
Thanh-Chung Dao and Shigeru Chiba
The University of Tokyo

1 Thanh-Chung Dao

Improving Hadoop MapReduce Performance
on Supercomputers with JVM Reuse	

Supercomputers	
• Expensive clusters

• Multi-core processors
•  Large capacity of main memory
• High-speed network

• Focus mainly on compute-intensive applications
• Data-intensive workloads are emerging as
supercomputing problems
• Graph processing
• Pre-processing of simulation data	

Thanh-Chung Dao 2

MapReduce	

Thanh-Chung Dao 3

• Simple parallel paradigm to process large datasets
• Hidden parallelization & communication
• PageRank example

Input	 Splitting	 Mapping	 Shuffling	 Reducing	 Result	

PageA à PageB, PageC
PageB à PageC
PageC à PageA, PageB	

PageA à PageB, PageC

PageB à PageC

PageC à PageA, PageB

<PageB, 0.5>
<PageC, 0.5>

<PageC, 1>

<PageA, 0.5>
<PageB, 0.5>

<PageA, 0.5>

<PageB, 0.5>
<PageB, 0.5>

<PageC, 0.5>
<PageC, 1>

<PageA, 0.5>

<PageB, 1>

<PageC, 1.5>

PageA 0.5
PageB 1
PageC 1.5	

Rank contribution	
Shuffling

Done
automatically
(Users can

ignore)	

Function Mapper
Input PageA à PageB, PageC
Begin
 N = outbound links
 For each outbound link
 output <Page, 1/N>
End

Function Reducer
Input <PageA, x1>, …<PageA, xn>
Begin
 rank = 0
 For each item xi
 rank += xi
 output <PageA, rank>
End	

Hadoop MapReduce	
• Standard of MapReduce implementation
• Provide easy-to-use MapReduce APIs
• TCP/IP-based communication
• Designed to run on commodity clusters

•  Lab clusters, or Amazon EC2

• Scalability (32,000 nodes at Yahoo) & Resilience
• Written in Java

Thanh-Chung Dao 4

Improving Hadoop MapReduce Performance
on Supercomputers	

• Hadoop MapReduce is good choice on supercomputers
• Maturity
• Productivity

Thanh-Chung Dao 5

Supercomputer	 Hadoop	
Resource allocation at runtime
(# of processes, memory, CPU)

Static	 Dynamic	

Communication
	

MPI	 TCP/IP	

Workload
	

Compute-intensive	 Data-intensive	

Our Approach	
• JVM Reuse

• Statically create JVM processes and dynamically allocate to
Hadoop tasks
•  Enable efficient MPI communication by Hadoop tasks

•  Statically created processes can exploit efficient MPI
•  Dynamic allocation enables to use the original Hadoop implementation

•  Shorten start-up time of processes

• Technique
• Process pool is used to implement JVM Reuse
• Minimize changes of the original Hadoop engine

Thanh-Chung Dao 6

Why MPI is required for Hadoop	
• The de facto high-speed communication on
supercomputers
•  Improve slow MapReduce shuffling

• Enable Hadoop to co-host traditional MPI applications
• Combine MPI and MapReduce models
• Rich data analysis workflow

•  Efficient data sharing between MPI and MapReduce models
•  E.g. MPI can access data located at Hadoop file system (HDFS)

Thanh-Chung Dao 7

0
10
00
0

30
00
0

Message size (Bytes)

Th
ro

ug
hp

ut
 (M

bp
s)

20 24 28 212 216 220 226

MPI
TCP

10 times faster	

On FX10
supercomputer	

Th
ro

ug
hp

ut
 (M

bp
s)
	

Slow MapReduce shuffling on Hadoop	
Thanh-Chung Dao 8

• TCP/IP-based communication
•  JVM-Bypass (Wang et al., IPDPS 2013)

MapTasks	 Map output 1	

Map output n	

Local disk	Slave nodes	

HTTP Servlet
Server	

ReduceTasks	

Sort & Merge	

Reducing	Multiple requests at once	

Mapping Phase	 Shuffling Phase	 Reducing Phase	

Dynamic Process Creation on MPI	
• Discouraged on supercomputers

• Reasons of performance
•  Collective mechanism (MPISpawn)
•  Gang scheduling (error-prone if not enough resource)

• Gerbil (Xu el al., CCGrid 2015)
•  Co-hosting MPI applications on Hadoop
•  Creating dynamically processes
•  Its experiments showed significant overhead

• Resources should be specified before running MPI
applications
• Number of processes is known (static)
• Memory and CPU cores

Thanh-Chung Dao 9

Dynamic Process Creation on Hadoop	
• Required

•  Resources are allocated on demand to run MapReduce applications
•  Number of processes is unknown (dynamic)

Thanh-Chung Dao 10

Dynamic Process Creation on Hadoop	
• Required

•  Resources are allocated on demand to run MapReduce applications
•  Number of processes is unknown (dynamic)

Thanh-Chung Dao 11

Master
node	

Slave
1	

…

Slave
2	

Slave
n	

A Node	

Dynamic Process Creation on Hadoop	
• Required

•  Resources are allocated on demand to run MapReduce applications
•  Number of processes is unknown (dynamic)

Thanh-Chung Dao 12

Master
node	User

Slave
1	

…
Job

Submission	

6 tasks	

8 tasks	

6 tasks	 Slave
2	

Slave
n	

Request sending	A Node	

Dynamic Process Creation on Hadoop	
• Required

•  Resources are allocated on demand to run MapReduce applications
•  Number of processes is unknown (dynamic)

Thanh-Chung Dao 13

Master
node	User

Slave
1	

…
Job

Submission	

Request sending	

8 tasks	

6 tasks	

Processes	
A Node	

Process creation	
6

processes	

Slave
2	

Slave
n	 Process creation	

Each task is run
on a process	

Process creation	
6

processes	

8
processes	

6 tasks	

Dynamic Process Creation on Hadoop	
• Required

•  Resources are allocated on demand to run MapReduce applications
•  Number of processes is unknown (dynamic)

Thanh-Chung Dao 14

Master
node	User

Slave
1	

…
Job

Submission	

Request sending	

8 tasks	

6 tasks	

Processes	
A Node	

Process creation	
Task

running	

Slave
2	

Slave
n	 Process creation	

Each task is run
on a process	

Process creation	
Task

running	

Task
running	

6 tasks	

Dynamic Process Creation on Hadoop	
• Required

•  Resources are allocated on demand to run MapReduce applications
•  Number of processes is unknown (dynamic)

Thanh-Chung Dao 15

Master
node	User

Slave
1	

…
Job

Submission	

Request sending	

8 tasks	

6 tasks	

Processes	
A Node	

Process creation	
Terminated	

Slave
2	

Slave
n	 Process creation	

Each task is run
on a process	

Process creation	
Terminated	

Terminated	

6 tasks	

Dynamic Process Creation on Hadoop	
• Required

•  Resources are allocated on demand to run MapReduce applications
•  Number of processes is unknown (dynamic)

Thanh-Chung Dao 16

Master
node	User

Slave
1	

…
Job

Completion	

Slave
2	

Slave
n	

Request sending	A Node	

Idea of Reusing	
Thanh-Chung Dao 17

•  JVM Pool added
•  Idle JVM processes
•  Number of processes is statically fixed

Master
node	

Slave
1	

…

Processes	
A Node	

Slave
2	

Slave
n	

JVM Pool	

idle	 idle	 idle	

JVM Pool	

idle	 idle	 idle	

JVM Pool	

idle	 idle	 idle	

Idea of Reusing	
Thanh-Chung Dao 18

•  JVM Pool added
•  Idle JVM processes
•  Number of processes is statically fixed

Master
node	

Slave
1	

…

Processes	
A Node	

Slave
2	

Slave
n	

JVM Pool	

idle	 idle	 idle	

JVM Pool	

idle	 idle	 idle	

JVM Pool	

idle	 idle	 idle	

User
Job

Submission	

6 tasks	

8 tasks	

6 tasks	

Request sending	

Idea of Reusing	
Thanh-Chung Dao 19

•  JVM Pool added
•  Idle JVM processes
•  Number of processes is statically fixed

Master
node	

Slave
1	

…

Processes	
A Node	

Slave
2	

Slave
n	

JVM Pool	

Busy	 Busy	 idle	

JVM Pool	

Busy	 Busy	 idle	

JVM Pool	

Busy	 Busy	 Busy	

User
Job

Submission	

6 tasks	

8 tasks	

6 tasks	

Request sending	

Allocation	

Allocation	

Idea of Reusing	
Thanh-Chung Dao 20

•  JVM Pool added
•  Idle JVM processes
•  Number of processes is statically fixed

Master
node	

Slave
1	

…

Processes	
A Node	

Slave
2	

Slave
n	

JVM Pool	

Running	 Running	 idle	

JVM Pool	

Running	 Running	 idle	

JVM Pool	

Running	 Running	 Running	

User
Job

Submission	

6 tasks	

8 tasks	

6 tasks	

Request sending	

Idea of Reusing	
Thanh-Chung Dao 21

•  JVM Pool added
•  Idle JVM processes
•  Number of processes is statically fixed

Master
node	

Slave
1	

…

Processes	
A Node	

Slave
2	

Slave
n	

JVM Pool	

Cleanup	 Cleanup	 idle	

JVM Pool	

Cleanup	 Cleanup	 idle	

JVM Pool	

Cleanup	 Cleanup	 Cleanup	

User
Job

Submission	

6 tasks	

8 tasks	

6 tasks	

Request sending	

Idea of Reusing	
Thanh-Chung Dao 22

•  JVM Pool added
•  Idle JVM processes
•  Number of processes is statically fixed

Master
node	

Slave
1	

…

Processes	
A Node	

Slave
2	

Slave
n	

JVM Pool	

idle	 idle	 idle	

JVM Pool	

idle	 idle	 idle	

JVM Pool	

idle	 idle	 idle	

User
Job

Submission	

6 tasks	

8 tasks	

6 tasks	

Request sending	

Idea of Reusing	
Thanh-Chung Dao 23

•  JVM Pool added
•  Idle JVM processes
•  Number of processes is statically fixed

Master
node	

Slave
1	

…

Processes	
A Node	

Slave
2	

Slave
n	

JVM Pool	

idle	 idle	 idle	

JVM Pool	

idle	 idle	 idle	

JVM Pool	

idle	 idle	 idle	

User
Job

Completion	

Request sending	

JVM Reuse enables MPI communication	
• MPI communication is established at the beginning
• JVM Reuse keeps processes running

• MPI connection is always available

Thanh-Chung Dao 24

JVM Reuse shortens start-up time	
Thanh-Chung Dao 25

JVM start-up flow of Program A	

OS level
process creation	

Class loader subsystem	

Class loading

Class linking
(verification & initializing)

Execution engine	

JIT compiler

Execute A
instructions	

Invoke
main() method

of A	

Cmd: java A	

After A finishes,
Program B wants to reuse JVM of A	

Invoke
main() method

of B	

Process creation & class loader are skipped	 Execute B
instructions	

Iterative jobs benefit from JVM Reuse	
•  Iterative jobs

• Many short running JVM processes
• PageRank is an example	

Thanh-Chung Dao 26

Pre-processing
job	

Reduce	Map	

Maps use results
of the previous

Iteration	

Job A	

Reduce	Map	

Job A	

Reduce	Map	

Stop
Cond?	

No	

Yes, then quit	

Initial data	

Iterative job flow	

Implementation: Process Pool	

Thanh-Chung Dao 27

JVM Pool	

Process creation
request	

Round-robin
scheduling	

Process Pool on each node	

Hadoop YARN
(Node manager)	

Pool Manager	

idle	Busy	

Busy	

Busy	

Busy	 idle	

Allocation
•  Set busy
•  Export env. variables
•  Create new class loader
•  Invoke main() method	

De-allocation
•  Clean static fields
•  Unset busy

Busy	

Process	

Request sending	

State changing	

Our MPI shuffling design	
Thanh-Chung Dao 28

Mapping Phase	 Shuffling Phase	 Reducing Phase	

MapTasks	 Map output 2	

Map output n	

Local disk	Node 2	

Shuffle Manager

ReduceTask 2	

Sort & Merge	

Reducing	

MPI send/recv	

One request at once	

Reuse’s Technical Issues	
• Loading user’s classes

•  The original flow exports CLASSPATH before running
• Reflection

•  Load user’s classes at runtime
•  Create a new class loader for each user

•  Avoid class confliction

• Clean-up
• Static fields

•  Security problem
•  e.g. UserGroup static field

•  Must be reset
• Current design

•  Reset user information and job conf. static fields	

Thanh-Chung Dao 29

Other Technical Issues	
• Enable Hadoop YARN to host traditional MPI applications

• YARN is a resource manager
• Work in progress

•  MPI AppMaster
•  Monitor MPI ranks

•  MPI Container
•  Host a rank

• Avoid gang scheduling of MPI
• Work in progress

Thanh-Chung Dao 30

Evaluation	
• Hadoop version

•  v2.2.0

• Changes in our implementation
•  Line of code / total of Hadoop: ~1000 / 1,851,473
• Number of classes / total of Hadoop: 9 / 35142

Thanh-Chung Dao 31

Cluster setup	
• FX10 supercomputer

• Sparc64 Ixfx 1.848 GHz (16 cores) & 32GB RAM
• MPI over Tofu interconnection (5GB/s)
• Central storage

• Hadoop setup
• One master and many slaves
• OpenJDK 7
• HDFS is run on the central storage

• OpenMPI 1.6
•  Java MPI binding (Vega-Gisbert et al.)
• MCA parameter: plm_ple_cpu_affinity = 0

Thanh-Chung Dao 32

Evaluation of JVM Reuse	
• MPI benefit

• MPI vs. TCP/IP shuffling
•  Tera-sort job

•  Run on 32 FX10 nodes
•  4-slot pool & -Xmx4096

• Start-up time
•  JVM Reuse vs. the original
• PageRank iterative job

•  400 GB wikipedia data
•  Run on 8 FX10 nodes
•  6-slot pool & -Xmx4096

Thanh-Chung Dao 33

MPI vs. TCP/IP shuffling	

Thanh-Chung Dao 34

0
50

10
0

15
0

20
0

25
0

Input size (GB)

Te
ra

-s
or

t E
xe

cu
tio

n
Ti

m
e

(s
)

4 8 16

Nonblocking TCP Shuffle
Blocking TCP shuffle
Blocking MPI shuffle

Nonblocking : accept multi-connection at once
Blocking : accept one connection at once

up to 10% faster	

1
30

64
98

13
7
18
0
22
3

Ta
sk

 ID

0s 40s 80s 120s 160s 200s 240s 280s 320s 360s 400s

Start-up (JVM & User info)
Task initializing
Shuffling (at Reducers)
Data reading
Task running
Task finishing (MapOutput writing)

1
30

64
98

13
6
17
9
22
2

Time (s)

Ta
sk

 ID

0s 40s 80s 120s 160s 200s 240s 280s 320s 360s 400s

Shorten start-up time (PageRank)	
Thanh-Chung Dao 35

Original
Hadoop	

JVM Reuse
Hadoop	

2nd iteration
50 seconds faster	

1st iteration	

2nd iteration	

Start-up time	

More iterations	

Thanh-Chung Dao 36

Sum of start-up time	 Execution time	 Ratio	

0
10
00

30
00

50
00

Iteration number (n)

S
um

 o
f s

ta
rt-

up
 ti

m
e

(s
)

1 2 4 6 8

Original Hadoop
JVM Reuse-based Hadoop

0
20
0

40
0

60
0

80
0
10
00

Iteration number (n)

E
xe

cu
tio

n
Ti

m
e

(s
)

1 2 4 6 8

Original Hadoop
JVM Reuse-based Hadoop

Approach

E
xe

cu
tio

n
Ti

m
e

(s
)

0
50
00

10
00
0

15
00
0

20
00
0

Original Hadoop JVM Reuse Hadoop

Start-up time
Computation time

Related work	
• M3R (VLDB 2012)

•  Also apply JVM Reuse to enable in-memory MapReduce
•  Not providing any optimization of JVM Reuse and its evaluation

•  Hadoop MapReduce (HMR) engine is written in X10
•  We keep the original HMR engine with minimum changes

•  JVM Reuse in Hadoop v1 (2012)
•  Only for a single job

•  JVM processes are terminated after their job is completed
• Gerbil: MPI + YARN (CCGrid 2015)

•  Hadoop Yarn co-hosts MPI applications
•  Long start-up time and significant overhead

• DataMPI (IPDPS 2014)
•  Hadoop-like MapReduce implementation using MPI & C

•  JVM-Bypass (IPDPS 2013)
•  C-based shuffling engine & RDMA supported
•  We focus on using MPI over Hadoop processes

Thanh-Chung Dao 37

Summary	
•  Improving Hadoop MapReduce performance on

supercomputers

• Approach: JVM Reuse
•  Statically create JVM processes and dynamically allocate to Hadoop

tasks
•  Enable efficient MPI communication on Hadoop
•  Shorten start-up time

•  Minimum changes of the original Hadoop

•  Future work
•  JVM Reuse drawback

•  Affect CPU-bound tasks
•  Co-host MPI applications more efficiently
•  Full cleanup

Thanh-Chung Dao 38

