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Improving Hadoop MapReduce Performance 
on Supercomputers with JVM Reuse	



Supercomputers	
• Expensive clusters 

• Multi-core processors 
•  Large capacity of main memory 
• High-speed network 

• Focus mainly on compute-intensive applications 
• Data-intensive workloads are emerging as 
supercomputing problems 
• Graph processing 
• Pre-processing of simulation data	
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MapReduce	
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• Simple parallel paradigm to process large datasets 
• Hidden parallelization & communication 
• PageRank example 
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automatically 
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Function Mapper 
Input  PageA à PageB, PageC 
Begin 
    N = outbound links 
    For each outbound link 
        output <Page, 1/N> 
End 

Function Reducer 
Input  <PageA, x1>, …<PageA, xn> 
Begin 
    rank = 0 
    For each item xi 
       rank += xi 
    output <PageA, rank> 
End	



Hadoop MapReduce	
• Standard of MapReduce implementation 
• Provide easy-to-use MapReduce APIs 
• TCP/IP-based communication 
• Designed to run on commodity clusters 

•  Lab clusters, or Amazon EC2 

• Scalability (32,000 nodes at Yahoo) & Resilience 
• Written in Java 
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Improving Hadoop MapReduce Performance 
on Supercomputers	

• Hadoop MapReduce is good choice on supercomputers 
• Maturity 
• Productivity 
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Supercomputer	 Hadoop	
Resource allocation at runtime 
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Our Approach	
• JVM Reuse 

• Statically create JVM processes and dynamically allocate to 
Hadoop tasks 
•  Enable efficient MPI communication by Hadoop tasks 

•  Statically created processes can exploit efficient MPI 
•  Dynamic allocation enables to use the original Hadoop implementation 

•  Shorten start-up time of processes 
 

• Technique 
• Process pool is used to implement JVM Reuse 
• Minimize changes of the original Hadoop engine 
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Why MPI is required for Hadoop	
• The de facto high-speed communication on 
supercomputers 
•  Improve slow MapReduce shuffling 

 
 

• Enable Hadoop to co-host traditional MPI applications 
• Combine MPI and MapReduce models 
• Rich data analysis workflow 

•  Efficient data sharing between MPI and MapReduce models 
•  E.g. MPI can access data located at Hadoop file system (HDFS) 
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Slow MapReduce shuffling on Hadoop	
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• TCP/IP-based communication 
•  JVM-Bypass (Wang et al., IPDPS 2013) 

MapTasks	 Map output 1	

Map output n	

Local disk	Slave nodes	

HTTP Servlet 
Server	

ReduceTasks	

Sort & Merge	

Reducing	Multiple requests at once	

Mapping Phase	 Shuffling Phase	 Reducing Phase	



Dynamic Process Creation on MPI	
• Discouraged on supercomputers 

• Reasons of performance 
•  Collective mechanism (MPISpawn) 
•  Gang scheduling (error-prone if not enough resource) 

• Gerbil (Xu el al., CCGrid 2015) 
•  Co-hosting MPI applications on Hadoop 
•  Creating dynamically processes 
•  Its experiments showed significant overhead 

• Resources should be specified before running MPI 
applications 
• Number of processes is known (static) 
• Memory and CPU cores 
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Dynamic Process Creation on Hadoop	
• Required 

•  Resources are allocated on demand to run MapReduce applications 
•  Number of processes is unknown (dynamic) 
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Dynamic Process Creation on Hadoop	
• Required 

•  Resources are allocated on demand to run MapReduce applications 
•  Number of processes is unknown (dynamic) 
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Idea of Reusing	
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•  JVM Pool added 
•  Idle JVM processes 
•  Number of processes is statically fixed 
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JVM Reuse enables MPI communication	
• MPI communication is established at the beginning 
• JVM Reuse keeps processes running 

• MPI connection is always available 
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JVM Reuse shortens start-up time	
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JVM start-up flow of Program A	

OS level  
process creation	

Class loader subsystem	

Class loading 

Class linking 
(verification & initializing) 

Execution engine	

JIT compiler 

Execute A 
instructions	

Invoke  
main() method  

of A	

Cmd: java A	

After A finishes,  
Program B wants to reuse JVM of A	

Invoke  
main() method  

of B	

Process creation & class loader are skipped	 Execute B 
instructions	



Iterative jobs benefit from JVM Reuse	
•  Iterative jobs 

• Many short running JVM processes 
• PageRank is an example	
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Implementation: Process Pool	
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Our MPI shuffling design	
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Reuse’s Technical Issues	
• Loading user’s classes 

•  The original flow exports CLASSPATH before running 
• Reflection 

•  Load user’s classes at runtime 
•  Create a new class loader for each user 

•  Avoid class confliction 

• Clean-up 
• Static fields 

•  Security problem 
•  e.g. UserGroup static field 

•  Must be reset 
• Current design 

•  Reset user information and job conf. static fields	
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Other Technical Issues	
• Enable Hadoop YARN to host traditional MPI applications  

• YARN is a resource manager 
• Work in progress 

•  MPI AppMaster 
•  Monitor MPI ranks 

•  MPI Container 
•  Host a rank 

• Avoid gang scheduling of MPI 
• Work in progress 
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Evaluation	
• Hadoop version 

•  v2.2.0 

• Changes in our implementation 
•  Line of code / total of Hadoop: ~1000 / 1,851,473   
• Number of classes / total of Hadoop: 9 / 35142 

Thanh-Chung Dao 31 



Cluster setup	
• FX10 supercomputer 

• Sparc64 Ixfx 1.848 GHz (16 cores) & 32GB RAM 
• MPI over Tofu interconnection (5GB/s) 
• Central storage 

• Hadoop setup 
• One master and many slaves 
• OpenJDK 7 
• HDFS is run on the central storage 

• OpenMPI 1.6 
•  Java MPI binding (Vega-Gisbert et al.) 
• MCA parameter: plm_ple_cpu_affinity = 0 
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Evaluation of JVM Reuse	
• MPI benefit 

• MPI vs. TCP/IP shuffling 
•  Tera-sort job 

•  Run on 32 FX10 nodes 
•  4-slot pool & -Xmx4096 

• Start-up time 
•  JVM Reuse vs. the original 
• PageRank iterative job 

•  400 GB wikipedia data 
•  Run on 8 FX10 nodes 
•  6-slot pool & -Xmx4096 
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MPI vs. TCP/IP shuffling	

Thanh-Chung Dao 34 

0
50

10
0

15
0

20
0

25
0

Input size (GB)

Te
ra

-s
or

t E
xe

cu
tio

n 
Ti

m
e 

(s
)

4 8 16

Nonblocking TCP Shuffle
Blocking TCP shuffle
Blocking MPI shuffle

Nonblocking  : accept multi-connection at once 
Blocking  : accept one connection at once 

up to 10% faster	



1
30

64
98

13
7
18
0
22
3

Ta
sk

 ID

0s 40s 80s 120s 160s 200s 240s 280s 320s 360s 400s

Start-up (JVM & User info)
Task initializing
Shuffling (at Reducers)
Data reading
Task running
Task finishing (MapOutput writing)

1
30

64
98

13
6
17
9
22
2

Time (s)

Ta
sk

 ID

0s 40s 80s 120s 160s 200s 240s 280s 320s 360s 400s

Shorten start-up time (PageRank)	
Thanh-Chung Dao 35 

Original  
Hadoop	

JVM Reuse  
Hadoop	

2nd iteration  
50 seconds faster	

1st iteration	

2nd iteration	

Start-up time	



More iterations	
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Related work	
• M3R (VLDB 2012) 

•  Also apply JVM Reuse to enable in-memory MapReduce 
•  Not providing any optimization of JVM Reuse and its evaluation 

•  Hadoop MapReduce (HMR) engine is written in X10 
•  We keep the original HMR engine with minimum changes 

•  JVM Reuse in Hadoop v1 (2012) 
•  Only for a single job 

•  JVM processes are terminated after their job is completed 
• Gerbil: MPI + YARN (CCGrid 2015) 

•  Hadoop Yarn co-hosts MPI applications 
•  Long start-up time and significant overhead 

• DataMPI (IPDPS 2014) 
•  Hadoop-like MapReduce implementation using MPI & C 

•  JVM-Bypass (IPDPS 2013) 
•  C-based shuffling engine & RDMA supported 
•  We focus on using MPI over Hadoop processes 
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Summary	
•  Improving Hadoop MapReduce performance on 

supercomputers 

• Approach: JVM Reuse 
•  Statically create JVM processes and dynamically allocate to Hadoop 

tasks 
•  Enable efficient MPI communication on Hadoop 
•  Shorten start-up time 

•  Minimum changes of the original Hadoop 

•  Future work 
•  JVM Reuse drawback 

•  Affect CPU-bound tasks 
•  Co-host MPI applications more efficiently 
•  Full cleanup 
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