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Abstract
Programming paradigms are so important that a lot of research activities
are devoted to the support for them. How to support the implementation of
paradigms can be classified into three types of approaches: by design pat-
terns, by dedicated constructs, and by generic constructs. However, none
of them are sufficient. Design patterns can be used to implement most
paradigms but not all. Furthermore, without language support the code
tends to scatter and tangle. Dedicated constructs greatly improve the mod-
ularity of code, but also increase the number of constructs in a language
supporting multiple paradigms; a large number of constructs complicates
the language design. Generic constructs can be considered as a potentially
good approach, but the number of supported paradigms in current research
is quite limited; existing generic constructs are not flexible enough to support
more paradigms.

To overcome the problem that existing generic constructs are not flexible
enough, this thesis proposes a new generic construct, method slots, based on
our observation of the common ground among the implementations of three
important paradigms in the real world: OOP, the event-handler paradigm
(event-driven programming), the aspect paradigm (aspect-oriented program-
ming). The common ground has never been noticed before this thesis since
the dedicated constructs for these paradigms were individually developed
from the beginning. The observation on the similarities motivates us to
extend the methods in JavaScript to method slots, which can be used as
methods, events, and advices. To demonstrate how method slots can be
used in practice, a Java-based language named DominoJ is proposed with
a compiler implementation. We then evaluate DominoJ by comparing with
existing languages, running benchmarks for it, and rewriting programs as
case studies.

The concept ofmethod slots is very simple and easy to extend. To support
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this argument, we demonstrate how to extend method slots by taking the ex-
ample of the reactive paradigm (functional-reactive programming). We first
compare the reactive paradigm with the most similar one in the paradigms
supported by method slots : the event-handler paradigm. We find that the
major difference between them is whether the event composition is automatic
or not. Then we discuss the definitions for event composition in existing event
mechanisms, and get the conclusion that existing event mechanisms lack an
inference-based definition to automatically select events for a higher-level
event. This thesis proposes such an inference-based definition by adding only
one more operator for method slots. How the operator can be used for the
reactive paradigm is presented with a feasible implementation and discussed
in detail to clarify the limitations.
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Chapter

1
Introduction

The art of programming is the art
of organising complexity, of mastering multitude

and avoiding its bastard chaos as effectively as possible.
—E. W. Dijkstra

Unless you can support the paradigms I use when I program,
or at least support my extending your language

into one that does support my programming methods,
I don’t need your shiny new languages.

—R. W. Floyd

If you never write programs, programming paradigms are nothing to you;
but if you are a programmer, programming paradigms are the air, the water,
the must-have. It is not impossible to write a program without programming
paradigms, but it sounds like building a house without any plan or strategy:
it might be possible, but no one knows if it will success. Even it succeeds,
nevertheless, how to maintain and extend is the next problem. Repairing
it is a nightmare, and possibly tougher than rebuilding it. Maybe the term
programming paradigm is not familiar to everyone, but anyone interested
in programming should have heard object-oriented programming (OOP) or
functional programming; they are programming paradigms. Programming
paradigms are methodologies for writing programs, which help programmers
to resolve a certain implementation issue or modularize their code.
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Motivating problems

As what Robert W. Floyd mentioned in his Turing Award lecture [29],
a shiny new language does not attract programmers unless the language
supports the programming paradigms they use. It is not wrong to say that
we are always choosing between programming languages for implementing
a program, but saying that we are always choosing between programming
paradigms might be more proper. To a programmer, programming paradigms
are even important than programming languages.

Someone might not agree that programming paradigms are more impor-
tant than programming languages: “choosing a language to use is always
our first step to write a program, isn’t it?” Yes, it is, but I believe that
which programming paradigms supported by the language is always the first
concern for choosing a language. If you are a functional programming lover,
an OO language never attracts you even it owns a lot of great libraries.
Similarly, a defender of OOP might learn what functional languages are but
never use them. Programmers care about the languages but care about the
programming paradigms more.

Since programming paradigms are important, how to support the imple-
mentation of programming paradigms in a language is an important issue.
Maybe we can say that the value of a language is determined by how it can be
used to implement a programming paradigm. For example, we might choose
Java to implement a program if we want to use OOP. Object instances can
be automatically created according to the class declaration by the new op-
erator, so we do not have to copy the memory for fields. When a method on
an object instance is called, it is dynamically dispatched to proper method
implementation. Such functionalities are built-in and there is no need to
implement additional code; Java satisfies our needs. Suppose that now we
want to use event-driven programming (the event-handler paradigm) in Java
we could implement by design patterns, though the pattern code might be
repeatedly implemented. In other words, Java does not give built-in events,
so we have to write some pieces of code for the event-handler paradigm. It is
not a perfect solution, but also works for us. However, we have no idea how
to use aspect-oriented programming (the aspect paradigm) in Java since it
is a limitation. Which programming paradigm we can take advantage of is
always a concern when we choose a language.

1.1 Motivating problems

Even though programming paradigms are so important, current support for
the implementation of programming paradigms is not sufficient at all. Gen-
erally speaking, there are three approaches to supporting the implementation
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Motivating problems

of programming paradigms—we will discuss them later—but none of them is
sufficient. Here we focus on three paradigms and discuss these approaches to
supporting the implementation of the three paradigms. The three paradigms
are OOP, the event-handler paradigm, and the aspect paradigm, which are
very important programming paradigms in the real world. Object-oriented
programming (OOP) has been developed for more than thirty years and
now widely used in academia and industry. Event-driven programming (the
event-handler paradigm) was introduced to loosen the coupling of subjects
and observers and has been used over the past several decades. At the begin-
ning it was independent of OOP but now is usually used along with OOP. The
event-handler paradigm can be found in almost every GUI library on either
MacOSX, Windows, or X11. In a system such as Android and iOS all oper-
ations are composed of events and handlers. Aspect-oriented programming
(the aspect paradigm) [43], which is relatively younger, was developed for
modularizing cross-cutting concerns. The aspect paradigm can modularize
the code that cannot be modularized by OOP.

As we slightly mentioned above, there are three approaches to implement-
ing such a programming paradigm. The first approach is implementing by
design patterns, the support of which is undoubtedly insufficient since the
modularity of code is not good. We should regard design patterns as the last
approach we can take rather than the best approach. As what we learned
from the famous “GoF” design patterns book [30], paradigms can be imple-
mented by the pattern code. For example, the event-handler paradigm can
be implemented by the Observer pattern. The techniques revealed by pro-
gramming books that explain how to write code in a specific pattern belong
to this approach. In other words, writing code pieces in a certain style to
resolve a specific implementation issue that cannot be directly represented by
language constructs. This approach makes it possible to use the paradigms
that are originally not supported by the language. However, the pattern code
might cause code scattering and code tangling.

The second approach is implementing by dedicated constructs. This ap-
proach lacks the flexibility and results in a large number of constructs in a
language supporting multiple paradigms; it complicates the language design
and makes the language hard to learn. Nowadays more and more dedi-
cated constructs are designed for a specific paradigm since implementing a
paradigm by a design pattern is difficult to maintain. The code of imple-
menting the pattern scatters the program. This drawback makes it difficult
to separate the pattern code from the main concern. As the discussion above,
the Observer pattern can be used to implement the event-handler paradigm,
but the code for managing the list of observers and notifying the observers is
mixed with the main concern. Furthermore, maintaining two sets of observers
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Solution by this thesis

might cause code tangling. This approach, implementing by dedicated con-
structs, sounds good, but there is a drawback: the lack of flexibility. Ded-
icated constructs cannot be shared by different paradigms. As a result, a
language supporting multiple paradigms must provide all the constructs for
different paradigms. For example, [54, 70, 27, 40, 32] give both dedicated
constructs for OOP and the event-handler paradigm, and [42, 3] give both
dedicated constructs for OOP and the aspect paradigm. Such a unification
of dedicated constructs increases the number of constructs in a language and
makes the code analysis complicated. Every time a new dedicated construct
is added to a language, the number of the construct combinations needed to
analyze is increased as well. Furthermore, it might not be able to apply the
optimization for existing constructs to the new construct. If the number of
language constructs is smaller, the design of the compiler and the debugger
is simpler.

The third approach is implementing by generic constructs. This ap-
proach shows a good direction, but current support cannot be considered as
sufficient. There are several research activities devoted to develop generic
constructs supporting multiple paradigms, but the number of supported
paradigms is not larger than two as far as we know. This approach integrates
the dedicated constructs for multiple paradigms into generic constructs. Such
an integration can reduce the number of constructs in a language and keep the
design simple, while make it possible to support multiple paradigms without
writing pattern code. This approach is the best one to implement paradigms.
Unfortunately, it is really hard to extend a single construct to support multi-
ple paradigms. The coverage of the paradigms supported by existing generic
constructs is usually limited to two paradigms. For example, OOP, the event-
handler paradigm, and the aspect paradigm are major pardigms today. For
these paradigms, there have been a number of constructs proposed but their
coverage are limited. Several research activities [35, 75, 10] support OOP
and the aspect paradigm, but cannot cover the event-handler paradigm. On
the other hand, other research activities such as [62, 38] support only the
aspect paradigm and the event-handler paradigm. If there is a more simple,
generic, and flexible construct, we can use it for more paradigms and make
the language design simpler.

1.2 Solution by this thesis

Although all the three approaches to supporting the implementation of pro-
gramming paradigms are not sufficient, the third approach (generic con-
structs) is a potentially good approach. Supporting multiple paradigms by
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Solution by this thesis

generic constructs can not only improve the modularity of code, but also
avoid increasing the total number of constructs needed in a language. The
problem of this approach is that the generic constructs in current research are
not flexible to support more than two paradigms. However, supporting more
paradigms by generic constructs is a challenge but not a limitation. This
thesis proposes a new generic construct named method slots for supporting
multiple programming paradigms. We first present how method slots can be
used for three important paradigms: OOP, the event-handler paradigm, and
the aspect paradigm. Then how method slots can be extended by a small
extension is demonstrated by adding the support for the reactive paradigm.

There have been several research activities devoted to the generic con-
structs for two of OOP, the event-handler paradigm, and the aspect paradigm,
since the three paradigms are so important in the real world. However, the
common ground among their implementations was not clearly recognized,
thus no one could propose a generic construct that is flexible enough to
support all of them. Our observation on the similarities among their imple-
mentations motivates us to propose a more flexible generic construct named
method slots to support them. Method slots are very simple and can replace
the methods in OOP. With the assignment operators proposed in this thesis
method slots can also be used as the events in the event-handler paradigm
and the advices in the aspect paradigm. Any language providing this generic
construct and its operators will naturally support the three paradigms.

Since a method slot is a simple construct, its expressive power can be
augmented to cover other paradigms by only adding a small extension. In this
thesis we take the reactive paradigm as an example of how to extend method
slots. We first find out the most similar paradigm in the paradigms that are
already supported by method slots, the event-handler paradigm. Then we
can consider the reactive paradigm from the viewpoint of the event-handler
paradigm, and know that the major difference between them is whether the
event composition is automatic or not. By discussing the ways to compose
a higher-level event in existing event mechanisms we can get the conclusion
that the event-handler paradigm lacks inference rules for event composition.
Finally a new operator, the braces operator, is proposed to automatically
select events for a higher-level event as what the reactive paradigm does.

Method Slots

A method slot is an object’s property like a field that can keep more than
one function closure at the same time. With the assignment operators given
by DominoJ, the function closures in a method slot can be manipulated,
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for example adding a closure that calling another method slot to a method
slot. We analyze the similaries and the differences between the event-handler
paradigm and the aspect paradigm, and then show how to use DominoJ for
the two paradigms. A prototype compiler is implemented and preliminary
microbenchmarks are run for showing the feasibility. We also compile the
DaCapo benchmark suite [7] by the DominoJ compiler and compare the
running performance with the one compiled by the plain Java compiler. For
OOP we analyze how method slots can be used by applying to the GoF
design patterns. For the event-handler paradigm we show how to translate
C# events to method slots by examples [56, 55] and rewrite the Observer
pattern code implemented for events in the famous Java GUI framework,
JHotDraw [39]. As to the aspect paradigm, a real AspectJ program named
AspectTetris [28] is rewritten as a case study.

An Extension for Supporting the Reactive Paradigm

We point out the major difference between the reactive paradigm and the
event-handler pardigm is event composition, in other words how the events
are selected for a higher-level event. The existing three types of definitions
of higher-level events, enumeration-based definition, pattern-based definition,
and predicate-based definition, are not as automatic as the reactive paradigm.
We then propose a new kind of predicate-based definition, inference-based
definition, which can select the events by inference as what the reactive
paradigm does. A small extension named ReactiveDominoJ is proposed to
give the braces operator for providing the inference-based definition for event
composition. The braces operator takes a method slot and infers all the
method slots that affect the output of that method slot. Then all the events
behind an event can be automatically selected. How to realize the event
selection while preserve the dynamic method dispatch in OOP is shown by
the semantics along with a compiler implementation. To evaluate how Reac-
tiveDominoJ works for the reactive paradigm we show several examples.

1.3 Position of this thesis

This thesis extends the approach of generic constructs to cover more than
two paradigms. The generic construct proposed in this thesis is very simple
and flexible, which can be extended to support four paradigms by proposing
operators. This thesis takes the approach of generic constructs to support
the implementation of programming paradigms since implementing generic
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constructs is the most potential approach as we explained above. Unlike the
approach of design patterns, generic constructs are supported by languages
and thus no pattern code is necessary. Unlike dedicated constructs, generic
constructs can be shared among paradigms and thus do not complicate the
language design.

Before this thesis there is no existing research activity that can cover
all the following paradigms as far as we know: OOP, the event-handler
paradigm, the aspect paradigm, and the reactive paradigm. They are im-
portant and widely-used paradigms in the real world. Although there have
been several research activities focused on the constructs of part of them,
as far as we know no one covers all of them. Furthermore, most propos-
als are unification work on the constructs for these paradigms, which means
that all dedicated constructs for these paradigms are given in a language.
For example, [70, 27, 40, 32] are the research activities devoted to unifying
the dedicated constructs for the event-handler paradigm and OOP; [43, 3]
are the ones unifying the dedicated constructs for the aspect paradigm and
OOP, and [52, 53, 49] are the ones unifying the dedicated constructs for
the reactive paradigm and OOP. Their approaches are either proposing new
dedicated constructs or dedicated libraries for supporting special types of
classes. As to the integration work, [35, 75, 10] propose generic constructs
for the aspect paradigm and OOP, and [62, 38] propose generic constructs
for the event-handler paradigm and the aspect paradigm. Although a joint
work of the research might support three paradigms, for example [3, 62] or
using [49] with [32], no one covers all of the four paradigms with an inte-
gration solution. On the other hand, the relation between the event-handler
paradigm and the reactive paradigm is also discussed in [50]. As to the re-
lation between the aspect paradigm and the reactive paradigm, as far as we
know, there is no publication yet. This thesis analyzes the essentials of OOP,
the event-handler paradigm, the aspect paradigm, and the reactive paradigm
to show the possibility of integrating the dedicated constructs proposed for
them in existing research into a single generic construct.

1.4 Structure of this thesis

From the next chapter we explain the programming paradigms this thesis
focuses on, the issues addressed by this thesis, and then present the details
of our proposals with evaluation. The rest of this thesis is organized as
follows:
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Chapter 2: Backgrounds

This chapter gives an overview of the four paradigms this thesis focuses.
What the paradigms are and what the issues they resolve are explained.
Then the three approaches to supporting the implementation of the four
paradigms are shown. Why this thesis takes the approach of generic con-
structs is explained by comparing the advantages and the disadvantages of
using the three approaches. The languages proposed for the four paradigms
and their language constructs are also discussed. The unification work and
integration work on part of the four paradigms are briefly introduced as well.

Chapter 3: Method Slots

This chapter proposes the new generic language construct, method slots, to
simplify the language design and the constructs programmers have to learn.
The semantics of method slots and the assignment operators are presented
with a Java-based language named DominoJ. How to use DominoJ for the
event-handler paradigm and the aspect paradigm are also shown by compar-
ing with other languages. The evaluation is performed by running bench-
marks and case studies.

Chapter 4: An Extension for Supporting the Reactive Paradigm

This chapter demonstrates how to add a small extension to extend method
slots to support one more paradigm: the reactive paradigm. First the sim-
ilarities and the differences between the reactive paradigm and the event-
handler paradigm are analyzed to clarify what we need for emulating the
reactive paradigm by the event-handler paradigm. Then we summarized
what are provided in existing research of the event-handler paradigm to re-
veal the lack of inference rules in existing event mechanisms. This chapter
proposes the braces operator to automatically select a set of method slots
that affect the output of a method slot. The extension of DominoJ named
ReactiveDominoJ is presented in detail. The semantics of such a new kind
of predicate-based definition, inference-based definition, in ReactiveDominoJ
is shown along with a compiler implementation. Then how the reactive
paradigm can be supported by ReactiveDominoJ is discussed and compared
with other languages.

8 INTRODUCTION



Chapter

2
Backgrounds

Since this thesis is an integration work on the constructs of several pro-
gramming paradigms, what programming paradigms are must be explained
first. The programming paradigms this thesis focuses on: OOP, the event-
handler paradigm, the aspect paradigm, and the reactive paradigm, must
be explained as well. After that, the three approaches to implementing a
programming paradigm: by design patterns, by dedicated constructs, and
by generic constructs, are discussed to point out the reasons why this thesis
takes the approach of generic constructs.

2.1 Programming paradigms

Programming paradigms are the methodologies for building the code blocks
in a program, and thus very important to both programmers and language
designers. Properly using programming paradigms can help to prevent over-
sights in a program. The first contribution to this subject might be “Notes
on Structured Programming” [16] written by Edsger W. Dijkstra, which clar-
ifies the understanding of the program structure. Programming paradigms
are so important that every programmer must learn how to properly use pro-
gramming paradigms in their programs. By using programming paradigms
programmers can benefit from the solutions that have been invented and
proved.

BACKGROUNDS 9
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Nowadays a lot of programming paradigms have been developed for re-
solving different problems. Several of them are discussed from a very basic
view such as how to describe the computation, the example of which are
imperative programming and declarative programming. Several of them fur-
ther discuss the logic, the expression, and the structure in detail, for example
object-oriented programming (OOP) and functional programming. Several
programming paradigms take a step further to target at specific issues, for
example event-driven programming (the event-handler paradigm), aspect-
oriented programming (the aspect paradigm), and functional-reactive pro-
gramming (the reactive paradigm).

In order to support different paradigms, especially the paradigms for spe-
cific issues, various language constructs and design patterns are introduced.
Constructs provide built-in language support for paradigms, while design pat-
terns make it possible to implement the paradigms that are not directly sup-
ported by the language. As a consequence, there is a trend towards proposing
new constructs for paradigms and naturally providing all constructs for dif-
ferent paradigms in a language. Unless the proposed constructs are generic
and can be used for different paradigms, the number of language constructs
is always increasing.

Below we will continue explaining the backgrounds: the programming
paradigms this thesis focuses on and the language constructs for them by
examples, in order.

2.1.1 Object-oriented programming

Undoubtedly object-oriented programming (OOP) has been one of the most
well-known programming paradigms in either academia or industry. OOP
improves code modularity and makes code reusable. In OOP how a program
works is described as interactions between objects. An object represents a
component in the program, which has fields and methods. The fields are the
properties of the object, and the methods are the actions that the object can
perform. When an object gets a message sent by another object, its corre-
sponding action will be performed. For example, we can roughly describe a
music player by three components: the frontend, the backend, and the audio
file. An audio object wraps an audio file in the file system to allow reading
data and getting information such as the title of the music. The backend ob-
ject is responsible for loading an audio file, decoding the data, and sending
to the hardware device. The frontend object, which is a graphical user inter-
face (GUI), keeps a playlist and has several buttons such as play and next.
In the music player we might have a frontend object named musicPlayer, a
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Figure 2.1: The objects in the music player example
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Figure 2.2: The model of the music player example

backend object named audioEngine, and a lot of audioFile objects as shown
in Figure 2.1. The model is shown in Figure 2.2.

When the user clicks on the play button on the musicPlayer object, the
corresponding method named play will be called. In the play method the
musicPlayer object sends a message load to the audioEngine object to ask
it loading an audio file. Then the audioEngine object sends messages open
and read to the specified audioFile objects in sequence for getting the data.
Everything in the model is an object, and every functionality of the program
is represented by the interactions between objects.

In OOP an object does not and should not know the implementation of
other objects; the encapsulation is important. Every object encapsulates its
details and exposes only the information about how to use it; how it does
for a message is hidden from its client. In the music player example, the
musicPlayer object does not know how the audioEngine object controls the
hardware device, and the audioEngine object does not know how the data are
arranged in the audioFile object. This makes the responsibility of every object
clear and thus easy to implement. Furthermore, replacing or improving an
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Figure 2.3: The musicPlayer object can be replaced with the musicPlayerH
object

object is also easier. For example, if the hardware device is changed, we
can replace the audioEngine object with a new one without modifying the
musicPlayer object and the audioFile objects. If we need a remote client for
the music player, the musicPlayer object can be replaced with a modified
one named musicPlayerH and a new object musicPlayerR can be added to
the model as shown in 2.3; the audioEngine object and audioFile objects are
unaware of this change.

The dynamic method dispatch is also an important concept in OOP. A
message sent to an object, in other words the call to a method on an object,
can be dispatched properly according to the object’s type—the class type
in class-based OOP or the prototype in prototype-based OOP. For example,
if we want to extend the music player discussed above to a media player
which can play not only audio files but also video files, we can modify the
model in Figure 2.2 to Figure 2.4. Here the mediaPlayer is an extended
version of musicPlayer, which has an additional window for showing the video
besides the buttons provided by musicPlayer such as the player button. The
mediaEngine object can be either the audioEngine in Figure 2.2 or a new
object videoEngine which accepts the same messages as the ones accepted
by audioEngine, for example load. The videoEngine object can load a video
file when it receives the message load. To the mediaPlayer it only knows the
receiver is an object which is named mediaEngine and accepts the message
load. When the program is executed and the user clicks on the play button,
the message load sent by mediaPlayer will be dispatched according to the
type of the receiver dynamically. If the receiver is the audioEngine object,
the method implemented in audioEngine will be executed; if the receiver is the
videoEngine object, the method implemented in videoEngine will be executed.

The features of OOP such as encapsulation and dynamic method dispatch
greatly improve the modularity of programs, and make it easier to implement
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Figure 2.4: The model of the media player modified from the music player
example

and maintain a large-scale application. With the encapsulation objects can
be unaware of the implementation inside each other; every object focuses
on its own functionality. The dynamic method dispatch allows to delay
the selection of the object implementation for a message; a message can
be flexibly sent to the appropriate object implementation at runtime. By
using OOP the code can be better modularized. It is believed that SIMULA
[18, 17] is the first language with the object design. The concept of OOP
was going mature in the 1970s, and the famous Smalltalk-80 [33] is regarded
as the most elegant OO language.

Class-based OOP In Smalltalk classes are declared to create object instances
at runtime. All object instances of a class share the same implementation;
they are the same kind of components in the program. However, each ob-
ject owns its memory space for holding its states. The class is a template
for creating object instances. Furthermore, a class is allowed to extend an-
other class for inheriting their implementation and overriding methods. For
the media player example in Figure 2.4, we can declare a class named Me-
diaEngine, which is inherited by the classes AudioEngine and VideoEngine as
shown in Figure 2.5. Both AudioEngine and VideoEngine are kinds of Medi-
aEngine; such is-a relation is called the polymorphism, which properly han-
dles the dynamic method dispatch according to the inheritance. Listing 2.1
is the sample code in Java for the three classes MediaEngine, AudioEngine,
and VideoEngine. Note that VideoEngine overrides load but does not override
unload, while AudioEngine does not override any of them. When the methods
load and unload are called as follows:

MediaEngine engine = new AudioEngine();
:

engine.load();
:

engine.unload();

The proper implementation for the load method will be executed according
to the actual type of the engine object. Here engine is an AudioEngine object,
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Figure 2.5: The class hierarchy for mediaEngine of the media player example

so the following line will be printed:

MediaEngine: loading
MediaEngine: unloading

If engine is a VideoEngine as follows:

MediaEngine engine = new VideoEngine();
:

engine.load();
:

engine.unload();

it prints:

VideoEngine: loading
MediaEngine: unloading

If the subclass overrides the method, the implementation in the overriding
method is executed; otherwise the original one is executed. Such style of OO
design is called class-based OOP, which is followed by C++ [79], Objective-
C [2], and Java [64]. Classes, fields, and methods are necessary language
constructs for supporting class-based OOP.
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1 public class MediaEngine {
2 public void load() {
3 System.out.println("MediaEngine: loading");
4 :
5 }
6 public void unload() {
7 System.out.println("MediaEngine: unloading");
8 :
9 }

10 :
11 }
12

13 public class AudioEngine extends MediaEngine {
14 :
15 }
16

17 public class VideoEngine extends MediaEngine {
18 public void load() {
19 System.out.println("VideoEngine: loading");
20 :
21 }
22 :
23 }

Listing 2.1: MediaEngine and its subclasses in Java

Prototype-based OOP On the other hand, prototype-based OOP is intro-
duced by Self [84], which is influenced by Smalltalk but simplifies the design
by integrating the classes and objects in Smalltalk. An object can be gener-
ated by duplicating from prototype objects. In other words, using an object
as the template of another object. This style of OO design is followed by
JavaScript. Listing 2.2 shows the sample code in JavaScript for the three
classes discussed above. Line 16 and Line 25 specify the prototypes for Au-
dioEngine and VideoEngine, respectively. If the method called by its clients
is not implemented in the object, the method call is delegated to its proto-
type object. For example, calling load on an AudioEngine object will call the
implementation in MediaEngine and print:

MediaEngine: loading

The result is the same as the Java version showed above. Note that in the
Java version we have classes and objects, while in the JavsScript version
we have only objects. The dynamic method dispatch is supported by the
delegation rather than the inheritance.

OO languages has become one of the mainstream languages for more than
twenty years. Several of them also support other paradigms based on OOP
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1 function MediaEngine() {
2 this.load = function() {
3 print("MediaEngine: loading");
4 :
5 }
6 this.unload = function() {
7 print("MediaEngine: unloading");
8 :
9 }

10 :
11 }
12

13 function AudioEngine() {
14 :
15 }
16 AudioEngine.prototype = new MediaEngine();
17

18 function VideoEngine() {
19 this.load = function() {
20 print("VideoEngine: loading");
21 :
22 }
23 :
24 }
25 VideoEngine.prototype = new MediaEngine();

Listing 2.2: MediaEngine and its subclasses in JavaScript
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to further improve the modularity of code. For example, C# [54] includes the
support of the event-handler paradigm, and AspectJ [77] adds the support
of the aspect paradigm to Java. OOP are widely used in either business
software or open source projects, especially to implement libraries.

OOP can be directly supported by language constructs as the OO lan-
guages mentioned above, but it is also possible to be supported by design
patterns. Even with non-OO languages such as C some libraries like GTK+
[81] are also implemented in OOP. However, it is expected that every program
has to implement the pattern code.

2.1.2 The event-handler paradigm

Now the event-handler paradigm (event-driven programming) is usually used
along with OOP, though it is independent of OOP at the beginning. The
event-handler paradigm can be used to loosen the coupling between two
components in a program. It lets both sides of components to focus on the
task that should be handled rather than who the creater is and who the
handler is. At first the event-handler paradigm was used alone to replace
the polling style of programming. Its concept is similar to the interrupts in
hardware and thus massively adopted by system libraries such as the socket
library on Linux, Xlib [85] for X Window system, and Microsoft Windows
API [60]. After OOP was getting popular, people found that the event-
handler paradigm can make the relation between two objects more flexible
in OOP. The Observer pattern can be regarded as a standard of how to use
the event-handler paradigm in OOP. Today most OO libraries heavily rely on
the event-handler paradigm. Almost all GUI libraries, for example AWT [65],
Cocoa [1], MFC [58], Swing [67], SWT [80], and Qt [21], are implemented by
the event-handler paradigm. In a system such as Android the event-handler
paradigm is also massively used; an Android application might be regarded
as a composition of handlers, which reacts to various events in the system.

Recently several research activities such as EScala [32] and EventCJ [40]
propose a new language construct named events for using the event-handler
paradigm in OOP. Events are also supported by C# [54]. An event is a kind
of field, which marks the happening of something and allows methods to be
bound as handlers. When the event is triggered either explicitly or implicitly,
the handlers will be executed. In EScala evt can be used to declare events
and the operator += can be used to bind a method to an event. Taking
the media player in Figure 2.4 as an example, if the frontend mediaPlayer
needs to switch the icon of the play button according to the status of the
backend mediaEngine: showing the pause icon when it is playing and showing
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1 public class MediaPlayer {
2 public void onPlay() {
3 System.out.println("it is playing.");
4 : // switch to the pause icon
5 }
6 public void onPause() {
7 System.out.println("it is paused.");
8 : // switch to the play icon
9 }

10 :
11 }
12

13 public class MediaEngine {
14 MediaPlayer mediaPlayer = null;
15 public void setPlayer(MediaPlayer player) {
16 mediaPlayer = player;
17 }
18 public void load() {
19 :
20 mediaPlayer.onPlay();
21 }
22 public void unload() {
23 :
24 mediaPlayer.onPause();
25 }
26 :
27 }

Listing 2.3: Switching the icon of the play button without events

play icon when it is paused. We can implement such a switching by Java
as shown in Listing 2.3. Note that here the Observer pattern is not used.
When the mediaEngine object finish loading the media file, it calls the onPlay
method on the mediaPlayer object for switching to the pause icon. Similarly,
onPause is called for switching to the play icon when the media file is finished
unloading. It works, though events are not used.

However, there are several drawbacks in this sample code. First, Medi-
aPlayer is explicitly specified in MediaEngine. The one to be notified of the
switching must be an object instance of MediaPlayer or its subclasses. Sec-
ond, we hard code the two methods in MediaEngine, although MediaEngine
does not have to know the methods onPlay and onPause. It is not reason-
able since MediaEngine also needs to be modified when the names of the two
methods in MediaPlayer are modified. MediaEngine should be unaware of
the two methods. On the other hand, it is not reasonable that MediaPlayer
need to know the methods onPlay and onPause will be called for getting the
notifications after setPlayer, either.

We can use the events in EScala to describe such a switching as shown
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in Listing 2.4. Line 22–23 declare two events loaded and unloaded, which
are triggered after the execution of load and unload, respectively. Similarly,
we can describe another switching: if an mediaFile is removed, disabling the
corresponding item in the playlist of mediaPlayer. Line 34–37 define that
removed and restored are triggered for remove and restore, respectively. Then
we can bind the methods to the events as follows:

val mediaPlayer = new MediaPlayer()
val mediaEngine = new MediaEngine()
val mediaFile = new MediaFile("track01")

:
mediaEngine.loaded += mediaPlayer.onPlay
mediaEngine.unloaded += mediaPlayer.onPause
mediaFile.removed += mediaPlayer.disablePlaylistItem
mediaFile.restored += mediaPlayer.enablePlaylistItem

Using events can effectively loosen the coupling between objects since the
object triggering the event can be unaware of the owner of the handler. For
example, after the method load on the object mediaEngine is executed, the
event loaded will be triggered and the handler method onPlay on the object
mediaPlayer will be called. In the class MediaEngine we can avoid explicitly
specifying the handler: the method onPlay on the object mediaPlayer. It is
more flexible.

2.1.3 The aspect paradigm

The aspect paradigm (aspect-oriented programming) is developed for mod-
ularizing what OOP cannot modularize: crosscutting concerns. With OOP
programmers can modularize different concerns by classes, but cannot mod-
ularize those concerns that crosscut classes. Here we take the media player
in Listing 2.8 as an example again to explain this issue. Suppose that we
want to debug the program and give a profiling of the media player. In order
to know how much time each method takes we add a log message at the
beginning and the end of each method as shown in Listing 2.5. When the
method play in MethodPlayer is executed, the output looks like:

[1390566365503] MediaPlayer: the beginning of play track01
[1390566365603] MediaEngine: the beginning of load track01
[1390566365903] MediaEngine: the end of load track01
[1390566366903] MediaPlayer: the end of play track01
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1 class MediaPlayer() {
2 def onPlay() {
3 System.out.println("it is playing.");
4 : // switch to the pause icon
5 }
6 def onPause() {
7 System.out.println("it is paused.");
8 : // switch to the play icon
9 }

10 def enablePlaylistItem(filename: String) {
11 System.out.println("enable the item in playlist: " + filename);
12 : // enable the list item
13 }
14 def disablePlaylistItem(filename: String) {
15 System.out.println("disable the item in playlist: " + filename);
16 : // disable the list item
17 }
18 :
19 }
20

21 class MediaEngine() {
22 evt loaded[Unit] = afterExec(load)
23 evt unloaded[Unit] = afterExec(unload)
24 def load() {
25 :
26 }
27 def unload() {
28 :
29 }
30 :
31 }
32

33 class MediaFile(filename: String) {
34 evt removed[String] = afterExec(remove)
35 map ((_: (Unit, Unit)) => filename)
36 evt restored[String] = afterExec(restore)
37 map ((_: (Unit, Unit)) => filename)
38 def remove() {
39 :
40 }
41 def restore() {
42 :
43 }
44 :
45 }

Listing 2.4: Switching the icon of the play button using events in EScala
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1 public class MediaPlayer {
2 private MediaEngine mediaEngine = new MediaEngine();
3 public void play(String filename) {
4 System.out.println("[" + System.currentTimeMillis() + "]"
5 + " MediaPlayer: the beginning of play "
6 + filename);
7 :
8 mediaEngine.load(filename);
9 :

10 System.out.println("[" + System.currentTimeMillis() + "]"
11 + " MediaPlayer: the end of play "
12 + filename);
13 }
14 :
15 }
16

17 public class MediaEngine {
18 public void load(String filename) {
19 System.out.println("[" + System.currentTimeMillis() + "]"
20 + " MediaEngine: the beginning of load "
21 + filename);
22 :
23 System.out.println("[" + System.currentTimeMillis() + "]"
24 + " MediaEngine: the end of load "
25 + filename);
26 }
27 :
28 }

Listing 2.5: Printing log messages for each method

The sample code in Listing 2.5 works, but is ugly and hard to manage.
The code for printing log messages scatters everywhere. Programmers might
create a Logger class and try to move the log message to the Logger class
as shown in Listing 2.6. The latter version looks better since now we can
control the log messages in a place. For example, changing the format of
log messages or managing them by logging levels. However, this issue is not
really resolved. Indeed we have collected related methods into the Logger
class, but when to call the methods and how to call the methods are left
in other classes. Calling the debug method of Logger class still have to be
explicitly stated in the methods of MediaPlayer class and MediaEngine class
(Line 4, 8, 15, and 17 of Listing 2.6). Such a crosscutting concern, Logger,
crosscuts other classes and cannot be modularized by only OOP.

It has been more than a decade since the issue was raised [43], and the
aspect paradigm has been adopted by enterprise software frameworks such as
VMware Spring [86] and Red Hat JBoss AS [71]. In the media player example
there are two issues. First, code scattering: the code for the logging concern
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1 public class MediaPlayer {
2 private MediaEngine mediaEngine = new MediaEngine();
3 public void play(String filename) {
4 Logger.debug("MediaPlayer: the beginning of play " + filename);
5 :
6 mediaEngine.load(filename);
7 :
8 Logger.debug("MediaPlayer: the end of play " + filename);
9 }

10 :
11 }
12

13 public class MediaEngine {
14 public void load(String filename) {
15 Logger.debug("MediaEngine: the beginning of load " + filename);
16 :
17 Logger.debug("MediaEngine: the end of load " + filename);
18 }
19 :
20 }
21

22 public class Logger {
23 public static void debug(String str) {
24 System.out.println("[" + System.currentTimeMillis() + "] " + str);
25 }
26 :
27 }

Listing 2.6: Try to modularize the code for the logging concern
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is scattered in several classes. The calls to the methods in Logger class such
as debug are stated in a lot of places out of Logger class. It is hard to check
the meaning and the correctness of Logger. When to call the methods in
Logger class is not described in one place with a clear statement. Second,
code tangling: the code for the Logger concern is tangled with other concerns.
Although in this case we know that the first statement and the last statement
in a method are for the Logger concern, we might have other concerns that
adds statements at the beginning or any other places of a method. The code
for different concerns are tangled. This increases the overheads of verifying
one of the two concerns.

The aspect paradigm makes it possible to modularize crosscutting con-
cerns. In a language supporting the aspect paradigm such as AspectJ [42], the
code of debug can be implemented in a language construct named advices.
How to attach the advice to methods can be defined by another language
construct named pointcuts. Then advices and pointcuts can be modular-
ized in another language construct, aspects. The media player example can
be rewritten by AspectJ as shown in Listing 2.7. The calls to the debug
method of Logger are totally removed from MediaPlayer and MediaEngine.
Instead, we add an aspect named Logger, which contains a pointcut named
allNonStaticMethods, a before advice, an after advice, and a method. The all-
NonStaticMethods pointcut specifies the timing: either when any non-static
methods in MediaPlayer is executed or when any non-static methods in Me-
diaEngine is executed. Then the two advices are attached to the pointcut
allNonStaticMethods for being called before/after the timing specified by all-
NonStaticMethods. Note that thisJoinPoint is a special variable provided by
AspectJ for using the reflection. In the two advices thisJoinPoint and a string
are passed to the same method for printing the log messages.

With the aspect paradigm the media player example can be elegantly
separated into three classes and an aspect. At the compile-time or load-time
the code is woven according to the pointcuts and let the program work as
the original one (Listing 2.6). With the Logger aspect all the log messages
are printed. If we remove the Logger aspect, all the log messages will be
removed. The aspect paradigm greatly increases the modularity of a program
and makes it easier to read and maintain.

The aspect paradigm also influences other programming paradigms such
as feature-oriented programming [69, 41] and context-oriented programming
[12, 37, 72]. Maybe we could say that feature or context is some sort of
“aspect”, which cannot be modularized by only OOP.
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1 public class MediaPlayer {
2 private MediaEngine mediaEngine = new MediaEngine();
3 public void play(String filename) {
4 :
5 mediaEngine.load(filename);
6 :
7 }
8 :
9 }

10

11 public class MediaEngine {
12 public void load(String filename) {
13 :
14 }
15 :
16 }
17

18 public aspect Logger {
19 pointcut allNonStaticMethods()
20 : execution(!static * MediaPlayer.*(..))
21 || execution(!static * MediaEngine.*(..));
22 before() : allNonStaticMethods() {
23 debug(thisJoinPoint, "the beginning of");
24 }
25 after() : allNonStaticMethods() {
26 debug(thisJoinPoint, "the end of");
27 }
28 public void debug(JoinPoint joinPoint, String str) {
29 String className =
30 joinPoint.getSourceLocation().getWithinType().getName();
31 String methodName = joinPoint.getSignature().getName();
32 String output = "[" + System.currentTimeMillis() + "] "
33 + className + ": " + str + " " + methodName;
34 Object[] objs = joinPoint.getArgs();
35 for(int i=0; i<objs.length; i++) {
36 output += " " + objs[i];
37 }
38 System.out.println(output);
39 }
40 }

Listing 2.7: Modularizing the logging concern to an aspect
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2.1.4 The reactive paradigm

Recently the reactive paradigm (functional-reactive programming) also at-
tracts attentions from OOP community. The reactive paradigm is originally
based on functional programming and proposed for building richly interactive
programs. In the reactive paradigm the time model is quite different from the
traditional programming style. Variables are not no longer constant values
but time-varying values. Such variables are called behaviors, which are also
named signals in several languages. An expression involving behaviors in the
reactive paradigm is similar to the expression assigned to a cell in a spread-
sheet program: the expression will be evaluated again when anything affects
its result is changed. For example, if we assign an expression “B1 + C1” to
the cell A1 in the spreadsheet program, whenever the value of B1 or C1 is
changed, A1 will be updated automatically. In other words, the expression
“A1 = B1 + C1” can always be regarded true. Another concept in the reactive
paradigm is the event stream, which is an infinite stream of discrete events
in the time line. An event in an event stream marks something happens in
the time line and can help to get the constant value of a behavior at that
time, which is called a snapshot of the behavior. Fran [24] is regarded as the
first publication on programming with the reactive paradigm.

The behaviors in the reactive paradigms can simply express data flows.
This might remind readers of data-flow programming [87, 9, 6, 4], which
have a long history. Their concepts are similar, but data-flow programming
are more close to hardware design since the time is totally hidden from pro-
grammers. In the reactive paradigm the time is an explicit factor, although
its value at a specified time is not explicitly used. Recently the reactive
paradigm attracts attentions again since the need for interactive programs
is increaing. For example, the GUI applications for mobile devices or Web
applications.

At the beginning the reactive paradigm was proposed to be used with
functional programming since its features can be smoothly represented by
functional programming languages. Several languages such as Elm [15] be-
long to the traditional style. However, in the recent years several research
activities are devoted to use the reactive paradigm with OOP since OOP has
become one of the mainstream languages as mentioned above. Massive OO
libraries and large-scale OO applications make researchers notice the inte-
gration of the reactive paradigm and OOP. Several of the research activities
propose a library providing behaviors and event streams for OOP, and sev-
eral of them propose new language constructs in OO languages. How to use
the reactive paradigm in an OO language is still a challenge.
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2.2 Supporting the implementation of paradigms

How the implementation of programming paradigms is supported in a lan-
guage has been known as an important issue since programming paradigms
are so important to programmers. Generally speaking, programming paradigms
can be implemented by design patterns, dedicated constructs, or generic con-
structs. This section explains what the three approaches are. Then we an-
alyze their advantages and disadvantages of using them to support multiple
paradigms in a single language. The conclusion on their advantages and
disadvantages led us to challenge the approach of generic constructs.

2.2.1 Design patterns

The language constructs for OOP can fit the needs of a lot of program de-
sign but not all. In 1994 the famous “GoF” design patterns book [30] was
published, which shows 23 classic design patterns for resolving various de-
sign issues. This book demonstrates how to write pattern code for resolving
those issues with the language constructs provided by a typical OO language
such as C++ and Smalltalk. In other words, the pattern code utilizes the
capability of OOP with existing language constructs.

However, using design patterns to implement a programming paradigm
might be a good solution, but not the best solution. It enables the possibil-
ity of using a paradigm that is not directly supported by the language, but
programmers have to write the pattern code repeatedly. For example, the
Observer pattern loosens the coupling of subject and observer. In a subject
object a list is maintained for remembering its observer objects, and then
other objects can be registered as the observer by asking the subject object
to add them to the list. When something the observer objects concern hap-
pens, the subject object will notify all the observer objects in the list. The
Observer pattern can be used to implement the event-handler paradigm with-
out any dedicated constructs. In other words, the pattern code consists only
the constructs for OOP; no construct for events is used. For example, the
switching icons example discussed above can be described by the Observer
pattern as shown in Listing 2.8. Implementing the Observer pattern can help
to loosen the coupling of MediaPlayer and MediaEngine. The MediaEngine ob-
ject is the subject and theMediaPlayer object is the observer. First we declare
two abstract classes EngineSubject and EngineObserver for the subject and the
observer, respectively. In EngineSubject a list named observers is declared for
holding the observers, and an observer can add itself to the list by calling
addObserver or remove itself from the list by calling removeObserver. Then in
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a subclass of EngineSubject such as MediaEngine, the methods notifyLoaded
and notifyUnloaded can be used to notify its observers. On the other hand, in
EngineObserver two methods updateLoaded and updateUnloaded are defined
in order to ask its subclasses to implement how to handle them. Using the
Observer pattern the relation between the subject and the observer is more
flexible: any class extending EngineSubject can be the subject and any class
extending EngineObserver can be the observer. They are not limited to Medi-
aPlayer and MediaEngine. Furthermore, the subject just notifies the observers
to update and is unaware of how the observers update their status. Similarly,
the observer can add itself to any one that agrees the protocol. The coupling
between the subject and the observer is loose and flexible.

Unlike the EScala version in Listing 2.4, this code does not use any addi-
tional construct except the constructs for OOP. Using the Observer pattern
there is no need to hard code the reference to the observers in the subject
and the registration can be done in advance. Unlike the polymorphism such
interactions cannot be described by using only the constructs for OOP. In
an class-based OO language programmers can simply write an overriding
method in the subclass to desctibe the dynamic method dispatch; no addi-
tional code is necessary. However, the design issue resolved by the Observer
pattern, the break of encapsulation caused by tight-coupling, cannot be de-
scribed without additional code. Programmers need to implement the code
of observer management and notification. Design patterns show how to write
pattern code using existing language constructs to resolve specific design is-
sues.

Using the Observer pattern cannot satisfy library developers. Inside the
library developers have to write the pattern code again and again for different
events. For example, in Listing 2.8 besides the orignal implementation we
have to write the code of the Observer pattern such as the code in EngineSub-
ject and EngineObserver. As discussed above these code are used to let other
objects register themselves as the observers and thus their methods such as
updateLoaded and updateUnloaded can be called as handlers for the events
such as notifyLoaded and notifyUnloaded, respectively. The pattern code is
mixed with other concerns. If there are two categories of events and we need
to prepare two lists for separately managing the observers, the pattern code
has to be implemented twice. For example, we want to show the status of
media files in the playlist of the frontend MediaPlayer: if the media file is re-
moved from the file system, the item for the media file in the playlist should
be grayed out. For the new functionality we need to implement the Observer
pattern again as shown in Listing 2.9, where MediaFile extends FileSubject
and MediaPlayer implements FileObserver. Note that FileObserver has to be
defined by an interface rather than an abstract class since multiple inheri-
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1 public abstract class EngineSubject {
2 ArrayList<EngineObserver> observers = new ArrayList<EngineObserver>();
3 public void addObserver(EngineObserver o) { observers.add(o); }
4 public void removeObserver(EngineObserver o) { observers.remove(o); }
5 public void notifyLoaded() {
6 Iterator<EngineObserver> iter = observers.iterator();
7 while(iter.hasNext()) iter.next().updateLoaded();
8 }
9 public void notifyUnloaded() {

10 Iterator<EngineObserver> iter = observers.iterator();
11 while(iter.hasNext()) iter.next().updateUnloaded();
12 }
13 }
14

15 public abstract class EngineObserver {
16 public abstract void updateLoaded();
17 public abstract void updateUnloaded();
18 }
19

20 public class MediaEngine extends EngineSubject {
21 public void load() {
22 :
23 notifyLoaded();
24 }
25 public void unload() {
26 :
27 notifyUnloaded();
28 }
29 :
30 }
31

32 public class MediaPlayer extends EngineObserver {
33 public void updateLoaded() { onPlay(); }
34 public void updateUnloaded() { onPause(); }
35 public void onPlay() {
36 System.out.println("it is playing.");
37 : // switch to the pause icon
38 }
39 public void onPause() {
40 System.out.println("it is paused.");
41 : // switch to the play icon
42 }
43 :
44 }

Listing 2.8: Switching the icon of the play button using the Observer pat-
tern
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1 public abstract class FileSubject {
2 ArrayList<FileObserver> observers = new ArrayList<FileObserver>();
3 public void addObserver(FileObserver o) { observers.add(o); }
4 public void removeObserver(FileObserver o) { observers.remove(o); }
5 public void notifyEnable(String filename) {
6 Iterator<FileObserver> iter = observers.iterator();
7 while(iter.hasNext()) iter.next().updateEnable(filename);
8 }
9 public void notifyDisable(String filename) {

10 Iterator<FileObserver> iter = observers.iterator();
11 while(iter.hasNext()) iter.next().updateDisable(filename);
12 }
13 }
14 public interface FileObserver {
15 public void updateEnable(String filename);
16 public void updateDisable(String filename);
17 }
18 public class MediaFile extends FileSubject {
19 String filename;
20 :
21 public void remove() {
22 :
23 notifyDisable(filename);
24 }
25 public void restore() {
26 :
27 notifyEnable(filename);
28 }
29 }
30 public class MediaPlayer extends EngineObserver implements FileObserver {
31 public void updateLoaded() { onPlay(); }
32 public void updateUnloaded() { onPause(); }
33 public void updateEnable(String filename) {
34 enablePlaylistItem(filename);
35 }
36 public void updateDisable(String filename) {
37 disablePlaylistItem(filename);
38 }
39 public void onPlay() {
40 System.out.println("it is playing.");
41 : // switch to the pause icon
42 }
43 public void onPause() {
44 System.out.println("it is paused.");
45 : // switch to the play icon
46 }
47 public void enablePlaylistItem(String filename) {
48 System.out.println("enable the item in playlist: " + filename);
49 : // enable the list item
50 }
51 public void disablePlaylistItem(String filename) {
52 System.out.println("disable the item in playlist: " + filename);
53 : // disable the list item
54 }
55 }

Listing 2.9: MediaPlayer is the observer of both EngineSubject and FileSub-
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tance is not allowed in Java. The code for the two implementations of the
Observer pattern are mixed inMediaPlayer. Using super classes and interfaces
is helpful to gather up the code for the same concern, but does not totally
resolve code tangling. Programmers have to implement the Observer pattern
repeatedly and mix the code for different concerns. Several libraries such as
Qt and Boost provide the support of the event-handler paradigm, which is
also known as signals and slots, to generate pattern code for programmers.

2.2.2 Dedicated constructs and the unification

Dedicated constructs help programmers to implement programming paradigms
with language support, but increase the number of constructs. As mentioned
in Section 2.1, a lot of research activities propose dedicated constructs for
different paradigms: classes, fields, and methods for OOP; events and meth-
ods for the event-handler paradigm; aspects, pointcuts, and advices for the
aspect paradigm; behaviors and event streams for the reactive paradigm.
These dedicated constructs are proposed either to avoid implementing pat-
tern code again and again, for example events, or make the paradigm avail-
able, for example pointcuts. For those paradigms that can be implemented
by design patterns, supporting them by dedicated constructs makes the code
clear. By comparing the switching icon example implemented by events
(Listing 2.4) with the one implemented by the Observer pattern (Listing 2.8
and Listing 2.9), we can know the pattern code for managing and notifying
the observers is eliminated. EngineSubject, EngineObserver, FileSubject, and
FileObserver are no longer necessary. Some readers might notice that the
explicit trigger such as Line 23 and Line 27 in Listing 2.8 are also removed.
EScala allows events to be implicitly triggered using afterExec rather than
explicitly triggered at the end of method bodies. It also greatly reduces
the code scattering caused by event triggers. The source code is more clear
and easy to maintain. On the other hand, several paradigms such as the
aspect paradigm are only available by dedicated constructs; they cannot be
implemented by design patterns. The log message example (Listing 2.5 and
Listing 2.6) explains why it is not possible to implement the aspect paradigm
by the constructs for OOP with design patterns. As shown in Listing 2.7,
AspectJ introduces the dedicated constructs, aspects, pointcuts, and advices,
to support the implementation of the aspect paradigm. Without dedicated
constructs, such paradigms cannot be implemented.

Although dedicated constructs are ideal for using a specific paradigm,
they are not good to a language that supports multiple paradigms. For us-
ing multiple paradigms in a language, all sets of dedicated constructs for
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the paradigms must be unified into a super set; this make the language de-
sign complicated. There are several research activities on the unification
of the dedicated constructs for two of the paradigms mentioned above. In
this thesis the term unification refers to putting all sets of constructs for
different paradigms into a super set. The reason why the constructs are uni-
ficated rather than integrated is that the constructs are dedicated to specific
paradigms. Most proposals for the aspect paradigm can be regarded as the
unification of the constructs for the aspect paradigm and OOP since the is-
sue resolved by the aspect paradigm was raised in OOP at the beginning.
For example, AspectJ [42] and CaesarJ [3] give extra dedicated constructs
besides the constructs for OOP; two sets of constructs are provided. Sim-
ilarly, the proposals for the event-handler paradigm such as Ptolemy [70],
EventJava [27], EventCJ [40], and EScala [32] unify the constructs for OOP
and the event-handler paradigm. There are also several unification work on
the constructs for the reactive paradigm and OOP such as Frappé [13], Su-
perGlue [52], Flapjax [53], Scala.React [49], and the discussion in [74]. For
using the reactive paradigm in an OO language, they give dedicated libraries
for supporting special types of classes. Since those constructs are dedicated
to specific paradigms, all of them must be given in a language that supports
multiple paradigms.

2.2.3 Generic constructs and the integration

Generic constructs are the constructs that can be used for differnt paradigms,
and in this thesis the term integration refers to using the same constructs
for multiple paradigms. With generic constructs the total number of the
constructs in a language that supports multiple paradigms can be reduced;
this simplifies the language design. As a result of introducing more and
more programming paradigms, the number of language constructs is increas-
ing. Unfortunately, it is a trend since supporting programming paradigms
by language constructs is better than by design patterns. Every research
activity proposes its dedicated language constructs based on a specific pro-
gramming language for a certain paradigm. This means that programmers
have to choose between programming languages according to the program-
ming paradigm they want to use at the design stage. Programmers have
to carefully consider that which programming paradigm they want to use
for the program in order to decide the programming language to implement.
Another choice is that checking whether the paradigm provided in their fa-
vorite programming languages is suitable for the program or not. After the
program is implemented, it might be necessary to change the programming
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language in order to change the paradigm used in the program; it is not an
easy job. Furthermore, to simply the design of compiler and debugger the
number of language constructs should be as small as possible. First, from
the viewpoint of code analysis supporting more language constructs needs
to consider more combinations of language constructs. The number of the
combinations steeply increases with the number of language constructs. Sec-
ond, supporting less language constructs helps the code optimization. For
example, an idea for optimizating a language construct can be applied to
more code pieces. A complicated language design results in a complicated
design of compiler and debugger, and the number of language constructs is
one of the important factors in language design.

However, it is never easy to integrate the constructs for different paradigms
into generic constructs. There are several research activities devoted to
the integration of the constructs for different paradigms by giving generic
constructs, but the number of paradigms is quite limited. For example,
Delegation-based AOP [35, 75] and GluonJ [10] integrate the constructs or
models for OOP and the aspect paradigm. ECaesarJ [62] and Context As-
pects [38] are the contributions to the integration of the constructs for the
event-handler paradigm and the aspect paradigm. It is true that these in-
tegration work clarify the essentials of different paradigms and use generic
constructs to support the implementation of them, but how to increase the
number of supported paradigms is still a challenge.

2.3 Comparing the three approaches

Nothing is perfect; all the three approaches have both advantages and disad-
vantages. The approach of design patterns is flexible, but asks programmers
to implement pattern code repeatedly. Furthermore, several paradigms such
as the aspect paradigm are not available by design patterns. The approach of
dedicated constructs is very expressive but lacks flexibility. Dedicated con-
structs increase the readability since it is easy to understand which paradigm
is used. However, it is not easy to migrate the source code to a different
paradigm. A unification work on the constructs for different paradigms also
complicates the language design. The approach of generic constructs reduces
the total number of constructs in a language supporting multiple paradigms,
but the design intention might not as clear as dedicated constructs. In a
statement the generic construct is used for which paradigm might not be
obvious. More importantly, how to make a construct generic is a concern.

This thesis challenges the approach of generic constructs since it is po-
tentially the best approach as what we will discuss below. How to choose the
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Table 2.1: Comparing the three approaches to implementing paradigms

Design patterns Dedicated constructs Generic constructs

the modularity
Fair Excellent Excellent

of code

the number of
Good Excellent Good

paradigms

the number of
Excellent Fair Excellent

constructs

approach to supporting the implementation of paradigms—especially when
we want to let a language support as many paradigms as possible—can be
considered from the three points of view: the modularity of code, the numebr
of paradigms that can be supported, and the number of constructs that a
language must provide. We can roughly evaluate the three approaches from
the three viewpoints as shown in Table 2.1, where Excellent is given if it can
be regarded as pretty good, Good is given if it can be regarded as good, and
Fair means that it is not good enough. The table concludes the potential
of the three approaches and shows that the best choice is the approach of
generic constructs.

The first concern for choosing the approach to supporting the implemen-
tation of paradigms is the modularity of code. The modularity means that
the code can be modularized according to their functionalities and properties.
From this point of view, the approach of design patterns is not good. Even
though all the pattern code are implemented for the same concern, they scat-
ter around the program. On the other hand, the other two approaches are
supported by the languages themselves. With language support the imple-
mentation of paradigms can be minimized. For example, using the language
constructs provided for events can eliminate the code of implementing the
Observer pattern.

The second concern is the number of paradigms that can be supported. It
will be a good thing if a language can support a large number of paradigms.
From this viewpoint the approach of design patterns seems a versatile ap-
proach since most paradigms can be implemented by design patterns. The
GoF book demonstrates such techniques of implementing the paradigms that
are not directly supported by OOP. However, not all paradigms can be im-
plemented by design patterns, for example the aspect paradigm. On the
other hand, although we have different sets of dedicated constructs for differ-
ent paradigms, it is possible to give a super set that unifies all the dedicated
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constructs for the paradigms we need. The unification work mentioned above
show such a possibility. In other words, if we do not take the complexity of
language design into account, the number of paradigms that can be sup-
ported by the approach of dedicated constructs is not limited. As to the
approach of generic constructs, the question is how many paradigms can be
supported by a set of generic constructs. In theory it is not a limitation, but
in practice existing integration work, which gives generic constructs, support
not more than two paradigms as far as we know.

The last concern we discuss here is the number of constructs that a lan-
guage must provide. Usually we hope the number can be as small as possible
to simplify the language design. To the approach of design patterns, the
number will be quite small since the purpose of design patterns is support-
ing more paradigms by a limited number of constructs in a language. For
the approach of dedicated constructs the number of constructs in a language
always grows with the number of paradigms supported by the language.
Unless the constructs are generic and can be shared among the paradigms,
the total number of constructs equals to the sum of all the numbers of the
dedicated constructs for the supported paradigms. On the other hand, the
approach of generic constructs minimizes the number of constructs needed
for the paradigms supported by a language.

According to Table 2.1 we have the conclusion that the best approach is
supporting by generic constructs. First of all, we should support paradigms
by language constructs to avoid code scattering and code tangling, so the
approach of design patterns is not the best choice. Furthermore, not all
paradigms can be implemented by design patterns. Then we can compare
the remainder two approaches: by dedicated constructs and by generic con-
structs. To the two approaches, the last two concerns looks a kind of trade-
off. If the constructs are dedicated, it is easier to unify but the number of
constructs is larger; if the constructs are generic, it is difficult to integrate
many paradigms but the number of constructs is smaller. However, how
to extend generic constructs to to support as many paradigm as possible is
a challenge rather than a limitation. If we take the approach of dedicated
constructs, the total number of constructs must grow with the number of
supported paradigms; it is a limitation. Moreover, although putting dedi-
cated constructs together increases the power of a language, it does not help
the simplification of language design. Programmers have to learn all the syn-
tax of them and the compiler/debugger has to be designed for all of them.
In the history of programming languages there are a lot of examples on the
simplification of language design since a simpler language design also sim-
plifies the design of its compiler and debugger. For example, in Smalltalk
everything is an object including primitives. Self further integrates classes
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and objects in Smalltalk into one thing. Another example is the memory
allocation in Java, which simplifies the usage of stack and heap, and removes
the dereference operator (*) and address-of operator (&) in C++. Similarly,
a generic language construct that can be used for different paradigms can
simplify the design of a language supporting multiple paradigms.

The goal of this thesis is supporting the implementations of OOP, the
event-handler paradigm, the aspect paradigm, and the reactive paradigm by
generic constructs. Since the approach of generic constructs has the best
potential, in the next chapter, we further advance this approach and present
there is a generic construct supporting more than two paradigms. We first
explain our observation: the similarities among the implementations of OOP,
the event-handler paradigm, and the aspect paradigm, which is also our
motivation for developing a more flexible generic construct. As we have
shown in the previous sections existing dedicated constructs for the three
paradigms look so different that people rarely consider the common ground
among them. Even though there are a very few research on the integration,
no one is flexible enough to cover all the three paradigms due to the unclear
recognition of the similarities among their implementations. The observation
led us to develop a new generic construct that can be used for the three
paradigms. The new generic construct is very flexible, and how to extend
the new generic construct for more paradigms will be demonstrated later by
taking the reactive paradigm as an example.
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3
Method Slots

Providing language constructs for the following three important and widely-
used paradigms is a hot topic: OOP, the event-handler paradigm, and the
aspect paradigm. However, language designers tend to redundantly give
multiple sets of dedicated constructs to support them separately since these
dedicated constructs look so different; they were regarded as totally different
things. This chapter first clarifies the common ground among the implemen-
tations of the three paradigms, which is our motivation to develop a more
flexible generic construct for the three paradigms. We then present how the
new generic construct, method slots, can be used along with the assignment
operators to support the three paradigms. The coverage of expressive ability
of method slots is analyzed and evaluated as well.

3.1 Introduction

The event-handler paradigm has been recognized as a useful mechanism in a
number of domains such as user interface, embedded systems, databases [91],
and distributed programming. The basic idea of the event-handler paradigm
is to register an action that is automatically executed when something hap-
pens. At first it was introduced as techniques and libraries [30, 82, 78] rather
than supported at language level. Recently supporting it at language level
is a trend since a technique such as the Observer pattern [30] cannot satisfy
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programmers’ need. The code for event triggers and observer management
scatters everywhere. To address the issues, supporting events by a language
construct is proposed in a number of languages [54, 19, 70, 27, 40, 32]. Im-
plicit invocation languages [31] might be classified into this category.

On the other hand, the aspect paradigm [43] is proposed to resolve cross-
cutting concerns, which cannot be modularized by existing paradigms such
as object orientation. Although the aspect paradigm and the event-handler
paradigm are designed for different scenarios, the constructs introduced for
them are similar and can work as each other from a certain point of view.

In order to simplify the language constructs programmers have to learn,
we borrow the idea of slots from Self [84] to extend the method paradigm in
Java. In Self, an object consists only of slots [76], which may contain either
a value or a method. In other words, there is no difference between fields
and methods since a method is also an object and thus can be kept in a field.
We extend the slot and bring it to Java-like languages by proposing a new
language construct namedmethod slots. Amethod slot is an object’s property
that can keep more than one closure at the same time. We also present a
Java-based language named DominoJ, where all methods in plain Java are
replaced with method slots, to support both the event-handler paradigm and
the aspect paradigm.

Our contributions presented in this chapter1 are two-fold. First, we
propose a new language construct, a method slot, to extend the method
paradigm. Second, we introduce method slots to a Java-based language
named DominoJ, and demonstrate how to use for the event-handler paradigm
and the aspect paradigm.

3.2 Motivation

With the evolution of software, more and more programming paradigms are
developed for various situations. During programmers’ life, they are always
learning new paradigms and thinking about which ones are most suitable
for the job at hand. For example, the event-handler paradigm is widely
adopted by GUI frameworks [85, 57, 65]. When we write GUI programs
with modern GUI libraries, we usually have to write a number of handlers
for different types of events. The AWT [65] of Java is a typical example.
If we want to do something for mouse events occurring on a button, we
have to prepare a mouse listener that contains handler methods for those

1This chapter is a further extension to the one we presented at Modularity:AOSD2013
and its journal version that to appear in TAOSD2014 (LNCS volume 8400).
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mouse events, and register the listener to the specified button object. A GUI
program can be regarded as a composite of visual components, events, and
handlers. The visual components and handlers are main logic, and events
are used for connecting them. Indeed we have been familiar with using the
event-handler paradigm for GUI programs, but it is far from our first “hello
world” program. We are told to carefully consider the total execution order
when users’ input is read. If the event-handler paradigm is used, we can
focus on the reaction to users’ input rather than the order of users’ input.
Whether the mouse is clicked first or not does not matter. Another example
is the aspect paradigm. The aspect paradigm is developed to modularize
crosscutting concerns such as logging, which cannot be modularized by using
only object-oriented programming. With the aspect paradigm, crosscutting
concerns can be gathered up in an aspect by advices. At the same time,
programmers cannot check only one place for understanding the behavior of
a method call since advices in other places are possibly woven together. It
also takes effort to get familiar with the aspect paradigm since it is quite
different from our other programming experience.

To use a paradigm, just learning its concept is not enough. After pro-
grammers got the idea of a paradigm, they still have to learn new language
constructs for the paradigm. Some paradigms like the aspect paradigm are
supported with dedicated language constructs since the beginning because
they cannot be represented well by existing syntax. On the other hand,
although other paradigms like the event-handler paradigm have been intro-
duced at library level for a long time, there are still good reasons for re-
introducing them with direct support at language level [54, 70, 32]. Maybe
one reason is that events are complicated in particular when we are not
users but designers of a library. Besides GUI libraries, the event-handler
paradigm is also implemented in a number of libraries for several domains
such as simple API for XML [83] and asynchronous socket programming.
Some techniques such as the Observer pattern [30] used in those libraries
cannot satisfy the needs of defining events and tend to cause code scattering
and tangling. Supporting paradigms by language constructs is a trend since
it makes code more clear and reusable. Furthermore, a language supported
paradigm may have associated static checks.

However, learning language constructs for a paradigm is never easy, espe-
cially for powerful paradigms like the aspect paradigm. Moreover, the syntax
is usually hard to share with other paradigms. Even though programmers
got familiar with the language constructs for a paradigm, they still have to
learn new ones for another paradigm from the beginning. Given that all
language constructs we need can be put into a language together, they look
too complex and redundant. How to pick up the best language to imple-
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1 class Display() {
2 def refresh() {
3 System.out.println("display is refreshed.")
4 }
5 }
6 class Shape(d: Display) {
7 var left = 0; var top = 0
8 def setPosition(x: Int, y: Int) {
9 left = x; top = y

10 }
11 evt moved[Unit] = afterExec(setPosition)
12 moved += d.refresh
13 }
14 object Test {
15 def main(args: Array[String]) {
16 val d = new Display()
17 val s = new Shape(d)
18 s.setPosition(0, 0)
19 }
20 }

Listing 3.1: Defining a reaction in EScala

ment a program with all required paradigms is always a difficult issue. This
motivates us to find out an easy, simple, and generic language construct
supporting multiple paradigms.

If we look into the language constructs for the event-handler paradigm
and the aspect paradigm, there is a notable similarity between them. Both
of them introduce a way to define the effect of calling specified methods.
The differences are where the reactions are and what the reactions are tar-
geted at. Listing 3.1 is a piece of code in EScala2 [32], which is a typical
event mechanism, showing how to define a moved event for the setPosition
method in the Shape class. Here we specify that refresh method on a Display
object should be executed after setPosition method is executed. As shown in
Listing 3.2, the reaction can also be represented in AspectJ [77], the most
well-known aspect-oriented language.

By comparing the two pieces of code, we can find that pointcuts are close
to events and advices can work as the += operator for handlers. They both
refresh the display when the specified method is executed, but there is a
significant difference between them. In EScala version, one Display object is
mapped to one Shape object and the refresh action is performed within the
Shape object. On the other hand, in AspectJ version there is only one Display
object in the whole program and the refresh action is in UpdateDisplay, which

2The syntax follows the example in EScala 0.3 distribution.
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1 public class Display {
2 public static void refresh() {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 }
12 public aspect UpdateDisplay {
13 after() returning:
14 execution(void Shape.setPosition(int, int)) {
15 Display.refresh();
16 }
17 }
18 public class Test {
19 public static void main(String[] args) {
20 Shape s = new Shape();
21 s.setPosition(0, 0);
22 }
23 }

Listing 3.2: Defining a reaction in AspectJ

is completely separated from Display and Shape. From the viewpoint of the
event-handler paradigm, such behavior is an interaction between objects, so
the reaction is defined inside the class and targeted at object instances; the
encapsulation is preserved. From the viewpoint of the aspect paradigm, it is
important to extract the reaction for the obliviousness since it is a different
concern cutting across several classes. So the reactions are grouped into a
separate construct and targeted at the class. Although the two paradigms
are developed from different points of view, the language constructs used for
them are quite similar. Furthermore, both the two paradigms depend on the
most basic paradigm, the method paradigm, since both events and pointcuts
cause the execution of a method-like construct. This observation led us to
extend the method paradigm to support both the event-handler paradigm
and the aspect paradigm. To a programmer, there are too many similar
language constructs for different paradigms to learn, so we assume that the
integration and simplification are always worth doing.
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void (int nx) -> { this.x = nx; }

| this = s

Figure 3.1: In JavaScript, both an integer and a function are fields on an
object

3.3 DominoJ

We extend methods to a new language construct named method slots, to
support methods, events, and advices. We also show our prototype language
named DominoJ, which is a Java-based language supporting method slots
and fully compatible with plain Java.

3.3.1 Method slots

Although methods and fields are different constructs in several languages such
as C++ and Java, there is no difference between them in other languages
like JavaScript. In JavaScript, a method on an object (strictly speaking, a
function closure) is kept and used as other fields. Figure 3.1 shows a Shape
object s, which has two fields: an integer field named x and a function field
named setX. We use the following notation to represent a closure:
⟨return type⟩ (⟨parameter list⟩) -> { ⟨statements⟩ }

| ⟨variable binding list⟩
where the variable binding list binds non-local variables in the closure. The
value stored in field setX is a function closure whose return type and parame-
ter type are void and (int), respectively. The variable this used in the closure
is bound to s given by the execution context. When we query the field by
s.setX, the function closure is returned. When we call the field by s.setX(10),
the function closure is executed.

We extend this field in JavaScript to keep an array of function closures
rather than just one function closure. As shown in Figure 3.2, the extended
field named a method slot can keep more than one function closure. DominoJ
replaces a method with a method slot in plain Java. All method-like declara-
tions and calls are referred to method slots. A method slot is a closure array
and is an object’s property like a field. Like functions or other fields, method
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void (int nx) -> { target.update(nx); }

| target = o

void (int nx) -> { this.x = nx; }
| this = s

Figure 3.2: A method slot is an extended field that can keep more than
one function closure

slots are typed and statically specified when they are declared. The type of
method slot includes its return type and parameter types. All closures in it
must be declared with the same type.

Listing 3.3 shows a piece of sample code in DominoJ. It looks like plain
Java, but here setX is a method slot rather than a method. The syntax of
method slot declaration is shown below:

⟨modifier⟩* ⟨return type⟩ ⟨identifier⟩ “(” ⟨parameter list⟩? “)” ⟨throws⟩?
(⟨default closure⟩ | “;”)

The default closure is similar to the method body in Java except it is optional.
The modifiers can be public, protected, or private for specifying the visibility
of the method slot. This ensures that the access to the method slot can be
controlled as the methods in plain Java. The modifier static can be specified
as well. Such static method slots are kept on the class objects so can be
referred using the class name like calling the static method in plain Java.
The modifier abstract can also be used to specify that the method slot should
be implemented by the subclasses. A method slot can be another kind of
“abstract” by being declared without a default closure:

public void setX(int nx);

Unlike the modifier abstract, this declaration means that the method slot is
an empty field and its behavior depends on the closures added to it later.
In Listing 3.3, the method slot setX has a default closure, so the following
function closure will be created and inserted into setX automatically when a
Shape object, s, is instantiated:

void (int nx) -> { this.x = nx; }
| this = s
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1 public class Shape {
2 private int x;
3 public void setX(int nx) {
4 // default closure
5 this.x = nx;
6 }
7 }
8 public class Observer {
9 private int count;

10 public void update(int i) {
11 this.count++;
12 }
13 public static void main(String[] args) {
14 Shape s = new Shape();
15 Observer o = new Observer();
16 s.setX += o.update;
17 s.setX(10);
18 }
19 }

Listing 3.3: A sample code in DominoJ

Now there is only one closure in the method slot setX. If we add another
closure to setX, the object may look like the s object in Figure 3.2. How
to add such a closure to a method slot will be demonstrated in the next
subsection.

A method slot can also be declared with the modifier final to specify
that it cannot be overridden in the subclasses. Although fields are never
overridden in either prototype-based languages like JavaScript or class-based
languages like Java, method slots can be overridden in subclasses. Declaring
a method slot with the same signature overrides but does not hide the one
in the superclass. When a method slot is queried or called on an object, the
overriding method slot is selected according to the actual type of the object.
It is also possible to access the overridden method slot in the superclass
through the keyword super. Note that method slots must be declared within
a class and cannot be declared as local variables. Thus the usage of this and
super in the default closure are the same as in a Java method, which refer to
the owning class and its superclass, respectively. Constructors are method
slots as well, and super() is allowed since it calls the overridden constructor.

When a method slot is called by () operator, the closures in it are executed
in order. The arguments given to the method slot are also passed to its
closures. The return value returned by the last closure is passed to the caller
(if it is not the void type). A closure can use a keyword $retval to get the
return value returned by the preceding closure in the method slot. If the
closure is the first one in the method slot, $retval is given by a default value
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1 ; call a methodslot
2 (define (call-methodslot object slotname args)
3 (let* ((methodslot (get-field object slotname (get-type args)))
4 (return_type (get-return-type methodslot)))
5 (let execute-closures ((closures (get-closures methodslot))
6 ($retval (cond ((boolean? return_type) #f)
7 ((number? return_type) 0)
8 (else ’()))))
9 (if (null? closures)

10 $retval
11 (let (($retval (execute-a-closure (car closures) args)))
12 (execute-closures (cdr closures) $retval))))))

Listing 3.4: The algorithm of calling a method slot

Table 3.1: The four assignment operators for method slots

Operator Description
= add a new function closure and remove the others from the

method slot.
ˆ= insert a new function closure at the beginning of the array.
+= append a new function closure to the end of the array.
-= remove function closures calling the method slot at the right-

hand side.

(0, false, or null). If the method slot is empty, the caller will get the default
value and no exception is thrown. It is reasonable since the empty state is not
abnormal for an array and just means that nothing should be done for the call
at that time. The behavior of a method slot can be dynamically modified at
runtime, while still statically typed and checked at compile time. Listing 3.4
uses Scheme to describe how the closures are executed for a method slot call
in DominoJ since it is easier to describe closures.

3.3.2 Assignment operators for method slots

DominoJ provides four assignment operators for manipulating the closures
in a method slot: =, ˆ=, +=, and -=, as shown in Table 3.1. These operators
are borrowed from C# and EScala, and are the only different syntax from
Java. It is possible to add and remove a function closure to/from a method
slot at runtime.

Their operands at both sides are method slots sharing the same type.
Those operators except -= create a new function closure calling the method
slot at the right-hand side, and add it to the method slot at the left-hand side.
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The method slot called by the function closure will get the same arguments
which are given to the method slot owning the function closure. In other
words, a reference to the method slot at the right-hand side is created and
added to the method slot at the left-hand side. The syntax of using the
assignment operators to bind two method slots is shown below:

⟨expr⟩“.”⟨methodslot⟩ ⟨operator⟩ ⟨expr⟩“.”⟨methodslot⟩“;”
where ⟨expr⟩ can be any Java expression returning an object, or a class name
if the following ⟨methodslot⟩ is static. When the binding statement is executed
at runtime, the ⟨expr⟩ at both sides will be evaluated according to current
execution context and then given to the operator. In other words, the ⟨expr⟩
at the right-hand side is also determined at the time of binding rather than
the time of calling. The object returned by the ⟨expr⟩ at the left-hand side
helps to find out the method slot at the left-hand side, where we want to add
or remove the new function closure. The object got by evaluating the ⟨expr⟩
at the right-hand side is attached to the new function closure as a variable
target, which is given to the new function closure along with the execution
context at the time of calling. For example, the binding statement in Line 16
of Listing 3.3 creates a new function closure calling the method slot update
on the object o by giving target = o, and appends it to the method slot setX
on the object s.

void (int nx) -> { target.update(nx); }
| target = o

Then the status of the s object will be the same as the one shown in Figure 3.2.
When the slot setX on the object s is called as Line 17 in Listing 3.3, the
default closure and the slot update on the object o are sequentially called
with the same argument: 10. Note that all closures in a method slot get
the same execution context except the side effects caused by the preceding
closures in the array of that method slot, where this refers to the object
owning the method slot, and therefore, the callee method slot in target must
be accessible from the caller method slot in this. With proper modifiers, a
method slot cannot call and be called without any limitation. The behavior
avoids breaking the encapsulation in object-oriented programming.

The -= operator removes function closures calling the method slot at the
right-hand side from the method slot at the left-hand side. It is also possible
to remove the default closure from a slot by specifying the same method slots
at both sides:

s.setX -= s.setX;
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1 ; operator =
2 (define (assign-closure methodslot object slotname)
3 (let ((closure ‘(call-methodslot ,object ,slotname args)))
4 (set-closures methodslot closure)))
5

6 ; operator ˆ=
7 (define (insert-closure methodslot object slotname)
8 (let ((closure ‘(call-methodslot ,object ,slotname args)))
9 (set-closures methodslot

10 (append closure (get-closures methodslot)))))
11

12 ; operator +=
13 (define (append-closure methodslot object slotname)
14 (let ((closure ‘(call-methodslot ,object ,slotname args)))
15 (set-closures methodslot
16 (append (get-closures methodslot) closure))))
17

18 ; operator -=
19 (define (remove-closure methodslot object slotname)
20 (let ((closure ‘(call-methodslot ,object ,slotname args)))
21 (set-closures methodslot
22 (remove (lambda (x) (equal? x closure))
23 (get-closures methodslot)))))

Listing 3.5: The algorithms of the four assignment operators

Operators manipulate the default closure only when the method slots at
both sides are the same one, otherwise operators regard the right-hand side
as a closure calling that method slot. Note that the default closure is never
destroyed even when it is removed. Again, we use Scheme to describe how
the four assignment operators work in DominoJ as shown in Listing 3.5.

Although a method slot at the right operand of the operators such as +=
must have the same type that the left operand has, there is an exception. If
a method slot takes only one parameter of the Object[] type and its return
type is Object or void, then it can be used as the right operand whatever
the type of the method slot at the left operand is. Such a method slot can
be used as a generic method slot. The type conversion when arguments are
passed is implicitly performed. Listing 3.6 uses Scheme to describe how the
types of two method slots are checked in DominoJ.

DominoJ allows binding method slots to constructors by specifying class
name instead of the object reference and giving the keyword constructor as
the method slot at the left-hand side. For example,

Shape.constructor += Observer.init;

means that creating a closure calling the static method slot init on the class
object Observer and appending to the constructor of Shape. Here the return
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1 ; is same type
2 (define (same-type? l_methodslot r_methodslot)
3 (and (equal? (get-return-type l_methodslot)
4 (get-return-type r_methodslot))
5 (equal? (get-parameter-types l_methodslot)
6 (get-parameter-types r_methodslot))))
7

8 ; is generic type
9 (define (generic-type? l_methodslot r_methodslot)

10 (and (equal? (get-parameter-types r_methodslot)
11 "Object[]")
12 (if (equal? (get-return-type l_methodslot)
13 "void")
14 (equal? (get-return-type r_methodslot)
15 "void")
16 (equal? (get-return-type r_methodslot)
17 "Object"))))

Listing 3.6: The algorithm of checking the types

type of init should be void, and the parameter types must be the same as
the constructor. Note that the closures appended to the constructor cannot
block the object creation. This design ensures that the clients will not get
an unexpected object, but additional objects can be created and bound to
the new object. For example, in the default closure of init, an instance of
Observer can be created and its update can be bound to the method slot
setX of the new Shape object. Using constructor at the right-hand side is not
allowed.

Since Java supports method overloading, some readers might think the
syntax of method slots have ambiguity but that is not true. For example,
the following expression does not specify parameter types:

s.setX += o.update;

If setX and/or update are overloaded, += operator is applied to all pos-
sible combinations of setX and update. Suppose that there are setX(int),
setX(String), update(int), and update(String). += operator adds update(int)
to setX(int), update(String) to setX(String). If there is update(Object[]), it is
added to both setX(int) and setX(String) since it is generic. It is possible
to introduce additional syntax for selecting method slots by parameters, but
the syntax will be more complicated. Listing 3.7 is the algorithm written in
Scheme to show how two method slots are picked up and bound by operators
in DominoJ.

Since a language supporting the aspect paradigm must provide a way to
retrieve runtime context, for example, AspectJ provides pointcut designators
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1 ; bind methodslots by operators
2 (define (bind-methodslots
3 operator l_object l_slotname r_object r_slotname)
4 (let ((l_methodslots (get-fields l_object l_slotname))
5 (r_methodslots (get-fields r_object r_slotname)))
6 (for-each
7 (lambda (l_methodslot)
8 (for-each
9 (lambda (r_methodslot)

10 (if (or (same-type? l_methodslot r_methodslot)
11 (generic-type? l_methodslot r_methodslot))
12 (cond ((equal? operator "=")
13 (assign-closure
14 l_methodslot r_object r_slotname))
15 ((equal? operator "ˆ=")
16 (insert-closure
17 l_methodslot r_object r_slotname))
18 ((equal? operator "+=")
19 (append-closure
20 l_methodslot r_object r_slotname))
21 ((equal? operator "-=")
22 (remove-closure
23 l_methodslot r_object r_slotname)))))
24 r_methodslots))
25 l_methodslots)))

Listing 3.7: The algorithm of binding method slots
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and reflection API for that purpose, DominoJ provides three keywords to re-
trieve the information about the caller at runtime in the default closure of a
method slot. The owner object and the default closure of the method slot at
the left-hand side of an operator can be got by using the keywords in the de-
fault closure of the method slot at the right-hand side. Unlike AspectJ, which
extends the set of pointcut designators available in the language, DominoJ
extends the set of special variables such as this and super. In DominoJ a call
to the method slot can be regarded as a sequence of method slot calls among
objects since a method slot may contain closures calling other method slots.
When a method slot is explicitly called by an expression in a certain default
closure, the method slots bound to it by operators are implicitly called by
DominoJ. Programmers can get the preceding objects in the call sequence.
In the default closure, i.e. the body of method slot declaration, the caller
object can be got by the keyword $caller. It refers to the object where we
start the call sequence by the expression. The predecessor object, in other
words, the object owning the preceding method slot in the call sequence,
can also be got by the keyword $predecessor. It refers to the object owning
the closure calling the current method slot whether explicitly or implicitly.
Taking the example of Figure 3.2, suppose that we have a statement calling
s.setX in the default closure of the method slot test in another class Client:

public class Client {
public void test(Shape s) {

s.setX(10);
}

}

If test on an object instance of this class, for example c, is executed, the
relationship between the objects c, s, and o can be described as shown in
Figure 3.3. Note that calling other method slots explicitly by statements in
the default closure of test, setX, or update will start separate call sequences. In
Figure 3.3, using $caller in the default closure of setX and update both returns
the object c since there is only one caller in a call sequence. However, the
predecessor objects of s and o are different. Using $predecessor in the default
closure of setX returns the object c, but using $predecessor in the default
closure of update returns the object s. Note that both the apparent types
of $caller and $predecessor are Object because the caller and the predecessor
are determined at runtime. If the current method slot is called in a static
method slot, $caller or $predecessor will return the class object properly. The
special method call proceed in AspectJ is introduced in DominoJ as well.
The keyword proceed can be used to call the default closure of the preceding
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Figure 3.3: The keywords $caller and $predecessor

method slot. In Figure 3.3, calling proceed in the default closure of update
on o will execute the default closure of setX on s since s.setX is the preceding
method slot of o.update. If there is no preceding method slot for the current
one, calling proceed will raise an exception.

3.4 Evaluation

To show the feasibility of DominoJ and measure the overheads caused by
method slots, we implemented a prototype compiler3 of DominoJ built on
top of JastAddJ [23]. The source code in DominoJ can be compiled into
Java bytecode and run by Java virtual machine. In the following microbench-
mark, the standard library is directly used without recompilation due to the
performance concern. All methods in the standard library can be called as
method slots which have only the default closure, but cannot be modified by
the operators.

3.4.1 The implementation

The DominoJ compiler is a source-to-source compiler which translates Domi-
noJ code to plain Java code and then compiles it into Java bytecode. How-
ever, implementing the compiler is not easy since closures are not supported
by the current Java version (Java 7). In the DominoJ compiler we use the

3The prototype compiler of DominoJ is available from the project webpage:
http://www.csg.ci.i.u-tokyo.ac.jp/projects/dominoj/
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well-known means of the Java language such as inner classes to represent the
closures.

Closure representations in Java

To emulate closures in Java, a naive implementation is using Java reflec-
tion. The compiler could generate the code to record the target objects and
the method names, and use the reflection API to invoke the methods at
runtime. For example, adding a closure calling o.update to s.setX could be
represented as adding a pair (o, ”update”), which an object instance of the
class Pair<Object, String>, to the array for s.setX. When s.setX is called, all
the pair stored in the array will be iterated and the methods such as o.update
can be invoked by the reflection API. It is not surprising that the overheads
are not small. Another idea is to define an interface like Callable then a clo-
sure can be represented by an object instance of a class implementing the
interface. This class is generated by the compiler for every closure. Such an
object can be stored in the array for a method slot, and the method inherited
from the interface, which contains the method call such as o.update, can be
called when the object is iterated.

The DominoJ compiler

The performance of DominoJ code is determined by how the closures are rep-
resented and executed at runtime. Using Java reflection is a naive solution,
but the overheads are not negligible. Suppose that we have a method slot
setX in DominoJ:

public class Shape {
:

public void setX(int nx) {
: // the default closure

}
}

then the compiler will generate the following Java code in Shape: an array
field setX$slot and a method setX for iterating the elements in the array
setX$slot. In other words, calling a method slot in DominoJ is translated to
calling a method in Java to iterate and invoke the elements in an array as
follows:

// Java code generated by the compiler
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public void setX(int nx) {
Iterator iter = setX$slot.iterator();
while(iter.hasNext()) {

: // invoke a method
}

}

If we use the reflection API to invoke the methods in the iteration, the array
setX$slot must store the target objects and the method names for invoking
them:

// Java code generated by the compiler
public class Shape {

public ArrayList<Pair<Object, String>> setX$slot
= new ArrayList<Pair<Object, String>>();
:

}

where each element in the array setX$slot holds the target object and the
method name. Furthermore, The default closure of setX in DominoJ is trans-
lated into a method setX$impl in Java, which contains the statements in the
default closure. When an object of Shape, for example s, is instantiated, a
pair (this, ”setX$impl”) is appended to the array setX$slot by default. Sup-
pose that we have another method slot update, the parameter types of which
are the same as setX:

public class Observer {
:

public void update(int i) { ... }
}

Then the following binding:

s.setX += o.update;

where o is an object of Observer, is translated into:

// Java code generated by the compiler
s.setX$slot.add(new Pair<Object, String>(o, "update"));

When s.setX is called, the pairs (this, ”setX$impl”) and (o, ”update”) will be
got in order. Here we show the code of setX again for demonstrating how to
invoke the methods using the reflection API:
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// Java code generated by the compiler
public void setX(int nx) {

Class[] pars = new Class[1];
pars[0] = Integer.TYPE;
Object[] args = new Object[1];
args[0] = nx;
Iterator<Pair<Object, String>> iter

= setX$slot.iterator();
while(iter.hasNext()) {

Pair<Object, String> pair = iter.next();
Object obj = pair.getFirst();
String mname = pair.getSecond();
Class c = obj.getClass();
Method m = c.getMethod(mname, pars);
m.invoke(o, args);

}
}

where the Class array pars is used to specify the parameter types for finding
the correct method, (int) in this example, since there may be several over-
loaded methods. The Object array args, which contains the arguments given
to setX. In this example the only argument nx, an int, is auto-boxed in an
Integer instance and put into args. Obviously the cost of finding and invok-
ing a method using the reflection API is not low. A possible improvement is
storing Method instances instead of the method names, so that we can avoid
spending time on finding the Method instance when a method slot is called.
However, the cost of invoking a Method is still quite high.

The idea used in our prototype compiler is using an interface to simulate
the function closure in JavaScript:

// Java code used by the compiler
public interface Closure {

public Object exec(Object[] args);
}

Then for each method slot the compiler can declare a field, which is an
anonymous class implementing Closure. For example, the field update$closure
is declared in Observer for calling update:

// Java code generated by the compiler
public class Observer {
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:
public Closure update$closure = new Closure() {

public Object exec(Object[] args) {
this.update((Integer)args[0]);
return null;

}
}

}

Note that the individual element in the array args, the arguments to exec, is
type-cast properly before giving update. If update is a generic method slot,
in other words the only parameter of which is Object[], the array args will be
directly given to update:

this.update(args);

then in the default closure of update programmers need to check the type
of each element in the array using instanceof and type-cast them if it is
necessary. Furthermore, in this example we simply return null in exec since
the return type of setX is void. The array for the method slot setX, setX$slot,
is now an array of Closure rather than an array of the pair (Object, String):

// Java code generated by the compiler
public class Shape {

public ArrayList<Closure> setX$slot
= new ArrayList<Closure>();

:
}

The binding statement we discussed above is now translated into:

s.setX$slot.add(o.update$closure);

Similarly, a field setX$impl$closure for calling the method setX$impl, which
contains the statements in the default closure of setX, is declated in Shape
as well:

// Java code generated by the compiler
public class Shape {

:
public Closure setX$impl$closure = new Closure() {

public Object exec(Object[] args) {
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this.setX$impl((Integer)args[0]);
return null;

}
}

}

In the constructor of Shape the following line is added for appending the
closure setX$impl$closure to setX$slot by default:

// Java code generated by the compiler
this.setX$slot.add(this.setX$impl$closure);

When the method slot setX is called, all Closure instances in the array are
iterated and their exec methods are called with args, the Object array con-
taining the arguments given to the method slot setX, in this example only
nx:

// Java code generated by the compiler
public void setX(int nx) {

Object[] args = new Object[1];
args[0] = nx;
Iterator<Closure> iter = setX$slot.iterator();
while(iter.hasNext()) {

Closure c = iter.next();
c.exec(args);

}
}

The iteration is similar to the reflection version, but the code for invoking a
method using the reflection API is replaced with a call to the exec method in
Closure. In other words, we need more memory to hold the Closure instances,
but the overheads of method slots can be reduced to the cost of calling the
exec method.

3.4.2 Microbenchmarks

In order to measure the overheads of method slots, we executed a simple
program and compared the average time per method call in DominoJ and in
plain Java. The method we measure is named test, which calculates sin(π/6)
by expanding Taylor series up to 100th order a number of times according
to the argument as shown below:
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private double x = 3.141592653589793 / 6;
private double result = 0;
public void test(int count) {

for(int i=0; i<count; i++) {
double sum = x;
double n = x;
double d = 1;
for(int j=3; j<100; j+=2) {
n *= - x*x;
d *= (j-1)*j;
sum += n/d;

}
result = sum;

}
}

Figure 3.4 shows the results of continuously calling test(10) and calculating
the average execution time of calling test(10) every 1000 times of calls until
the total amount of calls reaches 30000. For example, the first values we
calculate are the average of execution time of 1st 1000th calls in Java and in
DominoJ, and the second values are the ones of 1001st 2000th.

This program was compiled by our prototype compiler and run on the
JVM of OpenJDK 1.7.0 25 and Intel Core i7 (2.67GHz, 4 cores) with 8GB
memory. The result of the naive implementation using the reflection API we
mentioned in Section 3.4.1 is also shown for comparison. After the optimiza-
tion is sufficiently applied by the JIT compiler, the overheads are negligible
(2955ns against 2932ns) although it is initially about 34% (9124ns against
6833ns). On the other hand, the overheads of the reflection version are about
20% (3516ns against 2932ns) after the optimization.

To measure the performance of an operation on method slots such as as-
signing a closure to a method slot using = operator, we repeated the operation
and calculated the average time as follows:

long start = System.nanoTime();
for(int j=0; j<1000; j++) {

s.setX = o.update;
}
long estimated = System.nanoTime() - start;
System.out.println(estimated/1000);

We also measured other operations by adding one more statement, which
uses the other operators such as += operator after the assignment:
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Figure 3.4: The average time of continuously calling a method in Java and
DominoJ, including the reflection version

:
for(int j=0; j<1000; j++) {

s.setX = o.update;
s.setX += o.update;

}
:

Figure 3.5 shows the result of running such programs one hundred times.
According to the average time of the operations in the four programs, we can
calculate the time of the four operations: the = operation takes 427ns, the ˆ=
operation takes 483ns, the += operation takes 275ns, and the -= operation
takes 726ns. The -= operation might be even slower when the number of
closures in the method slot is large since it takes time to check every closure
in the array. It is reasonable that the += operation is the fastest one since
it simply appends to the array, while the = operation have to clear the array
and the ˆ= operation inserts to the beginning of the array; the performance is
relevant to how the method slots are implemented. Finding a more efficient
technique to implement method slots is included in our future work. For
example, using other structures instead of ArrayList to store the closures or
using the new JVM instruction invokedynamic to emulate the closures might
be possible solutions to improve the performance of DominoJ code.
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Figure 3.5: The average time of using the operators for method slots

3.4.3 Compiling and running the DaCapo benchmark suite

In order to measure the overheads of method slots more precisely, we use
the DominoJ compiler to compile the DaCapo-9.12-bach benchmark suite [7]
into bytecode, and compare the running performance with the one compiled
by the plain Java compiler. The DaCapo benchmark suite is a tool for Java
benchmarking, which consists of 14 client-side Java benchmarks for testing
a set of real-world applications. For example, the benchmark batik generates
a number of SVG images based on the unit tests in Apache Batik, and
the benchmark eclipse runs several non-GUI JDT performance tests for the
Eclipse IDE. In this experiment we compiled the benchmarks by assigning
the compiler used in the build file, and run the bytecode to get the execution
time. Note that only the code of DaCapo benchmarks are compiled; the
applications/libraries used by the benchmarks (as shown in Listing 3.8) are
either downloaded in the form of binary or compiled by the specified version
of the Java compiler according to the build file of the DaCapo benchmark
suite.

Table 3.2 shows the result of compiling the 14 DaCapo benchmarks by
the three compilers: the plain Java compiler, our prototype version of the
DominoJ compiler, and the JastAddJ compiler, which is the one our compiler
based on. The version of the plain Java compiler is Oracle JDK 1.6.0 45, and
the revision of the JastAddJ compiler is 9317. The benchmarks except avrora
and sunflow can be successfully compiled by our prototype compiler and run
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activemq-core-4.1.2-G20090207
apache-tomcat-6.0.20-src
batik-src-1.7beta1
catalina-6.0.18-G678601
commons-cli-1.2-bin
commons-codec-1.4-sec
commons-collections-3.2-src
commons-daemon-1.0.1
commons-dbcp-1.2.2-src
commons-httpclient-3.1-src
commons-logging-1.1.1-src
commons-pool-1.4-src
daytrader-svn-767347-src
db-derby-10.5.3.0-src
eclipse-Automated-Tests-3.5.1
eclipse-SDK-3.5.1-macosx-cocoa
fop-0.95-src
geronimo-jetty6-minimal-2.1.4-bin
geronimo-jetty6-minimal-2.1.4-plugins
h2-1.2.123
janino-2.5.15
jasper-6.0.18-G678601
jasper-el-6.0.18-G678601
jstl-1.2
jstl-impl-1.2
junit4.7
jython-src-svn-6571
lucene-2.4.1-src
nsis-2.37
oro-2.0.8
pmd-src-4.2.5
python-2.5.4
tomcat-native-1.1.16
tomcat6-deps
xalan-j-2.7.1
xerces-j-bin.2.8.0

Listing 3.8: The applications/libraries that are not compiled by the Domi-
noJ compiler in this experiment
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Benchmark plain Java compiler JastAddJ compiler DominoJ compiler

avrora ◦ fail to run fail to compile

batik ◦ ◦ ◦
eclipse ◦ ◦ ◦
fop ◦ ◦ ◦
h2 ◦ ◦ ◦

jython ◦ ◦ ◦
luindex ◦ ◦ ◦
lusearch ◦ ◦ ◦
pmd ◦ ◦ ◦

sunflow ◦ fail to run fail to compile

tomcat ◦ ◦ ◦
tradebeans ◦ ◦ ◦
tradesoap ◦ ◦ ◦
xalan ◦ ◦ ◦

Table 3.2: The result of compiling the DaCapo-9.12-bach benchmark suite
by the three compilers

correctly (12 out of 14). Totally 58 files are compiled and the total number
of lines of code is 45,152. Figure 3.6 shows the average time of running
the bytecode compiled by the three compilers 100 times, where the JVM of
Oracle JDK 1.6.0 45 and the machine has an Intel Core i7 (2.67GHz, 4 cores)
and 8GB memory. The benchmarks avrora and sunflow are omitted.

The average execution time of running the 12 DaCapo benchmarks 100
times are shown in Figure 3.6. Although in the benchmarks eclipse and
lusearch the average execution time of the DominoJ one is slightly larger
than the JastAddJ one and the plain Java one, in general the numbers are
very close and within the error. In order to understand the population of the
experiment data, the box plots for each benchmark are shown as Figure 3.7.
The box plots show that the population of the 100 execution result of running
the three versions are very similar but the variance of the DominoJ version
tends to be larger than the plain Java version and the JastAddJ version.
In other words, the execution time of the DominoJ version varies within
a wider range, though its average execution time is almost the same as the
plain Java version. The result is reasonable since the execution time depends
on the optimization by the JIT compiler. Some readers might notice that
in the benchmark fop the variance of the DominoJ version is smaller than
the plain Java version. It is not weird if we compare with the JastAddJ
version: the variance of the DominoJ version is still slightly larger than the
JastAddJ version; we can assume that it is caused by the difference between
the JastAddJ compiler and the plain Java compiler. Here we do not discuss
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Figure 3.6: The average execution time of the 12 DaCapo benchmarks
compiled by the three compilers
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Figure 3.7: The box plot of the execution time for the DaCapo benchmarks
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the individual result of running the benchmarks since the DominoJ compiler
is not the contribution to a specific metric such as architectures or memory
management in Java. Instead, we run the DaCapo benchmarks to get the
overview of the performance in practice and check if the result is abnormal
in a specific case.

3.4.4 Method slots and design patterns

Method slots extend the method paradigm to support the event-handler
paradigm and the aspect paradigm, while still preserve the original behavior
in the method paradigm. In DominoJ, if the operators for method slots are
not used, the code work as in plain Java. In other words, a Java method can
be regarded as a method slot that has only the default closure.

We could regard the inheritance in object-oriented programming as an
event mechanism with default bindings. A method declaration in the super-
class is an event declaration, and its implementation is the handler bound to
the event by default. If the method is overridden in a subclass, the overriding
implementation automatically replaces the overridden one and becomes the
only handler for the event. In other words, the call to a method on an object
is an event, and the method implementation selected by the polymorphism
is the handler. The binding from the handler to the event in the inheritance
is a one-to-one relation and pre-defined. Method slots extend the default
binding in object-oriented programming to allow the binding of more than
one handler to an event.

We have also analyzed how method slots can be applied to the GoF design
patterns [30], and classify the patterns into four groups as shown in Table 3.3.
Furthermore, we implemented the sample code in the GoF book in Java and
DominoJ, and compared them with respect to the four modularity criteria
borrowed from [34], and a new criterion named non-inheritance, which means
that method slots can be used as an alternative to the inheritance solution
or not. This might remind readers of the mixin. As an alternative to the
inheritance both the mixin and method slots allow to execute an implemen-
tation in another class or object for a method call at runtime. However, in
several mixin mechanisms both fields and methods are included, but a bind-
ing between method slots do not involve fields. The comparison is shown
in Table 3.4, where the number of lines of code is listed as well. Note that
for the patterns in group III we ignore the comparision on the number of
lines of code since in group III method slots do not act a major role as in
group I and group II. In this table the locality means the code of defining
the relation can be gathered up, the reusability means the pattern code can
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Table 3.3: Method slots can be applied to design patterns

Pattern Name Description and Consequences

I

Adapter,
Chain of Resp.,
Composite,
Decorator,
Facade,
Mediator,
Observer,
Proxy

Implicitly propagate events among objects by the bindings.
GOOD:
The bindings can be gathered up in one place.
BAD:
The method slots which handle the same event must share
the same type.

II

Abstract Factory,
Bridge,
Builder,
Factory Method,
State,
Strategy,
Template
Method,
Visitor

Change class behavior at runtime without inheritance.
GOOD:
A solution to avoid multiple inheritance.
BAD:
Unlike the polymorphism the switch between implementa-
tions have to be manually managed.

III

Command,
Flyweight,
Interpreter,
Iterator,
Prototype

Replace inheritance part in the logic.
GOOD:
Provide an alternative for the inheritance part.
BAD:
Not helpful except the inheritance part.

IV
Memento,
Singleton

Not applicable
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Table 3.4: The benefit of applying DominoJ to design patterns

Modularity Properties LOC
Pattern Name Locality Reusability Composition Unpluggability Non-inheritance J DJ

I

Adapter
√

51 48
Chain of Resp.

√ √ √ √ √
⋆ 38 28

Composite
√ √ √ √

⋆ 41 16
Decorator

√ √ √
26 20

Facade
√

⋆ 34 53
Mediator

√ √
68 49

Observer
√ √ √ √ √

⋆ 71 32
Proxy

√ √
⋆ 47 61

II

Abstract Factory
√

⋆
√

⋆ 41 58
Bridge

√
⋆

√
⋆ 58 64

Builder
√

⋆
√

⋆ 55 69
Factory Method

√
⋆

√
⋆ 67 97

State
√

66 69
Strategy

√ √ √
⋆ 36 28

Template Method
√ √

⋆ 31 45
Visitor

√ √ √
63 69

III

Command
√

⋆

Ignored
Flyweight

√
⋆

Interpreter
√

⋆
Iterator

√
⋆

Prototype
√

⋆

IV
Memento

Same implementation for Java and DominoJ
Singleton

The
√

mark means that DominoJ has better modularity than Java when implementing the pattern.
The ⋆ mark means that AspectJ does not provide such modularity when implementing the pattern, while DominoJ does.
J: the Java version DJ: the DominoJ version

be abstracted and thus reusable, the composition means the code do not get
complicated when applying multiple relationships to the same class, and the
unpluggability means it is easy to apply or remove the pattern. The opera-
tors for method slots can be used to cause the execution of a method slot on
another object when a specified method slot is called. In general such mixin
behavior helps to gather up similar implementations in a class and can be an
alternative to the polymorphism. Furthermore, the pattern code for propa-
gating events can be expressed by the bindings, which can be gathered up in
one place for the locality. For several patterns such as the Chain of Respon-
sibility pattern, the event implementation is almost eliminated and thus the
code tangling caused by the composition can be avoided. If the pattern code
can be totally eliminated, reusing it is quite easy since no need to implement
the pattern every time. It is also possible to make the code easy to plug or
unplug for several patterns such as the Proxy pattern since the pattern is ap-
plied by a binding rather than passing a different object. However, unlike the
polymorphism the switch between different implementations must be manu-
ally managed. As to the numbers of lines of code in Java and in DominoJ,
basically there are no significantly difference since the explicit triggers for
events are removed but the bindings for describing the event propagations
are added. However, for several patterns such as the Observer pattern the
pattern code of which is totally eliminated. On the other hand, using the
mixin behavior in several patterns such as the Factory Method pattern takes
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additional lines of bindings to switch the implementations. Below we discuss
the four groups by showing concrete examples.

The key idea of the patterns in group I can be considered event propagation—
from the outer object to the inner object, or among colleague objects. Using
method slots can avoid code scattering caused by the pattern code since event
implementation is eliminated. Code tangling caused by combining multiple
patterns can be eased as well. The following example is an example of the
Chain of Responsibility pattern. In a GUI library a widget such as a but-
ton may need a hotkey for showing help. When users are confused with the
label of the button, they can press the F1 key to get a pop-up description,
which explains the meaning in detail. To implement the help event in Java,
the Chain of Responsibility pattern can be used in Widget, the base class
for all widgets, as shown in Listing 3.9. Here we assume that the method
handleHelp will be called when users press the F1 key on a widget object.
Every subclass of the Widget class should override the handleHelp method to
implement its own behavior for the help event, and return a boolean value
to indicate whether the help event is handled or not. In the Widget class a
default implementation is given: propagating the help event to the successor
in the chain of responsibility. The successor is kept as a private field and
set to its container in the constructor as shown in Line 2–5. If no successor
is set, false is returned. When a subclass of Widget such as Button class
overrides the handleHelp method, it must explicitly call super.handleHelp for
executing the default implementation to propagate the help event to its suc-
cessor. In DominoJ, the operator += can be used to describe such behavior
as shown in Listing 3.10. Note that in Line 10 the keyword $retval is used
to check if the help event is handled by the predecessor, and the explicit call
super.handleHelp are removed from all subclasses. It makes the code clear,
especially when there are several chain of responsibility for different events in
the Widget class. Using DominoJ can avoid the tangling caused by pattern
code.

Method slots can also be used to improve the transparency to clients.
In a class-based object-oriented language such as Java, it is not allowed to
change the class membership of objects as discussed in [22]. Suppose that
two classes Student and Employee are given to model the students and the
employees in a university. If now a student has graduated and employed by
the university, we cannot continue using the original Student object. We have
to create a new Employee object according to the original Student object and
update all references to the object in clients. A solution is using method
slots to implement the Proxy pattern for the Student example. In the Proxy
pattern usually the clients are aware of the existence of the proxy object.
For example, in order to control the access to Student, giving a proxy class
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1 public class Widget {
2 private Widget successor = null;
3 public Widget(Widget container) {
4 successor = container;
5 }
6 public boolean handleHelp() {
7 if(successor == null) return false;
8 return successor.handleHelp();
9 }

10 :
11 }
12 public class Button extends Widget {
13 public boolean handleHelp() {
14 : // return true if it can offer help,
15 // otherwise return super.handleHelp()
16 }
17 }

Listing 3.9: The Chain of Responsibility pattern example in Java

1 public class Widget {
2 public Widget(Widget container) {
3 this.handleHelp += container.handleHelp;
4 }
5 public boolean handleHelp();
6 :
7 }
8 public class Button extends Widget {
9 public boolean handleHelp() {

10 if($retval) return true;
11 : // return true if it is handled here,
12 // otherwise return false
13 }
14 }

Listing 3.10: The Chain of Responsibility pattern example in DominoJ
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Employee, which owns a reference to its original Student object, then the
clients have to use the proxy object instead of the original Student object.
In DominoJ the behavior of a Student object such as getInfo can be replaced
if it is public:

s.getInfo = e.getInfo;

where s is a Student object and e is its proxy, an Employee object. Then
the clients of s may continue using the reference to s. When s.getInfo is
called, the method slot getInfo on its proxy object will be executed for access
control. In other words, it is possible to make the clients unaware of plugging
or unplugging the proxy.

The patterns in group II use the inheritance to alter the class behavior at
runtime. Different implementation for a method slot call can be added to the
method slot instead of overriding in subclasses. In that sense, method slots
can be used as an alternative to the polymorphism. Although method slots
are not perfect replacement for the inheritance, it is convenient in particu-
lar when programmers are forced to choose between two superclasses due to
single inheritance limitation. For example, Listing 3.11 shows an example of
the Template Method pattern in Java. By taking advantage of inheritance,
the drawing border step in the class View can be deferred to its subclass
FancyView by overriding the method drawBorder. However, unlike mixin or
multiple inheritance, in the subclass FancyView we cannot reuse the imple-
mentation of other classes due to the single inheritance limitation in Java.
For example, the implementation of drawBorder in FancyView may be the
same as the one in another class FancyPrint, which is neither a subclass of
View nor a subclass of FancyView. In this case we cannot extract the com-
mon part of FancyView and FancyPrint into a new class Fancy. In DominoJ
such mixin behavior is possible by using the operator =. As shown in List-
ing 3.12 we move the drawBorder implementation to a new class Fancy and
let FancyView own a reference to a Fancy object. Then in the constructor
of FancyView we can forward the call to its method slot drawBorder to the
one in the Fancy object it refers (Line 22). With DominoJ a subclass can
still benefit from another class by the binding as using the mixin. It helps to
modularize the code when we want to extract parts of the implementation
in the subclass. Programmers can decide to use mixin or inheritance for a
feature depending on the design.

Another example we want to show here is the State pattern, which allows
an object to alter its behavior by switching between the state objects. Using
DominoJ the state transitions can be modularized in another class as using
AspectJ [34]. Suppose that we have three state classes for the Queue class:
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1 public class View {
2 public void display() {
3 drawBorder();
4 drawContent();
5 }
6 public void drawBorder() {
7 System.out.println("View: drawBorder");
8 }
9 public void drawContent() {

10 System.out.println("View: drawContent");
11 }
12 }
13 public class FancyView extends View {
14 public void drawBorder() {
15 System.out.println("Fancy: drawBorder");
16 }
17 }

Listing 3.11: The Template Method pattern example in Java

1 public class View {
2 public void display() {
3 drawBorder();
4 drawContent();
5 }
6 public void drawBorder() {
7 System.out.println("View: drawBorder");
8 }
9 public void drawContent() {

10 System.out.println("View: drawContent");
11 }
12 }
13 public class Fancy {
14 public void drawBorder() {
15 System.out.println("Fancy: drawBorder");
16 }
17 }
18 public class FancyView extends View {
19 Fancy fancy;
20 public FancyView() {
21 fancy = new Fancy();
22 this.drawBorder = fancy.drawBorder;
23 }
24 }

Listing 3.12: The Template Method pattern example in DominoJ
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1 public class Queue {
2 private QueueState state = new QueueEmpty();
3 public void setState(QueueState s) {
4 state = s;
5 };
6 public boolean insert(Object o) {
7 return state.insert(this, o);
8 }
9 :

10 }
11 public class QueueState {
12 public boolean insert(Queue q, Object o) {
13 return false;
14 };
15 :
16 }
17 public class QueueEmpty extends QueueState {
18 public boolean insert(Queue q, Object o) {
19 QueueNormal nextState = new QueueNormal();
20 q.setState(nextState);
21 return nextState.insert(q, o);
22 }
23 :
24 }

Listing 3.13: The State pattern example in Java

QueueEmpty, QueueNormal, and QueueFull. In Java the state transition code
scatters across the state classes, for example the transition from QueueEmpty
to QueueNormal is checked and performed in the insertmethod of QueueEmpty
class as shown in Listing 3.13. In DominoJ all transitions can be gathered
up in another class UpdateQueueState as shown in Listing 3.14. The class
UpdateQueueState keeps all the state objects (Line 2–4) and manages the
transitions such as emptyToNormal (Line 6–10). For example, the transition
emptyToNormal is performed after the method slot insert on the object empty
is executed as shown in Line 15. Note that the method slots emptyToNormal
and insert share the same type.

The patterns classified under group III also use the inheritance as a part of
their pattern code, so programmers may use method slots or not depending on
the situation. For example, the intent of the Command pattern is wrapping
the requests in objects in order to pass around clients, and inheritance is used
for overriding the behavior of a request. Suppose that we want to implement
a document editor, which allows users to open a document, edit its content,
and copy a paragraph. First we declare an abstract class Command, which
has a method slot execute, to model the commands supported in the editor:

public abstract class Command {
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1 public class UpdateQueueState {
2 private QueueEmpty empty = new QueueEmpty();
3 private QueueNormal normal = new QueueNormal();
4 private QueueFull full = new QueueFull();
5 private Queue queue = null;
6 public boolean emptyToNormal(Object o) {
7 normal.insert(o);
8 queue.setState(normal);
9 return $retval;

10 }
11 :
12 public void setup(Queue q) {
13 queue = q;
14 queue.setState(empty);
15 empty.insert += this.emptyToNormal;
16 :
17 }
18 }

Listing 3.14: The State pattern example in DominoJ

:
public void execute();

}

Then we can implement the individual commands such as OpenCommand and
CopyCommand by extending the Command class. In the subclasses we can
declare necessary parameters and override execute to define the behavior for
individual commands. For example, the implementation of OpenCommand
looks like this:

public class OpenCommand extends Command {
private File file = null;

:
public void execute() {

file = getFileFromUser();
}

}

Here, the user has to select a file and then the path in the field file will
be stored when its execute is called. By creating the command objects, the
requests from users can be wrapped and passed to other UI components.
The functionalities such as undo and redo can also be implemented easily.
In group III the inheritance is not the core of the pattern code, but helps
the implementation. As the example of the Template Method pattern shown
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above in group II, the inheritance can be replaced with the mixin by using
method slots. Again, using the mixin is not always a good choice and it
depends on programmers’ design decision.

As to the patterns in group IV, DominoJ is not helpful in dealing with
object creation as what AspectJ does in [34]. The reason is that DominoJ
does not support inter-type declaration and cannot stop the object creation.
Further details of this analysis is available in [92].

3.4.5 The event-handler paradigm

There are three important metrics to evaluate an event mechanism. First,
the amount of explicit triggers in a program depends on whether the events
can be implicit or not. Second, if dynamic binding is not provided, it is not
possible to change the handler at runtime. Third, event composition helps
the abstraction though it is not absolutely necessary. In an event mechanism
the three properties are determined by how the bindings between the event
and the handler are presented.

To evaluate how DominoJ works for the event-handler paradigm, first we
analyze the bindings between the event and the handler in a typical event
mechanism like EScala, and compare them with DominoJ. In languages di-
rectly supporting the event-handler paradigm, events are usually introduced
as fields, which are separate from methods. In order to associate fields with
methods, there are three types of bindings between events (fields) and han-
dlers (methods). The ways used for each type of binding are usually different
in an event mechanism, and also different between event mechanisms. Ta-
ble 3.5 shows the ways provided by EScala. The corresponding DominoJ
syntax for the three types of bindings is also listed, but actually there is only
slot-to-slot binding in DominoJ since only method slots are involved in the
event-handler paradigm. Every method slot can play an event role and a
handler role at the same time. Listing 3.15 shows how to use DominoJ for
the event-handler paradigm for the shape example mentioned in Section 3.2.
Below we will discuss what the three types of binding are, and explain how
DominoJ provides the same advantages with the simplified model.

The event-to-handler binding is the most trivial one since it means what
action reacts to a noteworthy change. Whether supporting the event-handler
paradigm by languages or not, in general the event-to-handler binding is dy-
namic and provided in a clear manner. For example, in the Observer pattern
an observer object can call a method on the subject to register itself; in C#
and EScala, += operator and -= operator are used to bind/unbind a method
to a special field named events. In addition to the two operators, DominoJ
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Table 3.5: The roles and bindings of the event-handler paradigm in EScala
and DominoJ

Type EScala DominoJ

ro
le Event field (evt)

method slot
Handler method

bi
n
di
n
g

Event-to-Handler
+= +=

-= -=

Event-to-Event

|| +=, ˆ=

&&

use Java
expression in the
default closure of
method slots

\
filter

map

empty

any

Handler-to-Event

afterExec +=

beforeExec ˆ=

imperative explicit trigger is possible
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1 public class Display {
2 public void refresh(int x, int y) {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 public Shape(Display d) {
12 this.setPosition += d.refresh;
13 }
14 }
15 public class Test {
16 public static void main(String[] args) {
17 Display d = new Display();
18 Shape s = new Shape(d);
19 s.setPosition(0, 0);
20 }
21 }

Listing 3.15: Using DominoJ for the event-handler paradigm

provides ˆ= operator and = operator to make it easier to manipulate the
array of handlers. In C# and EScala the handlers for an event can be only
appended sequentially and removed individually, but in DominoJ program-
mers can use = operator to empty the array directly without deducing the
state at runtime. Using ˆ= operator along with += operator also makes de-
sign intentions more clear since a closure can be inserted at the beginning
without popping and pushing back.

The second one is the event-to-event binding that enables event com-
position and is not always necessary but greatly improves the abstraction.
In a modern event mechanism, event composition should be supported. ES-
cala allows programmers to define such higher-level events to make code more
readable. An event-to-event binding can be simulated by an event-to-handler
binding and a handler-to-event binding, but it is annoying and error-prone.
In DominoJ, it is also possible to define a higher-level event by declaring a
method slot without a default closure. Then operators += and ˆ= can be
used to attach other events like what the operator || in EScala does. Other
operators in EScala such as && and map are not provided in DominoJ, but
the same logic can be represented by statements in another handlers and
attached by += operator. For example, in Listing 3.1 we can declare a new
event adjusted that checks if left and top are the same as the arguments given
to setPosition using the operator && in EScala:
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evt adjusted[Unit] = afterExec(setPosition)
&& ((left,top) != _._1)

adjusted += onAdjusted

where _._1 refers to the arguments given to setPosition and onAdjusted is
the reaction. In DominoJ, we can declare a higher-level event adjusted and
perform the check in another method slot checkAdjusted:

public void adjusted(int x, int y);
public void checkAdjusted(int x, int y) {

if(!(x==left && y==top)) adjusted(x, y);
}

and then bind them as follows:

setPosition += checkAdjusted;
adjusted += onAdjusted;

Although the expression in DominoJ is not rich and declarative as in
EScala, they can be used to express the same logic. In addition, the event-
to-event binding in EScala is static, so that the definition of a higher-level
event in EScala cannot be changed at runtime. On the other hand, it is
possible in DominoJ since the slot-to-slot binding is totally dynamic.

The last one is handler-to-event binding, which is also called an event
trigger or an event definition. It decides whether an event trigger can be
implicit or not. In the Observer pattern and C#, an event must be triggered
explicitly, so that the trigger code is scattering and tangling. EScala provides
two implicit ways and an explicit way: after the execution of a method, before
the execution of a method, or triggering an event imperatively. In DominoJ,
an event can be triggered either implicitly or explicitly. A method slot can not
only follow the call to another method slot but also be imperatively called.
More precisely, there is no clear distinction between the two triggering ways.
In EScala afterExec and beforeExec are provided for statically binding an
event to the execution of a method while DominoJ provides += operator
and -= operator for dynamically binding a method slot to the execution of
another method slot. This sounds like that a method slot has two pre-defined
EScala-like events for the default closure, but it is not correct. In DominoJ’s
model the only event is the call to a method slot, and the default closure is
also a handler like the other closures calling other method slots. This feature
makes the code more flexible since the execution order of all handlers can be
taken into account together. As to the encapsulation, in EScala the visibility
of explicit events follows its modifiers, and the implicit events are only visible
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within the object unless the methods they depend on are observable. On the
other hand, the encapsulation in DominoJ relies on the visibility of method
slots. The design is simpler but limits the usage because a public method slot
is always visible as an event to other objects.

There is one more important difference between EScala and DominoJ.
In DominoJ, a higher-level event can be declared or not according to pro-
grammers’ design decision. In order to explain the difference, we use a tree
graph to represent the execution order in the shape example by regarding
setPosition as the root. As shown in Figure 3.8, we use rectangles, circles,
and rounded rectangles to represent methods, events, and method slots, re-
spectively. When a node is called, the children bound by beforeExec or ˆ=
must be executed first, followed by the node itself and the children bound
by afterExec or +=. Figure 3.8 (a) is the execution order of Listing 3.1, and
Figure 3.8 (b) is the one of Listing 3.15. In the DominoJ version, the event
moved is eliminated and its child refresh is bound to setPosition directly since
we do not need additional events in such simple case. DominoJ is easier and
simpler to apply the event-handler paradigm when events are not compli-
cated but used everywhere. In EScala, events must be created since methods
cannot be bound to each other directly. However, such events are still nec-
essary if we want to keep the abstraction. In that case, method slots can
be used as the events in EScala by declaring them without a default closure.
For example, the event moved in Line 11 of Listing 3.1 can be translated into
the following statements:

public void moved();
setPosition += moved;

Figure 3.8 (c) is another DominoJ version, which has the higher-level event
as the EScala version. In DominoJ, programmers can choose between the
simplified one and the original one depending on the situation.

Note that the number of lines of Listing 3.15 is one line longer than
Listing 3.1 because the syntax of Scala looks more compact than Java. In
Java the constructor and the fields used inside a class must be declared
explicitly while they are omitted in Scala. In Listing 3.15 the constructor
takes two more lines than Listing 3.1. If we do not take this into account, the
EScala version is one line longer than the DominoJ version due to additional
event declaration.

The line of code can also be analyzed according to Table 3.5. With regard
to the roles, additional event declarations are necessary in EScala while they
are combined into one declaration in DominoJ as we discussed above. For the
event-to-handler binding, both the operators provided by EScala and Domi-
noJ take one line. For the event-to-event binding, the operators provided by
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Figure 3.8: The execution order of the shape example in EScala and Domi-
noJ

EScala can be written in the same line, but in DominoJ += operator and ˆ=
operator cannot be merged into one line. In that case the code in DominoJ
is longer than the EScala one. For example, a higher-level event changed can
be defined by three events resized, moved, and clicked:

evt changed[Unit] = resized || moved || clicked

but in DominoJ they must be defined as follows:

resized += changed;
moved += changed;
clicked += changed;

That is why the expression in EScala is richer but complicated. Introducing
appropriate syntax sugar to DominoJ to allow to put operators in one line is
also possible, but we think it makes the design complicated. However, in this
example we can also find passing the event value in EScala takes effort. In
EScala, as far as we understand, only a value is kept in an event field. If we
want to gather up the arguments x and y given to setPosition, and then pass
to moved and changed, we need to declare additional classes such as Point
and declare the events with the new type rather than Unit4. The additional
classes increase the number of lines as well. For the handler-to-event binding,
afterExec and beforeExec in EScala can define an anonymous event and share
the same line of an event-to-handler binding. To sum up, in DominoJ the
event declarations may be eliminated and thus the number of lines of source
code can be reduced. On the other hand, the number of code of DominoJ

4In EScala, declaring events with Unit type means that no data are passed [32].
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version is longer when translating a complex EScala expression composed of
a number of operators since DominoJ has less primitive syntax. DominoJ
makes code clear because each method slot has a name explicitly, and each
line for binding only defines the relation between two method slots.

3.4.6 The aspect paradigm

DominoJ can be used to express the aspect paradigm as well. In order
to discuss language constructs concretely, we compare DominoJ with the
most representative aspect-oriented language—AspectJ. The call to a method
slot is a join point, and other method slots can be bound to it as advices.
Note that the aspect paradigm is broader as discussed in [43, 44] and not
restricted to the AspectJ style, which is the point-advice model. In AspectJ
the important features such as around advices, the obliviousness, and inter-
type declaration that an event mechanism cannot provide are all supported
by constructs. In this subsection first we analyze the necessary elements
in the point-advice model in order to compare the constructs provided by
AspectJ and DominoJ. Then we use DominoJ to rewrite the shape example
in Listing 3.2 and discuss the differences.

Since the purpose of the aspect paradigm is to modularize the crosscut-
ting concerns, we need a method-like construct to contain the code piece, a
way to attach the method-like construct to a method execution, and a class-
like construct to group the method-like construct. In AspectJ, the class-like
construct is the aspect construct, the method-like construct is the advice
body, and the way of attaching is defined by the pointcut and advice decla-
ration. In DominoJ, the method slot and the class construct in plain Java
are used and only operators for method slots are introduced for attaching
them. The method slots bound by += operator or ˆ= operator are similar
to after/before advices, respectively. The method slots bound by = operator
are similar to around advices and proceed can be used to execute the origi-
nal method slot. It is expected that DominoJ cannot cover all expression in
AspectJ since DominoJ’s model is much simpler. For example, in DominoJ
inter-type declaration and the reflection are not provided. According to the
three elements, Table 3.6 lists the mapping of language constructs in AspectJ
and DominoJ.

In AspectJ programmers need to understand the special instance model
for the aspect construct, but in DominoJ the class construct is reused. Al-
though the instances of the construct for grouping need to be managed man-
ually, there is no need to learn the new model and keywords like issingleton,
pertarget, and percflow. In DominoJ programmers can create an instance of
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Table 3.6: The mapping of language constructs for the aspect paradigm in
AspectJ and DominoJ

Construct AspectJ DominoJ

grouping aspect class

code piece advice body
method slot body

(default closure)

pointcut and
advice
declaration

after returning and
execution

+= and $retval

before and execution ˆ=

around =

this $caller

target $predecessor

args by parameters

the aspect-like class and attach its method slots to specified objects accord-
ing to the conditions at runtime. If the behavior of issingleton is preferred,
programmers can declare all fields including method slots in the aspect-like
class as static since static method slots are supported by DominoJ. The shape
example of AspectJ in Section 3.2 can be rewritten by DominoJ as shown in
Listing 3.16. Here the class UpdateDisplay is the aspect-like class. In Line
14, we attach the advice refresh in a static method slot init, so all Shape ob-
jects will share the class object of UpdateDisplay. Furthermore, we let init
be executed after the constructor of Shape, so that we can avoid explicitly
attaching refresh every time a Shape object is created. Moreover, we do not
have to modify the constructor of Shape. If we need to count how many
times setPosition is called for each Shape and thus pertarget is preferred, we
can rewrite the class UpdateDisplay as shown in Listing 3.17. Every time a
Shape object is created, a UpdateDisplay object is created for it implicitly.
Note that the object ud will not be garbage-collected since its method slot
count is attached to another method slot.

In DominoJ, there is no difference between methods and advices while in
AspectJ they are different constructs. Although an advice in AspectJ can
be regarded as a method body, it cannot be directly called. If the code of
an advice is reusable, in AspectJ we must move it to another method but in
DominoJ it is not necessary.

The pointcut and advice declaration in AspectJ and DominoJ are similar
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1 public class Display {
2 public static void refresh(int x, int y) {
3 System.out.println("display is refreshed.");
4 }
5 }
6 public class Shape {
7 private int left = 0; private int top = 0;
8 public void setPosition(int x, int y) {
9 left = x; top = y;

10 }
11 }
12 public class UpdateDisplay {
13 public static void init() {
14 ((Shape)$predecessor).setPosition += Display.refresh;
15 }
16 static { Shape.constructor += UpdateDisplay.init; }
17 }
18 public class Test {
19 public static void main(String[] args) {
20 Shape s = new Shape();
21 s.setPosition(0, 0);
22 }
23 }

Listing 3.16: Using DominoJ as the aspect paradigm

1 public class UpdateDisplay {
2 private int total = 0;
3 public void count(int x, int y) {
4 total++;
5 }
6 public static void init() {
7 UpdateDisplay ud = new UpdateDisplay();
8 ((Shape)$predecessor).setPosition += ud.count;
9 }

10 static { Shape.constructor += UpdateDisplay.init; }
11 }

Listing 3.17: Rewrite UpdateDisplay for pertarget
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but not the same. First, what they target at is different. AspectJ is class-
based while DominoJ is object-based. In other words, what AspectJ targets
at are all object instances of a class and its subclasses but what DominoJ
targets at are individual object instances. However, it is possible to emulate
the class-based behavior in DominoJ by the code attaching to the construc-
tor of a class as shown in Line 16 of Listing 3.16. Second, unlike AspectJ
that has call and execution pointcut, in DominoJ only execution pointcut is
supported. This limits the usage but reduces the complexity. In fact, the
relation between advices is quite different in AspectJ and DominoJ. In As-
pectJ an advice is attached to methods and cannot be directly attached to
a specific advice, but in DominoJ a method slot is not only an advice but
also a method. For example, if we need another advice for checking the dirty
region in Listing 3.2, we may prepare an aspect CheckDirty containing this
advice as shown in Figure 3.9 (a). However, the advice can only be attached
to setPosition. In DominoJ, the advice can be attached to either setPosition
or init as shown in Figure 3.9 (b).

The behavior of proceed in AspectJ and DominoJ is also a little different.
The proceed in DominoJ should be used only along with = operator since
it calls the default closure in the preceding method slot rather than the
next closure. The root cause of the difference is the join point model: what
DominoJ adopts is the point-in-time model while the one AspectJ adopts is
the region-in-time model [51]. In other words, in AspectJ the arrays of the
three types of advices are separate, but in DominoJ there is only one array.
If += operator or ˆ= operator are used after using = operator to attach a
method slot containing proceed, the behavior is not as expected as in AspectJ.
Figure 3.10 shows an example of around advices in AspectJ and DominoJ.
In AspectJ, the around advices localCache and memCache are attached to
queryData in order. In DominoJ, we can do it similarly:

queryData = localCache;
localCache = memCache;

then using proceed in memCache and localCache will call the default closure of
their preceding method slot, localCache and queryData, respectively. Another
difference is that the args pointcut and the wildcard used in call and execution
pointcuts in AspectJ are not supported in DominoJ. Method slots are simply
matched by their parameters. If the overloading is not taken into account,
the operators in DominoJ only select one method slot in one line statement.

As to the number of lines, the two versions are about the same. Com-
paring them line by line might not make much sense since there is no simple
translation between DominoJ and AspectJ.
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Figure 3.9: Adding another advice to the shape example in AspectJ and
DominoJ
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Figure 3.10: Calling proceed in AspectJ and DominoJ
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Table 3.7: A summary of the significant characteristics of the two paradigms
and the support in DominoJ

the Event-handler paradigm DominoJ

implicit events yes

dynamic binding yes

event composition yes

the Aspect paradigm DominoJ

around advices yes

the obliviousness yes

inter-type declaration no

3.4.7 Summary of the coverage

In the previous subsections we have discussed what a language must have
for the event-handler paradigm and the aspect paradigm by comparing with
EScala and AspectJ, respectively, from the viewpoint of constructs. In this
subsection we summarize the significant characteristics of the two paradigms
and discuss the support in DominoJ as shown in Table 3.7. In addition to be-
ing used for the event-handler paradigm and the aspect paradigm, DominoJ
allows programmers to use both paradigms together.

For the event-handler paradigm, there are three significant properties:
implicit events, dynamic binding, and event composition. DominoJ supports
them all by method slots and only four operators. Rewriting a complex
expression of event composition in EScala is also possible though it takes
more lines. Introducing additional syntax may resolve the issue but it also
complicates the model. As a result of regarding method slot calls as events,
giving an event a different visibility from the method slots it depends on is
not supported by DominoJ.

The aspect paradigm of AspectJ has three important features that cannot
be provided by the event-handler paradigm: around advices, the oblivious-
ness, and inter-type declaration. In DominoJ what the around advices in
AspectJ does can be archived by assigning a closure calling another method
slot using the = operator. DominoJ also supports the obliviousness in As-
pectJ by using the class construct as the aspect construct and attaching a
method slot to a constructor of the target class. In the method slot attached
to the constructor, programmers can further attach advices to the method
slots at the target class. However, the inter-type declaration in AspectJ is
not available in DominoJ. A possible solution is introducing a default method
slot for undefined fields in a class like Smalltalk’s doesNotUnderstand or what
the no-applicable-method does in CLOS.

84 METHOD SLOTS



Evaluation

�������

�	�
�


�����

�����������

	�
���������

	����������

����

��������������������	��
	�

�����
��	��

Figure 3.11: The design decision of EScala, AspectJ, and DominoJ

3.4.8 Event-handler vs. Aspect

Although the event-handler paradigm and the aspect paradigm are developed
for resolving different issues, their implementation are almost the same, espe-
cially from the viewpoint of virtual machine. They both allow programmers
to specify which code pieces should be executed after/before the execution of
a method. The only difference is the model of specifying and executing the
code pieces. First, the behavior of the event-handler paradigm used in ES-
cala is object-based, while the behavior of the aspect paradigm is class-based.
Second, in the aspect paradigm used in AspectJ the obliviousness is an im-
portant property, but in the event-handler paradigm the non-obliviousness
is expected. Obviously, it is impossible to support the contradictory prop-
erties at the same time unless we give both constructs into one language. If
we just put constructs for the two paradigms into one language, for exam-
ple providing all syntax of EScala and AspectJ in a new language, it makes
the code compilcated and programmers have to learn all of them; it is not
what we want to do. Our goal is to make all available by a single construct
and let programmers decide how to use it, so we have to choose between
object-based behaviors and class-based behaviors, the obliviousness and the
non-obliviousness.

The design decision of EScala, AspectJ, and DominoJ are shown in Fig-
ure 3.11. DominoJ chooses object-based behaviors and the obliviousness
since we believe this design is most flexible—the class-based behaviors can
be emulated by writing the bindings in the constructors and a method slot
can be private if the obliviousness is not expected. In this sense, DominoJ
can be regarded as either an object-based aspect-oriented language or an
event mechanism. It does not matter how we call DominoJ since it is just
a naming, but here we want to bring up the discussion on the similarities
between the event-handler paradigm and the aspect paradigm.
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3.5 Case study

To explore how method slots can be used in real-world applications, here
three case studies are performed. The first one is rewriting the events ex-
ample in C# tutorials [56] to show how to use method slots as events and
handlers. The delegates examples in C# tutorials [55] are also rewritten
to discuss the differences between method slots and delegates. The second
one is analyzing the usage of the Observer pattern in the famous Java GUI
framework, JHotDraw [39], and rewriting it in DominoJ. The third one is
using DominoJ to rewrite the aspects in AspectTetris, a Tetris game written
in AspectJ, and discuss the constructs used in the two versions.

3.5.1 The events and delegates examples in C# tutorials

In order to demonstrate how method slots can be used as events in practice,
the example in the events tutorial of C#, a popular language supporting
events, is rewritten. Listing 3.18 shows the C# code of the example in the
tutorial. In this example the ArrayList is extended to support the Changed
event, which is triggered when the elements in the list are changed. As shown
in Line 4 of Listing 3.18 first a delegate type is declared, which defines the
type of the handlers for the event. Then the event Changed is declared with
the delegate type (Line 6), and a method OnChanged is declared for triggering
the event. At the end of the methods Add and Clear, which modifies the
elements in the list, OnChanged is called. Note that the method OnChanged
is declared for not only checking if any handlers exist but also allowing the
subclasses of ListWithChangedEvent to trigger the event. Here OnChanged is
declared with protected to allow the subclasses to trigger Changed by calling
it since in C# events can only be triggered by the class declaring the events.

The DominoJ verison of this example is shown in Listing 3.19. If the lines
for importing classes and declaring the package it belongs are not taken into
account, the total number of lines is almost the same as the C# version. An
event in C# can be rewritten to a method slot without the default closure,
and the line for declaring the delegate type is removed; the handlers must
follows the type of the method slot or be generic method slots. However,
the control of triggering an event in DominoJ is not as strict as in C#. On
the other hand, in DominoJ there is no need to wrap a method in a delegate
(Line 34 and Line 40 of Listing 3.18) or check the handlers before triggering
an event (Line 8 of Listing 3.18). Such an example of using events in C#
can be rewritten using method slots line by line.

Although delegates and events are quite different, here we want to rewrite

86 METHOD SLOTS



Case study

1 using System;
2 namespace MyCollections {
3 using System.Collections;
4 public delegate void ChangedEventHandler(object sender, EventArgs e);
5 public class ListWithChangedEvent: ArrayList {
6 public event ChangedEventHandler Changed;
7 protected virtual void OnChanged(EventArgs e) {
8 if (Changed != null)
9 Changed(this, e);

10 }
11 public override int Add(object value) {
12 int i = base.Add(value);
13 OnChanged(EventArgs.Empty);
14 return i;
15 }
16 public override void Clear() {
17 base.Clear();
18 OnChanged(EventArgs.Empty);
19 }
20 public override object this[int index] {
21 set {
22 base[index] = value;
23 OnChanged(EventArgs.Empty);
24 }
25 }
26 }
27 }
28 namespace TestEvents {
29 using MyCollections;
30 class EventListener {
31 private ListWithChangedEvent List;
32 public EventListener(ListWithChangedEvent list) {
33 List = list;
34 List.Changed += new ChangedEventHandler(ListChanged);
35 }
36 private void ListChanged(object sender, EventArgs e) {
37 Console.WriteLine("This is called when the event fires.");
38 }
39 public void Detach() {
40 List.Changed -= new ChangedEventHandler(ListChanged);
41 List = null;
42 }
43 }
44 class Test {
45 public static void Main() {
46 ListWithChangedEvent list = new ListWithChangedEvent();
47 EventListener listener = new EventListener(list);
48 list.Add("item 1");
49 list.Clear();
50 listener.Detach();
51 }
52 }
53 }

Listing 3.18: The example in C# events tutorial
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1 package mycollections;
2 import java.util.ArrayList;
3 public class ListWithChangedEvent extends ArrayList {
4 public void changed(Object sender, EventArgs e);
5 protected void onChanged(EventArgs e) {
6 changed(this, e);
7 }
8 public boolean add(Object value) {
9 boolean b = super.add(value);

10 onChanged(EventArgs.Empty);
11 return b;
12 }
13 public void clear() {
14 super.clear();
15 onChanged(EventArgs.Empty);
16 }
17 public Object set(int index, Object value) {
18 Object o = super.set(index, value);
19 onChanged(EventArgs.Empty);
20 return o;
21 }
22 }
23

24 package testevents;
25 import mycollections.ListWithChangedEvent;
26 public class EventListener {
27 private ListWithChangedEvent list;
28 public EventListener(ListWithChangedEvent l) {
29 list = l;
30 list.changed += listChanged;
31 }
32 public void listChanged(Object sender, EventArgs e) {
33 System.out.println("This is called when the event fires.");
34 }
35 public void detach() {
36 list.changed -= listChanged;
37 list = null;
38 }
39 }
40

41 package testevents;
42 import mycollections.ListWithChangedEvent;
43 public class Test {
44 public static void main(String[] args) {
45 ListWithChangedEvent list = new ListWithChangedEvent();
46 EventListener listener = new EventListener(list);
47 list.add("item 1");
48 list.clear();
49 listener.detach();
50 }
51 }

Listing 3.19: The DominoJ version of the example in C# events tutorial
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delegates by method slots to discuss their differences. The delegates in C#
are similar to method slots from the viewpoint of their implementation, but
the meaning of the delegates is more close to the function pointer in C or
C++. Below the two examples in C# delegates tutorial are discussed in
order. The first one is shown in Listing 3.20 and Listing 3.21. In this exam-
ple the class BookDB maintains a database of books and exposes a method
named ProcessPaperbackBooks, which allows its caller to give a delegate for
processing all paperback books in the database (Line 26–31 of Listing 3.20).
Then a delegate can be passed to ProcessPaperbackBooks (Line 23–24 and
Line 26–27 of Listing 3.21) as a function pointer and dereferenced inside
ProcessPaperbackBooks. Such a usage of function pointer is not possible
in DominoJ. Instead, an event can be triggered at the timing of derefer-
ence the function pointer in order to execute the handler. Listing 3.22 and
Listing 3.23 shows the DominoJ version of this example, where an event
processPaperbackBookEvent must be declared and triggered inside processPa-
perbackBooks. Furthermore, the handlers must be bound to the event pro-
cessPaperbackBookEvent before calling processPaperbackBooks (Line 26 and
Line 28 of Listing 3.23) instead of giving the delegates as arguments.

The differences between delegates and method slots are even more clear
by rewriting the second example in the delegates tutorial (Listing 3.24) to
the DominoJ version (Listing 3.25). As shown in Listing 3.24 MyDelegate is
a type and can be used to declare the variables a, b, c, and d. In DominoJ
the declaration of a method slot is a kind of field rather than a type. That
is the reason why we have to manually specify the types for a, b, c, and d
to make them share the same type (Line 2–5 of Listing 3.25). On the other
hand, there is no need to create instances as using delegates (Line 15–16 of
Listing 3.24). The operators for delegates and method slots are also quite
different. Although both the operators += in C# and DominoJ cause the
execution of the one at right-hand side when the one at the left-hand side is
called, the operator += in DominoJ creates a reference to the method slot
at the right-hand side rather than copy the closures in the method slots at
the right-hand side. For example, in Listing 3.24 if we change the value of b
after Line 17:

b = a;

the result of calling c will not change since c has copied the delegates in a and
b. The result of calling d will not be different, either. However, in DominoJ c
holds the reference to a and b, and thus the result of calling c will be affected:
the hello message will be printed twice. Note that Line 20 of Listing 3.24
can be regarded as the following lines in DominoJ since what c holds are the
references to a and b:
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1 using System;
2 namespace Bookstore {
3 using System.Collections;
4 public struct Book {
5 public string Title;
6 public string Author;
7 public decimal Price;
8 public bool Paperback;
9 public Book(string title, string author,

10 decimal price, bool paperBack) {
11 Title = title;
12 Author = author;
13 Price = price;
14 Paperback = paperBack;
15 }
16 }
17

18 public delegate void ProcessBookDelegate(Book book);
19

20 public class BookDB {
21 ArrayList list = new ArrayList();
22 public void AddBook(string title, string author,
23 decimal price, bool paperBack) {
24 list.Add(new Book(title, author, price, paperBack));
25 }
26 public void ProcessPaperbackBooks(ProcessBookDelegate process) {
27 foreach (Book b in list) {
28 if(b.Paperback)
29 process(b);
30 }
31 }
32 }
33 }

Listing 3.20: The Bookstore namespace of the first example in C# delegates
tutorial
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1 namespace BookTestClient {
2 using Bookstore;
3 class PriceTotaller {
4 int countBooks = 0;
5 decimal priceBooks = 0.0m;
6 internal void AddBookToTotal(Book book) {
7 countBooks += 1;
8 priceBooks += book.Price;
9 }

10 internal decimal AveragePrice() {
11 return priceBooks / countBooks;
12 }
13 }
14

15 class Test {
16 static void PrintTitle(Book b) {
17 Console.WriteLine(" {0}", b.Title);
18 }
19 static void Main() {
20 BookDB bookDB = new BookDB();
21 AddBooks(bookDB);
22 Console.WriteLine("Paperback Book Titles:");
23 bookDB.ProcessPaperbackBooks(
24 new ProcessBookDelegate(PrintTitle));
25 PriceTotaller totaller = new PriceTotaller();
26 bookDB.ProcessPaperbackBooks(
27 new ProcessBookDelegate(totaller.AddBookToTotal));
28 Console.WriteLine("Average Paperback Book Price: ${0:#.##}",
29 totaller.AveragePrice());
30 }
31 static void AddBooks(BookDB bookDB) {
32 bookDB.AddBook("The C Programming Language",
33 "Brian W. Kernighan and Dennis M. Ritchie", 19.95m, true);
34 bookDB.AddBook("The Unicode Standard 2.0",
35 "The Unicode Consortium", 39.95m, true);
36 bookDB.AddBook("The MS-DOS Encyclopedia",
37 "Ray Duncan", 129.95m, false);
38 bookDB.AddBook("Dogbert’s Clues for the Clueless",
39 "Scott Adams", 12.00m, true);
40 }
41 }
42 }

Listing 3.21: The BookTestClient namespace of the first example in C#
delegates tutorial
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1 package bookstore;
2 public class Book {
3 public String title;
4 public String author;
5 public float price;
6 public boolean paperback;
7 public Book(String title, String author,
8 float price, boolean paperback) {
9 this.title = title;

10 this.author = author;
11 this.price = price;
12 this.paperback = paperback;
13 }
14 }
15

16 package bookstore;
17 public class BookDB {
18 ArrayList<Book> list = new ArrayList<Book>();
19 public void addBook(String title, String author,
20 float price, boolean paperback) {
21 list.add(new Book(title, author, price, paperback));
22 }
23 public void processPaperbackBooks() {
24 for(int i=0; i<list.size(); i++) {
25 Book b = list.get(i);
26 if(b.paperback)
27 processPaperbackBookEvent(b);
28 }
29 }
30 public void processPaperbackBookEvent(Book b);
31 }

Listing 3.22: The DominoJ version of the first example in C# delegates
tutorial (the bookstore package)
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1 package booktestclient;
2 import bookstore.Book;
3 public class PriceTotaller {
4 int countBooks = 0;
5 float priceBooks = 0.0f;
6 public void addBookToTotal(Book book) {
7 countBooks += 1;
8 priceBooks += book.price;
9 }

10 public float averagePrice() {
11 return priceBooks/countBooks;
12 }
13 }
14

15 package booktestclient;
16 import bookstore.Book;
17 import bookstore.BookDB;
18 public class Test {
19 public static void printTitle(Book b) {
20 System.out.println(" " + b.title);
21 }
22 public static void main(String[] args) {
23 BookDB bookDB = new BookDB();
24 addBooks(bookDB);
25 System.out.println("Paperback Book Titles:");
26 bookDB.processPaperbackBookEvent += Test.printTitle;
27 PriceTotaller totaller = new PriceTotaller();
28 bookDB.processPaperbackBookEvent += totaller.addBookToTotal;
29 bookDB.processPaperbackBooks();
30 System.out.printf("Average Paperback Book Price: $%.2f\n",
31 totaller.averagePrice());
32 }
33 public static void addBooks(BookDB bookDB) {
34 bookDB.addBook("The C Programming Language",
35 "Brian W. Kernighan and Dennis M. Ritchie", 19.95f, true);
36 bookDB.addBook("The Unicode Standard 2.0",
37 "The Unicode Consortium", 39.95f, true);
38 bookDB.addBook("The MS-DOS Encyclopedia",
39 "Ray Duncan", 129.95f, false);
40 bookDB.addBook("Dogbert’s Clues for the Clueless",
41 "Scott Adams", 12.00f, true);
42 }
43 }

Listing 3.23: The DominoJ version of the first example in C# delegates
tutorial (the booktestclient package)
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1 using System;
2 delegate void MyDelegate(string s);
3

4 class MyClass {
5 public static void Hello(string s) {
6 Console.WriteLine(" Hello, {0}!", s);
7 }
8

9 public static void Goodbye(string s) {
10 Console.WriteLine(" Goodbye, {0}!", s);
11 }
12

13 public static void Main() {
14 MyDelegate a, b, c, d;
15 a = new MyDelegate(Hello);
16 b = new MyDelegate(Goodbye);
17 c = a + b;
18 d = c - a;
19

20 Console.WriteLine("Invoking delegate a:");
21 a("A");
22 Console.WriteLine("Invoking delegate b:");
23 b("B");
24 Console.WriteLine("Invoking delegate c:");
25 c("C");
26 Console.WriteLine("Invoking delegate d:");
27 d("D");
28 }
29 }

Listing 3.24: The second example in C# delegates tutorial

MyClass.d += MyClass.a;
MyClass.d += MyClass.b;
MyClass.d -= MyClass.a;

so in the DominoJ version we simply assign b to d (Line 18 of Listing 3.25).
Rewriting the two C# tutorials shows that events can be easily translated

to method slots, though the control of triggering events in C# and in Domi-
noJ are different. Furthoremore, the similarities and the differences between
method slots and C# delegates are also clarified.

3.5.2 The Observer pattern in JHotDraw

JHotDraw, a Java GUI framework for drawing technical and structured
graphics, is well-known for the demonstration of using design patterns, espe-
cially the Observer pattern. One of its original developers is also the author
of the GoF book. In this subsection we analyze how the Observer pattern
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1 class MyClass {
2 public static void a(String s);
3 public static void b(String s);
4 public static void c(String s);
5 public static void d(String s);
6

7 public static void hello(String s) {
8 System.out.printf(" Hello, %s!\n", s);
9 }

10

11 public static void goodbye(String s) {
12 System.out.printf(" Goodbye, %s!\n", s);
13 }
14

15 public static void main(String[] args) {
16 MyClass.a = MyClass.hello;
17 MyClass.b = MyClass.goodbye;
18 MyClass.c += MyClass.a;
19 MyClass.c += MyClass.b;
20 MyClass.d = MyClass.b;
21

22 System.out.println("Invoking delegate a:");
23 a("A");
24 System.out.println("Invoking delegate b:");
25 b("B");
26 System.out.println("Invoking delegate c:");
27 c("C");
28 System.out.println("Invoking delegate d:");
29 d("D");
30 }
31 }

Listing 3.25: The DominoJ version of the second example in C# delegates
tutorial
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is used in JHotDraw to implement events, and rewrite it to the DominoJ
version. The version of JHotDraw we analyzed is 6.0 beta 1.

Table 3.8 lists the 8 subject-observer pairs defined in JHotDraw, where
the name of the subjects, the name of their observers, and the notification
are summarized. Here the notification are the events in the event-handler
paradigm, and the methods defined in the observers are the handlers. In
JHotDraw the signatures of the handlers are defined in an interface named
“listener”, for example CommandListener, which defines the following method
signatures:

public void commandExecuted(EventObject e);
public void commandExecutable(EventObject e);
public void commandNotExecutable(EventObject e);

Any classes implementing CommandListener must define the body of the three
methods. Every subject has to maintain a list of the observers and allow
observers to register or unregister themselves. For example, in Command the
two method signatures are defined:

public void addCommandListener(CommandListener l);
public void removeCommandListener(CommandListener l);

Note that in most cases the subjects and the observers are defined by in-
terfaces rather than classes in order to allow the classes implementing it to
inherit from other classes such as JFrame. Furthermore, a class could be
both the observers of different subjects. For example, AbstractCommand is
the subject of the Command-CommandListener pair, the observer of the
DrawingEditor-ViewChangeListener pair, and the observer of the DrawingView-
FigureSelectionListener pair at the same time.

In the DominoJ version the interfaces for the observers are preserved for
making the method slots in all observers for a subject consistent, though
method slots can be used without them. In a subject the list for holding
its observers and the methods for adding and removing an observer are no
longer necessary. Instead, using empty method slots to declare events. For
example, in Command the two method signatures shown above are replaced
with the follows:

public void commandExecutedEvent(EventObject e);
public void commandExecutableEvent(EventObject e);
public void commandNotExecutableEvent(EventObject e);
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Table 3.8: The 8 subject-observer pairs defined in JHotDraw

Subject Observer Notification

Command CommandListener
the command is executed, ex-
ecutable, or not executable

DesktopEventService DesktopListener
a DrawingView is added, re-
moved, or selected

Drawing DrawingChangeListener
the Drawing invalidates an
area, changes its title, or re-
quests update

DrawingEditor ViewChangeListener

the active view has changed,
a new view is created, or
an existing view is to be de-
stroyed

DrawingView FigureSelectionListener
the figure selection is
changed

Figure FigureChangeListener

an area is invalidated, a fig-
ure is changed or removed,
requesting to remove or up-
date

PaletteButton PaletteListener
the user selected or moved
the mouse over the palette

Tool ToolListener
the Tool is enabled, disabled,
usable, unusable, activated,
or deactivated
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For a notification there is no need to iterate the observers and explicitly call
their methods; just triggering the events. Then observers can bind their han-
dler method slots to the events. If the number of the events is large, the two
methods for adding and removing an observer can be preserved for collecting
the bindings at the subject side. For example, the addFigureChangeListener
defined in the interface Figure can be preserved and let AbstractFigure bind
the handlers to the events as follows:

public void addFigureChangeListener(FigureChangeListener l) {
this.figureInvalidatedEvent += l.figureInvalidated;
this.figureChangedEvent += l.figureChanged;
this.figureRemovedEvent += l.figureRemoved;
this.figureRequestRemoveEvent += l.figureRequestRemove;
this.figureRequestUpdateEvent += l.figureRequestUpdate;

}

As a result, which handlers to bind is determined at the subject side rather
than at the observer side.

The classes and interfaces we modified for the 8 subject-observer pairs are
grouped as shown in Table 3.9–3.10. The LOC column shows the difference
of lines of code between the DominoJ version and the original version. For
example, in Table 3.9 the +3 in the Command row and the -61 in the Ab-
stractCommand row mean that the number of the lines of code in the DominoJ
version increases 3 lines and decreases 61 lines, respectively. The — in the
CommandListener row means that the code is not modified at all. Note that
in Table 3.10 the 0 in the AbstractCommand row and the UndoableCommand
row means that the number of lines of code are the same after rewriting to
the DominoJ version. Although the DominoJ version needs more lines for
defining events in the subject interfaces, the lines of code of the implementer
classes are decreased since the code of observer management and notification
are removed. As to the obvious changes of lines such as AbstractCommand
and AbstractTool the main reason is that an inner class for dispatching events
named EventDispatcher are removed.

The list of all the files modified in the DominoJ is shown in Table 3.11.
The number of lines of code in Java, in DominoJ, and the difference between
them are listed. The difference between the two versions for a file can also
be got by adding up the difference caused by all subject-observer pairs that
the class involves in as shown in Table 3.9–3.10. Note that in Table 3.11 the
mark † means that the file is not modified for rewriting the Observer pattern,
and the files marked with ⋆, DrawingEditor.java, DrawingView.java, Figure.java
and DisposableResourceHolder.java, need additional lines to explicitly specify
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Table 3.9: Rewriting the Observer pattern in JHotDraw by DominoJ

Class/Interface Name Description ∆LOC

Command defines Command interface +3

CommandListener defines CommandListener interface —

AbstractCommand implements Command -61

UndoableCommand implements Command and CommandListener -19

CommandMenu implements CommandListener +2

CTXCommandMenu implements CommandListener +2

DesktopEventService defines DesktopEventService class -6

DesktopListener defines DesktopListener interface —

DrawingEditor define DrawingEditor interface +1

ViewChangeListener define ViewChangeListener interface —

DrawApplet implements DrawingEditor -2

DrawApplication implements DrawingEditor -37

JavaDrawViewer implements DrawingEditor -2

AbstractCommand implements ViewChangeListener -12

AbstractTool implements ViewChangeListener -12

PaletteButton defines PaletteButton class +1

PaletteListener defines PaletteListener interface —

Tool defines Tool interface +6

ToolListener defines ToolListener interface —

AbstractTool implements Tool -79

UndoableTool implements Tool and ToolListener -19

ToolButton implements ToolListener +5

∆LOC: the difference of LOC after rewriting.
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Table 3.10: Rewriting the Observer pattern in JHotDraw by DominoJ
(continued)

Class/Interface Name Description ∆LOC

Drawing defines Drawing interface -12

DrawingChangeListener defines DrawingChangeListener interface —

DrawingView extends DrawingChangeListener —

StandardDrawing implements Drawing -42

StandardDrawingView implements DrawingView +3

MiniMapView uses DrawingChangeListener +2

DrawingView define DrawingView interface -10

FigureSelectionListener define FigureSelectionListener interface —

StandardDrawingView implements DrawingView -31

NullDrawingView implements DrawingView -14

AbstractCommand implements FigureSelectionListener 0

UndoableCommand implements FigureSelectionListener 0

DrawingEditor extends FigureSelectionListener —

DrawApplication implements DrawingEditor +1

DrawApplet implements DrawingEditor +2

JavaDrawViewer implements DrawingEditor +1

Figure defines Figure interface +1

FigureChangeListener defines FigureChangeListener interface —

AbstractFigure implements Figure -7

AttributeFigure extends AbstractFigure —

ImageFigure extends AttributeFigure -2

Drawing extends FigureChangeListener —

CompositeFigure
extends AbstractFigure and implements
FigureChangeListener

-8

DecoratorFigure
extends AbstractFigure and implements
FigureChangeListener

-6

TextAreaFigure
extends AttributeFigure and implements
FigureChangeListener

-4

TextFigure
extends AttributeFigure and implements
FigureChangeListener

-2

GraphicalCompositeFigure extends CompositeFigure -4

StandardDrawing extends CompositeFigure -5

∆LOC: the difference of LOC after rewriting.
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Table 3.11: All the files modified in the DominoJ version of JHotDraw

Package/File J DJ ∆LOC

org.jhotdraw.applet/DrawApplet.java 573 573 0

org.jhotdraw.application/DrawApplication.java 1,186 1,150 -36

org.jhotdraw.figures/AttributeFigure.java 250 250 —

org.jhotdraw.figures/ImageFigure.java 153 151 -2

org.jhotdraw.figures/TextFigure.java 509 507 -2

org.jhotdraw.framework/Drawing.java 317 305 -12

org.jhotdraw.framework/DrawingChangeListener.java 34 34 —

org.jhotdraw.framework/DrawingEditor.java 72 76 +4 ⋆

org.jhotdraw.framework/DrawingView.java 315 315 0 ⋆

org.jhotdraw.framework/Figure.java 340 344 +4 ⋆

org.jhotdraw.framework/FigureChangeListener.java 48 48 —

org.jhotdraw.framework/FigureSelectionListener.java 25 25 —

org.jhotdraw.framework/Tool.java 128 134 +6

org.jhotdraw.framework/ToolListener.java 27 27 —

org.jhotdraw.framework/ViewChangeListener.java 36 36 —

org.jhotdraw.samples/javadraw/JavaDrawViewer.java 123 122 -1

org.jhotdraw.standard/AbstractCommand.java 253 180 -73

org.jhotdraw.standard/AbstractFigure.java 482 475 -7

org.jhotdraw.standard/AbstractTool.java 395 304 -91

org.jhotdraw.standard/CompositeFigure.java 734 726 -8

org.jhotdraw.standard/DecoratorFigure.java 337 331 -6

org.jhotdraw.standard/StandardDrawing.java 227 180 -47

org.jhotdraw.standard/StandardDrawingView.java 1,183 1,155 -28

org.jhotdraw.standard/ToolButton.java 165 170 +5

org.jhotdraw.standard/NullDrawingView.java 430 416 -14

org.jhotdraw.util/Command.java 59 62 +3

org.jhotdraw.util/CommandListener.java 24 24 —

org.jhotdraw.util/CommandMenu.java 134 136 +2

org.jhotdraw.util/PaletteButton.java 148 149 +1

org.jhotdraw.util/PaletteListener.java 32 32 —

org.jhotdraw.util/UndoableCommand.java 134 115 -19

org.jhotdraw.util/UndoableTool.java 192 173 -19

org.jhotdraw.contrib/CTXCommandMenu.java 198 200 +2

org.jhotdraw.contrib/DesktopEventService.java 181 175 -6

org.jhotdraw.contrib/DesktopListener.java 22 22 —

org.jhotdraw.contrib/GraphicalCompositeFigure.java 355 351 -4

org.jhotdraw.contrib/html/DisposableResourceHolder.java† 121 124 +3 ⋆

org.jhotdraw.contrib/MiniMapView.java 249 251 +2

org.jhotdraw.contrib/TextAreaFigure.java 929 925 -4

the Observer pattern: 38 files (29 out of them are modified) 10,999 10,633 -366

All the source files: 484 files (30 out of them are modified) 71,721 71,374 -347

The ⋆ mark means that the file contains the modification for manually specifying methods by annotation.

The † mark means that the file does not have the modification for the Observer pattern.

J: the Java version DJ: the DominoJ version
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that certain declarations are not method slots. For example, the method
clone declared in the interface Figure must be explicitly marked as follows:

@MethodSlot(false)
public Object clone();

Without the annotation the DominoJ compiler will transform the declara-
tion to a method slot and thus different from the clone method declared in
the Object class. The clone in any classes implementing Figure will also be
method slots rather than methods. In this case the result is unexpected since
the clone in Figure is used to force its implementer classes to override the one
in Object. The current version of the DominoJ compiler can automatically
regard a method declaration as a method slot declaraion by traversing its
superclasses and implemented interfaces. If a method-like declaration is in-
herited from the libraries that are not compiled by the DominoJ compiler,
the method-like declaration is a method; otherwise, it is a method slot. How-
ever, the DominoJ compiler has no idea whether such a declaration, clone,
is a method slot or not. Similarly, the method getPreferredSize in the in-
terface DrawingView is defined for being compatible with Swing; such design
intention is not available in the interface DrawingView.

To sum up, in general using method slots instead of implementing the
Observer pattern can decrease the number of lines of code since the pattern
code for maintaining the observer list and iterating the observers for sending
the notification can be removed. The observer interface can be preserved if
it is necessary to ensure the consistency among observers, and the number
of lines of the subject interface might slightly increase due to the event dec-
larations. There are 484 source files and 71,721 lines of code in JHotDraw.
In the DominoJ version, 30 out of 484 files are modified and the number of
lines of code becomes 71,374; 347 lines are reduced. If we only take the files
involving in the 8 subject-server pairs into account, 29 out of 38 files are
modified for the Observer pattern and the number of lines of code is reduced
from 10,999 to 10,633; 366 lines are reduced in the DominoJ version.

3.5.3 The aspects in AspectTetris

To evaluate how DominoJ can be used for the aspect paradigm in practice,
an AspectJ program, AspectTetris, is rewritten as a case study. Aspect-
Tetris is a Tetris game, which contains two parts: the main concern and the
aspects. The author of the program first implemented the main concern in
Java without thinking how to add the aspects later, and implemented the
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aspects to add several functionalities. AspectTetris shows several typical us-
age of pointcuts and advices. In this subsection the aspects are rewritten to
the DominoJ version.

The 8 aspects defined in AspectTetris are summarized as shown in Ta-
ble 3.12. The first one, TestAspect, is a typical aspect showing a log message.
The second one, DesignCheck, is used to check if the specific methods and
the constructor are called from a proper class or package. The purpose of
the two aspects in the Aspects.Gui package, GameInfo and Menu, is to extend
the GUI of the game. The two aspects in the Aspects.Highscore, Counter and
Levels, count the deleted lines and add the concept of levels to the game. As
to the two aspects in the Aspects.Logic package, NewBlocks and NextBlock,
they extend the types of blocks and show the next block, respectively.

The 8 aspects except DesignCheck can be rewritten by DominoJ. The
aspect DesignCheck uses the pointcut within, and there is no corresponding
construct in DominoJ. The result of rewriting AspectTetris to the DominoJ
version is shown in Table 3.13, where the corresponding constructs and the
lines of code are listed.

Generally, the AspectJ code can be rewritten by the following steps. First
rewriting replace the aspect declaration with the class declaration. Taking the
example of TestAspect, which attaches an advice for printing a log message
before the method loadImage in the class TetrisImages. The declaration of
TestAspect looks like:

public aspect TestAspect {
:

}

It can be rewritten by replacing aspect with class:

public class TestAspect {
:

}

The next step is moving the body of advices into method slots. The before
advice for the pointcut logPoint in TestAspect:

before(String fileName) : logPoint(fileName) {
System.out.println(thisJoinPoint.getSignature()

+ ", " + fileName);
}

In the DominoJ version it is moved to a method slot:
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Table 3.12: The aspects in AspectTetris

Aspect Name Package Name Description

TestAspect Aspects
show a log message when loading the im-
age files for the background and color
blocks.

DesignCheck Aspects.Development

show a warning message if an object in-
stance of the class BlockPanel is created
neither inside Gui package nor inside As-
pects package.
show a warning message if the meth-
ods declared in the class AspectTetris are
called neither inside AspectTetris itself
nor Aspects package.

GameInfo Aspects.Gui

add an information panel at the left-
hand side for showing the information
added by the aspects Counter, Levels, and
NextBlock.

Menu Aspects.Gui
add a menu ”File”, which contains ”New
Game”, ”Pause”, and ”Exit” items.

Counter Aspects.Highscore
count and show the deleted lines on the
information panel.

Levels Aspects.Highscore

increase the fall speed when the number
of the deleted lines reaches the next level.
show the current level on the information
panel.

NewBlocks Aspects.Logic add two new types of blocks to the game.

NextBlock Aspects.Logic
show the next block on the information
panel.
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Table 3.13: Rewriting the aspects in AspectTetris to the DominoJ version

Aspect Name
Language Constructs LOC

Note
AJ DJ AJ DJ

TestAspect

aspect
call
args
before
thisJoinPoint

ˆ=
constructor
$predecessor
$retval

17 22
In DominoJ $retval needs
to be returned.

DesignCheck
aspect
call
within

N/A 16 N/A
within is not available in
DominoJ.

GameInfo

aspect
execution
before
thisJoinPoint

ˆ=
constructor
$predecessor

33 33

Menu

aspect
execution
target
after
before
thisJoinPoint

ˆ=
+=
constructor
$predecessor

65 67

Counter

aspect
call
execution
after
before

ˆ=
+=
constructor
$predecessor

60 68

Levels

aspect
call
execution
target
args
set
after
before

ˆ=
+=
constructor
$predecessor

60 64
set is not available in
DominoJ, so select the only
one method slot manually.

NewBlocks

aspect
call
args
get
around
proceed

+=
=
constructor
proceed

101 102

+= is used to bind method
slots in the constructor.
get is not available in
DominoJ, so a getter must
be declared.

NextBlock

aspect
call
execution
after
around

+=
=
constructor

47 52

AJ: the AspectJ version DJ: the DominoJ version
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public static Image logPoint(String fileName) {
System.out.println($predecessor + ", " + fileName);
return $retval;

}

Here the method slot is given the name of the pointcut, logPoint, to make it
easy to understand. Here the usage of the reflection in AspectJ, thisJoinPoint,
must be replaced since the reflection is not supported in DominoJ. In this
example we simply print out the object instead of the signature of method
slot. Note that in DominoJ the return value must be always returned. If
there is no need to change the return value, just simply returning $retval.
As to the parameters, in AspectTetris fileName comes from the pointcut
declaration logPoint:

pointcut logPoint(String fileName)
: call(* TetrisImages.loadImage(String))

&& args(fileName);

This example is easier to describe in DominoJ since the argument passing is
not complicated; the signatures of loadImage and logPoint are the same:

public static void init() {
((TetrisImages)$predecessor).loadImage

ˆ= TestAspect.logPoint;
}

The operator ˆ= works as attaching a before advice to the join point. The
binding is put into a static method slot for being bound to the constructor:

static { TetrisImages.constructor ˆ= TestAspect.init; }

It means that the method slot init must be called before the constructor when
an object instance of TetrisImages is created. Here the operator ˆ= is used
rather than the operator += since loadImage is called in the constructor and
thus logPoint must be bound to loadImage before executing the constructor.
Note that in this example there is no need to create different aspects for
different TetrisImages object instances, so we simply use the modifier static
for logPoint and do not create any object instances of TestAspect.

Similarly, the other aspects except DesignCheck can also be rewritten by
the steps discussed above. The aspects using complicated pointcuts such as
within or cflow cannot be rewritten. As shown in Table 3.13 the DominoJ
version use less constructors but the number of lines of code slightly increases;
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it needs an additional static initializer for binding to the constructor. This
table also shows the mapping between advices and operators: after and +=,
before and ˆ=, around and =. Furthermore, in AspectTetris the difference of
using call or execution can be ignored. The proceed calls are the same, but
target/args is replaced with $predecessor. On the other hand, calling getThis()
on thisJoinPoint can be replaced with $predecessor, but other calls such as
getSignature() cannot be rewritten. Since the field pointcuts in AspectJ are
not available in DominoJ, getter and setter method slots must be declared
rather than using get/set directly. For example, the pointcut get is used in
the aspect NewBlocks and an around advice is attached to it:

pointcut numberOfTypes()
: get(static int Blocks.NUMBEROFTYPES);

int around() : numberOfTypes() {
return 9;

}

When Blocks.NUMBEROFTYPES is read, the around advice is executed and
9 is returned. In the DominoJ version a getter method slot for the field
Blocks.NUMBEROFTYPES must be declared inside Blocks and replacing all
read access with the getter call.

public class Blocks {
:

public static int getNumberOfTypes() {
return NUMBEROFTYPES;

}
}

Then binding the method slot that returns 9 to the getter method in New-
Blocks:

public class NewBlocks {
static { Blocks.constructor += NewBlocks.init; }
public static void init(Object[] args) {

:
Blocks.getNumberOfTypes = NewBlocks.getNumberOfTypes;

}
public static int getNumberOfTypes() {

return 9;
}
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:
}

For the pointcut set a setter method slot can also be declared and replacing
all write access with the setter call. However, in the aspect Levels there is
only one method slot, Counter.addLines, writing the field Counter.totalLines.
In this case it is possible to manually select addLines and bind the method
slot as the advice:

Counter.addLines += Levels.deleteLines;

where the method slot Levels.deleteLines is rewritten from the advice attached
to the pointcut set.

This case study shows a general usage of aspects in practice but not the
complicated usage in enterprise software frameworks since the pointcuts for
control flows are not used. However, AspectTetris demonstrates a typical
usage of aspects that extend the functionalities of a program without modi-
fying the code of the original version, and rewriting AspectTetris shows that
DominoJ satisfies the needs in most cases.

3.6 Related work

The delegation introduced by C# [54] allows programmers to declare an
event, define its delegate type, and bind a corresponding action to the event.
Event composition is also supported by adding a delegate to two or more
events. Although the delegate interface hides the executor from the caller,
implicit events are not supported. The event must be triggered manually
when the change happens. However, C# is able to emulate DominoJ using an
unusual programming style: declaring an additional event for every method
and always triggering the event rather than the method. From the point
of view, a delegate is very similar to a method slot except the operator +=
in C# copies the handlers in the event but not creates a reference to the
event. However, as in EScala, events and methods are still separate language
constructs. Supporting by only one construct means that programmers do
not need to decide between using such an unusual style or a normal style
at the design stage whether newer modules might regard those methods as
events or not. Furthermore, it is annoying that event fields and methods
in C# cannot share the same name. Another disadvantage is that we have
to ensure that there is at least one delegate for the event before triggering
it. Otherwise it will raise an exception. This is not reasonable from the
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viewpoint of the event mechanism since it just means no one handles the
event. In DominoJ no handlers for an event does not raise an exception and
the one that triggers an event on a method slot is unaware of handlers.

There are a number of research activities on the integration of OOP and
the aspect paradigm. Those research use a single dispatch mechanism to
unify OOP and the aspect paradigm and reveal that the integration makes the
model clearer, reusable, and compositable. Delegation-based AOP [35, 75]
elegantly supports the core mechanisms in OOP and the aspect paradigm
by regarding join points as loci of late binding. The model proposed in [36]
provides dedicated abstractions to express various object composition tech-
niques such as inheritance, delegation, and aspects. The difference is that
DominoJ integrates the event-handler paradigm and the aspect paradigm
based on OOP. Another difference is that we propose a new language con-
struct rather than a machine or language model, which makes it compatible
with existing object-oriented languages such as Java. Other work such as
FRED [68], composition filters [5], predicate dispatching [25], and GluonJ
[10] can also be regarded as such integration work.

The method combination in Flavors [8] and CLOS [20] makes related
methods easy to combine but not override. By default the combined method
in Flavors first calls the before methods in the order that flavors are com-
bined, following by the first primary method, then the after methods in the
reverse order. The return value of the combined method is supplied by the
primary method, while the return values of the before and after methods
are ignored. Similarly, CLOS provides a standard method combination for
generic functions. For a generic function call, all applicable methods are
sorted before execution in the order the most specific one is first. Besides
the primary, before, and after methods, CLOS provides the around methods
and call-next-method for the primary and around methods. From the view-
point of method combination, the default closure of a method slot looks like
a primary method that can be dynamically added to other method slots as
a before or after method, and even as an around method by assigning to the
target method slot then using proceed as call-next-method. It is also easier to
express the method combination as a hierarchy in DominoJ.

With regard to the event mechanism, several research activities are de-
voted to event declaration. Ptolemy [70] is a language with quantified and
typed events, which allows a class to register handlers for events, and also
allows a handler to be registered for a set of events declaratively. It has
the ability to treat the execution of any expression as an event. The event
model in Ptolemy solves the problems in implicit invocation languages and
aspect-oriented languages. EventJava [27] extends Java to support event-
based distributed programming by introducing the event method, which are
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a special kind of asynchronous method. Event methods can specify con-
straints and define the reaction in themselves. They can be invoked by an
unicast or broadcast way. Events satisfying the predicate in event method
headers are consumed by a reaction. Context-aware applications can be ac-
commodated easily by the mechanism. Both the two research make events
clear and expressive, but they do not support implicit events, which is one
of the most significant properties as an event mechanism, whereas Domi-
noJ supports it. Moreover, all events in their model are class-based, so that
events for a specified object have to be filtered in the handlers. The bind-
ing in DominoJ is object-based, so it can describe the interaction between
objects more properly.

On the other hand, several research support the event-handler paradigm
upon the aspect paradigm. ECaesarJ [62] introduces events into aspect-
oriented languages for context-handling. The events can be triggered explic-
itly by method calls or defined by pointcuts implicitly. EventCJ [40] is a
context-oriented programming language that enables controlling layer acti-
vation modularly by introducing events. By declaring events, we can specify
when and which instance layer is activated. It also provides layer transition
rules to activate or deactivate layers according to events. EventCJ makes
it possible to declaratively specify layer transitions in a separate manner.
Comparing with DominoJ, using events in the two languages may beak mod-
ular reasoning since their event models rely on the pointcut-advice model.
Furthermore, events are introduced as a separate construct from methods.

Flapjax [53] proposes a reactive model for Web applications by intro-
ducing behaviors and the event streams. Flapjax lets clients use the event-
handler paradigm by setting data flows. The handlers for an event can be
registered in an implicit way. However, unlike other event mechanisms, it re-
quires programmers to use a slightly different event paradigm. The behavior
of DominoJ is more similar to the typical event mechanism while it has the
basic ability for the aspect paradigm as well.

Fickle [22] enables re-classification for objects at runtime. Programmers
can define several state classes for a root class, create an object at a certain
state, and change the membership of the object according to its state dy-
namically. With re-classification, repeatedly creating new objects between
similar classes for an existing object can be avoided. Both Fickle and Domi-
noJ allow to change the class membership of an object at runtime, so other
objects holding the identity of the object can be unaware of the changes. The
difference is that Fickle focuses on the changes between states while Domi-
noJ focuses on the effect of calling specified methods. Fickle provides better
structural ability such as declaring new fields in state classes. However, if the
relation between states is not flat and cannot be separated clearly, program-
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mers still have to maintain the same code between state classes. The common
code to only part of states can be gathered up into one class in DominoJ.
Furthermore, DominoJ is easier to use for the event-handler paradigm.

The lambda expressions [66] will be introduced in Java 8 as a new feature
to support programming in a multicore environment. With the new expres-
sion, declaring anonymous classes for containing handlers can be eliminated.
The lambda expression of Java 8 is a different construct from methods but
method slots can be regarded as a superset of methods.

3.7 Summary

In this chapter we showed how to use a single generic construct to sup-
port multiple paradigms. The implementations of OOP, the event-handler
paradigm, and the aspect paradigm can be supported by the single generic
construct named method slots. We successfully made it possible to support
more than two paradigms by generic constructs. The idea of method slots
comes from the methods in JavaScript and the similarity among the method
calls in OOP, the handler calls in the event-handler paradigm, and the advice
calls in the aspect paradigm. Method slots are simple and flexible.

How method slots support the three paradigms was discussed in detail.
We presented a Java-based language named DominoJ to show how method
slots can be introduced in an OO language. For the support of OOP, the GoF
design patterns were rewritten by DominoJ to show that method slots can
replace methods and provide better modularity. For the support of the event-
handler paradigm and the aspect paradigm, we analyzed their dedicated
constructs and discussed the coverage of expressive ability of method slots.
Although the expression of method slots is not as rich as other languages, it
is much simpler and able to express most functionality in the two paradigms.

We also showed the feasibility by implementing a prototype compiler and
running preliminary microbenchmarks and the DaCapo benchmark suite.
How method slots can be used in practice was shown by case studies.
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Chapter

4
An Extension for Supporting the

Reactive Paradigm

As we presented in the previous chapter, method slots are very simple and
flexible. In this chapter we demonstrate the process of extending method
slots to support one more paradigm—the reactive paradigm, which recently
attracts a lot of attentions from OOP community. First we find that the
reactive paradigm is very similar to one of the paradigms that method slots
already support: the event-handler paradigm. By discussing the reactive
paradigm from the viewpoint of the event-handler paradigm, we can under-
stand what the major difference is and what existing event mechanisms lack
of. Then we propose a very small extension to method slots, which only
adds a new operator to satisfy the requirement for emulating the reactive
paradigm by the event-handler paradigm.

4.1 Introduction

Reactive programs attract a lot of interest over the past few years. For
example, an application developed for mobile devices must respond to users’
input and update the status according to hardware signals. Such reactive
programs need smooth and immediate response, thus polling style is not
preferred. A number of frameworks and research activities have shown that
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the event-handler paradigm is a promising approach to implementing reactive
programs with OO design. However, using an event-based language such as
C# [54] to implement reactive programs needs a lot of explicit bindings
and triggers due to the lack of event composition. Even using a language
supporting event composition such as EScala [32] or DominoJ [93] we still
need to enumerate the lower-level events for composing a higher-level event.

On the other hand, in another approach to implementing reactive pro-
grams, functional-reactive programming (the reactive paradigm) [24, 61, 88,
89, 90, 53], the propagation of changes is implicit. The behaviors in functional-
reactive languages are time-varying values, which cause the re-evaluation of
all expressions reading them when their values change. Maybe we can regard
the reactive paradigm as a kind of the event-handler paradigm: an event is
pre-defined for every behavior and all expressions reading a behavior are the
handlers bound to the pre-defined event for that behavior. However, unlike
the event-handler paradigm, the reactive paradigm does not fit OO design
[74]. This observation led us to develop a mechanism to automatically select
events for a higher-level event as what the predicate pointcuts in the aspect
paradigm do. The predicate pointcuts such as cflow in AspectJ select join
points for a pointcut according to the given rule. A predicate-based defi-
nition of higher-level events could help to reduce the explicit bindings for
event composition and make it easier to implement reactive programs in the
event-handler paradigm.

Our contributions presented in this chapter are two-fold. First, we pro-
pose a new kind of predicate-based definition to select events for a higher-level
event by inference, present its semantics with an implementation, and give a
comparison between existing definitions. As far as we know, such an infer-
ence for predicates has not been introduced for defining higher-level events
yet since existing predicates are used to filter events, for example the one
in EventJava [27]. Second, we demonstrate how the definition can be used
to write reactive programs and compare it with the reactive paradigm in
examples.

4.2 Emulating the reactive paradigm by the event-
handler paradigm

This section clarifies the differences between the reactive paradigm and the
event-handler paradigm, and points out the lack of inference rules for event
composition in current event mechanisms. We first use the reactive paradigm
and the event-handler paradigm to implement a typical example of reactive
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programs, the spreadsheet program, to show the similarities between the two
paradigms. Then we discuss the difference between the two implementa-
tions and reveal the possibility of emulating the reactive paradigm by the
event-handler paradigm. We can regard the reactive paradigm as a kind of
event-handler paradigm, the event composition of which is automatic. In
other words, the events for a higher-level event are automatically selected by
inference in the reactive paradigm. Then we discuss the event composition
in existing event mechanisms to show that current event mechanisms lack
such an inference rule for event composition.

4.2.1 An example of the reactive paradigm

A typical example of reactive programs is the spreadsheet program. All data
and expressions are stored in cells and sheets, and formulas are also provided
for complex calculation. Figure 4.1 shows an example of spreadsheets, where
B1 and C1 are given constant values: 2 and 1 respectively, and A1 are given
an expression “B1 + C1”. Whenever B1 or C1 is changed, A1 will be updated
automatically. Implementing such reactive programs is very easy in a lan-
guage supporting the reactive paradigm. For example, Flapjax [53] is such a
language based on JavaScript and designed for Web applications, which gives
the behaviors and event streams to model reactive programs. The behavior
is a time-varying value, and its change can cause all expressions reading it to
be updated. Listing 4.1 shows the spreadsheet example, which is composed
of HTML tags and the Flapjax code. In Line 2–11 we first use the tags table
and input to draw a sheet which has three cells named A1, B1, and C1, and
then assign the values to the cells in the function loader() as shown in Line
16–19. Here the functions extractValueB and insertValueB are the ones pro-
vided by the Flapjax library for getting and setting the value of a behavior
to an HTML element. In Line 16–17 the values of the cells B1 and C1 are
extracted as behaviors and stored in variables b1 and c1, respectively. Line
18–19 calculate the result of “b1 + c1”, assign it to another variable a1, and
insert the behavior a1 to the cell A1. Note that Line 18 is a typical expression
in the reactive paradigm, where a new behavior can be got by simply adding
the behaviors b1 and c1. It looks like calculating the sum of constant values,
but the meaning is different—the value of a1 is always equal to the sum of
b1 and c1. However, the reactive paradigm does not fit OO design due to
the lack of the support to complicated structures and mutable objects; the
reactive paradigm is originally introduced in functional programming. For
example, if b1 and c1 are objects of non-primitive types, creating a new ob-
ject for a1 every time rather than incrementally updating the values inside
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A1 =B1+C1

A B C

1 3 2 1

2

Figure 4.1: An example of spreadsheet

the object makes it inefficient [74]. This makes it difficult to integrate the
reactive paradigm with OOP.

4.2.2 The event-handler paradigm can do the same thing

The event-handler paradigm can also be used to implement reactive pro-
grams. Programmers may define noteworthy changes as events and bind
proper handlers for them. When the changes happen, the handler will be ex-
ecuted automatically. To implement the spreadsheet program by the event-
handler paradigm, we can prepare two events for the changes of the fields
b1 and c1, move the assignment “a1 = b1 + c1” to a method, and bind the
method as a handler to the two events. Here we demonstrate how to use
DominoJ presented in Chapter 3, which replaces the methods in Java with
method slots and gives the assignment operators for method slots, to im-
plement the spreadsheet example as shown in Listing 4.2 (The source code
of IntCell is shown in Listing 4.3). Note that those method-like declarations
are method slot declarations, and the operator += used in Line 13–15 means
that the body of the method slot at the right-hand side should be executed
after the left one is called. In other words, the calls to b1.setValue and
c1.setValue are two events, this.changed is a higher-level event composed of
the two events, and this.update is the handler for this.changed. Note that
unlike other event-based languages events and method calls (a.k.a. triggers)
are different entities, in DominoJ all method slot calls are automatically re-
garded as events. Since this.changed is an empty method slot (no default
closure is associated), a call to this.changed makes nothing happen except a
successive call to the handler. When the values of b1 or c1 is changed, the
statement in the method body of this.update will be executed again.
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1 <body onload="loader()">
2 <table width=200>
3 <tr><th>A1</th>
4 <th>B1</th>
5 <th>C1</th>
6 </tr>
7 <tr><th><input id="A1" size=2 value="0" /></th>
8 <th><input id="B1" size=2 value="0" /></th>
9 <th><input id="C1" size=2 value="0" /></th>

10 </tr>
11 </table>
12 </body>
13

14 <script type="text/flapjax">
15 function loader() {
16 var b1 = extractValueB("B1");
17 var c1 = extractValueB("C1");
18 var a1 = b1 + c1;
19 insertValueB(a1, "A1", "value");
20 }
21 </script>

Listing 4.1: Using Flapjax to implement the spreadsheet example

1 public class PlusSheet extends Sheet {
2 private IntCell a1=null, b1=null, c1=null;
3 public PlusSheet() {
4 super(2, 3);
5 setHeaders("A1", "B1", "C1");
6 a1 = new IntCell(0);
7 b1 = new IntCell(0);
8 c1 = new IntCell(0);
9 add(a1);

10 add(b1);
11 add(c1);
12 pack();
13 b1.setValue += this.changed;
14 c1.setValue += this.changed;
15 this.changed += this.update;
16 }
17 public void changed(int v);
18 public void update(int v) {
19 a1.setValue(b1.getValue() + c1.getValue());
20 }
21 public static void main(String[] args) {
22 PlusSheet p = new PlusSheet();
23 p.show();
24 }
25 }

Listing 4.2: Using DominoJ to implement the spreadsheet example
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1 public class IntCell {
2 private int value = 0;
3 public void setValue(int v) {
4 this.value = v;
5 }
6 public int getValue() {
7 return this.value;
8 }
9 }

Listing 4.3: The source code of IntCell

4.2.3 The major difference between the two paradigms

Such an example of reactive programs implemented by the event-handler
paradigm works well but is not satisfying. The explicit bindings for event
composition cannot be avoided. In this example the definition of the higher-
level event this.changed clearly shows the design intention that it abstracts all
events that affect the output of this.update, but which events it is composed
of have to be manually specified. In other words, we have to check the body
of update to find out the two events b1.setValue and c1.setValue by ourselves
and explicitly specify them in the bindings. It means that we cannot write
such explicit bindings without the knowledge about the implementation of
update. If the implementation of update is modified, we have to carefully
check the bindings for this.changed. Unfortunately, the bindings might be
placed far from the implementation of update and not easy to maintain.

The reactive paradigm can be regarded as a kind of the event-handler
paradigm without the explicit bindings for event composition. A handler for
re-evaluating expressions is bound to some sort of higher-level events, which
are automatically composed by inference through the behaviors. Program-
mers do not have to enumerate the events behind a higher-level event and
bind them to the higher-level event individually. Furthermore, there is no
need to bind the handler to the higher-level event. Instead, a handler con-
taining the expression is pre-defined, and an inference rule is implicitly given
to automatically select the events for composing the higher-level event.

4.2.4 The definitions of higher-level events in existing

event mechanisms

As far as we know, there are three types of definitions of higher-level events
in existing event mechanisms: enumeration-based definition, pattern-based
definition, and predicate-based definition. The three types of definitions have
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which use

events are runtime languages preferred when

selected is info?

enumeration-based explicit no
AspectJ, EScala,
DominoJ, . . .

the number of
events is small

pattern-based implicit no
AspectJ, Ptolemy,
. . .

the naming of
events is well-
formed

predicate-based implicit yes AspectJ, . . .
the event com-
position is com-
plicated

Table 4.1: A comparison among the three types of definitions

different merits and demerits, thus are preferred in different cases. Table 4.1
is a comparison among the three types of definitions. Note that here we
classify the pointcuts in AspectJ into the predicate-based definition since we
can use AspectJ as an event mechanism. As we discussed in Section 3.2 and
Section 3.4.8, the implementations of the event-handler paradigm and the
aspect paradigm are very similar, though the two paradigms are developed
to resolve different issues. Pointcut declarations are similar to event decla-
rations, and thus the join points selected by a pointcut declaration can be
regarded as the events selected by an event declaration.

Which events are selected in the enumeration-based definition is explicit,
while it is implicit in the pattern-based definition and the predicate-based
definition. The enumeration-based definition and the pattern-based defini-
tion do not use runtime information, but the predicate-based definition uses.
Here we only discuss the three pure definitions, but a hybrid definition is also
possible, for example use patterns in a predicate-based definition.

Enumeration-based definition

The enumeration-based definition is the most primitive one for defining a
higher-level event, so that it is usually supported in an event mechanism
which supports higher-level events. To define a higher-level event program-
mers have to enumerate all lower-level events that the higher-level event de-
pends on. The enumeration pointcuts in AspectJ [45], the event composition
in EScala [32] and plain DominoJ can be classified as the enumeration-based
definition. For example, suppose that we have a Point class in Java:

public class Point {
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private int x, y;
public int getX() { return x; }
public int getY() { return y; }
public void setX(int nx) { x = nx; }
public void setY(int ny) { y = ny; }

}

In AspectJ we can define a higher-level event (named a pointcut) moved in
an aspect, which depends on setX and setY:

public aspect Update {
:

pointcut moved():
execution(void Point.setX(int))
|| execution(void Point.setY(int));

}

Similarly, using EScala we can define moved inside the Point class:

public class Point {
:

event moved[Unit] = after(setX) || after(setY);
}

Note that here we do not discuss the difference of the design philosophy
between languages such as object-based or class-based, more declarative or
more dynamic; we focus on how they select events for composing a higher-
level event. In DominoJ we can declare an empty method slot moved inside
the Point class:

public class Point {
:

public void moved(int v);
}

and let it be triggered by setX and setY:

public Point() {
:

this.setX += this.moved;
this.setY += this.moved;

}
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Which events are selected in such an enumeration-based definition is explicit
and easy to control. However, modifying it is error-prone. Suppose that we
are going to port the Point class from 2D to 3D and thus a new method
(or method slot in DominoJ) is necessary: setZ. For every higher-level event
that depends on setX and setY we have to check if setZ should be added.
The enumeration-based definition is preferred when the dependency is not
complicated and the number of lower-level events is not large.

Pattern-based definition

The examples of pattern-based definition include the wildcard expression for
pointcuts in AspectJ and the quantified, typed events in Ptolemy [70]. It is a
solution to avoid enumerating lower-level events by using patterns to match
the name of lower-level events. Type checking is also used along with lexical
matching for improving the safety of selection. For example, we can rewrite
the above example to the pattern-based definition in AspectJ:

public aspect Update {
:

pointcut moved():
execution(void Point.set*(int));

}

This definition is shorter than the enumeration version of AspectJ. Further-
more, by using a wildcard the new method setZ mentioned above can be
implicitly included. However, lexical matching is not always good to show
the design intention. If we define another method setColor which also takes
an integer as the argument, setColor will be unexpectedly included in moved.
In Ptolemy we can declare a higher-level event (event type) using the keyword
evtype first:

int evtype Moved { ... }

and use the keyword event to define primitive events with the event type
Moved in methods:

public class Point {
:

public void setX(int nx) {
x = nx;
event Moved { ... }

}
}
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To bind a handler, for example print, to the higher-level event Moved:

public class Update {
:

public void print { ... }
when Moved do print

}

The event selection in Ptolemy might be classified as the pattern-based def-
inition since the primitive events are selected by name and type. In the
pattern-based definition, which events are selected is implicit since they are
not explicitly listed. It is preferred when there are a number of similar meth-
ods and the naming scheme of the methods is well-formed.

Predicate-based definition

The predicate-based definition allows programmers to use a set of constraints
as a predicate for the definition of a higher-level event. Unlike the enumeration-
based definition and the pattern-based definition, the predicate usually needs
runtime information to select events. The event method introduced in Even-
tJava [27] is another example of predicate-based definition, but it is used
for filtering primitive events. In AspectJ several predicate pointcuts such
as cflow, within, and args are given to use with other pointcuts. The predi-
cate pointcuts in AspectJ cannot be used alone since they only filter selected
join points rather than select join points directly. In general the design in-
tention of predicate-based definitions is more clear since the predicate is a
description of the common ground among lower-level events rather than the
names of lower-level events. This is the reason why we decide to introduce a
kind of predicate-based definition rather than a pattern-based definition to
DominoJ.

The reactive paradigm can be regarded as an interesting example of the
predicate-based definition if we regard the reactive paradigm as an event
mechanism. The reactive paradigm provides a kind of predicate-based defi-
nition with an inference rule. In other words, in the reactive paradigm there
is a implicit predicate used to select events for composing the higher-level
event, the description of the predicate is automatically defined by inference.
In the reactive paradigm a higher-level event is pre-defined for all variables,
the definition of which is an implicit predicate that all write access to a vari-
able are selected as lower-level events. Furthermore, all expressions that read
the variable are the implicit handlers for the pre-defined higher-level event.
When a variable is written in an expression, all the expressions that read the
variable are automatically re-evaluated.
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4.2.5 The lack of inference rules

To emulate the reactive paradigm by the event-handler paradigm, we need a
new kind of predicate-based definition which can work as the inference rule
in the reactive paradigm. The event composition in the reactive paradigm
can be classified into the predicate-based definition if we regard the reactive
paradigm as a kind of the event-handler paradigm. However, the predicate-
based definition in the reactive paradigm is more implicit and automatic:
the event composition is done by inference rather than an explicit predicate
specified by programmers. For example, we can assume that there are two
lower-level events selected to compose a higher-level event for the behavior
a1 by inference in Listing 4.1—the two lower-level events are the changes of
the behaviors b1 and c1. In Listing 4.2 the higher-level event is this.changed
and the two lower-level events b1.setValue and c1.setValue. Indeed the event
composition in this example is not complicated since the higher-level event
only consists of two lower-level events, but it could be be very complicated
if the behaviors b1 and c1 depend on other behaviors. If we can apply the
inference rule in the reactive paradigm to the event-handler paradigm, we
can make the event composition automatic and implicit. Such an inference
rule makes it possible to emulate the reactive paradigm by only binding the
handler to the higher-level event.

4.3 ReactiveDominoJ

We propose the inference-based definition, a new kind of predicate-based defi-
nition of higher-level events for the event-handler paradigm, to automatically
select events. With the inference-based definition programmers may use the
event-handler paradigm with the idea inside the reactive paradigm and reuse
existing OO libraries. As far as we know, such an inference-based definition of
higher-level events has not been introduced into the event-handler paradigm
yet.

4.3.1 Using DominoJ for the event-handler paradigm

In this subsection we quickly go through how to use DominoJ for the event-
handler paradigm. As we discussed in Section 3.4.5 a method slot can be used
as both an event and a handler in the event-handler paradigm. The call to a
method slot is an event, and other method slots can be wrapped in closures
and added as a handler to the array of that method slot. The assignment
operator += provided by DominoJ takes two method slots, creates a closure
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for calling the right one, and then appends to the end of the left one’s array.
As shown in Line 13 of Listing 4.2, a closure calling this.changed will be
wrapped in a closure as shown below:

void (int v) -> {
this.changed(v);

}

and appended to b1.setValue; for all possible combinations of overloaded
setValue and changed. When b1.setValue is called, the default closure of
b1.setValue is executed and then this.changed is called with the same argu-
ments. Other assignment operators provided by DominoJ include the opera-
tor ˆ= for inserting the created closure at the beginning of the left one’s array,
the operator -= for removing such closures from the left one’s array, and the
operator = for removing all closures and adding the created closure to the
left one’s array. Note that the method slots at both sides of the assignment
operator must share the same type.

4.3.2 The braces operator for the inference-based defini-

tion

To provide a new kind of predicate-based definition, the inference-based def-
inition, we propose an extention of DominoJ, which is named ReactiveDomi-
noJ, for describing reactive programs. A new operator, the braces operator
{}, is introduced in ReactiveDominoJ to support the inference-based defini-
tion of higher-level events for method slots. For a method slot, the braces
operator selects all method slots on the owner object that might affect its
output through the access to the fields on the owner object. For example,
the braces operator on the method slot update in Listing 4.2

{p.update}

selects the method slots b1.setValue and c1.setValue. Using the braces op-
erator with the assignment operators supported by plain DominoJ can add
or remove a closure to multiple method slots at once. For example, the
statement:

{p.update} += p.update(0);

adds a closure that calls p.update(0) to both b1.setValue and c1.setValue.
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ReactiveDominoJ makes the binding syntax in DominoJ more generic
from the viewpoint of the event-handler paradigm by providing the braces
operator, which takes only a method slot and can only be used at the left-
hand side of the assignment operators supported by plain DominoJ. The
syntax of using the assignment operator such as += operator in DominoJ is
extended as shown below:

⟨event⟩ ⟨assignment operator⟩ ⟨handler⟩;

where the ⟨assignment operator⟩ can be =, ˆ=, +=, or -= as in DominoJ,
and the ⟨event⟩ is a method slot with or without the braces operator {}. As
in DominoJ, if ⟨event⟩ does not include the braces {}, ⟨handler⟩ is the name
of a method slot like this:

b1.setValue += this.update;

Here no arguments are necessary for this.update since the arguments for call-
ing b1.setValue are given to this.update. If a method slot with the braces is
given to ⟨event⟩, a closure wrapping the method slot at the right-hand side
is added to the method slots selected by the braces operator. For example,

{b1.getValue} += this.update(0);

a closure calling this.update is appended to the method slots selected by
{b1.getValue}. Note that the argument 0 is passed by the closure to this.update
when the closure calls it. The arguments to b1.getValue are not passed.

The semantics of event selection by the braces operator is described in
Listing 4.4, which is pseudocode for showing the steps of selecting events.
First, the braces operator takes a method slot M on the object O, the actual
type of which is A. Suppose that the set of all the super classes of A including
A is SA. The default closure D, which is the one declared in the last class
overridingM in SA, is obtained as well. Then the braces operator investigates
D and finds all the fields f on the owner object that may be read within the
body of D. f includes the fields read only in a conditionally executed block,
such as an else block. Note that only the fields declared in A or the super
classes of A are included. In other words, only the fields on “this” object
are included and other variables such as parameters, local variables, and
the fields on other objects are not taken into account. The braces operator
then selects the method slots m that might write any of f and are declared
in A or the super classes of A, i.e. m must belong to the owner object
O. Furthermore, the braces operator repeats all the above steps for every
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1 procedure select events(O, M) {
2 A = the actual type of class of O;
3 SA = All the super classes of A including A;
4 D = the default closure of M declared in the class
5 which is the last one overrides M in SA;
6 f = the fields which are read in D
7 AND declared in any of SA;
8 m = the method slots which write any of f
9 AND are declared in any of SA;

10 M ′ = the method slots called in D
11 AND belong to the objects held in the fields of O;
12 return m ∪ select events(OM ′ ,M ′);
13 }

Listing 4.4: The semantics of event selection

method slot M’ that is called from D and belongs to an object held in
the fields of O. Note that the search refers to the actual type of O so the
dynamic method dispatch in OOP is correctly traced. For the performance
concern during the investigation for method slots only the default closure of
the method slot is investigated. Investigating all the closures in the method
slot might be a more powerful implementation since the closures added by the
assignment operators at runtime can also be investigated. However, such an
implementation needs to either do all the investigation at runtime or disable
the separate compilation as we will discuss later (Section 4.3.3).

In the semantics of event selection the method slot M can be considered
as the reader of the fields on the same object and the method slots m can
be considered as the writers of those fields. The relation between the reader
method slot M and the writer method slots m can be regarded as a kind
of getter-setter relation through one or more fields on the same object. All
possibly read or written fields in the default closure are clues to select method
slots. The inference-based definition does not care about the lexical relation
and enable N-to-N relation between getters and setters. We assume that fields
are only accessed inside an object and thus the inference fits OO design.

The extended DominoJ, ReactiveDominoJ, can be used to write reactive
programs. The spreadsheet example discussed in Section 4.2 can be rewrit-
ten as shown in Listing 4.5. There are two differences from the DominoJ
version (Listing 4.2). First, the explicit bindings for the event composition
of this.changed are eliminated. Second, the higher-level event this.changed
is omitted as well, and the handler is bound to {this.update} instead of
this.changed. The meaning of {this.update} in Listing 4.5 is the same as
this.changed in Listing 4.2, which is composed of all events that affect the

126 AN EXTENSION FOR SUPPORTING THE REACTIVE PARADIGM



ReactiveDominoJ

1 public class PlusSheet extends Sheet {
2 private IntCell a1=null, b1=null, c1=null;
3 public PlusSheet() {
4 super(2, 3);
5 setHeaders("A1", "B1", "C1");
6 a1 = new IntCell(0);
7 b1 = new IntCell(0);
8 c1 = new IntCell(0);
9 add(a1);

10 add(b1);
11 add(c1);
12 pack();
13 {this.update} += this.update();
14 }
15 public void update() {
16 a1.setValue(b1.getValue() + c1.getValue());
17 }
18 public static void main(String[] args) {
19 PlusSheet p = new PlusSheet();
20 p.show();
21 }
22 }

Listing 4.5: Using ReactiveDominoJ to implement the spreadsheet example

output of this.update. Note that in the ReactiveDominoJ version we remove
the parameter of update since it is not necessary.

To explain the relation among events and handlers, here we use a graph
to describe their dependencies: a node is an event or a handler, and an edge
is a dependency relationship such as a binding. The dependency graph for
this.changed in the DominoJ version is shown in Figure 4.2, which means
that a higher-level event changed depends on two events b1.setValue and
c1.setValue, and the handler is bound to changed. In the DominoJ version we
know which events the higher-level event changed should depend on since we
have the knowledge about the default closure of update and the getter-setter
relation between getValue and setValue. We have to investigate the implemen-
tation of the default closure of update and enumerate all the events behind
this.changed manually. Such a definition of higher-level events is enumerated-
based. The investigation is not easy since the dependency behind the default
clousre of a method slot might change for future maintenance or extension.
In the ReactiveDominoJ version the definition of such a higher-level event is
inference-based. We give the method slot update with the braces operator
as a hint, and let ReactiveDominoJ select the events by inference. Reactive-
DominoJ investigates recursively and selects all the events update depends on
according to the clues such as Figure 4.3 and Figure 4.4. After the binding
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Figure 4.2: The DominoJ version needs the explicit bindings for the event
composition of this.changed
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Figure 4.3: According to the default closure of update, this.update depends
on b1.getValue and c1.getValue

in Line 13 of Listing 4.5 is performed, the dependency graph will be the one
shown in Figure 4.5, where the dashed line is completed by ReactiveDomi-
noJ. In other words, such a definition of higher-level events is inference-based
since the actual bindings are completed by inference.

Some readers might notice that in the ReactiveDominoJ version (List-
ing 4.5) it is also possible to write the following statement in the body of
main rather than the binding in Line 13:

{p.update} += p.update();

The braces operator improves the encapsulation of a class since this man-
ner allows to bind a handler to the events inside the object without directly
touching the fields in that object. The fields in the class can be observed
through getter methods and the observers can be unaware of the implemen-
tation of the class. In this example the fields of PlusSheet, a1, b1 and c1, and
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Figure 4.4: According to Listing 4.3, getValue depends on setValue
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Figure 4.5: The actual bindings are completed by inference
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the field in IntCell, value, do not have to be exposed by declaring as public
while they still can be observed outside.

Listing 4.6 is an example of the event-handler paradigm in DominoJ for
demonstrating how the braces operator selects method slots on different ob-
jects. This example implements a classMeter, which automatically calculates
and prints out the distance between two given Shape objects in the Carte-
sian plane when either the name or the coordinates of the two objects are
changed. Note that a Shape object can be placed on another Shape object
by giving the parent object as the second argument to its constructor, and
its coordinates will be relative to its parent object rather than the origin. In
Shape class and Meter class we define several events and bind handlers to
them as shown in Figure 4.6 and Figure 4.7, respectively. Now we give two
Shape objects s1 and s2, to the Meter object m, where the parent of s2 is s3,
the dependency is a little complicated as shown in Figure 4.8. Whenever the
name or the coordinates of s1, s2, and s3 are modified, m will re-calculate
the distance between s1 and s2 and print out a string. The ReactiveDominoJ
version of this example is shown in Listing 4.7, where all events and explicit
bindings for event composition are replaced with the binding to {this.print}
(Line 39). The braces operator selects writer method slots by tracing the
reader method slots, so programmers do not have to enumerate all the writer
method slots and bind the handler to them manually.

4.3.3 The implementation of the reactive extension

We implemented a ReactiveDominoJ compiler1 to demonstrate the feasibility
of the inference-based definition of higher-level events. As what the DominoJ
compiler does, the ReactiveDominoJ compiler transforms ReactiveDominoJ
code into plain Java code and then compiles into Java bytecode. To im-
prove the performance of selecting method slots in the Java-based language,
ReactiveDominoJ, the selection is splitted into compile time and runtime.
At compile time the compiler generates helper methods for collecting the
method slots and binding a closure to them. Then at runtime the corre-
sponding helper method is called according to the actual type of the owner
object to collect method slots and bind the given closure to them. Note
that a method slot is owned by every instance. It is not shared among the
instances of the same class.

Taking the example of Listing 4.5, the following helper method is gener-

1The prototype compiler of ReactiveDominoJ is available from the project webpage:
http://www.csg.ci.i.u-tokyo.ac.jp/projects/rdominoj/, which is an ex-
tension to the DominoJ compiler and is also built on top of JastAddJ [23].
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1 public class Shape {
2 private Shape parent; private String name;
3 public String getName() {
4 if(parent == null) return name;
5 return parent.getName() + ":" + name;
6 }
7 public void setName(String n) { name = n; }
8 public void renamed(String s);
9 private int x = 0, y = 0;

10 public void setX(int nx) { x = nx; }
11 public void moveX(int dx) { x = x + dx; }
12 public int getX() {
13 if(parent == null) return x;
14 return parent.getX() + x;
15 }
16 public void setY(int ny) { y = ny; }
17 public void moveY(int dy) { y = y + dy; }
18 public int getY() {
19 if(parent == null) return y;
20 return parent.getY() + y;
21 }
22 public void moved(int v);
23 public Shape(String n, Shape p) {
24 parent = p; name = n;
25 setName += renamed;
26 setX += moved; moveX += moved;
27 setY += moved; moveY += moved;
28 if(parent != null) {
29 parent.moved += moved;
30 parent.renamed += renamed;
31 }
32 }
33 }
34 public class Meter {
35 private Shape from, to;
36 public double distance() {
37 double x2 = Math.pow(to.getX()-from.getX(), 2);
38 double y2 = Math.pow(to.getY()-from.getY(), 2);
39 return Math.sqrt(x2 + y2);
40 }
41 public void changed(Object[] args);
42 public void print(Object[] args) {
43 System.out.println("the distance between "
44 + from.getName() + " and " + to.getName()
45 + " is " + distance() + ".");
46 }
47 public Meter(Shape a, Shape b) {
48 from = a; to = b;
49 from.renamed += changed; from.moved += changed;
50 to.renamed += changed; to.moved += changed;
51 changed += print;
52 }
53 }

Listing 4.6: The shape and meter example in DominoJ
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1 public class Shape {
2 private Shape parent; private String name;
3 public String getName() {
4 if(parent == null) return name;
5 return parent.getName() + ":" + name;
6 }
7 public void setName(String n) { name = n; }
8 private int x = 0, y = 0;
9 public void setX(int nx) { x = nx; }

10 public void moveX(int dx) { x = x + dx; }
11 public int getX() {
12 if(parent == null) return x;
13 return parent.getX() + x;
14 }
15 public void setY(int ny) { y = ny; }
16 public void moveY(int dy) { y = y + dy; }
17 public int getY() {
18 if(parent == null) return y;
19 return parent.getY() + y;
20 }
21 public Shape(String n, Shape p) {
22 parent = p; name = n;
23 }
24 }
25 public class Meter {
26 private Shape from, to;
27 public double distance() {
28 double x2 = Math.pow(to.getX()-from.getX(), 2);
29 double y2 = Math.pow(to.getY()-from.getY(), 2);
30 return Math.sqrt(x2 + y2);
31 }
32 public void print() {
33 System.out.println("the distance between "
34 + from.getName() + " and " + to.getName()
35 + " is " + distance() + ".");
36 }
37 public Meter(Shape a, Shape b) {
38 from = a; to = b;
39 {this.print} += this.print();
40 }
41 }

Listing 4.7: The shape and meter example in ReactiveDominoJ
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Figure 4.6: The dependency graph for Shape
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Figure 4.7: The dependency graph for Meter
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Figure 4.8: The dependency between the objects m, s1, s2, and s3
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ated for using the braces operator with the += operator on the method slot
update:

public void update$helper$after(Closure c) {
if(a1 != null) a1.setValue$helper$after(c);
if(b1 != null) b1.getValue$helper$after(c);
if(c1 != null) c1.getValue$helper$after(c);

}

No method slots are selected in this helper method since the fields a1, b1, and
c1, which are read by update, are not written by any method slots in the owner
object. However, the method slots a1.setValue, b1.getValue, and c1.getValue
are called in update, so that the given closure c is passed to the helper methods
for them recursively. The body of the helper method setValue$helper$after is
empty since no fields are read in setValue of IntCell as shown in Listing 4.3.
On the other hand, the helper method getValue$helper$after looks like this:

public void getValue$helper$after(Closure c) {
setValue$after(c);

}

the method setValue$after(c) is a method for appending a closure to the
array of the method slot setValue, which has been generated in the Domi-
noJ compiler. Note that the helper methods setValue$helper$after and get-
Value$helper$after are declared in IntCell. After generating the helper meth-
ods the compiler transforms the following binding:

{this.update} += this.update();

into the call to the helper method:

this.update$helper$after(c);

where c is an anonymous class which extends the Closure interface of Domi-
noJ and calls this.update(). Therefore, at runtime the helper method up-
date$helper$after is called for collecting all method slots and binding the clo-
sure c to them. Note that for all subclasses of PlusSheet that override update
and all subclasses of IntCell that override getValue and setValue, the compiler
generates helper methods for them individually, so that the corresponding
helper method can be called on the object according to the actual type of
the object; the dynamic method dispatch is preserved. Note that in order to
simplify the implementation the ReactiveDominoJ compiler generates helper
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1 procedure transform(O, M, C) {
2 A = the apparent type of class of O;
3 procedure generate helper(A, M, C) {
4 SA = All the super classes of A including A;
5 D = the default closure of M declared in A;
6 f = the fields which are read in D
7 AND declared in any of SA;
8 m = the method slots which write any of f
9 AND are declared in any of SA;

10 M ′ = the method slots called in D
11 AND belong to the objects held in the fields of O;
12 H = method(C) {
13 add C to the array of m;
14 execute H ′

M (C);
15 };
16 declare H in A;
17 }
18 ∀ subclasses A′ of A do generate helper(A′, M, C);
19 replace "{O.M} += C" with "O.H(C)";
20 }

Listing 4.8: The event selection in the ReactiveDominoJ compiler

methods for every method slot in every class. Furthermore, the calls to a
method slot that is not compiled by ReactiveDominoJ are not recursively
investigated.

The pseudocode of how the ReactiveDominoJ compiler generates helper
methods is shown in Listing 4.8. What the procedure generate helper does
is the same as the procedure select events shown in Listing 4.4 except the
compiler generates helper methods for all subclasses of the apparent type
of the given object2. The procedure generate helper adds (suppose that +=
operator is used) the given closure to collected method slots immediately
rather than returns the set of collected method slots. Therefore, the proper
helper method can be selected by the dynamic method dispatch in OOP. As
a consequence, if a method slot is both selected in different helper methods,
it is difficult to avoid binding to the same method slot twice.

The limitation of current implementation The limitation of this implementa-
tion includes endless propagation loops and the changes of objects. Unlike a
spreadsheet program, programmers need to be careful with the propagation

2Current implementation has a defect on selecting writer method slots through the
fields declared in the super classes. A method slot that is declared in the subclass and
writes a protected field declared in the super class is not selected by the braces operator.
We have the plan to fix this implementation issue in the near future.
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loop. In most spreadsheet programs such a propagation loop are usually
resolved by evaluating all cells in a default order: left-to-right or top-to-
bottom, but programming in languages is different. In a ReactiveDominoJ
program, if a field is both read and written in the default closure of a method
slot, using the braces operator on that method slot will refer to itself. When
programmers bind the method slot itself as a handler, the method slot will
trigger itself recursively. For example, suppose there is a method slot calc
using three fields this.x, this.y, and this.z:

public void calc() {
this.x = this.y;
this.y = this.z;

}

where the field this.y is both read and written. If programmers bind calc to
the braces operator on itself:

{this.calc} += this.calc();

every time the field this.y is set, the method slot calc will be executed, and
then set this.y again. In this case, using local variables instead of fields or
splitting calc into two method slots might be possible work-arounds. Another
example of endless propagation loop is the circular reference. If there are two
method slots as shown below:

public void syncXtoY() {
this.x = this.y;

}
public void syncYtoX() {

this.y = this.x;
}

Binding one of them to the braces operator on itself is safe, but if program-
mers bind both of them as follows:

{this.syncXtoY} += this.syncXtoY();
{this.syncYtoX} += this.syncYtoX();

The two statements lead to an endless propagation loop as shown in Fig-
ure 4.9: when the field this.y is set, the method slot this.syncXtoY will be
executed and the field this.x will be set; when the field this.x is set, the
method slot this.syncYtoX will be executed and the field this.y will be set. It
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Figure 4.9: An endless propagation loop

is possible to give some compilation warnings against the possibility of prop-
agation loops like what a modern spreadsheet program does. However, the
loops in a program cannot be exactly determined at compile time. The end-
less propagation loop might only happen under certain conditions at runtime
since the semantics in ReactiveDominoJ does not care about the conditional
branches. Like the recursive call, programmers may explicitly use a propa-
gation loop and then stop it by unbinding the handler when the conditions
are satisfied at runtime.

The second limitation of the implementation is the changes of objects.
The object referred to by a field might be changed after the binding is per-
formed. In that case, the handler is still bound to the previous object rather
than the new one. Such usage is not recommended since it is hard to trace.
For example, suppose that there is a setter method slot setB1 for b1 in List-
ing 4.5 and at first the object held by the field b1 is Ob. Then the method
slots selected by the braces operator in Line 13 of Listing 4.5 include the
setB1 on p and the setValue on Ob. When the object held by b1 is changed
to another object Ob′ by calling the setB1 on p, the handler update() will be
executed and thus has a chance to check if the object held by b1 is the same.
However, the handler is still bound to the setValue on Ob rather than the one
on Ob′ . A possible work-around is to prepare two additional handlers: one
for unbinding the handler update() from Ob before setB1 is called, and one
for rebinding the handler update() to Ob′ after setB1 is called; either by the
compiler or by programmers themselves.

A more powerful implementation As we explained in Section 4.3.2 the seman-
tics of the event selection in current version of ReactiveDominoJ only take
the default closure into account for the performance concern. In this imple-
mentation, only the default closure is investigated for a method slot given
to the braces operator. It is possible to investigate all the closures added to
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the given method slot at runtime if we implement reflection API for method
slots. However, in such an implementation all the selection must be done
at runtime and the performance will not be good. Another solution is to
generate helper methods for all the method slots that might be added the
given method slot. For example, if we use the braces operator on the method
slot this.update as follows:

{this.update} += this.refresh;

and then append a closure calling another method slot logger.debug to this.update
somewhere in the program:

this.update += logger.debug;

It might be possible to find out all the method slots like logger.debug, gen-
erate helper methods for them, and prepare a switch for calling every helper
method in the event selection for {this.update}. If the above statement is
executed, switching on the call to the helper method for logger.debug. Then
it is possible to selects the events selected by logger.debug when selecting the
events for this.update. In other words, not only the default closure but also
the closures calling other method slots in the given method slot are inves-
tigated for selecting the events. As a trade-off the whole program must be
compiled together to find out all the method slots that might be added to
the method slot given to the braces operator; separate compilation is not
available. Such an implementation is much powerful since after using the
assignment to add the closure calling a method slot, we do not have to use
the braces operator for that method slot again as follows:

this.update += logger.debug;
:

{this.update} += this.refresh();
{logger.debug} += this.refresh();

Instead, we can:

this.update += logger.debug;
:

{this.update} += this.refresh();

In the latter one we do not have to apply the braces operator again for
this.refresh. Some readers might notice that investigating all closures in a
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method slot can further improve the modularity when using the braces oper-
ators along with the event-handler paradigm or the aspect paradigm, though
it might be a little slower and disable the separate compilation. In this thesis
we only implement the simple one that investigates the default closure for
showing such an extension to method slots is possible. Implementing such a
powerful one that investigates all the closures in the method slot is included
in our future work.

4.4 Discussion

4.4.1 Preliminary microbenchmarks

In order to measure the overheads of selecting events by the braces operator
at runtime, we run two preliminary microbenchmarks. The first one is to
compare the performance of binding and unbinding a handler to a set of
method slots in DominoJ and in ReactiveDominoJ. The second one is to
measure the cost of tracing a number of objects before the method slot is
selected. We first define a simple class that has a reader method slot and a
writer method slot:

public class MyInt {
private int value = 0;
public int get() { return value;}
public void set(int v) { value = v; }

}

In DominoJ an observer is defined as follows, which binds and unbinds a
handler to the writer method slot repeatedly and calculates the average time.

public class Observer {
public void print(int v) {

System.out.println("print");
}
public static void test() {

MyInt m = new MyInt();
Observer o = new Observer();
int N = 1000000;
long start = System.nanoTime();
for(int i=0; i<N; i++) {

m.set += o.print;
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m.set -= o.print;
}
long stop = System.nanoTime();
System.out.println((stop-start)/N);

}
public static void main(String[] args) { test(); }

}

Then we increase the number of writer method slots from 1 to 9 by adding
new writer method slots to MyInt such as add and lshift. In DominoJ the
binding to the writer method slots are manually enumerated, while in Reac-
tiveDominoJ it is always the same:

{m.get} += o.print();
{m.get} -= o.print();

Note that the handler print in the ReactiveDominoJ version takes no param-
eter. We run the preliminary microbenchmark on the JVM of OpenJDK
1.7.0 25 and Intel Core i7 (2.67GHz, 4 cores) with 8GB memory. The av-
erage time of binding and unbinding a set of method slots in DominoJ and
ReactiveDominoJ is shown in Figure 4.10. The overheads of binding and
unbinding a method slot in DominoJ and in ReactiveDominoJ are 226ns and
421ns, respectively. The difference is due to when the closure for calling the
handler is created. In ReactiveDominoJ the closure must be generated just
before appending to the array for the method slot at the left-hand side due to
the evaluation of the arguments given to the handler. In DominoJ the closure
is prepared in advance and held by a field on the owner object of the han-
dler. Furthermore, in ReactiveDominoJ the closure is passed to the helper
method for the reader method, get in this experiment, and then appended to
the selected method slots, while in DominoJ the closure is appended to the
selected method slots directly.

In the second experiment, MyInt has only one writer method set and it is
changed to have a super class Base:

public class Base {
private Base real = null;
public int get() { return real.get();}
public Base(Base m) { real = m; }

}

Then we modified the body of test so that m will not directly refer to a MyInt
object but indirectly through several Base objects and thus the selection by
the braces operator will trace a chain of Base objects.
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Figure 4.10: The average time of selecting a set of method slots in DominoJ
and in ReactiveDominoJ
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Figure 4.11: The average time of selecting a method slot through a number
of objects in ReactiveDominoJ

MyInt m3 = new MyInt();
Base m2 = new Base(m3);
Base m = new Base(m2);

In this example the number of traced objects is 3. As shown in Figure 4.11
the overheads of tracing are small. Here we only show the data in Reactive-
DominoJ since such selection is not possible in DominoJ.

4.4.2 Comparing with DominoJ

Using the braces operator to select events can avoid binding to all events ex-
plicitly. The merits of inference-based definitions include writing the depen-
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dency among events only once, improving the encapsulation, and simplifying
the event propagation.

Write the dependency once The dependency among events in a typical event
mechanism are usually described twice. As shown in Listing 4.2, once for
calculating values (Line 19) and once for making it automatic (Line 13–14).
In other words, for each dependency programmers have to maintain it in two
places. In ReactiveDominoJ the bindings for all dependencies in a method
slot are reduced to a binding to the higher-level event, so that the number of
lines of source code can be smaller. The maintainability can also be improved
since we do not have to ensure the consistency between the binding and the
calculation. The binding to a method slot with the braces operator is always
the same no matter how the calculation is modified.

Improve the encapsulation The inference mechanism in ReactiveDominoJ im-
proves the encapsulation of a class. In Listing 4.5 the fields are hidden from
the clients of the PlusSheet object, while the clients can bind a handler to
the method slots that might write the fields through the public method slots
using the braces operator. In other words, the fields do not have to be public
and the clients can be oblivious to the implementation details of PlusSheet.

Simplify the event propagation It is also possible to simplify the event prop-
agation since the handler is directly bound to the selected method slots
through the fields behind the higher-level event. Figure 4.12 shows the dif-
ference on how to select the method slots from.setX and from.moveX in List-
ing 4.6 and Listing 4.7. Instead of manually constructing the dependency one
by one (solid lines) the braces operator in ReactiveDominoJ automatically
selects the method slots by tracing the calls and the fields it eventually de-
pends on (dashed lines). A binding to {this.print} will be interpreted as the
bindings to from.setX and from.moveX. On the other hand, in the DominoJ
version the bindings behind changed have to be manually constructed and
the value changes of the fields are propagated through the events from.moved
and this.changed. In other words, the event propagation in a typical event
mechanism is reduced to one step while the abstraction is preserved.

4.4.3 Comparing with AspectJ

The inference-based definition supported by the braces operator in Reactive-
DominoJ is also a kind of predicate-based definition. However, the meaning
of the braces operator is differnt from the predicate pointcuts in AspectJ.
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Figure 4.12: The braces operator infers the fields it eventually depends on
and selects their writer method slots

We can regard event composition as merging multiple sources to a sink; the
sources are lower-level events and the sink is the higher-level event. In that
sense, the predicate pointcuts in AspectJ is used to describe the sources while
the braces operator in ReactiveDominoJ takes a sink as the hint to infer the
sources. For example, a statement in the reactive paradigm that prints the
values of two behaviors x and y (we simply assume that they are variables in
an Point object due to the difference between functional-reactive languages
and OO languages) can be rewritten using AspectJ as shown in Listing 4.9.
The write access to the fields x and y are selected by set pointcut. Then
predicate pointcuts such as target and within can be used to further select
the join points. The ReactiveDominoJ version is shown in Listing 4.10. We
can move advice body to a method slot and use the braces operator to bind
the method slot itself as the handler. The inference-based definition in Re-
activeDominoJ is very implicit and needs a method slot body for inferring
which events to select.

4.4.4 For the reactive paradigm

Behaviors The most important difference between the reactive paradigm and
the event-handler paradigm is that the reactive paradigm supports behav-
iors, which are used to express data flows without any bindings for updating
values. The behaviors work well in functional programming languages since
they are given to a function as the input and affect the output. When the
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1 public aspect Update {
2 :
3 pointcut moved(Point p):
4 (set(int Point.x) || set(int Point.y))
5 && target(p);
6 after(Point p): moved(p) {
7 System.out.println("x=" + p.getX() + ", y=" + p.getY());
8 }
9 }

Listing 4.9: Selecting events for printing two fields in AspectJ

1 public class Update {
2 Point p;
3 :
4 public Update() {
5 :
6 {this.print} += this.print();
7 }
8 public void print() {
9 System.out.println("x=" + p.getX() + ", y=" + p.getY());

10 }
11 }

Listing 4.10: Selecting events for printing two fields in ReactiveDominoJ
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values of the behaviors change, any expressions using the behaviors will be
re-evaluated and the output will be changed. We can regard the behaviors
as a way to select the expressions for re-evaluation. Similarly, the inference-
based definition in ReactiveDominoJ selects the expressions for re-evaluation
according to the states of objects. For example, suppose that we have the
following assignment in a functional-reactive language:

a = b + c;

where a, b, and c are behaviors. The value of a will be assigned again
when the value of b or c is changed. This means that this assignment is
re-evaluated when the values of the behaviors it reads are changed. In other
words, in the reactive paradigm a behavior selects the expressions reading
it and re-evaluates the selected expressions when its value changes. In Re-
activeDominoJ, a field read in the default closure of a method slot can be
regarded as a behavior if we apply that method slot to the braces operator
for defing a higher-level event. For example, there are three fields, a, b, and
c, in the following method slot:

public void updateA() {
a = b + c;

}

then the following binding:

{this.updateA} += this.updateA();

specifies that setting a value to any of the fields read in the default closure of
updateA will cause the evaluation of the default closure of updateA again; even
the value is not changed. Similar to what the reactive paradigm does, the
braces operator selects that expression and re-evaluates it when the values
of the fields it reads change.

However, the effective scope of the “behaviors” in ReactiveDominoJ is dif-
ferent from the behaviors in the reactive paradigm. In a functional-reactive
language a behavior is effective in the whole program. It means that all ex-
pressions reading the behavior are selected and involved in the re-evaluation
caused by the value change of that behavior. In ReactiveDominoJ only the
expressions in the default closure of the method slot bound to itself by the
braces operator are selected and re-evaluated for the value changes of the read
fields. In the example updateA shown above, even we bind the method slot
this.updateA to {this.updateA}, expressions using b or c out of this.updateA
are not re-evaluated when the value of b or c is changed. This design takes
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efforts to control when a field should be a “behavior”. However, it also makes
the design intention simple and clear. Currently all functional-reactive lan-
guages demonstrate their usage in functional programming with small pieces
of code. Applying the behaviors in the reactive paradigm to imperative pro-
gramming languages such as Java might make a program complicated since
fields are not local variables and side effects are massively used. Unlike the
spreadsheet programs, it is hard to define an update order for all expressions
using the same behavior. Arbitrarily updating all expressions using the same
field might cause unnecessary propagation or race condition and then out of
control. In ReactiveDominoJ the “behaviors” must be explicitly specified
and only effective in a limited scope.

Snapshot and lifting Although ReactiveDominoJ needs a binding to let the
fields work as “behaviors”, the transformation between behaviors and con-
stant values can be avoided. Several functional-reactive languages such as
Fran [24] replace constant values with behaviors directly, and other functional-
reactive languages such as Flapjax introduce behaviors as a different type of
variables from constant values. In both the two styles of functional-reactive
languages, the transformation, in other words getting a constant value (snap-
shot) of a behavior and lifting a constant value to a behavior, are necessary.
On the other hand, in ReactiveDominoJ all fields hold constant values and
work like “behaviors” only when we specify the binding. The transformation
between behaviors and constant values is not necessary.

The Time behavior A notable behavior in the reactive paradigm is the time
behavior. In Fran the time behavior is given by a keyword and directly sup-
ported by the language, while in Flapjax it is given by a class and supported
by the library. The time behavior is a first-class object and can be given to
other functions for selecting the expressions in the function for re-evaluation.
In the current version of the ReactiveDominoJ compiler, the time behavior is
not directly available. It might be possible to introduce an inference rule that
selects all expressions involving the call to getting the system time. However,
the time behavior is not absolutely necessary in Java. Programmers may use
the timer and the task as what they do with a typical event mechanism
though the code is more verbose. For example, giving the time behavior to
a function printCurrentTime in Flapjax:

printCurrentTime(timerB(100));

where timerB is the time behavior provided by the Flapjax library, which
holds the value of current time in milliseconds and takes an argument as the
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interval of updating its value, also in milliseconds. In ReactiveDominoJ, we
can use Timer and TimerTask in the Java library to do the same thing:

TimerTask task = new TimerTask() {
public void run() {

printCurrentTime(System.currentTimeMillis());
}

};
new Timer().schedule(task, 0, 100);

Both of them cause the execution of printCurrentTime function with the cur-
rent time every 100 milliseconds.

Event streams Another important concept in the reactive paradigm is the
event stream. Event streams can be naturally represented by a sequence of
events from the same source. In Flapjax we can use the library function
mergeE to combine two event streams such as moveE and dropE, which refer
to mouse movement and mouse dropping respectively, to a new event stream
outputE, which fires when an event from either of them occurs. In DominoJ
and ReactiveDominoJ, merging the two event streams can be described by
the OR composition of two events moved and dropped:

moved += output;
dropped += output;

here we use += operator twice to compose the two events. Whenever moved
or dropped is triggered, the composed event output will be triggered.

Loops and states In the reactive paradigm a behavior is not allowed to refer
to itself for imperatively stepping its state, for example:

c = c + 1

If c is a behavior, the meaning is weird. However, holding a state and stepping
forward is still necessary to a program, for example implementing a counter.
In Elm automatons can hold a state and produce the next state according to
the current state. In Elm an automaton with state can be created as follows:

count = state 0 (\\_ c -> c+1)

The state has an initial value 0, and steps forward when the input is given.
Similarly, in Flapjax event streams can be used to hold snapshots for behav-
iors. For example, counting the number of events that occur in Flapjax:
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mouseMoveE.collectE(0, function(_, count) {
return count+1; });

Then the variable count will be increased according its previous value when
its input is given, i.e. the event stream mouseMoveE happens. The event
streams in the reactive paradigm are mapped to the events in DominoJ/Re-
activeDominoJ, i.e. the calls to method slots, and the above example can be
rewritten as:

// in a certain class
int state_collect = 0;
int collect() { this.state_collect += 1; }
// suppose we have a system library s
s.mouseMove += this.count;

Then every time the call to s.mouseMove happens, this.count is called to step
the state forward.

Re-evaluation There is an important difference between ReactiveDominoJ
and functional-reactive languages: which parts of an expression should be re-
evaluated when a behavior in the expression changes its value. For example
in Flapjax:

x = a + b;
y = c + d;
z = x + y;

According to the semantics of Flapjax y should be not evaluated again when
x is updated. However, in ReactiveDominoJ all expressions in the method
slot are evaluated again. Suppose that the above code are described in a
method slot update, then the braces operator can be used to make the fields
look like “behaviors”:

{this.update} += this.update();

In other words, the unit of re-evaluation in the reactive paradigm is a behavior
while the one in ReactiveDominoJ is the whole block of the closure specified
at the right-hand side of the operator. Using fields and getters/setters could
be a work-around for this drawback. For example, the above code can be
modified as follows:
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// in a certain class
int a=0, b=0, c=0, d=0;
int x = 0;
int getX() { return x; }
void setX() { x = a + b; }
int y = 0;
int getY() { return y;}
void setY() { y = c + d; }
int z = 0;
int update() { z = getX() + getY(); }

// in a certain method
{this.update} += this.update();

where this.setX and this.setY will be selected by the braces operator. Al-
though the body of this.getY will still be evaluated again when this.setX is
called, it simply returns the value of y rather than re-calculate c + d. This
work-around might be helpful to avoid re-evaluation. However, it is not a
good solution for all cases since it forces programmers to break an expressions
into several method slots.

4.5 Related work

Like other research on complex event processing (CEP) [47, 26, 14], Even-
tJava [27] focuses on the events in distributed systems. The event meth-
ods proposed by EventJava allow programmers to define an event with con-
straints on event attributes through predicates. The event defined by an
event method may be triggered for unicast or broadcast. When the event is
triggered, the statements in the body of that event method will be executed
or not according to the predicates. Complex events are also supported by
declaring multiple event method headers in an event method. However, event
methods are some sort of primitive events since they are directly triggered by
calls rather than other events. Furthermore, the body of the event method is
the only handler for the event. On the other hand, the inference-based defi-
nition of higher-level events in ReactiveDominoJ can be composed of either
higher-level events or primitive events and may be bound to other events.
Another difference is that the inference-based definition in ReactiveDominoJ
is more implicit than the predicates in EventJava.

Functional-reactive languages such as Fran [24] make the expressions in a
reactive program more declarative and look like data flows. Several proposals
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such as FrTime [11] bring the concept of the reactive paradigm to different
languages and discuss the evaluation and semantics. However, most of them
are based on functional programming while the languages that we want to
integrate into such as Java are imperative style. This differences between
functional programming and imperative programming make it hard to in-
troduce the reactive paradigm to OO languages and use with existing OO
libraries. There is also a question that it can be used to design a complex
system since behaviors are primitive types and the results of functions are im-
mutable. The inference-based definition in ReactiveDominoJ is an extension
to an event mechanism and thus fully compatible with OO design.

On the other hand, several research activities [53, 63, 73, 13] are devoted
to bring the reactive paradigm to OO languages. Flapjax [53], a functional-
reactive language designed for Web applications, brings behaviors and event
streams to JavaScript. Flapjax supports behaviors as special variables at
library level, and refines events as infinite streams of discrete events. The
model of the reactive paradigm is gracefully introduced to JavaScript for Web
UI. The code scattering of the initialization and updates for the data in Ajax
applications can be eliminated and the control flows are more clear. However,
obtaining and giving the behaviors heavily rely on the library. Furthermore,
it is also a question that Flapjax can help complex OO design since all
the behaviors are supplied by the built-in library. In ReactiveDominoJ it
is possible to use fields as “behaviors” in a specified scope. Frappé [13], an
implementation of the reactive paradigm for Java, allows to use a Java Beans
component as a source or a sink for event streams. Frappé makes it possible to
use the reactive paradigm with Java Beans by integrating the event/behavior
model in the reactive paradigm with the event/property model in Java Beans.
However, the support of Frappé is at library level rather than language level,
and limited to Java Beans. As a result, writing a program with Frappé
cannot avoid mixing the style of the reactive paradigm with imperative style.
Furthermore, the transformation between behaviors and constant values is
necessary as well.

Data-flow languages [87, 9, 6, 4] such as Lucid [87] give good abstrac-
tion for passing time-varying values between components. A flow can be
established by connecting components, and the input and output of a com-
ponent is described as signals, which are similar to the behaviors in the
reactive paradigm. An important difference from the reactive paradigm is
that the time is not an explicit value. The concept of data flows is close to
hardware design and thus several languages such as Verilog and VHDL are
proposed for specific domains. Furthermore, some data-flow languages such
as LabVIEW/G [46] are designed with a graphical developement environ-
ment. However, using data-flow languages to write a complicated program
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is not as easy as using OO languages. SuperGlue [52] proposes a language
to assemble components, where the signals represent the states in a compo-
nent. The key difference between SuperGlue from other data-flow languages
is that the signals are typed as in OO languages. SuperGlue elegantly elimi-
nates the glue code for connecting components in the model-view-controller
architecture but imperative languages such as Java are still necessary inside
a component.

Other related work includes the libraries developed for reactive support
in existing OO languages. Scala.React [49] is a library-based reactive data-
flow extention to Scala. In [48] the drawbacks of using the Observer pattern
[30] are discussed and the concept of reactors is proposed with the behaviors
and event streams in the reactive paradigm. The Reactive Extensions for
.NET [59] is a library for writing asynchronous and event-based programs
with LINQ. It makes the search in LINQ asynchronous by using IObservable
for collections, so that the UI thread may subscribe and return immediately
rather than wait for the result. There are also other implementations on
reactive collections, which automatically update their clients such as queries
and UI components when their elements are modified. These frameworks
greatly help programming in existing OO languages but what they focus
is the support for the collections and different from the event approach in
ReactiveDominoJ.

The inference based on the value changes of fields in ReactiveDominoJ
might remind readers of the field pointcuts in AspectJ [77]. Furthermore, the
Observer pattern can be modularized by aspects as discussed in [34]. AspectJ
provides get and set pointcuts for picking up access to specified fields as join
points. The pointcuts for fields are very powerful since they can filter fields
by a pattern and used with other pointcuts. Attaching an advice to a set
pointcut for a field can be regarded as binding a handler to the value change
of that field. However, selecting the access to the fields on a specific object
in AspectJ is not easy since AspectJ is designed for resolving crosscutting
concerns. Furthermore, with the field pointcuts in AspectJ we still have to
enumerate all fields we need for a handler by ourselves.

4.6 Summary

We demonstrated how to add a small extension tomethod slots for supporting
one more paradigm. The process of extendingmethod slots can be summaried
as follows. First, considering the paradigm we want to support from the
viewpoint of a paradigm that has been supported by method slots. Second,
finding out the major difference between the two paradigms. Third, analyzing
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why the existing solutions cannot do the same thing in the paradigm we want
to support. Then finally we can know which operators we should add for
extending method slots to support that paradigm.

In this chapter we extendedmethod slots to support the reactive paradigm
by proposing only one more operator. We first compared the reactive paradigm
with the event-handler paradigm and pointed out the major difference be-
tween them is that the event composition in the reactive paradigm is much
implicit and automatic. Why existing event mechanisms cannot do the same
thing as the reactive paradigm can be due to the lack of inference rules
for event composition. To overcome this limitation we proposed a small
extension named ReactiveDominoJ, which adds the braces operator to au-
tomatically select events for a higher-level event by inference. The seman-
tics of such a new kind of predicate-based definition for event composition,
inference-based definition, was presented along with code examples and a
feasible implementation. The limitations of using ReactiveDominoJ for the
reactive paradigm were discussed as well.
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Chapter

5
Conclusions

This thesis successfully advanced the approach of generic constructs to cover
four paradigms. In existing research activities devoted to this approach the
number of supported paradigms is limited to only two. This thesis also
showed the possibility of supporting OOP, the event-handler paradigm, the
aspect paradigm, and the reactive paradigm by only a single language con-
struct.

How to support the implementation of programming paradigms is an im-
portant issue in language design since programming paradigms are so impor-
tant. Better paradigm support can greatly improve the quality of a program
such as code modularity, which also implies that the code is easy to main-
tain, resue, and migrate. This thesis took the approach of generic constructs
to suport the implementation of paradigms since this approach can provide
better support for multiple paradigms in a language while keep the language
design simple. The theis pointed out the insufficiency of the state of the
arts of this approach is that the number of supported paradigms is quite
limited due to the inflexibility of existing generic constructs. To overcome
the problem this thesis presented a new generic construct that is very simple
and flexible enough to support more than two paradigms.

To develop a flexible generic construct that can support more than two
paradigms, this thesis first focused on three paradigms: OOP, the event-
handler paradigm, and the aspect paradigm. They are very important and
widely used in the real world, and there are several similarities among their
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implementations. Although the event-handler paradigm and the aspect paradigm
are developed for resolving different issues, they all implicitly lead to the exe-
cution of several pieces of code according to a certain rule. An event implicitly
leads the execution of handlers bound to it according to the event declara-
tion, and a join point implicitly leads to the execution of advices attached
to it according to the pointcut declaration. On the other hand, methods
must be explicitly called and contain only one piece of code. However, no
one could notice the similarities and develop a flexible generic construct for
the three paradigms based on the common ground among their implementa-
tions before this thesis. This observation led us to develop a new language
construct that can lead to the execution of multiple pieces of code in either
an explicit way or an implicit way.

This thesis extended the methods in prototype-based OO languages such
as JavaScript to a new generic construct, method slots, which is an object’s
property and can hold more than one function closure. Method slots can be
used as methods, events, and advices. The assignment operators for method
slots can manipulate the closures in a method slot to lead the execution of
other method slots, and thus can be shared among OOP, the event-handler
paradigm, and the aspect paradigm. This thesis also discussed the differences
between the event-handler paradigm and the aspect paradigm to clarify the
essentials of them, for example how the code pieces are selected. The coverage
of expressive ability of method slots was also presented and the result showed
that most functionalities can be covered. For OOP the GoF design patterns
were rewritten using method slots to show that method slots can replace the
methods and provide better modularity. The feasibility of method slots was
shown by the compiler implementation, and the overheads were measured by
running benchmarks. How method slots can be used in practice was showed
by case studies as well.

To augment the flexibility of method slots, this thesis further demon-
strated how to extend method slots to support more paradigms by taking
the example of the reactive paradigm. The extension to method slots is very
small and gives only one more operator. In this thesis the process of extend-
ing method slots was explained in detail. In order to find out how to support
the reactive paradigm by method slots, first we compared the similarities be-
tween the reactive paradigm and the most similar one in the three supported
paradigms: the event-handler paradigm. Then we analyzed what the most
important difference between them is, and pointed out existing event mecha-
nisms lack inference rules for event composition. To bring the inference rule
to the event-handler paradigm, we proposed a new kind of predicate-based
definition for event composition, inference-based definition, to automatically
select lower-level events for a higher-level event by inference as what the reac-
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tive paradigm does. This small extension to method slots was also presented
with a feasible compiler implementation and microbenchmarks. The limi-
tations of emulating the reactive paradigm by the event-handler paradigm
using the inference-based definition were also discussed.

Contributions

The contributions of this thesis are summarized as follows:

• This thesis showed the possibility of supporting more than two paradigms
by generic constructs. Although the generic constructs proposed in ex-
isting research activities are not sufficient to support more than two
paradigms, the new generic construct proposed in this thesis success-
fully supports the implementations of four paradigms. We showed that
the new generic construct, method slots, is flexible and easy to extend
for different paradigms.

• The language support proposed by this thesis covers the four paradigms:
OOP, the event-handler paradigm, the aspect paradigm, and the reac-
tive paradigm; no one covers all of them so far as we know. The four
paradigms are very important paradigms in both academia and indus-
try, and attract a lot of interest, especially from OOP community. This
thesis made it possible to support the four paradigms by only a single
language construct. An OO language can simply replace methods with
method slots to support the four paradigms.

• This thesis revealed the similarities among the implementations of the
four paradigms, which were not recognized before this thesis since these
paradigms are developed for different purposes and their constructs
look quite different. This thesis helped to clarify the understanding of
the four paradigms from the viewpoint of implementation and pointed
out the differences among the four paradigms. The code examples writ-
ten in different languages in this thesis not only showed the coverage
of expressive ability of method slots but also clarified the essentials of
the four paradigms.

Future Directions

Possible future directions of this thesis include:
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Supporting more and more paradigms Since method slots are flexible and easy
to extend, we believe that it is possible to support more paradigms by small
extensions. How the support to a paradigm can be added has been shown
in Chapter 4. On the other hand, how method slots can be used along with
other generic constructs might be worth studying as well.

Metaprogramming for method slots Allowing to view and modify the status
of method slots might be helpful in programming. For example, providing
a reflection library for method slots in DominoJ. In the current version of
DominoJ the manipulation of method slots is limited to add or remove a
closure. Allowing to get the information of a method slot such as its type and
the number of the closures in it could help programmers to debug. Making
it possible to search and invoke a method slot by given properties could also
exploit the capability of method slots.

Method slots in parallel computing Introducing method slots in parallel com-
puting might be interesting. Currently the closures in a method slot are al-
ways executed in order since the execution order is important to the paradigms
discussed in this thesis. If we consider using method slots in parallel com-
puting, the clousres in a method slot could be executed on different cores
at the same time for optimizing the performance. The closures in a method
slot could be all the concurrent tasks for an event, which are scheduled and
executed according to the hardware conditions for getting the maximum
throughput.

Method slots in a prototype-based OO language This thesis showed how to use
method slots along with the inheritance in a class-based OO language such
as Java. Implementing method slots in a prototype-based OO language such
as JavaScript could be an execise. The semantics could be further simplified
since no classes and the closures are usually supported directly. On the other
hand, the potential capability of method slots that was not demonstrated by
DominoJ might be found.

Further improving the DominoJ/ReactiveDominoJ compiler Although the over-
heads of current version of the DominoJ/ReactiveDominoJ compiler are not
large, we are trying to make the performance better. Several ideas on the
static analysis might be applied to avoid dynamically adding the closures if
we disable the separate compilation. For example, copying the body of the
method slots at the right-hand side of the assignment operators to the body
of the ones at the left-hand side instead of really creating closure-like objects
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at runtime. Investigating all the closures rather than only the default closure
in a method slot for the braces operator (as we discussed in Section 4.3.3) is
also an interesting topic.

A source-to-bytecode compiler for DominoJ The current version of the Domi-
noJ compiler is a source-to-source compiler, which is fully compatible with
plain Java while cannot directly benefit from Java bytecode. Directly trans-
forming DominoJ source code into Java bytecode might improve the per-
formance; the output is not limited to Java specifications and new JVM
instructions for non-Java languages such as invokedynamic could also be uti-
lized.
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of contexts with polymorphic events. In International Workshop on
Context-Oriented Programming, COP’09, pages 2:1–2:6, New York, NY,
USA, 2009. ACM.

[63] Yoshiki Ohshima, Aran Lunzer, Bert Freudenberg, and Ted Kaehler.
KScript and KSWorld: A time-aware and mostly declarative language
and interactive GUI framework. In Proceedings of the 2013 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on
Programming &#38; Software, Onward! ’13, pages 117–134, New York,
NY, USA, 2013. ACM.

[64] Oracle Corporation.
http://www.oracle.com/technetwork/java/index.html.

[65] Oracle Corporation. Abstract Window Toolkit.
http://docs.oracle.com/javase/jp/7/api/java/awt/
package-summary.html.

[66] Oracle Corporation. OpenJDK: Project Lambda.
http://openjdk.java.net/projects/lambda/.

[67] Oracle Corporation. Swing.
http://docs.oracle.com/javase/jp/7/api/javax/
swing/package-summary.html.

BIBLIOGRAPHY 165

http://msdn.microsoft.com/en-us/library/ms632590(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms632590(VS.85).aspx
http://msdn.microsoft.com/en-us/library/hh967573.aspx
http://msdn.microsoft.com/en-us/library/hh967573.aspx
http://msdn.microsoft.com/en-us/data/gg577609
http://msdn.microsoft.com/en-us/library/cc433218.aspx
http://msdn.microsoft.com/en-us/library/cc433218.aspx
http://www.oracle.com/technetwork/java/index.html
http://docs.oracle.com/javase/jp/7/api/java/awt/package-summary.html
http://docs.oracle.com/javase/jp/7/api/java/awt/package-summary.html
http://openjdk.java.net/projects/lambda/
http://docs.oracle.com/javase/jp/7/api/javax/swing/package-summary.html
http://docs.oracle.com/javase/jp/7/api/javax/swing/package-summary.html


[68] Doug Orleans. Incremental programming with extensible decisions. In
Proceedings of the 1st international conference on Aspect-oriented soft-
ware development, AOSD’02, pages 56–64, New York, NY, USA, 2002.
ACM.

[69] Christian Prehofer. Feature-oriented programming: A fresh look at ob-
jects. pages 419–443. Springer, 1997.

[70] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language with quan-
tified, typed events. In Proceedings of the 22nd European conference on
Object-Oriented Programming, ECOOP’08, pages 155–179, 2008.

[71] Red Hat. JBoss Application Server.
http://www.jboss.org/jbossas.

[72] Hidehiko Masuhara Robert Hirschfeld and Atsushi Igarashi. L – context-
oriented programming with only layers. In 5th International Workshop
on Context-Oriented Programming, COP’13. ACM, 2013.

[73] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging
Between Object-oriented and Functional Style in Reactive Applications.
In Modularity ’14 - 13th International Conference on Modularity - 2014.
ACM Press, April 2014.

[74] Guido Salvaneschi and Mira Mezini. Reactive behavior in object-
oriented applications: an analysis and a research roadmap. In Pro-
ceedings of the 12th annual international conference on Aspect-oriented
software development, AOSD’13, pages 37–48, New York, NY, USA,
2013. ACM.

[75] Hans Schippers, Dirk Janssens, Michael Haupt, and Robert Hirschfeld.
Delegation-based semantics for modularizing crosscutting concerns. In
Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented
programming systems languages and applications, OOPSLA’08, pages
525–542, New York, NY, USA, 2008. ACM.

[76] Randall B. Smith and David Ungar. Programming as an experience:
The inspiration for Self. In Proceedings of the 9th European Conference
on Object-Oriented Programming, ECOOP’95, pages 303–330, London,
UK, UK, 1995. Springer-Verlag.

[77] The AspectJ Project.
http://www.eclipse.org/aspectj/.

166 BIBLIOGRAPHY

http://www.jboss.org/jbossas
http://www.eclipse.org/aspectj/


[78] The Boost Project. Boost.Signals.
http://www.boost.org/libs/signals/.

[79] The C++ Standards Committee.
http://www.open-std.org/jtc1/sc22/wg21/.

[80] The Eclipse Foundation. SWT: The Standard Widget Toolkit.
http://www.eclipse.org/swt/.

[81] The GTK+ Team. The GTK+ Project.
http://www.gtk.org/.

[82] The Qt Project. Signals & Slots.
http://qt-project.org/doc/signalsandslots.

[83] The SAX project. Simple API for XML.
http://www.saxproject.org/.

[84] The Self project.
http://selflanguage.org/.

[85] The X.Org project. Xlib in X Window System.
http://www.x.org/.

[86] VMware. Spring Framework.
http://projects.spring.io/spring-framework/.

[87] William W. Wadge and Edward A. Ashcroft. LUCID, the dataflow
programming language. Academic Press Professional, Inc., San Diego,
CA, USA, 1985.

[88] Zhanyong Wan and Paul Hudak. Functional reactive programming from
first principles. In Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation, PLDI’00, pages
242–252, New York, NY, USA, 2000. ACM.

[89] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In
Proceedings of the sixth ACM SIGPLAN international conference on
Functional programming, ICFP’01, pages 146–156, New York, NY, USA,
2001. ACM.

[90] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In
Proceedings of the 4th International Symposium on Practical Aspects
of Declarative Languages, PADL’02, pages 155–172, London, UK, UK,
2002. Springer-Verlag.

BIBLIOGRAPHY 167

http://www.boost.org/libs/signals/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.eclipse.org/swt/
http://www.gtk.org/
http://qt-project.org/doc/signalsandslots
http://www.saxproject.org/
http://selflanguage.org/
http://www.x.org/
http://projects.spring.io/spring-framework/


BIBLIOGRAPHY

[91] Jennifer Widom and S. J. Finkelstein. Set-oriented production rules in
relational database systems. In Proc. of the Int’l Conf. on Management
of Data, SIGMOD’90, pages 259–270. ACM Press, 1990.

[92] YungYu Zhuang and Shigeru Chiba. Applying DominoJ to GoF Design
Patterns. Technical report, Department of Mathematical and Comput-
ing Sciences, Graduate School of Information Science and Engineering,
Tokyo Institute of Technology, 2011.

[93] YungYu Zhuang and Shigeru Chiba. Method slots: supporting methods,
events, and advices by a single language construct. In Proceedings of the
12th annual international conference on Aspect-oriented software devel-
opment, AOSD’13, pages 197–208, New York, NY, USA, 2013. ACM.

168 BIBLIOGRAPHY


	Introduction
	Motivating problems
	Solution by this thesis
	Position of this thesis
	Structure of this thesis

	Backgrounds
	Programming paradigms
	Object-oriented programming
	The event-handler paradigm
	The aspect paradigm
	The reactive paradigm

	Supporting the implementation of paradigms
	Design patterns
	Dedicated constructs and the unification
	Generic constructs and the integration

	Comparing the three approaches

	Method Slots
	Introduction
	Motivation
	DominoJ
	Method slots
	Assignment operators for method slots

	Evaluation
	The implementation
	Microbenchmarks
	Compiling and running the DaCapo benchmark suite
	Method slots and design patterns
	The event-handler paradigm
	The aspect paradigm
	Summary of the coverage
	Event-handler vs. Aspect

	Case study
	The events and delegates examples in C# tutorials
	The Observer pattern in JHotDraw
	The aspects in AspectTetris

	Related work
	Summary

	An Extension for Supporting the Reactive Paradigm
	Introduction
	Emulating the reactive paradigm by the event-handler paradigm
	An example of the reactive paradigm
	The event-handler paradigm can do the same thing
	The major difference between the two paradigms
	The definitions of higher-level events in existing event mechanisms
	The lack of inference rules

	ReactiveDominoJ
	Using DominoJ for the event-handler paradigm
	The braces operator for the inference-based definition
	The implementation of the reactive extension

	Discussion
	Preliminary microbenchmarks
	Comparing with DominoJ
	Comparing with AspectJ
	For the reactive paradigm

	Related work
	Summary

	Conclusions
	Bibliography

