE vE) { return vE.times(2.0); }
2 static Vec example(int n, Vec a, Vec b, Vec c) {
3 VecE rE = a.toVecE().plus(b);
4 Vec r = times2(rE).toVec();
5 if (n > 5) { return c; }
6 return r;
7 }

Figure 11. Global carrying example

With traditional deep embedding, EDSL authors define their
own types (like VecE) and data structures for representing abstract
syntax. In our framework EDSL authors can instead just declare a
type extending the GlobalCarrier class. An instance of such
a global carrier can have two meta states: Either it stands for an
actual value of the data type as defined at the author’s discretion,
or it stands for abstract syntax, i.e. it literally carries an expression
DAG. Hybrid states are possible but usually not recommended.

Defining an (@Stage-annotated) EDSL construct with (return)
type GlobalCarrier, or preferably a subtype thereof, suffices
to signal that the returned instance shall carry the constructed term.
The code in Figure 12 completely defines VecE and adds rele-
vant annotations. When an @Stage-annotated construct receives
a carrier-typed argument this will first be checked for carrying a
staged term and if so move on to language-boundary checks.

1 public final class Vec { ¨ ¨ ¨
2 @Stage(language = VecEL.class)
3 public VecE toVecE() { ¨ ¨ ¨ /* ignored */ }
4 }
5 public final class VecE extends GlobalCarrier {
6 @Stage(language = VecEL.class)
7 public VecE plus(VecE vE) { ¨ ¨ ¨ /* ignored */ }
8 @Stage(language = VecEL.class)
9 public VecE times(double s) { ¨ ¨ ¨ /* ignored */ }

10 @Stage(language = VecEL.class)
11 public Vec toVec() { ¨ ¨ ¨ /* ignored */ }
12 }

Figure 12. VecE as a global carrier

Recall that with the default local carrying, materialization is
triggered implicitly on demand. Globally carried terms do not
exhibit this behavior. Instead, materialization is inducible in two
ways:

• By using a strict (isStrict) EDSL construct designated to
be an explicit trigger (as usual in traditional deep embedding).

• By transitioning to a locally carried construct, which will lead
to subsequent implicit materialization.

Let us interpret Figure 11 with the latter behavior, i.e. toVec
returns Vec, a locally carried value. Since toVec is not strict
there is only one point where materialization could happen: At the
return statement in line 6 if it is reached during execution. Note

Figure 13. Carrying-level transitioning

that thanks to the way we named the methods and structured the
EDSL we could simply reuse the compiler of Figure 10.

The local and global carrying scheme affords an interest-
ing design opportunity: If instead of VecEL.class we use
VecL.class as language in the annotations, we can intermix
local (i.e. methods on Vec) with global carrying, as shown in Fig-
ure 13. Since there are no language boundaries besides the host-
language one, the composition will result in a term that can be
handled by the the same compiler. While seeming contrived here, a
use case for such an arrangement may arise in EDSLs where some
constructs require explicit handling by users while others do not.

3.5 Further Features and Considerations
Having covered the basics of our framework let us introduce addi-
tional features helpful for design, implementation, and usage.

Language Boundary Customization. For the sake of modular-
ity it is desirable to make EDSL syntax composable. This requires
a means for changing the default boundary behavior of terms only
accepting language constructs of the same language. To this end we
provide the @Accept annotation which is to be placed on the pa-
rameters of @Staged constructs. Its only element (languages)
is an array of language classes that will be interpreted as the set of
languages accepted at the given parameter.

Suppression of Staging Behavior. In our examples we have omit-
ted the method bodies of @Staged EDSL tokens. We did so be-
cause their implementation was not relevant: Using such a token is
not linked to its original implementation anymore.

However, we found that there are use cases where EDSL users
might want to switch between a staged and a non-staged interpre-
tation, e.g. for benchmarking. Of course, the EDSL author has to
account for this case, i.e. implement the method bodies.

Staging can be suppressed with the @Suppress annotation.
Like @Accept it takes an array of language classes for which
suppression should be effective. It can be placed both on methods
as well as types and is effective in their scopes (but not inherited).

Visibility Control. An EDSL author might not want users to sup-
press staging of their language. Likewise, allowing just anyone to
add constructs to an existing language with the @Stage annotation
is dangerous. After all, the author of the EDSL should not have to
consider additional language constructs when building their com-
piler. Similar issues apply to @Accept.

A simple solution is to rely on Java’s visibility control and
set the language class non-public. However, sometimes this might
be too drastic, for instance when suppression should be allowed
“publicly” but none of the other annotations. To this end, we added
yet another annotation, called @Configure, that may be placed
on a language class. Using this an EDSL author can individually
set whether its access is restricted for @Stage, @Accept, or
@Suppress. This configuration only affects usage outside the
package of the language class.

Static @Stage Inheritance. Our framework’s interpretation of a
construct as staged or not is static, i.e. early bound. This simplifies
implementation and arguably increases predictability and consis-
tency for EDSL users: They can statically determine whether stag-
ing will occur and which language a token belongs to.

Inheritance of @Staged methods is allowed. For the sake of
consistency it behaves similar to visibility-inheritance rules in Java:
Just like a method’s visibility cannot be reduced by inheritance, so
can an @Staged construct not become non-staged. We apply this
to fields as well for consistency. However, we currently do allow
changing languages or @Accept options as it might prove useful
for specialization on a lower level of a class hierarchy. We have yet
to investigate whether predictability should outweigh this freedom.

26

Static Information. Our framework automatically exploits static
knowledge and provides some of it to EDSL authors, e.g. constant
input values. Retaining additional information from the static con-
text in which an EDSL term was constructed can be very use-
ful for debugging, error reporting, and optimization. To capture
some of this information, the staticInfoElements value of
the @Stage annotation may be set by EDSL authors.

Currently, our framework only supports collecting two types of
information: The origin (ORIGIN), i.e. method, line number, and
bytecode position of a constructed term3, and the inferred types
(INFERRED_TYPES) of a token’s arguments and (return) type.

3.6 Behind the Scenes
Ideally, the EDSL-abstraction mechanism provided by our frame-
work would be supported natively by the compiler and language
runtime. However, such a heavyweight extension is neither easy
to implement and maintain, nor is it attractive to current users (of
Java). Instead, we have pragmatically implemented our framework
to perform on-the-fly transformations on client code.

The Case for Load Time. As in our previous work [30], we opted
to use load-time metaprogramming using a Java agent in combina-
tion with Javassist [3, 9]. The reasons are manifold: For one, our
framework’s run-time support needs to make certain methods pub-
lic and adapt certain classes without leaking this nature to source
files. Performing these adaptations and transformations on the fly
keeps source-level tampering (by EDSL users and authors) at bay.

Furthermore, by transforming bytecode as it is loaded we are
delaying processing as long as possible. This fits very nicely into
the rest of the design rationale, i.e. on-demand processing. Further
advantages will become clear as we proceed through this section.

Overview. When a new class is loaded into the system we scan its
methods for containing usages of @Staged constructs. If present
we perform proper data-flow analyses in the following order:

1. Type-inference analysis yields type approximations.

2. Value-flow analysis relates sources and uses of values.

3. Constant analysis marks values as constant (or not).

4. Stage analysis builds a stage graph from @Staged tokens.

5. Weave analysis determines bytecode adaptation.

These are simple iterative forward-flow data-flow analyses [23]
whose detailed discussion is beyond the scope of this paper.

Everything is finalized with a weaving step that performs the
necessary transformations before the class is handed to the class
loader. The agent that does all that is contained in a JAR file to be
used with the -javaagent:¨ ¨ ¨ JVM option.

The Stage Graph. The stage analysis yields a graph that repre-
sents both the data and control flow between the staged-EDSL con-
structs contained in a method and also external sources and uses.

Figure 14. Stage graph for Figure 9

Figure 14 shows an example graph for the code in Figure 9
of Section 3.1. Rounded rectangles represent EDSL terms, trian-
gles represent their host-language uses, and circles represent host-

3 It serves a similar purpose as Scala-Virtualized’s SourceContext [25].

language input. Dashed lines represent control flow, solid ones rep-
resent data flow. We can use this graph to analyze interactions
among only those primitives relevant for the contained staged pro-
grams (with control-flow dependent shapes).4

For instance, we perform an analysis on the stage graph that
determines which parts will never take different shapes and can
thus be permanently cached (or preprocessed). Simplified, these
are the terms stemming from constructs that have no dynamic
dependencies and are at least used once externally. In the graph of
Figure 14 this applies to the plus nodes but not the times one.

Expression-Type Generation. Every @Staged construct is rep-
resented by its own class extending Expression.Staged that
is generated on the fly before weaving.

Class-specific code for materialization contains the logic for
cache lookup, environment and binder creation, and dispatch to
the processing methods on the EDSL’s class representation (e.g.
VecL.makeObjectClosure). Additionally, a factory method
is generated that performs checked incorporation of its arguments:
This includes the unloading of expression DAGs from carrier in-
stances, enforcing language boundaries, and in some cases value
lifting and conversion.

Without this code generation we would need to provide addi-
tional information for every IR-node instantiation and use many
conditionals or run-time reflection.

Weaving. The weaving step entails injecting bytecode for lift-
ing, materialization, term construction, and carrier instantiation and
loading. Here, working on the bytecode level is beneficial as it
is much less restrictive than source code. Yet, it is still restrictive
enough that we are forced to make adjustments: Suppose we have
determined that a value, originally double-typed, will have been
lifted at a certain program point. Then all instructions working on
that value need to be changed into ones suitable for reference types.
Similar changes (e.g. value lifting before control-flow merges) have
to be performed all over to satisfy the JVM’s bytecode verifier.

Although the implementation is cumbersome, we believe the
details and edge cases of the weaving step are not particularly
interesting here and beyond the scope of this paper.

Run-Time Support. Our framework’s run-time support consists
mainly of static methods in the hidden Dispatcher class, which
is made public only at the start of the Java agent.

Carrier subclasses are modified in such a way that only our
framework can construct “empty” instances to carry abstract syn-
tax. We ensure this by adding a new constructor accepting a special
parameter type generated at load time. Carriers contain a payload
field of type Expression that is accessed using hidden methods.

Permanent caching works by using static (closure-holder) fields
on the declaring class of a woven method. Their contents are
provided to corresponding IR-constructor calls. For default, non-
permanent caching we use a size-limiting implementation provided
by Guava [2].

4. Discussion and Evaluation
The previous sections focused mostly on operational explanations.
Let us now turn to assessing our EDSL-abstraction framework.

4.1 Pitfall Avoidance
Using @Stage to implement EDSLs alleviates or even eliminates
the issues mentioned in Section 2. Since IR construction is gov-
erned by annotation and code transformations at load time, non-
compositional staging is avoided for @Staged EDSL tokens. Re-
call the example given in Figure 3. With our system users could

4 The actual graph contains further detailed information on the nodes than
this simplified depiction.

27

rely on aPlusB.toVec() in both line 3 and line 5 to have the
same shape. Furthermore, there is no workflow overlap since token-
method behavior cannot be customized. Likewise, language bound-
aries are clear and enforced as described in Sections 3.1 and 3.2.

Static-context information is retained by our constant-analysis
phase as well as by the optional collection of StaticInfo. To il-
lustrate the latter, consider Figure 15 showing the factorial function
written in a simple EDSL we named Mini.

1 static int factorial(int x) {
2 IntV n = intVar("n");
3 IntV a = intVar("a");
4 return intAssign(n, intLit(x))
5 .then(intAssign(a, intLit(1)))
6 .then(whileDo(leq(intLit(1), n),
7 intAssign(a, mul(a, n))
8 .then(intAssign(n, add(n, intLit(-1)))))
9).intRun(a);

10 }

Figure 15. Mini factorial

Not shown here is that the called methods are @Staged and
except for intRun their return types extend GlobalCarrier.
The intVar construct creates a new variable identifier which can
be used within the EDSL program. Since our framework retains
the original bindings (and accounts for it in shape-isomorphism
checks), Mini’s compiler can use object identities for variable iden-
tifiers. Calling intRun with such an identifier materializes the
given sequence and returns the final value of the variable.

For debugging purposes then is set to collect static informa-
tion of type ORIGIN (see Section 3.6), which is used by Mini’s
compiler: For instance, if line 5 were to be commented out, users
would be provided with an error message pinpointing that at line 7
the read variable (a) is unassigned.

Our framework also uses static context to avoid redundant pro-
cessing. As mentioned earlier, static EDSL programs are detected
and given special permanent-caching treatment. For the dynamic
case redundant processing is avoided by the caching described in
Section 3.3, at least in theory. We will shortly see that the overhead
of our abstraction may outweigh this benefit.

One could argue that we cannot avoid the pitfalls entirely. The
culprit is, by design, found in global carrying. Although on one
hand methods like times2 in Figure 11 enable code reuse and
may act as auxiliary EDSL constructs, their opaque internals yet
again open the door to staging-related pitfalls. Still, our abstraction
governs how the core @Staged EDSL tokens can be combined.
Hence, users can easily determine for which parts guarantees apply
and for which parts they do not.

An open question is what could be done to improve this situa-
tion. Possibly, an annotation that checks certain behaviors of aux-
iliary methods could help. Another approach would be to add an
annotation (e.g. @Rewrite) for rewriting or expanding while stag-
ing. While this again reminds us of the opaque-workflow pitfall, at
least it would properly document and restrict such behavior.

4.2 The Cost of Abstraction
To estimate our framework’s overhead at run time, we have imple-
mented several versions of the vector EDSL: A non-staged, shal-
low embedding (S), an @Stage-annotated version (see Figure 8)
with both the trivial compiler (AN) of Figure 10, and an optimizing
one (AO). We also manually implemented non-optimizing (MN)
as well as optimizing (MO) deeply embedded versions. The opti-
mizations are as follows: Nested and repeated plus operations are
collected and performed using an accumulator vector, and repeated
times operations are merged into a single one.

Our benchmarks were run on the code of Figure 9 and on
an adapted version for the handcrafted versions (MN , MO),

called with example(i % 20, a, b, c) with i increment-
ing from 0 to 100,000 - 1. The variables a, b, and c contain ran-
domly initialized vectors of size 100, 1,000, or 10,000. For each
implementation we measured the execution time 10 times.5

Figure 16. Benchmark results (lin. and log. scale)

Figure 16 shows the averaged results of our benchmarks for the
different vector sizes. In terms of performance, using our @Stage-
based implementations (AN , AO) becomes only worthwhile for
vectors with more than 1,000 elements. Below that the performance
is abysmal and even above the handcrafted deep embedding (MN ,
MO) yields slightly better results. The overhead mostly stems from
environment accesses and isomorphism-checked cache lookups.

It is not surprising that our abstraction comes at a cost. How-
ever, it also comes with a potential for improvement unavailable
otherwise: Without changing the interface it is possible to change
and optimize our back end. For instance, one could consider early
processing of permanently cached terms at load time [30] or before
[22]. Our indirection mechanisms would allow for this.

4.3 Future Language Integration
By using annotations and load-time metaprogramming we have
achieved a pragmatic solution. Our prototype’s usage is rather
simple and becomes a mere extension of the general EDSL idea.
After all, we inherit large parts of the host-language infrastructure
[19]: The look-and-feel is unaffected and the compiler, type system,
IDEs, and virtual machine remain effective as is.

We believe it is worthwhile to investigate tighter (host) inte-
gration to solidify language embedding as a first-class feature. For
instance, a simple, noninvasive idea would be the creation of an
IDE plugin that highlights staging constructs and materialization
points using EDSL-dependent color coding. Also, an early check-
ing and warning mechanism, e.g. for language visibilities, would
be desirable. Here again, an IDE plugin could assist. Alternatively,
an annotation preprocessor or plugin checker [4] could do the trick.

Native support is a long-term goal for when the idea has matured
and garnered acceptance. The annotations could be replaced by
keywords and language classes could receive special treatment.
Support by the virtual machine sounds promising to avoid the
mentioned cost of abstraction and improve general performance,
e.g. by integrating the feature into JIT compilation.

5. Related Work
Combining various domain knowledge within a single host lan-
guage is not a novel idea. In fact, many APIs or libraries follow pro-
tocols that resemble languages. However internalizing a domain-
specific language means focusing strictly on language-like qualities
as in the type of embedding for which our framework is designed.

5 Warmed up (JRE 8, 3 GHz Intel Core i7, 8 GB RAM).

28

5.1 Custom DSL Syntax
The idea of providing language support for DSLs has been investi-
gated before. First and foremost there is the Python-inspired Con-
verge [35]. In this language DSLs or sub-languages can be defined
both in terms of syntax and semantics and are used in explicitly
language-delimited blocks. The Jakarta Tool Suite [6] is another
case of language extension for DSL development.

Examples of statically typed languages with a sole focus on
custom syntax are Wyvern [24] and ProteaJ [21]. Both use type-
associated syntax or operators to integrate sub-languages into their
respective host languages. These approaches deliberately argue for
a departure from the host language’s look-and-feel and attempt to
solve nontrivial parsing issues. Custom processing or optimization
is a secondary concern and currently only addressed by Converge.
For better or worse, dynamic composition of DSL fragments or its
pitfalls is not specifically addressed.

Note that these custom-syntax systems come with their own
dedicated tool chain that requires implementation and maintenance.

5.2 Language Piggybacking
It is possible to avoid the issues of a custom language and syntax by
piggybacking on the features of an existing programing language.
As described in Section 2, this enables the development of DSLs
that follow the host language’s look-and-feel. The oldest form of
this technique is accomplished with syntactic macros in Lisp [17]
or, as modernly revived, in Scala or Template Haskell [31].

Hudak [19] described a style of language embedding that specif-
ically stresses the inheritance of host-language infrastructure and
pureness, i.e. forgoing meta-level preprocessing. The idea is very
general and leaves us with the choice of using either shallow or
deep embedding [16, 32]. The latter adds a new dimension to the
reasoning about embedded-language programs: They do not need
to just sit there as static snippets but may be actively and dynami-
cally constructed using host-language idioms.

One framework that has perfected deep embedding is Light-
weight Modular Staging (LMS) [27], which is closely-related to
the tagless final approach by Carette et al. [8]. LMS was moti-
vated by bringing the ideas of multi-staged programming (MSP)
languages [33, 36] to Scala as a library. It heavily uses a combi-
nation of Scala-specific features such as implicit conversion, type
inference, and traits. It is modular in the sense that it allows mix-
ing together several EDSL-component traits to create a new EDSL.
Usage of these EDSLs occurs in a trait-inheriting program with
subsequent interpretation or compilation.

As a powerful framework for constructing and prototyping ex-
pressive DSLs, LMS cannot really afford to be overly restrictive.
For the most part, IR nodes as well as EDSL-construct behaviors
are defined manually (e.g. on-the fly rewriting on author-defined
data). Despite or maybe because of its power, as hinted at by Jo-
vanovic et al. [22], direct use of LMS-style deep embedding might
not be the best choice for realizing rich library interfaces.

5.3 Hybrid Approaches
Hybrid approaches combine DSL embedding with meta-level sup-
port. For instance, while LMS can stand on its own, it is consid-
erably enriched by Scala-Virtualized [25, 26], a custom branch of
the Scala compiler. It explores various general-purpose tweaks for
improving Scala as a meta language for DSL hosting. The main
idea is to allow extensive customization of host-language behav-
ior (or language virtualization) way beyond simple operator over-
loading, e.g. allowing for the semantic redefinition of inbuilt con-
trol structures and even variable assignment. Furthermore it adds
SourceContext, an implicit parameter that allows for better er-
ror reporting, thus addressing an important aspect of retaining static

information (see Section 2.4). However, this is not used further, e.g.
for constant detection, caching, or preprocessing.

An approach that does go further is Yin-Yang [22]. It enables the
generation of an LMS-based deep embedding from a shallow inter-
face description and macros for its usage. These macros conceal
the leaky-abstraction deep embedding: At compile time they trans-
form shallow method calls in EDSL blocks on-the-fly into counter-
parts of the deep embedding. EDSL authors may refine the gener-
ated deep embedding in an elegant, type-safe fashion. To customize
the semantics of these EDSLs it is necessary to customize the gen-
erated source code. This may entail manually adjusting staging-
time behavior (like with LMS) and leaves the door slightly open
to staging-related pitfalls. EDSL code is written in (macro-based)
DSL-delimited blocks. This mostly avoids fuzzy language bound-
aries by excluding foreign-language constructs altogether.

There also exist projects like CodeBoost [5] or Broadway [18]
closely related to EDSLs. Their goal is not to extract and provide
programs of an explicit EDSL as a whole. Instead they enable
domain-specific optimizations by defining (rewrite) rules.

Most existing approaches rely on preprocessing at or before
compile time which may limit separate compilation as well as
maintainability of application code that uses EDSLs. Project Lancet
[28], a custom JVM implementation, has a feature called JIT
macros. This allows changing the semantics of expressions and
thus domain-specific optimizations at JIT-compile time. However,
these JIT macros are enabled and configured dynamically at run
time, which makes it hard to guarantee, document, and communi-
cate behaviors uniformly to EDSL users.

Our present framework also constitutes a hybrid approach and is
loosely based on our previous work on the implicit staging of EDSL
expressions [30], which also suggests to explicate EDSLs. Concep-
tually, implicit staging proposes the static extraction and reification
of EDSL code, custom processing, and reintegration of the residue
into user programs. The concrete load-time implicit-staging pro-
totype only achieves expression-local handling. It successfully de-
limits EDSL code from host-language code and avoids fuzzy lan-
guage boundaries. Yet, the EDSL-token filtering is rather opaquely
defined and fails to reliably document language association.

Lack of documentation contributes to the pitfalls mentioned
in Section 2, even more so when leaving the expression-local as
well as static-staging realm. Especially when staging is hidden,
predictability is key. We have come to believe that addressing this
(as we did in the current work) is a necessary step to making hybrid
language-piggybacking approaches digestible.

6. Conclusion
Major pitfalls of designing and using staged EDSLs can be over-
come by using a dedicated abstraction mechanism. However, pro-
viding this feature is not without its own shortcomings and chal-
lenges. Not only is it associated with overhead it also requires care-
ful consideration of how it fits into the host language as a whole.

Proposing language embedding as an almost first-class feature
might seem at odds with the idea of DSL embedding. However,
hybrid approaches have been proposed before. Furthermore, many
modern languages are already taking EDSL development and usage
into account in their design, e.g. in terms of syntactic flexibility.

The alternative to a specialized approach would be to devise
more general host-language extensions. However, it is yet unclear
how EDSL-specific concerns, including pitfall avoidance, would be
comprehensibly addressed in general without complicating the host
language. Exploring this is a noble goal but arguably a much harder
task that would surely benefit from the existence of a specialized
one for inspiration. We have merely provided an initial design and
pragmatic implementation that can be used as a starting point for
further detailed exploration and improvement.

29

References
[1] http://www.jooq.org/ (2015-06-06).

[2] https://github.com/google/guava (2015-06-09).

[3] http://javassist.org/ (2015-06-09).

[4] http://checkerframework.org/ (2015-03-19).

[5] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and E. Visser. Design
of the CodeBoost Transformation System for Domain-Specific Op-
timisation of C++ Programs. In D. Binkley and P. Tonella, editors,
Third International Workshop on Source Code Analysis and Manip-
ulation (SCAM 2003), pages 65–75, Amsterdam, The Netherlands,
Sept. 2003. IEEE Computer Society Press.

[6] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for Imple-
menting Domain-Specific Languages. In Proceedings of the 5th In-
ternational Conference on Software Reuse, ICSR ’98, pages 143–153,
Washington, DC, USA, 1998. IEEE Computer Society.

[7] J. Bloch. Effective Java (2Nd Edition) (The Java Series). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2 edition, 2008.

[8] J. Carette, O. Kiselyov, and C.-c. Shan. Finally Tagless, Partially
Evaluated: Tagless Staged Interpreters for Simpler Typed Languages.
J. Funct. Program., 19(5):509–543, Sept. 2009.

[9] S. Chiba. Load-Time Structural Reflection in Java. In E. Bertino,
editor, ECOOP 2000 — Object-Oriented Programming, volume 1850
of Lecture Notes in Computer Science, pages 313–336. Springer Berlin
Heidelberg, 2000.

[10] K. Czarnecki, J. T. O’Donnell, J. Striegnitz, and W. Taha. DSL imple-
mentation in MetaOCaml. In C. Lengauer, D. Batory, C. Consel, and
M. Odersky, editors, Domain-Specific Program Generation, volume
3016 of Lecture Notes in Computer Science, pages 51–72. Springer
Berlin Heidelberg, 2004.

[11] C. Elliott, S. Finne, and O. De Moor. Compiling Embedded Lan-
guages. J. Funct. Program., 13(3):455–481, May 2003.

[12] M. Fowler. Domain Specific Languages. Addison-Wesley Profes-
sional, 1st edition, 2010.

[13] S. Freeman and N. Pryce. Evolving an Embedded Domain-specific
Language in Java. In Companion to the 21st ACM SIGPLAN Sympo-
sium on Object-oriented Programming Systems, Languages, and Ap-
plications, OOPSLA ’06, pages 855–865, New York, NY, USA, 2006.
ACM.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[15] P. G. Giarrusso, K. Ostermann, M. Eichberg, R. Mitschke, T. Rendel,
and C. Kästner. Reify Your Collection Queries for Modularity and
Speed! In Proceedings of the 12th Annual International Conference
on Aspect-oriented Software Development, AOSD ’13, pages 1–12,
New York, NY, USA, 2013. ACM.

[16] J. Gibbons and N. Wu. Folding Domain-specific Languages: Deep and
Shallow Embeddings. In Proceedings of the 19th ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’14, pages
339–347, New York, NY, USA, 2014. ACM.

[17] P. Graham. On Lisp: Advanced Techniques for Common Lisp.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[18] S. Guyer and C. Lin. Broadway: A Compiler for Exploiting the
Domain-Specific Semantics of Software Libraries. Proceedings of the
IEEE, 93(2):342–357, Feb. 2005.

[19] P. Hudak. Modular Domain Specific Languages and Tools. In Pro-
ceedings of the 5th International Conference on Software Reuse, ICSR
’98, pages 134–142, Washington, DC, USA, 1998. IEEE Computer
Society.

[20] G. Hutton. Programming in Haskell. Cambridge University Press,
Jan. 2007.

[21] K. Ichikawa and S. Chiba. Composable User-defined Operators That
Can Express User-defined Literals. In Proceedings of the 13th Interna-
tional Conference on Modularity, MODULARITY ’14, pages 13–24,
New York, NY, USA, 2014. ACM.

[22] V. Jovanovic, A. Shaikhha, S. Stucki, V. Nikolaev, C. Koch, and
M. Odersky. Yin-Yang: Concealing the Deep Embedding of DSLs.
In Proceedings of the 2014 International Conference on Generative
Programming: Concepts and Experiences, GPCE 2014, pages 73–82,
New York, NY, USA, 2014. ACM.

[23] G. A. Kildall. A Unified Approach to Global Program Optimization.
In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’73, pages 194–206,
New York, NY, USA, 1973. ACM.

[24] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and J. Aldrich.
Safely Composable Type-Specific Languages. In R. Jones, editor,
ECOOP 2014 - Object-Oriented Programming, volume 8586 of Lec-
ture Notes in Computer Science, pages 105–130. Springer Berlin Hei-
delberg, 2014.

[25] T. Rompf, N. Amin, A. Moors, P. Haller, and M. Odersky. Scala-
Virtualized: linguistic reuse for deep embeddings. Higher-Order and
Symbolic Computation, 25(1):165–207, 2012.

[26] T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jonnalagedda,
N. Amin, G. Ofenbeck, A. Stojanov, Y. Klonatos, M. Dashti, C. Koch,
M. Püschel, and K. Olukotun. Go Meta! A Case for Generative Pro-
gramming and DSLs in Performance Critical Systems. In T. Ball,
R. Bodik, S. Krishnamurthi, B. S. Lerner, and G. Morrisett, editors, 1st
Summit on Advances in Programming Languages (SNAPL 2015), vol-
ume 32 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 238–261, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[27] T. Rompf and M. Odersky. Lightweight Modular Staging: A Prag-
matic Approach to Runtime Code Generation and Compiled DSLs. In
Proceedings of the Ninth International Conference on Generative Pro-
gramming and Component Engineering, GPCE ’10, pages 127–136,
New York, NY, USA, 2010. ACM.

[28] T. Rompf, A. K. Sujeeth, K. J. Brown, H. Lee, H. Chafi, and K. Oluko-
tun. Surgical Precision JIT Compilers. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 41–52, New York, NY, USA, 2014.
ACM.

[29] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky,
and K. Olukotun. Building-Blocks for Performance Oriented DSLs.
In Proceedings IFIP Working Conference on Domain-Specific Lan-
guages, DSL 2011, Bordeaux, France, 6-8th September 2011., pages
93–117, 2011.

[30] M. Scherr and S. Chiba. Implicit Staging of EDSL Expressions: A
Bridge between Shallow and Deep Embedding. In R. Jones, editor,
ECOOP 2014 – Object-Oriented Programming, volume 8586 of Lec-
ture Notes in Computer Science, pages 385–410. Springer Berlin Hei-
delberg, 2014.

[31] T. Sheard and S. P. Jones. Template Meta-programming for Haskell.
SIGPLAN Not., 37(12):60–75, Dec. 2002.

[32] J. Svenningsson and E. Axelsson. Combining Deep and Shallow
Embedding for EDSL. In H.-W. Loidl and R. Peña, editors, Trends in
Functional Programming, volume 7829 of Lecture Notes in Computer
Science, pages 21–36. Springer Berlin Heidelberg, 2013.

[33] W. Taha and T. Sheard. MetaML and Multi-stage Programming with
Explicit Annotations. Theor. Comput. Sci., 248(1-2):211–242, Oct.
2000.

[34] W. M. Taha. Multistage Programming: Its Theory and Applications.
PhD thesis, 1999. AAI9949870.

[35] L. Tratt. Domain Specific Language Implementation via Compile-
Time Meta-Programming. TOPLAS, 30(6):1–40, 2008.

[36] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha.
Mint: Java Multi-stage Programming Using Weak Separability. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’10, pages 400–411,
New York, NY, USA, 2010. ACM.

[37] H. Xu. EriLex: An Embedded Domain Specific Language Generator.
In J. Vitek, editor, Objects, Models, Components, Patterns, volume
6141 of Lecture Notes in Computer Science, pages 192–212. Springer
Berlin Heidelberg, 2010.

30

