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Abstract

We propose a new variant of typed syntactic macro systems named
inverse macro, which improves the expressiveness of macro sys-
tems. The inverse macro system enables to implement operators
with complex side-effects, such as lazy operators and delimited
continuation operators, which are beyond the power of existing
macro systems. We have implemented the inverse macro system
as an extension to Scala 2.11. We also show the expressiveness of
the inverse macro system by comparing two versions of shift/re-
set, bundled in Scala 2.11 and implemented with the inverse macro
system.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

Keywords Domain Specific Language, Syntactic Macro, Type,
Continuation

1.

A modern programming language enables a library with language-
like programming interface, which is often called an embedded
domain specific language (DSL) or a library-level DSL. While
this approach has an advantage that embedded DSLs are easier
to develop than traditional DSLs, which require an independent
compiler and a custom development environment, it also has a
serious disadvantage that the power of expression of embedded
DSLs is limited. In order to overcome this disadvantage, syntactic
macro systems are one of the major solutions, which intercepts a
compiling process to rewrite and replace parts of the compiling
program. Lisp macros [5, 17, 23], Nemerle [37], and Template
Haskell [35] are famous examples. Scala 2.11 also has a syntactic
macro system [3], which is integrated into the type system.
However, existing macro systems still have powerful and side-
effectful operators difficult to implement. A lazy operator is a typ-
ical example, which affects two or more execution points along a
def-use relation. In general, classical macro systems cannot imple-
ment an operator affecting surrounding code snippets considering a
control flow or a data flow. Due to this lack of ability, such operators
cannot implemented as an embedded DSL even if macro systems
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are available. To implement lazy operators, DSL developers have
to largely modify the host language compiler.

This paper proposes a new variant of typed syntactic macro sys-
tems named an inverse macro system for implementing more pow-
erful and side-effectful operators. The inverse macro system has
two unique features. First, while existing macros affect only local
code, which consists of the macro name and the macro arguments,
the inverse macros can affect not only the local code but also the
surrounding code. More precisely, the inverse macros capture the
code for the continuation sequence of the macro call. This feature
enables to affect other execution points. Second, an inverse macro
is an annotation for types. An expression typed as a type contain-
ing an inverse macro annotation is a rewritten target. This feature
enables to propagate rewriting along the control flow. Due to these
features, the inverse macro system enables global rewriting beyond
the local scope, which is required by the implementations of several
operators such as a lazy operator.

Delimited continuation operator is another operator imple-
mentable with the inverse macro system. This paper presents the
implementation of shift/reset [1, 6], which is one of the typical
delimited continuation operators. The inverse macro system can
be used for implementing not only operators but embedded DSLs
such as direct styles, which can represent functors, such as mon-
ads, applicative functors, and fork/joins, in a simple style. Although
monads can be implemented with a delimited continuation opera-
tor, they can be directly implemented with an inverse macro; no
intermediate operator like delimited continuation is necessary. The
implementation with an inverse macro simplifies typing and is more
efficient than the indirect implementation with delimited continua-
tion.

Finally, this paper presents our implementation on top of Scala
2.11 with compiler plugin and typed syntactic macro system fea-
tures. We also show the results of expressiveness and performance
measurement using delimited continuation operator shift/reset. We
compare our implantation with the implementation of shift/reset
bundled with Scala.

2. Motivating Example: Lazy Operator

To show that existing macro systems have limited expressiveness,
suppose that we implement a lazy operator by using a macro. A
lazy operator can delay the evaluation of the argument until its
value is actually consumed. Fig. 1 shows an example written in
Scala 2.11. The lazy operator Izy is used in the line 2. The argu-
ment some_calc() is not evaluated here, and just wrapped up in a
thunk. Since the delayed result is bound to the variable delayed and
used in line 5, the delayed thunk is finally evaluated there. As sim-
ilar language constructs, Scala provides lazy variables and implicit
conversion as built-in constructs. A call-by-name parameter pro-
vided by Scala is also called a “lazy” construct, but it is completely
different from the lazy operator here.



1 // delay some calculation 1 1zy_dsl {
2 val delayed = lzy { some_calc() } 2 val delayed = lzy { some_calc() }
3 : 3 :
4 // evaluated below 4  println(delayed)
5 println(delayed) 5%}
Figure 1. An example of a lazy operator Figure 4. A workaround for existing macro systems

: A workaround for implementing a lazy operator by using an
1 /7 —- without lazy -- existing macro system is to combine two macros. See Fig. 4. Here,
2 val http = new HTTP () .
3val x = fork { http.connect(url).get() } // fork we introduce a new macro Izy_dsl as well as |zy. The argument to
4 default.draw() // draw the default page 4n parallel Izy_dsl is the whole code in line 2 to 5. It contains a macro call to
5 jein(x).draw() // esplicitly join Izy in line 3. Since the two execution points that the lazy operator
67/ —= with lazy -- affects are included in the macro argument to lzy_dsl, the code at the
7 def par[T](body: => T) = { . . . .
8 wval £ = fork(body) two execution points can be replaced during the expansion of the
9 1zy { join(f) } Izy_ds| macro. The occurrence of Izy is only used as the indicator
10 ¥ of the execution point. Note that the two execution points are local
11 val x = par { http.connect(url).get() } // fork

12 default.draw() // draw in parallel
13 x.draw() // implicitly join

Figure 2. Parallel execution with a lazy operator

val delayed = () => { some_calc() } // definition

// evaluated below
println(delayed.apply ())

BN -

// use

Figure 3. The lazy operator after macro expansion

There are a number of examples of the use of a lazy operator.
One example is shown in Fig. 2. Line 2 to 5 shows the code without
a lazy operator while line 7 to 13 shows the code using a lazy
operator. Line 3 forks a subtask for fetching a web page in parallel
through an HTTP connection. The thread of control of this subtask
joins to the main thread in line 5 and the fetched web page is drawn.
Note that the main thread explicitly waits by join until the subtask
completes. On the other hand, if a lazy operator is available, we can
hide the necessity of join for synchronizing the threads. The par
operator defined in line 7 to 10 hides this. If a subtask is forked by
par, the programmer does not have to be aware of synchronization.
In line 13, draw is directly invoked on x. join is not explicitly
invoked; the synchronization is automatic.

Existing macro systems cannot implement this lazy operator be-
cause the implementation requires global rewriting. A lazy operator
affects two kinds of execution points, one where a lazily-evaluated
expression is constructed, and one where the expression is evalu-
ated for consumption. The two execution points are related by the
def-use relation on the value that the expression results in. At the
former point, the lazy operator lzy is placed. It constructs a thunk
object wrapping the expression as its argument. At the latter point,
the thunk object is referred to to obtain the resulting value. The lat-
ter point will be located near the former one but they are different.
A macro of existing systems cannot rewrite the code at the latter
point. It can only locally rewrite the code at the former point. This
code consists of only the macro name and its arguments. For exam-
ple, Fig. 1 should be macro-expanded into Fig. 3. The expansion
in line 2 is straightforward. The macro name lzy and its argument
{ ... }arelocally replaced with a new expression. However, the
macro cannot replace the code in line 5 so that apply should be
called on delayed. Line 5 is far from line 2. It is outside the macro
call to lzy.
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ones from the viewpoint of Izy_dsl. However, this workaround has
two problems. First, Izy_ds| is verbose and the appearance of the
code is not desirable. Furthermore, both Izy_dsl and Izy must be
placed in the same method body. This workaround cannot deal with
the case like Fig. 2 since the lzy operator is in the body of par but
the lazy expression is evaluated outside the body of par.

3. Proposal: Inverse Macro

To address the problem mentioned in the previous section, we pro-
pose a new language construct named an inverse macro, which
is implemented on top of Scala 2.11. The inverse macro sys-
tem has two unique features. First, to enable global rewriting,
the inverse macro system captures the continuation sequence of
a macro call. In other words, it captures the syntax tree represent-
ing the code sequence following a macro call. For example, in
Fig. 1, if lzy { some_calc() } is a macro call, its continuation se-
quence is the syntax tree representing the following lines including
printIn(delayed), where some_calc() is lazily evaluated. Hence the
inverse macro can traverse this syntax tree and rewrite delayed in
line 5 into delayed.apply(). Note that the inverse macro also cap-
tures the syntax tree of the macro call Izy { some_calc() }, which
consists of the macro name and the macro arguments, as existing
macro systems do. Furthermore, an inverse macro is represented
by a type annotation. In Fig. 1, if the return type of the lzy method
is set to T@lzyAnn and the annotation IzyAnn is an inverse macro,
zy is interpreted as a call to the inverse-macro lzyAnn. The block {
some_calc() } following lzy is a macro argument. Like the existing
macro system in Scala, an expression interpreted as an inverse-
macro call has to be a syntactically-valid expression in Scala and it
also has to be well typed before macro expansion.

3.1 Expansion Flow

The work flow for expanding an inverse macro consists of seven
stages: enumeration, detection, normalization, capture, invocation,
recursion, and splice. Fig. 5 shows an overview of the work flow.
The example program reads two integers from different URLs in
parallel and prints the sum of those integers. lzy looks like a lazy
operator but it is an inverse-macro call. fork starts a subtask running
in parallel and returns a future object. The resulting value of the
subtask is obtained by get on the future object.

Enumeration First, the macro system decomposes the syntax tree
of a given block into the direct sub-trees of the root, each of which
corresponds to an expression. They are enumerated in the execution
order. Here, a block is not only an ordinary block in Scala but also
a method body, a by-name argument, or a block of a control expres-
sion such as the then clause and the else clause of an if expression,



def main() = {
fval http = new Http()
val x = fork(http.getInt(url1)}
val y = fork(http.getInt(url2)}
val r = lzy(x.get O }+lzy(y.get())
println(r)

3

def main() = {
val http = new Http()
val x = fork{http.getInt(url1)}
val y = fork{http.getInt(url2)}
val rl = () = (x.get())
val r2 = () = (y.get())
val r = rl.apply() + r2.apply()
println(r)

oenumeralion odeleclion °invoca[i0n osp]ice

val http = new Http() sean val http = new Http() TzyAnn. transform val http = new Http() val http = new Http()

val x = fork{http.getInt(urll)} val x = fork{http.getInt(urll)} (head, cont) val x = fork{http.getInt(urll)} val x = fork{http.getInt(urll)}
val y = fork{http.getInt(url2)} val y = fork{http.getInt(url2)} val y = fork{http.getInt(url2)} val y = fork{http.getInt(url2)}
val r = lzy{x.get()}+lzy{y.getO)} “ [ val r1 = lzy{x.get()} }ht‘w/ ""“’H"”‘I{ val r1 = () => {x.getQ)} oreCufSiUﬂ val r1 = () = {x.get()}
lorintln(r) s ey | val r2 = lzy(y.get . flval r2 = lzy(y.get(} r2= () = {y.getQ}

e enormalizalion nt@lzyAnn ]mm newcvm[ val r = ri.applyQ+r2 l val r = ri.apply()+r2.apply()
println(r) °capturc println(r) recursively ‘println(r)

Figure 5.

Work flow for macro expansion

1 1zy{ x.get() } + 1lzy{ y.get() }

1 val r1 = 1lzy{ x.get() }
2 val r2 = lzy{ y.get() }
3rl + r2

Figure 6. A-normalization

and the case bodies of a match expression. In the figure, the body
of main is a block and the system decomposes it. Its sub-trees are
val http = new Http(), val x = fork{http.getInt(urll)}, and so
on.

Detection Second, the system detects an inverse macro in the
enumerated sub-trees. It computes the type of each sub-tree and
determines whether it is an inverse-macro call. If an inverse-macro
call is found, the system proceeds to the next step. In the figure,
the system examines each sub-tree in the execution order. It first
examines val http = new Http() and then val r = lzy{x.get()}
+ lzy{y.get()}. The call to lzy is typed as Int@lzyAnn. Since the
annotation lzyAnn is an inverse macro, the system expands the call
in the following steps. Note that a block following a method name
is a method-call argument in Scala. It is called a by-name argument.

Normalization Before expanding a macro call, the system nor-
malizes the sub-tree containing a macro call. In the figure, val r =
lzy{x.get()} + lzy{y.get()} is normalized. To simplify, the system
considers only the return type of the right side when determining
whether a variable declaration is expanded or not. Under this strat-
egy, without normalizing, val r = lzy{x.get()} + lzy{y.get()} is not
expanded since the return type of the right side is inferred to Int and
contains no inverse macro. There are two kinds of normalization.

For complex method calls, A-normalizing [14] is applied. For
example, the system normalizes an expression lzy{x.get()} +
lzy{y.get()} shown in the upper part of Fig. 6 so that the resulting
values of the sub-expressions will be stored in temporary variables
rl and r2. The code after the normalization is shown in the lower
part of Fig. 6. The variables are substituted for the corresponding
occurrence of the sub-expression.

For constructs taking blocks, the system transforms each con-
struct in an ad-hoc way. Such constructs are affected by child
blocks whether their result types contain inverse macros or not.
The system recursively transforms the blocks and then, if the re-
turn types of the blocks contain an inverse macro, the construct is
substituted by an expression considering the inverse macro. For a
simpler expression, such as an if, a match, and a try expression,
the system recursively transforms the blocks.

However, our prototype of the inverse macro system can not
normalize return expressions, while expressions, or finally clauses
well. When the return type of a child block contains an inverse
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1 if (cond) {
2 val delayed = 1lzy (...): Int@lzyAnn
3 println(delayed) // included

43

5 println("outside") // not included

Figure 7. Capturing the cont in an if expression

macro, the system fails to normalize. Normalizing such constructs
is our future work.

Capture Then the macro system captures two sub-trees, head and
cont. The head represents the inverse macro call (and the assign-
ment of the result value). In Fig. 5, the head is the tree represent-
ing val rl = lzy{x.get()}. The cont represents the continuation
sequence of the head. In Fig. 5, the cont is the tree representing
val r2 = lzy{y.get()} and the following lines, val r = r1 + r2 and
printin(r).

The captured cont is delimited within the current block. For
example, if an inverse-macro call is in a method body, the cont
does not include the syntax tree representing the outside of the
method body. If a macro call is in the else clause of an if expression,
the cont includes only the syntax tree representing (part of) that
clause. In Fig. 7, the inverse macro @lzyAnn can capture only
printin(delayed); line 1 and 5 are not included. Although this
restriction improves the locality of macro expansion, it prohibits
inter-procedural rewriting during macro expansion. A technique for
doing inter-procedural rewriting for an inverse macro is mentioned
later in the applications section.

Invocation  After capturing head and cont, the macro system in-
vokes the transformation method for the macro. head and cont are
passed as the arguments. The transformation method returns modi-
fied head and cont, which will substitute for the originals. We call
them newHead and newCont, respectively.

The transformation method can traverse and transform the trees
given as head and cont. For example, it can identify a place where
an expression specified by a lazy operator is evaluated and then it
can transform the code at the place into appropriate code.

Recursion newCont returned by the transformation method is re-
cursively processed by the inverse-macro system whereas newHead
is not. A macro call included in newHead is not expanded. The
aim of this design is to avoid an infinite expansion loop and an ex-
pansion unexpected by the programmer. Therefore, in Fig. 5, new-
Head, whichisval rl = () => {x.get()}, is not expanded any more.
On the other hand, newCont is recursively transformed. Hence a
macro call to lzy in val r2 = Izy{y.get()} is expanded.

By default, the recursive application of macro expansion to the
continuation sequence is performed in this stage after the Invoca-
tion stage. However, it is sometime desirable to apply the recursive



1 def 1zy[A]l(body: => A): AQ@lzyAnn =
2 class 1lzyAnn extends IMAnnotation
3 object lzyAnn extends IMTransformer {

7?7 // dummy

4 def transform(...)(head: Tree, cont: List[Tree]) =
5 { head match {

6 case ValDef (mods, name, tpt, Apply(_, body)) =>
7 // produce an intermediate object

8 val newHead = typecheck(

9 q"valy$name (O u=>u8tpt) =00 u=>,8body")

10 // traverse and replace

11 val newCont = for (t <- cont) yield

12 replace(t, head.symbol,

13 q"${head.symbol}.applyO")

14 List (newHead) -> newCont

15 }}r

Figure 8. Implementation of a lazy operator

macro expansion to the continuation sequence cont, not newCont,
in the Invocation stage. The inverse-macro system allows program-
mers to do this if needed.

Splice Finally, the macro system substitutes the syntax trees new-
Head and newCont for the original trees head and cont in the com-
piled program, respectively.

3.2 Example: Implementing a Lazy Operator

We describe how to implement an inverse macro for a lazy operator.
Note that this implementation does not support inter-procedural
macro expansion and hence it does not work for the example in
Section 2. The complete implementation is shown in Section 5.

The pseudo code of the implementation is shown in Fig. 8. In
line 1, the lazy operator is implemented as a method whose return
type is A@lzyAnn. Since its method body is never invoked, it is
defined as ???. This indicates in Scala that the body is not imple-
mented. lzyAnn is an annotation. An annotation extending IMAn-
notation is considered as an inverse macro. The corresponding
transformation method is defined in the companion object, which
is a singleton object with the same name as the class. That corre-
sponds to a static method in Java.

The transformation method transform takes two arguments
head and cont as well as some other arguments. In Fig. 5, head
is the syntax tree of val r1 = lzy{x.get()}. head is already normal-
ized before being passed as already mentioned. cont is the syntax
tree of val r2 = Izy{y.get()} and the following lines. It is not guar-
anteed that cont is normalized before being passed unlike head.
The transform method returns a tuple of newHead and newCont.
They are modified head and cont, respectively.

In the body of the transform method, the tree transformation
API of the existing Scala macro system is available. For example,
a tree-node class Tree and its subclasses such as ValDef and Apply
are available. Pattern matching by match { case ... => ... } isalso
available. The API provides quasi quotes, which is used in line 9
and 12 in Fig. 8. It also provides the typecheck method for typing.
It is used in line 8.

The transform method for the lazy operator performs as fol-
lows. First, it replaces a call to lzy with an expression producing a
thunk object wrapping the argument to lzy, for example, {x.get()}.
Then the method examines cont and replaces all occurrences of
the variable bound to the result of Izy included in head. Those oc-
currences are replaced with a call to apply on the variable so that
the wrapped thunk will be invoked. The transform method finally
returns newHead and newCont.

3.3 Typing with Inverse Macros

The inverse macro system exploits type annotations. In Scala, a
type t with an annotation is identical to the type ¢ without an
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def withLzy(body: => Int@lzyAnn)

1

2 def withoutLzy (body: => Int)

3

4 // wvalid cases

5 withLzy { lazied(): Int@lzyAnn }

6 withLzy { raw(): Int } // add

7 def _1(): Int@lzyAnn = { lazied(): Int@lzyAnn }
8 def _2(): Int@lzyAnn = { raw(): Int } // add

9

10 // invalid cases

11 withoutLzy { lazied(): Int@lzyAnn }
12 def _3(): Int = { lazied():

// omit
Int@lzyAnn } // omit

Figure 9. The valid/invalid examples for Completion

—_

def by_value(x: Int)
by_value (lazied(): Int@lzyAnn) // coerced
3val x : Int = lazied(): Int@lzyAnn // coerced

i8]

Figure 10. The valid examples for Coercion

annotation. However, the inverse macro system changes this typing
rule; it distinguishes a type with an annotation from one without an
annotation.

Completion Let t be a type. ¢t without an inverse macro is com-
patible with ¢ with an inverse macro. However, the opposite is not
true. ¢ is a subtype of ¢ with an inverse macro. For example, Int is
compatible with Int@lzyAnn whereas Int@lzyAnn is not compat-
ible with Int. Without this rule, an annotation designating macro
expansion might be accidentally lost.

Fig. 9 shows an example. The withLzy method in line 1 takes
a by-name parameter. The return type of the by-name parameter is
Int@lzyAnn, an Int type annotated with an inverse macro lzyAnn.
The withoutLzy method in line 2 also takes a by-name parameter
but its return type is Int, a type without an inverse macro. It is valid
to pass to withLzy not only a block with a return type Int@lzyAnn
but also a block with a return type Int (line 5, 6). It is valid to call
a method returning a value of type Int when computing a return
value of type Int@lzyAnn (line 8). However, it is not valid to pass
to withoutLzy a block with a return type Int (line 11). A value of
type Int@lzyAnn cannot be a return value for a function _3 if the
return type of _3 is Int (line 12).

Coercion At the position evaluated by the call-by-value strat-
egy, a type annotated with an inverse macro is coerced into the
type without an inverse macro. As shown in Fig. 10, if a method
by_value takes a by-value parameter x of type Int (line 1), it is valid
to pass to by_value a value of type Int@lzyAnn (line 2). The value
is coerced. This is also true for other eagerly-evaluated positions
such as computing an initial value of a variable (line 3). The value
returned by the lazied method is coerced since the type of x is not
Int@Lzy but Int.

Merge A conditional branch, such as if, match, and try expres-
sions, requires to merge multiple types with an inverse macro. First,
each type is decomposed into a raw type and an annotation type.
For example, Int@lzyAnn is decomposed into Int and IzyAnn. Then
each part is merged; the minimal common supertype of the types
is computed according to the standard typing rule of Scala. After
being merged, the two parts are combined to construct the merged
type. If some types are not annotated with an inverse macro, their
annotation type is considered as Nothing, which is a subtype of all
types, that is, the bottom type.

For example, as shown in Fig. 11, an if expression is typed as
follows. if(x) (b: B@Ba) else (c: CQCa) is typed to T@Ta if and



(if(x) (272:B) else (227:C)):T (if(x) (772:Ba) else (277:Ca)):Ta
(if(x) (b:B@Ba) else (c:C@Ca)):T@Ta

(x match {case p = ?777:C; ...}):T (x match {case p = ?777:Ca; ...}):Ta

}):T@Ta

(x match {case p = c:C@Ca; ...

(try (??7:B) catch {case e = 7?7:C; ...}):T
(try (b:B@Ba) catch {case e = c:C@Ca; ..

(try (?77:Ba) catch {case e = 777:Ca; ...
}):T@Ta

Figure 11. The rules for Merging

1 foo () Int @lzyAnn @lzyAnn
2 bar () Int @lzyAnn @lzyAnnil
3 baz () Int Q@lzyAnn @lzyAnnl @lzyAnn2

Figure 12. Invalid annotations

1 (if (comd) {

2 foo() Int @A @B
3} else {

4 bvar() Int @C @D
5H e

1 (if (cond) {

2 foo () Int @A @B
3} else {

4 bar () Int @B QA
5hH K ard

Figure 13. Corner cases

only if if(a) (?77: B) else (?77: C) is typed to T by the standard
typer of Scala and if(x) (?77: Ba) else (??7: Ca) is typed to Ta by
the standard typer of Scala. match and try expressions are in the
same way.

3.4 Single Annotation Restriction

The current inverse macro system has one restriction, named the
single annotation restriction. Any types can contain at most one
inverse macro annotation. All of the examples shown in the Fig. 12
are invalid.

There are two reasons why this restriction is introduced. The
first reason is to avoid an unexpected rewriting result. In practice, a
consistent composition of macro expansion is difficult to program.
The second reason is that it is difficult to merge two types with an-
notations. This problem occurs at conditional branches. For exam-
ple, two corner cases are shown in Fig. 13. In the first case, which
is a natural type of if, Int @A @B @C @D or Int @C @D @A ©@B?
What is natural in the second case? This composition problem is
interesting but difficult to solve. We hence currently prohibit a type
with two or more inverse-macro annotations.

4. Implementation

We implemented a prototype of the inverse macro system on top of
Scala 2.11. The system consists of two components: a macro and
a compiler plugin, which are meta-programming features of Scala
2.11. The macro is the main component of the inverse macro sys-
tem, which expands inverse macros as described in the previous
section. The compiler plugin intercepts registration of method defi-
nitions and then inserts a call for inverse-macro expansion as shown
in Fig. 14. This is what existing macro systems cannot do. It should

&9

1 // before
2 def foo() = {...}
3 // after
4

def foo() = transform { ... }

Figure 14. Inserting the inverse-macro expander

1 // before

2 if (cond) 10 else (20: Int@lzyAnn)
3 // after adding type ascription
4

(if (cond) 10 else (20: Int@lzyAnn)): Int@lzyAnn

Figure 15. Type inference of if expression

be noted that the plugin was developed as an extension to Macro
Paradise Plugin’.

This implementation technique causes a few limitations. In con-
structors and the unapply method, an inverse macro is not ex-
panded. A call for expansion is not inserted since assertions by
the Scala compiler disturb the insertion. An inverse macro is not
expanded at the right side of a field declaration since a field decla-
ration and a local variable declaration are difficult to distinguish.

The inverse-macro expander checks and inserts type ascriptions
since the inverse macro annotation does not follow Scala’s default
rule. Conditional branches, such as if, match, and try constructs,
are typical examples. For example, the type of line 2 in Fig. 15 is
inferred to Int, but the desirable result is Int@lzyAnn. Therefore,
the macro expander adds a type ascription Int@lzyAnn as line 4.

However, this addition is not a perfect solution. For example,
reset of shift/reset, whose signature is

1 def reset[A,C]l(body: => A@cpsParam[A,C]): C

is not inferred properly; C is always inferred to Nothing. This
failure is difficult to recover in the macro expansion phase since
the Scala compiler sometimes reports a type error and aborts the
compilation in the former phase. Due to this restriction, the power
of type inference by the current implementation is somewhat poor
and macro users are forced to add type ascriptions manually.

To make it easy to develop an inverse macro, our macro system
provides a library helping decomposition and reconstruction of ab-
stract syntax trees. It also provides a hygiene system. As described
in section 3, to provide that library, we reused an existing macro
library of Scala since it already provides necessary functionality.

5. Applications

To show the expressiveness of inverse macros, this section presents
three examples. They are an inter-procedural variant of lazy opera-
tor, the delimited continuation operator, and a monad in the direct
style. All the three examples are side-effectful operators.

5.1 An Inter-procedural Operator

The first example is an inter-procedural lazy operator. Although
the implementation shown in Fig. 8 does not perform inter-
procedural rewriting, the inverse macro system enables inter-
procedural rewriting. The inter-procedural lazy operator was used
for showing the fork/join example shown in Fig. 2. In that exam-
ple, the par method was implemented with an inter-procedural lazy
operator.

To implement an inter-procedural lazy operator, two problems
have to be addressed. One is the caller-site problem, how to prop-

'https://github.com/scalamacros/paradise



1 def 1zy[Al(body: => A): A@lzyAnn = // add Q@lzydnn
2 throw new Lzy(() => body) // return

3 class Lzy[Al(run: () => A4)

4 extends scala.util.control.ControlThrowable {

5 def apply(): A = run()

6

1 val delayed: T = 1lzy { some_calc() } // definition
2 :

3 // evaluated below

4 println(delayed) // use

1 val delayed: Lzy[T] = try { // definition
2 lzy { some_calc() } // ezceptional
3 null

4 } catch {

5 case e: Lzy[T] => e

6 }

7 :

8 // evaluated below

9 println(delayed.apply ()) // use

Figure 16. The behavior of the inter-procedural lazy operator

agate rewriting out of the method body of par. Although the lazy
operator lzy is executed within the body of par in line 9 in Fig. 2,
the delayed value is evaluated in line 13, which is out of the body.
The other is the callee-site problem, how to return an intermediate
object representing the delayed computation from par to its caller
site (line 11). A thunk object has to be returned by par and passed
to line 13 through a variable x. Since Scala is a typed language, a
naive approach may cause a type error. Note that the par operator
is supposed to return the value returned by join, not a thunk object.

The caller-site problem is naturally addressed by the inverse
macro system since rewriting by the system is invoked according
to type information. In Fig. 2, if the return type of par is typed
to T®@lzyAnn, rewriting is invoked at the caller side (line 11).
Moreover, even if the return type is omitted as in Fig. 2, it is
properly inferred by Scala’s typing system.

The callee-site problem is addressed by using a runtime excep-
tion system, which is somewhat tricky, but this technique is com-
monly used for implementing typed continuation operators. With
this technique, an intermediate object is not returned but thrown
in the method body of par. It is immediately caught at the caller
site (line 11). By this code rewriting, the type incompatibility prob-
lem is avoided. Although this technique needs only local rewriting,
throwing an exception is relatively slow and hence the overall per-
formance might be significantly degraded. This performance prob-
lem is revisited later in Section 6.

The summary of the behavior is shown in Fig. 16. The upper
program defines the Izy library, the middle program shows the pro-
gram before an inverse macro expansion, and the lower program
shows the program after the expansion. In the callee site of lzy
method, the program throws the thunk object Lzy instead of re-
turning. In the caller site, the call of Izy method invokes an inverse
macro expansion due to its return type A@lzyAnn. The inverse
macro IzyAnn inserts try-catch expression to catch the thrown
thunk object.

5.2 Delimited Continuation Operators

The delimited continuation operator is a language construct for cap-
turing the current continuation as a closure. The current continua-
tion means the current remaining computation, in other words, the
current stack frame. Similarly to the lazy operator, the delimited
continuation operator affects an execution point different from the
point where the operator is invoked. The implementation of this op-
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1 class ControlContext [+A,-B,+C](ctl: (A=>B)=>C)

2 extends scala.util.control.ControlThrowable {

3 def map[A1](ctnl: A=>A1) =

4 ControlContext (

5 (ctn2: A1=>B)=>ctl((x: A) => ctn2(ctnl(x))))
6 def flatMap[A1,B1,C1<:B]

7 (ctnl: A=>AlQ@cpsParam[B1,C1]) = {

8 ControlContext ((ctn2: A1=>B1) =>

9 ctl((x: A) => try {

10 ctn2(ctn1(x)).asInstance0f [B]

} catch {

12 case ctx: ControlContext[A1,B1,C1] =>

13 ctx.ctl(ctn2)

14 IDDR 3

15 class cpsParam[-B,+C] extends IMAnnotation

16 object cpsParam extends IMTransformer {

17 def transform(...)(head: Tree, cont: List[Treel):
18 (List[Treel], List[Treel) = {

19 head match {

20 case ValDef (mods, name, tpt, rhs) =>

21 // wrap continuation to an inner method

22 val func = makeFunc(head, cont, api)

23 val block =

24 if (isPure (func))

25 // use map if pure

26 q"${func.symboll} (try,{$rhs} catch {
27 Luuuuuuuuuuuucase$ex =>

28 Luuuuuuuuuuuuuthrow $ex . map (${func.symbol}) })"

29 else

30 // use flatMap 3if impure

31 q"${func.symboll} (try, {$rhs} catch {
32 Luuuuuuuuuuuucase$ex=>

33 Luuuuuuuuuuuuuthrow $ex . flatMap (${func.symboll}) )"
34 List (func, block) -> Nil

35 }}r

36 def shift[A, B, C](fun: (A=>B)=>C): AQcpsParam[B,C]
37 = throw ControlContext (fun)

38 def reset[A, C](body: => A@cpsParam[A,C]):C =

39 try { body } catch {
40 case ctx: ControlContext[A,A,C] =>
41 ctx.ctl(identity) }}

Figure 17. Implementation of shift/reset

erator captures the continuation sequence and wraps it up to be a
closure. The continuation sequence is passed by the inverse macro
system to the transformation method for the macro. In principle,
this implementation technique is equivalent to the type-directed se-
lective CPS transformation [28, 32].

Fig. 17 shows the implementation of the shift/reset operators
[1, 6]. They are typical delimited continuation operators. The shift
operator is a continuation operator and the reset is a delimiting op-
erator. First, we implement an intermediate object, which has two
methods: map and flatMap. These methods are used to implement
the continuation passing style. The map method is used when the
continuation is pure, in other words, when the return type does not
contain an inverse macro. The flatMap method is used when the
continuation is impure. It is used for implementing the runtime ex-
ception technique described in section 5.1. The transformation by
the inverse macro is as follows. First, the continuation is wrapped
up to be an inner method. Then, a function call in the continuation
passing style is constructed considering whether it is pure or im-
pure. Finally, the transformation method returns a newly built syn-
tax tree. The implementation of shift/reset operators also uses the
runtime exception technique described in section 5.1. The interme-
diate object is an exception object and hence its class extends Con-
trolThrowable. The shift operator is translated into throw while
the reset operator is into try-catch.

Unlike the implementation of lazy operator, the shift/reset op-
erators need macro expansion on their cont in advance since the
return type of the continuation has to be known for the following



open(nl).foreach { f1: File =>

open(n2).foreach { f2: File =>

// deeper and deeper

1
2
3
4 :
5 open(n3).foreach { £3: File =>
6 .
7
8 ...}}}

val f1 = reflect(open(nl)): File@monad[AsyncIO[File]]
val f2 = reflect(open(n2)): File@monad[AsyncIO[Filell

val f3 = reflect(open(n3)): File@monad[AsyncIO[File]]

Figure 18. Asynchronous I/O in callback style and direct style

transformation. As mentioned before, the inverse macro system al-
lows to explicitly control the order of macro expansion. Similarly,
newCont generated by the translation is empty since no further
macro expansion is necessary.

This implementation does not return a pure value by throwing
a runtime exception. It directly returns the value. This avoids the
generation of many intermediate objects and it reduces runtime
overhead due to throwing a runtime exception.

Note that the shift/reset operators are bundled with Scala 2.11
as part of the CPS plugin. However, the Scala language plans to
remove them from Scala 2.12. The inverse macro system allows
programmers to use the shift/reset operators in Scala 2.12 and later.

5.3 Monads in Direct Styles

A monad in the direct style [11-13] was proposed by Filinski.
This example does not implement an operator but it shows that
an inverse macro is useful to implement an implicit side-effectful
DSL. Task-parallelizing DSL such as async/await and coroutines
or generators are useful applications. A monad in the direct style
allows programmers to use a monadic library through a simple
programming interface in the semantic level. A similar construct is
the Do-notation [24] in Haskell. Since the Do-notation is a syntactic
interface, it requires special keywords do and <-. On the other
hand, a monad in the direct style does not require such keywords
but semantic information, typically types.

To illustrate a benefit of the direct style, we show the asyn-
chronous /O library of node.js*>. The library adopts the callback
style, or the explicit continuation passing style, to allow a program
to continue running without blocking till a requested I/O finishes.
Although the library is widely used in practice because of its effi-
ciency, programmers using the library often see a problem called
callback hell. They often have to describe deeply nested closures,
which are troublesome to read and write as shown in the upper
half in Fig. 18. The open method takes a file name and returns an
AsynclO[File] object. This object has a continuation-passing-style
method foreach, which takes a closure taking a File object as its ar-
gument. The level of nesting in this program will be deeper as more
files are opened. A monad in the direct style addresses this problem
by implicitly performing the CPS transformation by using reflec-
tive language constructs. It allows programmers to write a simpler
program shown in the lower half in Fig. 18. There are no nested
closures. The reflect operator hides the continuation passing style
from the programmers. It invokes the CPS transformation at com-
pile time so that the program will be transformed into a program
equivalent to the upper half.

Zhttps://nodejs.org/

The reflect operator can be implemented with an inverse macro
that transforms the code following the operator into a closure.
Hence the approach is similar to the implementation for delimited
continuation. First, a type annotation monad is defined. Then the
transformation method for monad is written so that it will generate
the code that creates a closure by wrapping up the continuation
sequence passed to it.

Itis known that, if a delimited continuation operator is available,
the reflect operator can be implemented on top of that operator.[11]
However, the implementation of the reflect operator by using an
inverse macro (without implementing a delimited continuation op-
erator) is more straightforward and it has a few advantages.

First, the implementation involves simpler types. For example,
the delimited continuation operators shift/reset take three type pa-
rameters and one of them exploits return-type polymorphism. In
Fig. 17, the type parameter C is for return-type polymorphism.
Such a type parameter is not inferred in Scala. Thus the imple-
mentation using shift/reset may cause the reflect operator with an
unnecessarily complicated type. Although the reflect operator or
other monadic operators do not need return-type polymorphism, if
their implementation uses the shift/reset operator, their user pro-
grammers have to add type ascriptions to the reflect operator and
monadic operators. If they are implemented with an inverse macro,
their user programmers do not have to add unnecessary type ascrip-
tions.

Another advantage is that runtime overhead will be small since
the implementation with an inverse macro does not need closures
representing controllers and continuations, which the implementa-
tion with delimited continuation needs. Furthermore, the approach
using an inverse macro is applicable to the implementation of the
direct style of other functors, such as fork/joins and applicative
functors [27]. For example, we can implement fork/join in the di-
rect style and applicative functors in direct style, which is similar
to applicative-do [25] in Haskell.

6. Experiments

We show the expressiveness and performance of an inverse macro
by implementing a delimited continuation operator shift/reset.
Shift/reset is also provided by Scala 2.11 as the CPS plugin [32],
which is used for comparison.

6.1 Expressiveness

First, we show the expressiveness of inverse macros. For this ob-
jective, we tested our implementation with the unit test suites® for
the CPS plugin, which suggests how compatible the shift/reset im-
plementation with the inverse macro system is with the implemen-
tation by the CPS plugin for Scala 2.11. This unit test consists of
10 suites: Functions, IfReturn, IfThenElse, PatternMatching, Sus-
pendable, TryCatch, HigherOrder, Inference, Return, and While. It
includes 35 test cases. The suite named Misc was removed since it
consists of test cases depending on the internal implementation.
Table. 1 lists the result obtained by using Scala 2.11.7 and Open-
JDK 1.8.0_45, 64 bit version. 6 test suites containing 23 test cases
were successfully passed with only small modification. The mod-
ification we had to do was as follows. First, we had to add type
ascriptions. As described in the implementation section, the power
of the type inference of the inverse macro system is poorer than
that of the CPS plugin. We thus had to add type ascriptions to shift
and reset as shown in Fig. 19. We also had to modify try-catch
expressions. Since they were wrongly catching a ControlThrow-
able object internally used by the implementation using the inverse

3 These suites were downloaded from https://github.com/scala/
scala-continuations.



Status Name of test suites #Cases

1 val a = Array[Int](0)
- 2 // start benchmark
Passed Functions, IfReturn, IfThenElse, 23 3 reset [Unit, Unit]{
h PatternMatching, Suspendable, TryCatch 4 // n times
Failed(1) Return, While 2 5 a(0) += (1 : @cpsParam[Unit, Unit])
Failed(2) HigherOrder, Inference (7) ?(0) += (1 ¢ @cpsParamfUnit, Unit])
8 a(0) += (1 @cpsParam[Unit, Unit])
Table 1. Test result 9 O
10 ¥
11 // end benchmark
1 // before
2 reset { shift {k => ... } } 1 val a = Array[Int](0)
37/ after‘ ) ) ) ) 2 // start benchmark
4 reset [Unit,Unit] { shift {(k: Unit=>Unit) => ... } } 3 reset [Unit, Unitl{
4 // n times
5 a(0) += shift((k: Int => Unit) => k(1))
1 // before 6 a(0) += shift((k: Int => Unit) => k(1))
2 catch { case ex: Throwable => 9 } 7 :
3 // after 8 a(0) += shift((k: Int => Unit) => k(1))
4 catch { case ex: Throwable 9 O
5 if l'ex.isInstanceOf [ControlThrowable] => 9 } 10 ¥
11 // end benchmark
Figure 19. Modification added to test cases
Figure 20. Micro benchmarks for shift/reset
macro, we had to modify the pattern match rule in the catch clause.
See also Fig. 19. 0.012 — T T T 8 — T T
On the other hand, 4 test suites containing 12 test cases failed. ~oor | opsplgn x _Th Mg
. . ) R O X g 6| Gl
We saw two kinds of failure. Some tests failed since the current e o008 | x o e e ol ]
. . . = R CIRe ST IRt = i
version of the inverse macro system does not support while and § oosp 7 7 5 4r L
return expressions. This is one of our future work. The other tests g ooos ;%x;l;xxx ] g z L wfxw“ ]
. . . . . w L a w A 220
failed due to the incompleteness of our shift/reset implementation. 0.002 UL et 1
For example, the owners of symbols are not properly set in our %0 10 20 a0 4 s °c 0 2 a a0 s
#Repetition #Repetition

current implementation. Although this would not directly mean
an inherent problem of the expressiveness of the inverse macro
system, better library supports for implementing the transformation
method is desirable. This is also our future work. Overall, the
results show the idea of inverse macros is with good potential but
we still need efforts to make it practical.

6.2 Performance

We measured the performance of shift/reset implemented with the
inverse macro system. We used two micro benchmarks shown in
Fig. 20. The upper program includes reset but does not actually
capture the current continuation by shift. During macro expansion,
this program is transformed into the continuation passing style
(CPS) but no object is created during runtime for representing a
continuation. The lower program captures the current continuation
by shift. It is transformed into the CPS and an object is created
during runtime. We changed the number of the repetition of line 5
to 8 from 1 to 50. The benchmark programs were run 1,000,000
times and we measured the total execution time. For comparison,
we also ran the micro benchmarks compiled with the CPS plugin.
In this experiment, in order to suppress the affect of JIT compiling,
we discarded the first 10 runs and took the average of the next
10 runs. The machine we used for the experiment had Intel Core
17-4770S 3.10GHz with 4 cores and 8 physical threads. The JVM
was OpenJDK 1.8.0_45, 64 bit version. Scala compiler was version
2.11.7. We used an optimizing option -optimise.

Fig. 21 shows the result. The number of repetition indicates how
many times line 5 is repeated. The left graph shows the execution
time of the upper program while the right graph shows that of the
lower one. The upper graph reveals that the overhead due to the
conversion to the CPS is comparable between our inverse macro
and Scala’s CPS plugin. According to the lower graph, the run-
time penalty for handling the current continuation is large if imple-
mented with our inverse macro. This is because our implementation
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Figure 21. The execution time of micro benchmarks for shift/reset

heavily uses a runtime exception to capture the current continu-
ation. This implementation approach is different from that of the
CPS plugin. The CPS plugin modifies the method signatures and
directly returns captured continuation objects. Our inverse macro
system cannot provide this feature for preserving the locality of
rewriting.

We also measured the compilation time of a program using an
inverse macro. Fig. 22 shows the compilation time of the program
listed above the graph. The machine was the same that we used
when measuring the execution performance. Although the program
size was small, the compilation time was apparently long. This
is because the inverse macro system repeatedly traverses a syntax
tree.

7. Related Work

The inverse macro system is similar to the typed syntactic macro
system in Scala [3]. Both systems construct typed abstract syntax
trees by using the standard parser and typer of Scala. They capture
syntax trees, apply macro expansion to them, and splice them to
the original context. However, the inverse macro system allows
global rewriting; it can capture the syntax tree representing the
continuation sequence as well as the tree representing the macro
call.

Besides Scala’s macro system, a large number of macro systems
have been proposed. The C preprocessor, Lisp macros [5, 17, 23],
Dylan macros [2], Nemerle macros [37], TemplateHaskell [35],
Scala macro [3] are well known macro systems. These macro sys-
tems can be categorized with respect to inputs; the C preproces-
sor is a lexical macro system while Lisp macros, Dylan macros,



object Main {

1
2 def main(args: Array[Stringl) =
3 reset [Unit, Unit] {
4 val a = Array[Int](0)
5 // n times
6 a(0) += shift((k: Int => Unit) => k(1))
7 a(0) += shift((k: Int => Unit) => k(1))
8 :
9 a(0) += shift((k: Int => Unit) => k(1))
10 O
11 }
12 }
13 }
25 .
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Figure 22. The compilation time of shift/reset implemented by the
inverse macro system

Nemerle macros, and TemplateHaskell are syntactic macro sys-
tems. Scala macro is a typed syntactic macro system. Some syntac-
tic macro systems like TemplateHaskell can use type information.
Macro systems can also be categorized with respect to transfor-
mation methods; the C preprocessor uses a template substitution
method while the other macro systems use a multi-staged method,
where transformation rules are written in the host languages. The
inverse macro system is a variant of typed syntactic macro sys-
tems and uses a multi-staged method. However, the macro systems
except the inverse macro system cannot capture the continuation
sequence. Moreover, macro calls are designated by placing an ex-
plicit token or a macro name like method calls whereas the inverse
macro uses type annotation.

The multi-stage computation systems are also related work.
They include MataML [39], MetaOCaml [4] or BER MetaOCaml
[22], Scala virtualized system [33], LMS [31], and Delite [38].
These systems can capture and modify code snippets embedded in
a source code. While they capture code snippets explicitly desig-
nated, the inverse macro system captures code snippets implicitly
determined as the continuation sequence.

Delimited continuation operators such as shift/reset [1, 6], are
used to capture the current continuation as a closure. They are sim-
ilar to inverse macros that capture the continuation sequence. con-
trol/prompt [10], fcontrol [36], set/cupto [16], and splitter [30] are
also delimited continuation operators. Delimited continuation op-
erators are different from inverse macros since the current contin-
uation is a runtime value but the continuation sequence is the code
snippet corresponding to the continuation.

The JIT (just-in-time) macro of Lancet [34] can be regarded
as delimited continuation operators. Lancet’s JIT macro captures
an internal representation of the delimited continuation. It does
not capture a closure representing a continuation. Unlike typical
macros, Lancet’s JIT macro is invoked by the JIT compiler during
runtime. Lancet’s JIT macro is different from our inverse macro
since the former needs an explicit delimiting operator whereas the
latter implicitly delimits by exploiting block structures. Further-
more, Lancet’s JIT macro is applied to the running program after
the linker runs. The inverse macro is applied at compile time to an
individual compilation unit. It is more suitable for static transfor-
mation under separate compilation.

93

The type-directed selective CPS transformation [28] is a tech-
nique adopted by several statically-typed languages such as Scala
[32]. The idea of this technique is similar to our inverse macros.
Although this technique was developed for CPS transformation, the
inverse macro can be used to implement other transformations.

The inverse macro system uses annotations for types. Annota-
tion processing is a well-known programming technique. For ex-
ample, in Java, JUnit4 and Lombok are popular annotation proces-
sors.* However, most of them are dedicated annotation processors
and do not provide syntactic macro system. Scala’s Macro Paradise
plugin® provides syntactic macro system using annotations, not in-
cluding annotations for types with this system. A type coercion trig-
gered macro system like our inverse macro system is very rare.

Our inverse macros can be used to implement embedded DSLs
but they do not enable syntax extensions to a host language. A
macro call has to be syntactically valid in Scala. For extending
syntax, extensible parsers such as CamlP4 [7], Sugar] [9], Proteal
[18], and TSL [29] are needed. The inverse macro system could
be used as a back-end system of those extensible parsers so that a
richer embedded DSL can be implemented.

Aspect-oriented programming (AOP) systems [20] enables
global rewriting as our inverse macros do. In a typical AOP lan-
guage Aspect] [21], an aspect can instruct the compiler to “rewrite”
the code designated by a pointcut so that a thread of control will be
dispatched there to an advice body. The cflow (control flow) point-
cut and the dflow (data flow) pointcut [26] designate the rewritten
code similarly to the type annotations for inverse macros. How-
ever, since control flow and data flow are runtime information, the
designation by cflow and dflow implies runtime penalties. Type an-
notations are compile-time information and thus an inverse macro
does not imply any runtime overhead due to designation.

The language workbench [15], such as Spoofax [19] and
MetaProgrammingSystem [8], is a system enabling us to develop
a DSL and an IDE (integrated development environment) for that
language. A inverse macro would be a component for building
these systems.

8. Conclusion

This paper presented a new language construct named an inverse
macro, which enables global rewriting of syntax trees. The in-
verse macro system has two unique features. An inverse macro can
rewrite the continuation sequence and it is designated by type an-
notations. The inverse macro system enables to implement inter-
procedural and side-effectful operators such as a lazy operator and
a delimited continuation operator. Moreover, the system also en-
ables to implement direct styles, which would simplify a number
of domain specific languages.

This paper also showed our prototype implementation of the in-
verse macro system on top of Scala 2.11. Although the performance
of the delimited continuation operator implemented by that system
was not sufficiently good, the function of that implemented opera-
tor was fairly compatible to the operator included in the CPS plugin
of Scala.
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